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ABSTRACT.  We shall define and develop the properties of cohomology
groups /f"(G, A) which can be associated to a pair (G, A) where G is a separable
locally compact group operating as a topological transformation group of auto-
morphisms on the polonais abelian group A.  This work extends the results in
[29] and [30], and these groups are to be viewed as analogues of the Eilenberg-
Mac Lane groups for discrete G and A. Our cohomology groups in dimension
one are classes of continuous crossed homomorphisms, and in dimension two
classify topological group extensions of G by A.  We characterize our cohomol-
ogy groups in all dimensions axiomatically, and show that two different cochain
complexes can be used to construct them. We define induced modules and prove
a version of Shapiro's lemma which includes as a special case the Mackey imprim-
itivity theorem.  We show that the abelian groups Hn(G, A) are themselves topo-
logical groups in a natural way and we investigate this additional structure.

1.  In two previous papers [29], [30], we studied group extensions of
locally compact groups, and introduced a cohomology theory analogous to the
EUenberg-Mac Lane theory for abstract groups which was appropriate for the
study of such topological group extensions. More precisely, we considered a
locally compact separable (i.e. second countable) group G which operates as a
topological transformation group of automorphisms on a locaUy compact abelian
group A in which case one says that A is a (topological) C-module, and we intro-
duced cohomology groups H"(G, A), n>0, defined for such a pair and having
the usual functoral properties. For n = 0, H°(G, A) = AG, the C-fixed points in
A, and for n = 1, Hx(G, A) is the group of aU continuous crossed homomor-
phisms of G into the (7-module A, modulo the principal ones, and finally for
n = 2, H2(G, A) is the group of equivalence classes of topological group exten-
sions of G by the G-module A. (In this A is the normal subgroup of the exten-
sion, and G is the quotient group; for a precise definition of this notion, see [29]
or below in §2.)

These cohomology groups, while very useful, have several defects; the first
of these is that there do not appear to be any cohomologically trivial modules,

Received by the editors April 5, 1975.
AMS (MOS) subject classifications (1970).  Primary 22D05.
(1)  Research supported in part by National Science Foundation Grant GP-30798X.

Copyright © 1976, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2 C. C. MOORE

that is modules such that H"(G, A) = 0 for n > 1. As a result, one is apparently
deprived of the technique of dimension shifting, and hence precluded from em-
ploying systematically the standard techniques of homological algebra, and in
particular one has next to zero information about the higher dimensional groups.
A second and related difficulty is that when we construct resolutions of the
module A to be used in defining the cohomology groups, the groups appearing
in this resolution are not locally compact, and indeed do not even admit a nat-
ural topology; this is unsatisfactory both aesthetically and technically. A third
defect is that one would hope to have cohomology groups H"(G, A) which are
themselves topological groups since one starts with topological data, namely G
and A. For n = 1, there is a reasonable topology, and for « = 2, we were able
to topologize H2(G, A) by rather ad hoc techniques in some cases in [30]. R-
naUy the restriction that A be locaUy compact excludes from systematic treatment
many interesting and useful examples, see for instance [13], [14], [26]. In this
paper we shaU introduce modifications of the original treatment in [29] and [30]
which overcome all of these defects at once. The first modification is to extend
the category of G-modules to include all so caUed polonais G-modules instead of
just the locally compact ones:  In this larger category we find many cohomologi-
caUy trivial modules so the technique of dimension shifting is available. We shaU
also be able to present a short list of axioms which characterize our cohomology
groups, and finally this wider category of G-modules will include many new ex-
amples of considerable interest. We are also able to construct induced modules
in this larger category and establish a version of Shapiro's lemma relating the
cohomology of a module to the cohomology of the induced module. As a
special case of this we obtain Mackey's imprimitivity theorem [22].

This larger category of polonais G-modules could have been treated before
except that there was no proof that H2(G, A) could be identified as the classes
of group extensions of G by A. We give a proof of this for polonais A which in
many ways is simpler than Mackey's original proof in [24] for locally compact
A. Furthermore we shall construct a new resolution of A within the category of
polonais groups and so in particular the cohomology group will come automati-
cally equipped with the structure of topological group. In our treatment G wiU
continue to be locally compact, and although there is some asymmetry here, we
do pick up most of the important applications.  Some results are known for
polonais G [4], but at the moment we lack a systematic treatment of this case.

There is one final difficulty in considering the cohomology of topological
groups which to some extent is incurable, and this is the fact that the image of
a continuous map of one topological group into another need not have a closed
range, and so the map does not have a reasonable cokernel. This is a fact of life
and we must live with it; to partially deal with it we shaU (hesitantly) introduce

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUP EXTENSIONS AND COHOMOLOGY. Ill 3

the notion of pseudo-polonais G-module, but we shall not, however, pursue this,
mostly because it does not add that much to the range of applicability of our
theory. We note that many of our results were announced without proof in [31,
Part II].

