
Group Equivariant Convolutional Networks

Taco S. Cohen T.S.COHEN@UVA.NL

University of Amsterdam

Max Welling M.WELLING@UVA.NL

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

Abstract

We introduce Group equivariant Convolutional

Neural Networks (G-CNNs), a natural general-

ization of convolutional neural networks that re-

duces sample complexity by exploiting symme-

tries. G-CNNs use G-convolutions, a new type of

layer that enjoys a substantially higher degree of

weight sharing than regular convolution layers.

G-convolutions increase the expressive capacity

of the network without increasing the number of

parameters. Group convolution layers are easy

to use and can be implemented with negligible

computational overhead for discrete groups gen-

erated by translations, reflections and rotations.

G-CNNs achieve state of the art results on CI-

FAR10 and rotated MNIST.

1. Introduction

Deep convolutional neural networks (CNNs, convnets)

have proven to be very powerful models of sensory data

such as images, video, and audio. Although a strong the-

ory of neural network design is currently lacking, a large

amount of empirical evidence supports the notion that both

convolutional weight sharing and depth (among other fac-

tors) are important for good predictive performance.

Convolutional weight sharing is effective because there is

a translation symmetry in most perception tasks: the la-

bel function and data distribution are both approximately

invariant to shifts. By using the same weights to analyze

or model each part of the image, a convolution layer uses

far fewer parameters than a fully connected one, while pre-

serving the capacity to learn many useful transformations.

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Convolution layers can be used effectively in a deep net-

work because all the layers in such a network are trans-

lation equivariant: shifting the image and then feeding

it through a number of layers is the same as feeding the

original image through the same layers and then shifting

the resulting feature maps (at least up to edge-effects). In

other words, the symmetry (translation) is preserved by

each layer, which makes it possible to exploit it not just

in the first, but also in higher layers of the network.

In this paper we show how convolutional networks can be

generalized to exploit larger groups of symmetries, includ-

ing rotations and reflections. The notion of equivariance is

key to this generalization, so in section 2 we will discuss

this concept and its role in deep representation learning.

After discussing related work in section 3, we recall a num-

ber of mathematical concepts in section 4 that allow us to

define and analyze the G-convolution in a generic manner.

In section 5, we analyze the equivariance properties of stan-

dard CNNs, and show that they are equivariant to trans-

lations but may fail to equivary with more general trans-

formations. Using the mathematical framework from sec-

tion 4, we can define G-CNNs (section 6) by analogy to

standard CNNs (the latter being the G-CNN for the transla-

tion group). We show that G-convolutions, as well as var-

ious kinds of layers used in modern CNNs, such as pool-

ing, arbitrary pointwise nonlinearities, batch normalization

and residual blocks are all equivariant, and thus compatible

with G-CNNs. In section 7 we provide concrete implemen-

tation details for group convolutions.

In section 8 we report experimental results on MNIST-rot

and CIFAR10, where G-CNNs achieve state of the art re-

sults (2.28% error on MNIST-rot, and 4.19% resp. 6.46%
on augmented and plain CIFAR10). We show that replac-

ing planar convolutions with G-convolutions consistently

improves results without additional tuning. In section 9 we

provide a discussion of these results and consider several

extensions of the method, before concluding in section 10.

Group Equivariant Convolutional Networks

2. Structured & Equivariant Representations

Deep neural networks produce a sequence of progressively

more abstract representations by mapping the input through

a series of parameterized functions (LeCun et al., 2015). In

the current generation of neural networks, the representa-

tion spaces are usually endowed with very minimal internal

structure, such as that of a linear space R
n.

In this paper we construct representations that have the

structure of a linear G-space, for some chosen group G.

This means that each vector in the representation space has

a pose associated with it, which can be transformed by the

elements of some group of transformations G. This addi-

tional structure allows us to model data more efficiently: A

filter in a G-CNN detects co-occurrences of features that

have the preferred relative pose, and can match such a fea-

ture constellation in every global pose through an operation

called the G-convolution.

A representation space can obtain its structure from other

representation spaces to which it is connected. For this to

work, the network or layer Φ that maps one representation

to another should be structure preserving. For G-spaces

this means that Φ has to be equivariant:

Φ(Tg x) = T ′
g Φ(x), (1)

That is, transforming an input x by a transformation g
(forming Tg x) and then passing it through the learned map

Φ should give the same result as first mapping x through Φ
and then transforming the representation.

Equivariance can be realized in many ways, and in particu-

lar the operators T and T ′ need not be the same. The only

requirement for T and T ′ is that for any two transforma-

tions g and h, we have T (gh) = T (g)T (h) (i.e. T is a

linear representation of G).

From equation 1 we see that the familiar concept of in-

variance is a special kind of equivariance where T ′
g is the

identity transformation for all g. In deep learning, general

equivariance is more useful than invariance because it is

impossible to determine if features are in the right spatial

configuration if they are invariant.

Besides improving statistical efficiency and facilitating ge-

ometrical reasoning, equivariance to symmetry transforma-

tions constrains the network in a way that can aid general-

ization. A network Φ can be non-injective, meaning that

non-identical vectors x and y in the input space become

identical in the output space (for example, two instances

of a face may be mapped onto a single vector indicating

the presence of any face). If Φ is equivariant, then the G-

transformed inputs Tg x and Tg y must also be mapped to

the same output. Their “sameness” (as judged by the net-

work) is preserved under symmetry transformations.

3. Related Work

There is a large body of literature on invariant representa-

tions. Invariance can be achieved by pose normalization

using an equivariant detector (Lowe, 2004; Jaderberg et al.,

2015) or by averaging a possibly nonlinear function over

a group (Reisert, 2008; Skibbe, 2013; Manay et al., 2006;

Kondor, 2007).

Scattering convolution networks use wavelet convolutions,

nonlinearities and group averaging to produce stable in-

variants (Bruna & Mallat, 2013). Scattering networks have

been extended to use convolutions on the group of transla-

tions, rotations and scalings, and have been applied to ob-

ject and texture recognition (Sifre & Mallat, 2013; Oyallon

& Mallat, 2015).

A number of recent works have addressed the problem

of learning or constructing equivariant representations.

This includes work on transforming autoencoders (Hin-

ton et al., 2011), equivariant Boltzmann machines (Kivi-

nen & Williams, 2011; Sohn & Lee, 2012), equivariant de-

scriptors (Schmidt & Roth, 2012), and equivariant filtering

(Skibbe, 2013).

Lenc & Vedaldi (2015) show that the AlexNet CNN

(Krizhevsky et al., 2012) trained on imagenet sponta-

neously learns representations that are equivariant to flips,

scaling and rotation. This supports the idea that equivari-

ance is a good inductive bias for deep convolutional net-

works. Agrawal et al. (2015) show that useful representa-

tions can be learned in an unsupervised manner by training

a convolutional network to be equivariant to ego-motion.

Anselmi et al. (2014; 2015) use the theory of locally com-

pact topological groups to develop a theory of statistically

efficient learning in sensory cortex. This theory was imple-

mented for the commutative group consisting of time- and

vocal tract length shifts for an application to speech recog-

nition by Zhang et al. (2015).

Gens & Domingos (2014) proposed an approximately

equivariant convolutional architecture that uses sparse,

high-dimensional feature maps to deal with high-

dimensional groups of transformations. Dieleman et al.

(2015) showed that rotation symmetry can be exploited in

convolutional networks for the problem of galaxy morphol-

ogy prediction by rotating feature maps, effectively learn-

ing an equivariant representation. This work was later ex-

tended (Dieleman et al., 2016) and evaluated on various

computer vision problems that have cyclic symmetry.

Cohen & Welling (2014) showed that the concept of disen-

tangling can be understood as a reduction of the operators

Tg in an equivariant representation, and later related this

notion of disentangling to the more familiar statistical no-

tion of decorrelation (Cohen & Welling, 2015).

Group Equivariant Convolutional Networks

4. Mathematical Framework

In this section we present a mathematical framework that

enables a simple and generic definition and analysis of G-

CNNs for various groups G. We begin by defining sym-

metry groups, and study in particular two groups that are

used in the G-CNNs we have built so far. Then we take a

look at functions on groups (used to model feature maps in

G-CNNs) and their transformation properties.

4.1. Symmetry Groups

A symmetry of an object is a transformation that leaves

the object invariant. For example, if we take the sampling

grid of our image, Z
2, and flip it over we get −Z

2 =
{(−n,−m) | (n,m) ∈ Z

2} = Z
2. So the flipping oper-

ation is a symmetry of the sampling grid.

If we have two symmetry transformations g and h and we

compose them, the result gh is another symmetry transfor-

mation (i.e. it leaves the object invariant as well). Further-

more, the inverse g−1 of any symmetry is also a symmetry,

and composing it with g gives the identity transformation

e. A set of transformations with these properties is called a

symmetry group.

One simple example of a group is the set of 2D integer

translations, Z2. Here the group operation (“composition

of transformations”) is addition: (n,m) + (p, q) = (n +
p,m + q). One can verify that the sum of two translations

is again a translation, and that the inverse (negative) of a

translation is a translation, so this is indeed a group.

Although it may seem fancy to call 2-tuples of integers a

group, this is helpful in our case because as we will see in

section 6, a useful notion of convolution can be defined for

functions on any group1, of which Z
2 is only one exam-

ple. The important properties of the convolution, such as

equivariance, arise primarily from the group structure.

4.2. The group p4

The group p4 consists of all compositions of translations

and rotations by 90 degrees about any center of rotation in

a square grid. A convenient parameterization of this group

in terms of three integers r, u, v is

g(r, u, v) =

cos (rπ/2) − sin(rπ/2) u
sin(rπ/2) cos(rπ/2) v

0 0 1

 , (2)

where 0 ≤ r < 4 and (u, v) ∈ Z
2. The group operation is

given by matrix multiplication.

The composition and inversion operations could also be

represented directly in terms of integers (r, u, v), but the

1At least, on any locally compact group.

equations are cumbersome. Hence, our preferred method

of composing two group elements represented by integer

tuples is to convert them to matrices, multiply these matri-

ces, and then convert the resulting matrix back to a tuple of

integers (using the atan2 function to obtain r).

The group p4 acts on points in Z
2 (pixel coordinates) by

multiplying the matrix g(r, u, v) by the homogeneous co-

ordinate vector x(u′, v′) of a point (u′, v′):

gx ≃

cos(rπ/2) − sin(rπ/2) u
sin(rπ/2) cos(rπ/2) v

0 0 1

u′

v′

1

 (3)

4.3. The group p4m

The group p4m consists of all compositions of translations,

mirror reflections, and rotations by 90 degrees about any

center of rotation in the grid. Like p4, we can parameterize

this group by integers:

g(m, r, u, v) =

(−1)m cos(rπ
2
) −(−1)m sin(rπ

2
) u

sin(rπ
2
) cos(rπ

2
) v

0 0 1

 ,

where m ∈ {0, 1}, 0 ≤ r < 4 and (u, v) ∈ Z
2. The reader

may verify that this is indeed a group.