2. We shall begin with some preUminaries about the modules to be consid-
ered. Let G be a second countable topological group which we always assume to
be Hausdorff unless explicitly stated otherwise. Then G admits three natural uni-
formities, the left uniformity, the right uniformity, and the two sided uniformity
U, which is defined as the smallest uniformity containing the previous two.

Definition. Such a group G will be said to be polonais (or G G p') if U
is a complete conformity.

Proposition 1.   A topological group is polonais if and only if its topology
admits a separable complete metric p. Moreover if G is polonais, and if px is a
left invariant metric, and p2 a right invariant metric for G (which always exist),
then p = px + p2 is complete.

Proof. This is in [17, p. 211].
This proposition says that a second countable topological group is polonais

if and only if the underlying topological space of G is polonais in the sense of
[2], hence our terminology. We note that any second countable topological
group may be embedded as a dense subgroup of a polonais group—just complete
the group relative to its two-sided uniformity [17, p. 211]. Moreover, any sep-
arable (i.e. second countable) locally compact group is polonais, since in this case
both the left and the right uniformities, and hence also (J, are complete. Any
separable Banach space or more generally any separable Fréchet space is polonais.
FinaUy, and this is one of our most important examples, the group U(H) of uni-
tary operators on a separable Hilbert space H is polonais for the strong (or equi-
valently the weak) operator topology (see [8]).

We now list several constructions which preserve this property of complete-
ness.

Proposition 2. Let G¡, i = 1, 2, . . . , be a sequence of polonais groups;
then TIG¡, the Cartesian product, with the product topology is polonais.

Proof.  This is immediate.
Let us consider a sequence of three topological groups with homomorphisms

/ and /:

0 —*■ G' -*■+ G -Î+ G" —> 0.

Definition. The sequence above is a short exact sequence of topological
groups if it is algebraically exact (that is, i is injective, / is surjective, and kernel(f)
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4 C. C. MOORE

= image(i)), and if i is a homeomorphism onto its image, and if / is continuous
and open.

Note that it is not enough to assume that i and / are continuous, for then
G' viewed as a subgroup may not have the relative topology, and the natural
group isomorphism/' of G/image(i) onto G" may not be a homeomorphism. We
have the following fact which we wiU not prove here in complete generality-that
is due to L. Brown. We prove the result in sufficient generality for our purposes.

Proposition 3. Consider a short exact sequence of Hausdorff topological
groups 0 —*■ G' —» G —► G" —*■ 0. Then G is polonais if and only if G' and G"
are.

Proof.  If G is polonais, then as G" is Hausdorff, exactness implies that
i(G') is closed, hence polonais in the relative topology, and hence that G' is pol-
onais. To show that G" is polonais, we have to show that quotient group of a
polonais group is polonais. This was established in general by L. Brown [6] and
is nontrivial. We shall only reaUy need the result when G is abelian, and here it
is very easy. Indeed let p be an invariant complete metric on G, and define a
metric p on G/H (H any closed subgroup) by p(xx7, yH) = p(xH, yH), the dis-
tance between these two cosets in G. It may be verified that p is complete and
does the trick.

Conversely suppose that G' and G" are complete; let us denote by G the
completion of G relative to its two sided uniformity so that G is complete. Then
/ as a map from G to G" is uniformly continuous into the two sided uniformity
on G" and hence extends uniquely to a continuous map / of G onto G" which is
also a group homomorphism. Let H be the kernel of / in G, and we claim that
i(G') is dense in H for if h EH, there is a net gaEG converging to «.  Since
¡(go) —* jQi) — e, we may find a subnet g¡^ of the #'s and a net hß in G with
jQiß) = j(gi(ß)) and with hß —* e.  Then g^yhj1 is a net in i(G') converging to
«. Then as G' is assumed complete, so is i(G'), which is therefore closed in G.
But then i(G') = H, and it foUows immediately that G = G and G is complete.

Let us record now a fundamental lemma of Dixmier [9] (see also [2] )
which assures the existence of good cross sections in our case. We recall that we
understand by the Borel field in a metric space, the a-field generated by the open
sets.

Proposition 4. // G is polonais, and H a closed subgroup, and p the
projection map to the coset space G/H (which is a metric space) then there exists
a Borel cross section s from G/H to G, that is a Borel function s from G/H to G
such that p(s(g)) = g for g E G/H.

FinaUy, let us also record a classic continuity theorem [3, p. 23] for
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GROUP EXTENSIONS AND COHOMOLOGY. Ill 5

homomorphisms, and a closed graph theorem [18, p. 400] which wUl play a
major technical role.

Proposition 5 (a). Let Gx and G2 be separable metric groups with Gx
polonais, or more generally second category, and let <p be a Borel homomorphism
from Gx to G2; then ^ is continuous.

(b) Let Gx and G2 be polonais and let <pbe a continuous 1-1 homomor-
phism of Gx onto G2 ; then <p is bicontinuous.

We now turn to a fundamental construction which we shaU use throughout.
We let (X, B, p) be a a-finite measure space with Borel field B and measure p,
and assume that the Borel space (X, B) is countably generated (cf. [1, Chapter
I]); this assures, for instance, that such function spaces as L2(X, p) are separable.
Next we let A be any separable metric space—later we will specialize A to be a
topological group. Now we define U(X, A) to be the set of equivalence classes
of p-measurable functions from X into A, where two functions are equivalent if
they are equal almost everywhere. Since any class contains a B-Borel function,
we could as easily have taken equivalence classes of B-Borel functions and ob-
tained the same space. We note also that U(X, A) depends only on the measure
class of p and not on p itself. Our object is to topologjze U(X, A) in a natural
way and for this we choose a finite measure voni equivalent to p (which we
can always do as p is a-finite) and choose a metric p on A in which A has finite
diameter. Then for /, g G U(X, A) we define

P(f,g)= fxP(Ax),g(x))dp(x).

It should be noted that this is meaningful as/and g are measurable, and hence
the integrand is measurable. It is also bounded and as v is finite, there is no con-
vergence problem. We have as usual, and will continue to, abuse notation and
identify functions with their equivalence classes.  It is trivial to verify that p
defines a metric on U(X, A), one key point being that p(f, g) = 0 if and only if
/ = g a.e., or in other words / = g in U(X, A). We have the following important
facts about p.

Proposition 6.  For a sequence fn in U(X, A), the foUowing are equiv-
alent:

(1) fn —+ fin the metric p,
(2) fn-*fin v-measure, Le. Ve, v{x\p(f„(x),Ax)) > e) —*■ 0 as n —► °°,
(3) every subsequence of fn has a subsequence converging almost every-

where to f.

Proof.  (1) =» (2) is clear since v{x\p(fn(x),f(x)) > e) < e~xp(fn, f).
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6 C. C. MOORE

Now if (2) holds, the sequence g„(x) = p(fn(x), f(x)) converges to zero in v-
measure and as v is finite it foUows classically that every subsequence has a sub-
sequence converging a.e. to zero, which is (3).  Finally if (3), it follows that the
sequence g„(x) above converges to zero in measure and then by dominated con-
vergence p(fn, f) —* 0 and so (1) is true.

We have the following important corollary of the above which follows by
using statement (3).

Corollary.   The topology defined on U(X, A) by p is independent of
the choice of the measure v and depends only on the measure class of v (or p)
and additionally is independent of the choice of metric p on A, and depends
only on the topology of A.

It is also easy to see that if <p: A —> B is continuous, then the induced map
i/>*: U(X, A)—* U(X, B) is continuous, and that if ip is a topological embedding,
that ip* is also. Moreover, if A = TL4n with the product topology, U(X, A) =
TlU(XAn) again with the product topology. We now have the following

Proposition 7.   U(X, A) is a separable metric space and is polonais if A
is.

Proof.   Let / = In = [0, 1] and let C = TUn be an infinite cube. Then
as A is separable, A can be embedded in C and hence by our remarks, U(X, A)
is embedded in U(X, Q = TiU(X, I). But now U(X, I) is isometric to a closed
subset of the Banach space LX(X, p) which is a separable Banach space. Thus
U(X, I) is polonais, and in particular separable, and hence so is U(X, C) and hence
also U(X, A). Moreover U(X, C) is also evidently polonais and to show that
U(X, A)i% polonais if A is, it suffices to show that U(X, A) is a Gs in U(X, C).
Since A is a G6 in C as it is polonais, A = C\Vm with Vm open. It is routine
to see that U(X, A) = C\U(X, Vm) and so it suffices to show that U(X, V) is a
G6 in U(X, C) if P is open in C.

To see this, let, for any a > 0, Fa = {f\v{x\f(x) E C - V) > a}, and we
claim that Fa is closed. Let /„ —* /; we can, by going to subsequence, assume
ihat/„(x) —* fix) a.e., and by excluding this irrelevant null set assume that
/„(*) -* fix) everywhere. Then let Xn = {x|/„(x) £ C - V) and let x E
n„(U„>m*m) = Y so that x E Xm for infinitely m, and hence fm(x) EC-V
for infinitely m, and hence fix) EC-V.  It is then easy to see that v(Y) >
Urn inf v(Xm) > a and that Y C {xlAx) EC-V). Thus /£ Fa and Fa is closed.
Let Ga be the complement of Fa which is open and now it is immediate that
U(X, V) = C\Gl/n is a G6, and we are done.