Again, composition is most easily performed using the ma-

trix representation. Computing r, u, v from a given matrix

g can be done using the same method we use for p4, and

for m we have m = 1

2
(1− det(g)).

4.4. Functions on groups

We model images and stacks of feature maps in a conven-

tional CNN as functions f : Z
2 → R

K supported on a

bounded (typically rectangular) domain. At each pixel co-

ordinate (p, q) ∈ Z
2, the stack of feature maps returns a

K-dimensional vector f(p, q), where K denotes the num-

ber of channels.

Although the feature maps must always be stored in finite

arrays, modeling them as functions that extend to infinity

(while being non-zero on a finite region only) simplifies

the mathematical analysis of CNNs.

We will be concerned with transformations of the feature

maps, so we introduce the following notation for a trans-

formation g acting on a set of feature maps:

[Lgf](x) = [f ◦ g−1](x) = f(g−1x) (4)

Computationally, this says that to get the value of the g-

transformed feature map Lgf at the point x, we need to do

a lookup in the original feature map f at the point g−1x,

which is the unique point that gets mapped to x by g. This

Group Equivariant Convolutional Networks

operatorLg is a concrete instantiation of the transformation

operator Tg referenced in section 2, and one may verify that

LgLh = Lgh. (5)

If g represents a pure translation t = (u, v) ∈ Z
2 then

g−1x simply means x − t. The inverse on g in equation 4

ensures that the function is shifted in the positive direction

when using a positive translation, and that Lg satisfies the

criterion for being a homomorphism (eq. 5) even for trans-

formations g and h that do not commute (i.e. gh 6= hg).

As will be explained in section 6.1, feature maps in a G-

CNN are functions on the group G, instead of functions on

the group Z
2. For functions on G, the definition of Lg is

still valid if we simply replace x (an element of Z2) by h
(an element of G), and interpret g−1h as composition.

It is easy to mentally visualize a planar feature map f :
Z
2 → R undergoing a transformation, but we are not used

to visualizing functions on groups. To visualize a feature

map or filter on p4, we plot the four patches associated with

the four pure rotations on a circle, as shown in figure 1

(left). Each pixel in this figure has a rotation coordinate

(the patch in which the pixel appears), and two translation

coordinates (the pixel position within the patch).

e

r
3

r
2

r

e

r
3

r
2

r

Figure 1. A p4 feature map and its rotation by r.

When we apply the 90 degree rotation r to a function on

p4, each planar patch follows its red r-arrow (thus incre-

menting the rotation coordinate by 1 (mod 4)), and simul-

taneously undergoes a 90-degree rotation. The result of this

operation is shown on the right of figure 1. As we will see

in section 6, a p4 feature map in a p4-CNN undergoes ex-

actly this motion under rotation of the input image.

For p4m, we can make a similar plot, shown in figure 2.

A p4m function has 8 planar patches, each one associated

with a mirroring m and rotation r. Besides red rotation

arrows, the figure now includes small blue reflection lines

(which are undirected, since reflections are self-inverse).

Upon rotation of a p4m function, each patch again follows

its red r-arrows and undergoes a 90 degree rotation. Un-

der a mirroring, the patches connected by a blue line will

change places and undergo the mirroring transformation.

e

r

r
2

r
3

m

mr
3

=

rm

r
2
m = mr

2

mr

=

r
3
m

e

r

r
2

r
3

m

mr
3

=

rm

r
2
m = mr

2

mr

=

r
3
m

Figure 2. A p4m feature map and its rotation by r.

This rich transformation structure arises from the group op-

eration of p4 or p4m, combined with equation 4 which de-

scribes the transformation of a function on a group.

Finally, we define the involution of a feature map, which

will appear in section 6.1 when we study the behavior of

the G-convolution, and which also appears in the gradient

of the G-convolution. We have:

f∗(g) = f(g−1) (6)

For Z
2 feature maps the involution is just a point reflec-

tion, but for G-feature maps the meaning depends on the

structure of G. In all cases, f∗∗ = f .

5. Equivariance properties of CNNs

In this section we recall the definitions of the convolution

and correlation operations used in conventional CNNs, and

show that these operations are equivariant to translations

but not to other transformations such as rotation. This is

certainly well known and easy to see by mental visualiza-

tion, but deriving it explicitly will make it easier to follow

the derivation of group equivariance of the group convolu-

tion defined in the next section.

At each layer l, a regular convnet takes as input a stack of

feature maps f : Z2 → R
Kl

and convolves or correlates it

with a set of Kl+1 filters ψi : Z2 → R
Kl

:

[f ∗ ψi](x) =
∑

y∈Z2

Kl

∑

k=1

fk(y)ψ
i
k(x− y)

[f ⋆ ψi](x) =
∑

y∈Z2

Kl

∑

k=1

fk(y)ψ
i
k(y − x)

(7)

If one employs convolution (∗) in the forward pass, the cor-

relation (⋆) will appear in the backward pass when comput-

ing gradients, and vice versa. We will use the correlation in

the forward pass, and refer generically to both operations

as “convolution”.

Using the substitution y → y + t, and leaving out the sum-

mation over feature maps for clarity, we see that a transla-

Group Equivariant Convolutional Networks

tion followed by a correlation is the same as a correlation

followed by a translation:

[[Ltf] ⋆ ψ](x) =
∑

y

f(y − t)ψ(y − x)

=
∑

y

f(y)ψ(y + t− x)

=
∑

y

f(y)ψ(y − (x− t))

= [Lt[f ⋆ ψ]](x).

(8)

And so we say that “correlation is an equivariant map for

the translation group”, or that “correlation and translation

commute”. Using an analogous computation one can show

that also for the convolution, [Ltf] ∗ ψ = Lt[f ∗ ψ].
Although convolutions are equivariant to translation, they

are not equivariant to other isometries of the sampling lat-

tice. For instance, as shown in the supplementary material,

rotating the image and then convolving with a fixed filter is

not the same as first convolving and then rotating the result:

[[Lrf] ⋆ ψ](x) = Lr[f ⋆ [Lr−1ψ]](x) (9)

In words, this says that the correlation of a rotated image

Lrf with a filter ψ is the same as the rotation by r of the

original image f convolved with the inverse-rotated filter

Lr−1ψ. Hence, if an ordinary CNN learns rotated copies

of the same filter, the stack of feature maps is equivariant,

although individual feature maps are not.

6. Group Equivariant Networks

In this section we will define the three layers used in a G-

CNN (G-convolution, G-pooling, nonlinearity) and show

that each one commutes with G-transformations of the do-

main of the image.

6.1. G-Equivariant correlation

The correlation (eq. 7) is computed by shifting a filter and

then computing a dot product with the feature maps. By

replacing the shift by a more general transformation from

some group G, we get the G-correlation used in the first

layer of a G-CNN:

[f ⋆ ψ](g) =
∑

y∈Z2

∑

k

fk(y)ψk(g
−1y). (10)

Notice that both the input image f and the filter ψ are func-

tions of the plane Z2, but the feature map f ⋆ψ is a function

on the discrete group G (which may contain translations as

a subgroup). Hence, for all layers after the first, the filters ψ
must also be functions on G, and the correlation operation

becomes

[f ⋆ ψ](g) =
∑

h∈G

∑

k

fk(h)ψk(g
−1h). (11)

The equivariance of this operation is derived in complete

analogy to eq. 8, now using the substitution h→ uh:

[[Luf] ⋆ ψ](g) =
∑

h∈G

∑

k

fk(u
−1h)ψ(g−1h)

=
∑

h∈G

∑

k

f(h)ψ(g−1uh)

=
∑

h∈G

∑

k

f(h)ψ((u−1g)−1h)

= [Lu[f ⋆ ψ]](g)

(12)

The equivariance of eq. 10 is derived similarly. Note that

although equivariance is expressed by the same formula

[Luf] ⋆ ψ = Lu[f ⋆ ψ] for both first-layer G-correlation

(eq. 10) and full G-correlation (11), the meaning of the

operator Lu is different: for the first layer correlation, the

inputs f and ψ are functions on Z
2, so Luf denotes the

transformation of such a function, while Lu[f ⋆ ψ] denotes

the transformation of the feature map, which is a function

on G. For the full G-correlation, both the inputs f and ψ
and the output f ⋆ ψ are functions on G.

Note that if G is not commutative, neither the G-

convolution nor the G-correlation is commutative. How-

ever, the feature maps ψ ⋆ f and f ⋆ ψ are related by the

involution (eq. 6):

f ⋆ ψ = (ψ ⋆ f)∗. (13)

Since the involution is invertible (it is its own inverse), the

information content of f⋆ψ and ψ⋆f is the same. However,

f ⋆ ψ is more efficient to compute when using the method

described in section 7, because transforming a small filter

is faster than transforming a large feature map.

It is customary to add a bias term to each feature map in

a convolution layer. This can be done for G-conv layers

as well, as long as there is only one bias per G-feature

map (instead of one bias per spatial feature plane within

a G-feature map). Similarly, batch normalization (Ioffe &

Szegedy, 2015) should be implemented with a single scale

and bias parameter per G-feature map in order to preserve

equivariance. The sum of two G-equivariant feature maps

is also G-equivariant, thus G-conv layers can be used in

highway networks and residual networks (Srivastava et al.,

2015; He et al., 2015).

6.2. Pointwise nonlinearities

Equation 12 shows that G-correlation preserves the trans-

formation properties of the previous layer. What about non-

linearities and pooling?

Recall that we think of feature maps as functions on G. In

this view, applying a nonlinearity ν : R → R to a feature

map amounts to function composition. We introduce the

Group Equivariant Convolutional Networks

composition operator

Cνf(g) = [ν ◦ f](g) = ν(f(g)). (14)

which acts on functions by post-composing them with ν.

Since the left transformation operator L acts by pre-

composition, C and L commute:

CνLhf = ν ◦ [f ◦ h−1] = [ν ◦ f] ◦ h−1 = LhCνf, (15)

so the rectified feature map inherits the transformation

properties of the previous layer.

6.3. Subgroup pooling and coset pooling

In order to simplify the analysis, we split the pooling op-

eration into two steps: the pooling itself (performed with-

out stride), and a subsampling step. The non-strided max-

pooling operation applied to a feature map f : G → R can

be modeled as an operator P that acts on f as

Pf(g) = max
k∈gU

f(k), (16)

where gU = {gu |u ∈ U} is the g-transformation of some

pooling domain U ⊂ G (typically a neighborhood of the

identity transformation). In a regular convnet, U is usually

a 2× 2 or 3× 3 square including the origin (0, 0), and g is

a translation.

As shown in the supplementary material, pooling com-

mutes with Lh:

PLh = LhP (17)

Since pooling tends to reduce the variation in a feature map,

it makes sense to sub-sample the pooled feature map, or

equivalently, to do a “pooling with stride”. In a G-CNN,

the notion of “stride” is generalized by subsampling on a

subgroupH ⊂ G. That is, H is a subset ofG that is itself a

group (i.e. closed under multiplication and inverses). The

subsampled feature map is then equivariant toH but notG.

In a standard convnet, pooling with stride 2 is the same as

pooling and then subsampling on H = {(2i, 2j) |(i, j) ∈
Z
2} which is a subgroup of G = Z

2. For the p4-CNN, we

may subsample on the subgroup H containing all 4 rota-

tions, as well as shifts by multiples of 2 pixels.

We can obtain fullG-equivariance by choosing our pooling

region U to be a subgroup H ⊂ G. The pooling domains

gH that result are called cosets in group theory. The cosets

partition the group into non-overlapping regions. The fea-

ture map that results from pooling over cosets is invariant

to the right-action ofH , because the cosets are similarly in-

variant (ghH = gH). Hence, we can arbitrarily choose one

coset representative per coset to subsample on. The feature

map that results from coset pooling may be thought of as

a function on the quotient space G/H , in which two trans-

formations are considered equivalent if they are related by

a transformation in H .

As an example, in a p4 feature map, we can pool over all

four rotations at each spatial position (the cosets of the sub-

group R of rotations around the origin). The resulting fea-

ture map is a function on Z
2 ∼= p4/R, i.e. it will transform

in the same way as the input image. Another example is

given by a feature map on Z, where we could pool over the

cosets of the subgroup nZ of shifts by multiples of n. This

gives a feature map on Z/nZ, which has a cyclic transfor-

mation law under translations.

This concludes our analysis of G-CNNs. Since all layer

types are equivariant, we can freely stack them into deep

networks and expect G-conv parameter sharing to be effec-

tive at arbitrary depth.

7. Efficient Implementation

Computing the G-convolution for a discrete group involves

nothing more than indexing arithmetic and inner products,

so it can be implemented straightforwardly using a loop or

as a parallel GPU kernel. Here we present the details for a

G-convolution implementation that can leverage recent ad-

vances in fast computation of planar convolutions (Mathieu

et al., 2014; Vasilache et al., 2015; Lavin & Gray, 2015).

A plane symmetry group G is called split if any transfor-

mation g ∈ G can be decomposed into a translation t ∈ Z
2

and a transformation s in the stabilizer of the origin (i.e. s
leaves the origin invariant). For the group p4, we can write

g = ts for t a translation and s a rotation about the origin,

while p4m splits into translations and rotation-flips. Us-

ing this split of G and the fact that LgLh = Lgh, we can

rewrite the G-correlation (eq. 10 and 11) as follows:

f ⋆ ψ(ts) =
∑

h∈X

∑

k

fk(h)Lt [Lsψk(h)] (18)

where X = Z
2 in layer one and X = G in further layers.

Thus, to compute the p4 (or p4m) correlation f ⋆ ψ we can

first compute Lsψ (“filter transformation”) for all four ro-

tations (or all eight rotation-flips) and then call a fast planar

correlation routine on f and the augmented filter bank.

The computational cost of the algorithm presented here is

roughly equal to that of a planar convolution with a filter

bank that is the same size as the augmented filter bank used

in the G-convolution, because the cost of the filter transfor-

mation is negligible.

7.1. Filter transformation

The set of filters at layer l is stored in an array F [·] of shape

Kl × Kl−1 × Sl−1 × n × n, where Kl is the number of

Group Equivariant Convolutional Networks

channels at layer l, Sl−1 denotes the number of transfor-

mations in G that leave the origin invariant (e.g. 1, 4 or 8
for Z2, p4 or p4m filters, respectively), and n is the spa-

tial (or translational) extent of the filter. Note that typically,

S1 = 1 for 2D images, while Sl = 4 or Sl = 8 for l > 1.

The filter transformation Ls amounts to a permutation of

the entries of each of the Kl × Kl−1 scalar-valued filter

channels in F . Since we are applying Sl transformations to

each filter, the output of this operation is an array of shape

Kl × Sl ×Kl−1 × Sl−1 × n× n, which we call F+.

The permutation can be implemented efficiently by a GPU

kernel that does a lookup into F for each output cell of

F+, using a precomputed index associated with the output

cell. To precompute the indices, we define an invertible

map g(s, u, v) that takes an input index (valid for an array

of shape Sl−1 × n× n) and produces the associated group

element g as a matrix (section 4.2 and 4.3). For each in-

put index (s, u, v) and each transformation s′, we compute

s̄, ū, v̄ = g−1(g(s′, 0, 0)−1g(s, u, v)). This index is used

to set F+[i, s′, j, s, u, v] = F [i, j, s̄, ū, v̄] for all i, j.

The G-convolution for a new group can be added by simply

implementing a map g(·) from indices to matrices

7.2. Planar convolution

The second part of the G-convolution algorithm is a pla-

nar convolution using the expanded filter bank F+. If

Sl−1 > 1, the sum over X in eq. 18 involves a sum over

the stabilizer. This sum can be folded into the sum over fea-

ture channels performed by the planar convolution routine

by reshaping F+ from Kl ×Sl ×Kl−1 ×Sl−1 ×n×n to

SlKl×Sl−1Kl−1×n×n. The resulting array can be inter-

preted as a conventional filter bank with Sl−1Kl−1 planar

input channels and SlKl planar output channels, which can

be correlated with the feature maps f (similarly reshaped).

8. Experiments

8.1. Rotated MNIST

The rotated MNIST dataset (Larochelle et al., 2007) con-

tains 62000 randomly rotated handwritten digits. The

dataset is split into a training, validation and test sets of

size 10000, 2000 and 50000, respectively.

We performed model selection using the validation set,

yielding a CNN architecture (Z2CNN) with 7 layers of

3 × 3 convolutions (4 × 4 in the final layer), 20 channels

in each layer, relu activation functions, batch normaliza-

tion, dropout, and max-pooling after layer 2. For optimiza-

tion, we used the Adam algorithm (Kingma & Ba, 2015).

This baseline architecture outperforms the models tested

by Larochelle et al. (2007) (when trained on 12k and eval-

uated on 50k), but does not match the previous state of the

art, which uses prior knowledge about rotations (Schmidt

& Roth, 2012) (see table 1).

Next, we replaced each convolution by a p4-convolution

(eq. 10 and 11), divided the number of filters by
√
4 =

2 (so as to keep the number of parameters approximately

fixed), and added max-pooling over rotations after the last

convolution layer. This architecture (P4CNN) was found

to perform better without dropout, so we removed it. The

P4CNN almost halves the error rate of the previous state of

the art (2.28% vs 3.98% error).

We then tested the hypothesis that premature invariance is

undesirable in a deep architecture (section 2). We took

the Z2CNN, replaced each convolution layer by a p4-

convolution (eq. 10) followed by a coset max-pooling over

rotations. The resulting feature maps consist of rotation-

invariant features, and have the same transformation law as

the input image. This network (P4CNNRotationPooling)

outperforms the baseline and the previous state of the art,

but performs significantly worse than the P4CNN which

does not pool over rotations in intermediate layers.

Network Test Error (%)

Larochelle et al. (2007) 10.38 ± 0.27

Sohn & Lee (2012) 4.2

Schmidt & Roth (2012) 3.98

Z2CNN 5.03 ± 0.0020

P4CNNRotationPooling 3.21 ± 0.0012

P4CNN 2.28 ± 0.0004

Table 1. Error rates on rotated MNIST (with standard deviation

under variation of the random seed).

8.2. CIFAR-10

The CIFAR-10 dataset consists of 60k images of size 32×
32, divided into 10 classes. The dataset is split into 40k
training, 10k validation and 10k testing splits.

We compared the p4-, p4m- and standard planar Z2 con-

volutions on two kinds of baseline architectures. Our first

baseline is the All-CNN-C architecture by Springenberg

et al. (2015), which consists of a sequence of 9 strided and

non-strided convolution layers, interspersed with rectified

linear activation units, and nothing else. Our second base-

line is a residual network (He et al., 2016), which consists

of an initial convolution layer, followed by three stages of

2n convolution layers using ki filters at stage i, followed

by a final classification layer (6n + 2 layers in total). The

first convolution in each stage i > 1 uses a stride of 2, so

the feature map sizes are 32, 16, and 8 for the three stages.

We use n = 7, ki = 32, 64, 128 yielding a wide 44-layer

network called ResNet44.

Group Equivariant Convolutional Networks

To evaluate G-CNNs, we replaced all convolution layers of

the baseline architectures by p4 or p4m convolutions. For a

constant number of filters, this increases the size of the fea-

ture maps 4 or 8-fold, which in turn increases the number of

parameters required per filter in the next layer. Hence, we

halve the number of filters in each p4-conv layer, and divide

it by roughly
√
8 ≈ 3 in each p4m-conv layer. This way,

the number of parameters is left approximately invariant,

while the size of the internal representation is increased.

Specifically, we used ki = 11, 23, 45 for p4m-ResNet44.

To evaluate the impact of data augmentation, we compare

the networks on CIFAR10 and augmented CIFAR10+. The

latter denotes moderate data augmentation with horizon-

tal flips and small translations, following Goodfellow et al.

(2013) and many others.

The training procedure for training the All-CNN was re-

produced as closely as possible from Springenberg et al.

(2015). For the ResNets, we used stochastic gradient de-

scent with initial learning rate of 0.05 and momentum 0.9.

The learning rate was divided by 10 at epoch 50, 100 and

150, and training was continued for 300 epochs.

Network G CIFAR10 CIFAR10+ Param.

All-CNN Z
2 9.44 8.86 1.37M

p4 8.84 7.67 1.37M

p4m 7.59 7.04 1.22M

ResNet44 Z
2 9.45 5.61 2.64M

p4m 6.46 4.94 2.62M

Table 2. Comparison of conventional (i.e. Z2), p4 and p4m CNNs

on CIFAR10 and augmented CIFAR10+. Test set error rates and

number of parameters are reported.

To the best of our knowledge, the p4m-CNN outperforms

all published results on plain CIFAR10 (Wan et al., 2013;

Goodfellow et al., 2013; Lin et al., 2014; Lee et al., 2015b;

Srivastava et al., 2015; Clevert et al., 2015; Lee et al.,

2015a). However, due to radical differences in model sizes

and architectures, it is difficult to infer much about the in-

trinsic merit of the various techniques. It is quite possi-

ble that the cited methods would yield better results when

deployed in larger networks or in combination with other

techniques. Extreme data augmentation and model ensem-

bles can also further improve the numbers (Graham, 2014).

Inspired by the wide ResNets of Zagoruyko & Komodakis

(2016), we trained another ResNet with 26 layers and

ki = (71, 142, 248) (for planar convolutions) or ki =
(50, 100, 150) (for p4m convolutions). When trained with

moderate data augmentation, this network achieves an er-

ror rate of 5.27% using planar convolutions, and 4.19%
with p4m convolutions. This result is comparable to the

4.17% error reported by Zagoruyko & Komodakis (2016),

but using fewer parameters (7.2M vs 36.5M).

9. Discussion & Future work

Our results show that p4 and p4m convolution layers can

be used as a drop-in replacement of standard convolutions

that consistently improves the results.

G-CNNs benefit from data augmentation in the same way

as convolutional networks, as long as the augmentation

comes from a group larger than G. Augmenting with flips

and small translations consistently improves the results for

the p4 and p4m-CNN.

The CIFAR dataset is not actually symmetric, since objects

typically appear upright. Nevertheless, we see substantial

increases in accuracy on this dataset, indicating that there

need not be a full symmetry for G-convolutions to be ben-

eficial.

In future work, we want to implement G-CNNs that work

on hexagonal lattices which have an increased number of

symmetries relative to square grids, as well as G-CNNs for

3D space groups. All of the theory presented in this paper is

directly applicable to these groups, and the G-convolution

can be implemented in such a way that new groups can

be added by simply specifying the group operation and a

bijective map between the group and the set of indices.

One limitation of the method as presented here is that it

only works for discrete groups. Convolution on continuous

(locally compact) groups is mathematically well-defined,

but may be hard to approximate in an equivariant manner.

A further challenge, already identified by Gens & Domin-

gos (2014), is that a full enumeration of transformations in

a group may not be feasible if the group is large.

Finally, we hope that the current work can serve as a con-

crete example of the general philosophy of “structured rep-

resentations”, outlined in section 2. We believe that adding

mathematical structure to a representation (making sure

that maps between representations preserve this structure),

could enhance the ability of neural nets to see abstract sim-

ilarities between superficially different concepts.

10. Conclusion

We have introduced G-CNNs, a generalization of convolu-

tional networks that substantially increases the expressive

capacity of a network without increasing the number of

parameters. By exploiting symmetries, G-CNNs achieve

state of the art results on rotated MNIST and CIFAR10.

We have developed the general theory of G-CNNs for dis-

crete groups, showing that all layer types are equivariant to

the action of the chosen group G. Our experimental results

show that G-convolutions can be used as a drop-in replace-

ment for spatial convolutions in modern network architec-

tures, improving their performance without further tuning.

Group Equivariant Convolutional Networks

Acknowledgements

We would like to thank Joan Bruna, Sander Dieleman,

Robert Gens, Chris Olah, and Stefano Soatto for helpful

discussions. This research was supported by NWO (grant

number NAI.14.108), Google and Facebook.

References

Agrawal, P., Carreira, J., and Malik, J. Learning to See

by Moving. In International Conference on Computer

Vision (ICCV), 2015.

Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti,

A., and Poggio, T. Unsupervised learning of invariant

representations with low sample complexity: the magic

of sensory cortex or a new framework for machine learn-

ing? Technical Report 001, MIT Center for Brains,

Minds and Machines, 2014.

Anselmi, F., Rosasco, L., and Poggio, T. On Invariance and

Selectivity in Representation Learning. Technical report,

MIT Center for Brains, Minds and Machines, 2015.

Bruna, J. and Mallat, S. Invariant scattering convolu-

tion networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 35(8):1872–86, aug

2013.

Clevert, D., Unterthiner, T., and Hochreiter, S. Fast and

Accurate Deep Network Learning by Exponential Linear

Units (ELUs). arXiv:1511.07289v3, 2015.

Cohen, T. and Welling, M. Learning the Irreducible Repre-

sentations of Commutative Lie Groups. In Proceedings

of the 31st International Conference on Machine Learn-

ing (ICML), volume 31, pp. 1755–1763, 2014.

Cohen, T. S. and Welling, M. Transformation Properties of

Learned Visual Representations. International Confer-

ence on Learning Representations (ICLR), 2015.

Dieleman, S., Willett, K. W., and Dambre, J. Rotation-

invariant convolutional neural networks for galaxy mor-

phology prediction. Monthly Notices of the Royal Astro-

nomical Society, 450(2), 2015.

Dieleman, S., De Fauw, J., and Kavukcuoglu, K. Ex-

ploiting Cyclic Symmetry in Convolutional Neural Net-

works. In International Conference on Machine Learn-

ing (ICML), 2016.

Gens, R. and Domingos, P. Deep Symmetry Networks.

In Advances in Neural Information Processing Systems

(NIPS), 2014.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville,

A., and Bengio, Y. Maxout Networks. In Proceedings of

the 30th International Conference on Machine Learning

(ICML), pp. 1319–1327, 2013.

Graham, B. Fractional Max-Pooling. arXiv:1412.6071,

2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Resid-

ual Learning for Image Recognition. arXiv:1512.03385,

2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,

Jian. Identity Mappings in Deep Residual Networks.

arXiv:1603.05027, 2016.

Hinton, G. E., Krizhevsky, A., and Wang, S. D. Trans-

forming auto-encoders. ICANN-11: International Con-

ference on Artificial Neural Networks, Helsinki, 2011.

Ioffe, S. and Szegedy, C. Batch Normalization : Acceler-

ating Deep Network Training by Reducing Internal Co-

variate Shift. arXiv:1502.03167v3, 2015.

Jaderberg, M., Simonyan, K., Zisserman, A., and

Kavukcuoglu, K. Spatial Transformer Networks. In

Advances in Neural Information Processing Systems 28

(NIPS 2015), 2015.

Kingma, D. and Ba, J. Adam: A Method for Stochastic

Optimization. In Proceedings of the International Con-

ference on Learning Representations (ICLR), 2015.

Kivinen, Jyri J. and Williams, Christopher K I. Transfor-

mation equivariant Boltzmann machines. In 21st Inter-

national Conference on Artificial Neural Networks, jun

2011.

Kondor, R. A novel set of rotationally and translation-

ally invariant features for images based on the non-

commutative bispectrum. arXiv:0701127, 2007.

Krizhevsky, A., Sutskever, I., and Hinton, G. ImageNet

classification with deep convolutional neural networks.

Advances in Neural Information Processing Systems, 25,

2012.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and

Bengio, Y. An empirical evaluation of deep architectures

on problems with many factors of variation. Proceedings

of the 24th International Conference on Machine Learn-

ing (ICML), 2007.

Lavin, A. and Gray, S. Fast Algorithms for Convolutional

Neural Networks. arXiv:1509.09308, 2015.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-

ture, 521(7553):436–444, 2015.

Lee, C., Gallagher, P. W., and Tu, Z. Generalizing Pooling

Functions in Convolutional Neural Networks: Mixed,

Gated, and Tree. ArXiv:1509.08985, 2015a.

Group Equivariant Convolutional Networks

Lee, C., Xie, S., Gallagher, P.W., Zhang, Z., and Tu,

Z. Deeply-Supervised Nets. In Proceedings of the

Eighteenth International Conference on Artificial Intel-

ligence and Statistics (AISTATS), volume 38, pp. 562–

570, 2015b.

Lenc, K. and Vedaldi, A. Understanding image represen-

tations by measuring their equivariance and equivalence.

In Proceedings of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2015.

Lin, M., Chen, Q., and Yan, S. Network In Network.

International Conference on Learning Representations

(ICLR), 2014.

Lowe, D.G. Distinctive Image Features from Scale-

Invariant Keypoints. International Journal of Computer

Vision, 60(2):91–110, nov 2004.

Manay, Siddharth, Cremers, Daniel, Hong, Byung Woo,

Yezzi, Anthony J., and Soatto, Stefano. Integral invari-

ants for shape matching. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(10):1602–1617,

2006. ISSN 01628828. doi: 10.1109/TPAMI.2006.208.

Mathieu, M., Henaff, M., and LeCun, Y. Fast Training of

Convolutional Networks through FFTs. In International

Conference on Learning Representations (ICLR), 2014.

Oyallon, E. and Mallat, S. Deep Roto-Translation Scat-

tering for Object Classification. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp.

2865—-2873, 2015.

Reisert, Marco. Group Integration Techniques in Pattern

Analysis. PhD thesis, Albert-Ludwigs-University, 2008.

Schmidt, U. and Roth, S. Learning rotation-aware fea-

tures: From invariant priors to equivariant descriptors.

Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR),

2012.

Sifre, Laurent and Mallat, Stephane. Rotation, Scaling and

Deformation Invariant Scattering for Texture Discrimi-

nation. IEEE conference on Computer Vision and Pat-

tern Recognition (CVPR), 2013.

Skibbe, H. Spherical Tensor Algebra for Biomedical Im-

age Analysis. PhD thesis, Albert-Ludwigs-Universitat

Freiburg im Breisgau, 2013.

Sohn, K. and Lee, H. Learning Invariant Representations

with Local Transformations. Proceedings of the 29th

International Conference on Machine Learning (ICML-

12), 2012.

Springenberg, J.T., Dosovitskiy, A., Brox, T., and Ried-

miller, M. Striving for Simplicity: The All Convolu-

tional Net. Proceedings of the International Conference

on Learning Representations (ICLR), 2015.

Srivastava, Rupesh Kumar, Greff, Klaus, and Schmidhu-

ber, Jürgen. Training Very Deep Networks. Advances in

Neural Information Processing Systems (NIPS), 2015.

Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Pi-

antino, S., and LeCun, Y. Fast convolutional nets with

fbfft: A GPU performance evaluation. In International

Conference on Learning Representations (ICLR), 2015.

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus,

R. Regularization of neural networks using dropconnect.

International Conference on Machine Learning (ICML),

pp. 109–111, 2013.

Zagoruyko, S. and Komodakis, N. Wide Residual Net-

works. arXiv:1605.07146, 2016.

Zhang, C., Voinea, S., Evangelopoulos, G., Rosasco, L.,

and Poggio, T. Discriminative template learning in

group-convolutional networks for invariant speech rep-

resentations. InterSpeech, pp. 3229–3233, 2015.