We have already observed that if ¡p: A —* B is continuous, then <p*: U(X, A)
—* U(X, B) is continuous, but now suppose that y is only Borel; it is true, but
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GROUP EXTENSIONS AND COHOMOLOGY. Ill 7

less obvious that <p* is Borel, and we must give first a somewhat technical state-
ment that wiU be useful in other contexts. Consider a space U(X, A), and let Y
be a Borel subset of X, and 0 a bounded Borel function from A to the real num-
bers. Then define for /G U(X, A),

G(Y,<p)(f)= ¡Y<t>(Ax))dv(x).

Proposition 8.   The functions G(Y, <t>) are Borel functions on U(X, A)
and define this Borel structure in the sense that it is the smallest Borel field such
that all such functions are Borel.

Proof. If 0 is continuous, it is easy to see using (3) of Proposition 6 that
G(Y, <j>) is a continuous function on U(X, A). On the other hand, the class F of
all bounded Borel functions 0 from A to the real numbers such that G(Y, 0) is a
Borel function is closed under bounded pointwise convergence, and as it contains
aU bounded continuous functions, it must contain all bounded Borel functions.
Hence G(Y, 0) is a Borel function on U(X, A) for each Y and each <¡>.

Finally to show that these functions define the Borel structure on U(X, A),
let us embed A in some completion A of A ; we note that each 0 may be exten-
ded to some Borel function 0 on A to the real numbers, [18, p. 341]. Then as
U(X, A) C U(X, Ä) and since for/G U(X, A), G(Y, <t>)(f) = G(Y, $)(f), it will
suffice to prove the result when A = A or when A is polonais.  In case U(X, A)
is polonais, we show that some countable subfamily does generate the Borel
structure. Indeed let Y¡ range over the field generated by a countable number of
generators for B (the Borel field of X) and let 0;- run over any countable family
of functions separating points of A. We claim then that the countable family of
functions G(Y¡, 0,) defines the Borel structure. If we note that U(X, A) is pol-
onais and hence standard as Borel space and use the fundamental separation
theorem (cf. [18, p. 393]), we see that it suffices merely to show that these
functions separate points of U(X, A). If they did not, we would have for some
f¥= g, G(Yj, </>,.)(/) - G(Y¡, <pt)(g), and by the properties of the Y¡ and the defin-
ition of the functions G, it would follow that G(Y, <¡>¡)(f) = G(Y, 0,-X?) for aU Y.
Now if <¡>i(f(x)) = <P¡(g(x)) a.e. for aU /, it follows at once that fix) = g(x) a.e.
and hence / = g in U(X, A), so there is some / so that <¡>¡(f(x)) =£ <¡>¡(g(x)) a.e.
and if we put Y± = {x\<j>¡(f(x)) - (¡>¡(g(x)) GR*), then we cannot have
G(Y±, <¡>¡)(f) = G(Y±, </>i)(g), a contradiction. This completes the proof of the
lemma.

The original question we asked now becomes trivial.

Corollary. If \p is a Borel function from A to B, 0* is a Borel function
from U(X, A) to U(X, B).
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8 C. C. MOORE

Proof.  By the proposition, \p* is Borel if and only if G(Y, 0) » uV* is
Borel; but this function is precisely G(Y, 0 ° \¡>*) which is Borel by the proposi-
tion.

We come now to one of the most important facts about the spaces U(X, A)
and that is a version of the Fubini theorem. As we shall see, this will play a
central role.

Theorem 1. There are natural isomorphisms

U(X x Y, A) s U(X, U(Y, A)) s U(Y, U(X, A)).

Proof.  The map, of course, comes by taking F(x, y) £ U(X x Y, A) and
associating to it the functionx—*-fx where for eachx, fx(y) = F(x,y); fx is
supposed to be in U(Y, A). Indeed, if F(x, y) is a Borel function of x and y,
then, of course, fx is a Borel function of y and represents an element of U(Y,A).
We have to show that x —► fx is a Borel function, and to do that we use Propos-
ition 8. AU we have to do is show that x —+ G(Z, <p)(fx) is Borel for eachZCY
and each bounded Borel function <p of A into the reals. But G(Z, <P)(fx) =
fz<p(f(x, y)) dv(y) is a Borel function of x by the usual Fubini theorem. FinaUy
we have to show the map F—► {fx} is well defined on equivalence classes and
this is true since if Fx(x, y) = F2(x, y) a.e. in X x Y, then by the usual Fubini
theorem, fx —f2 a.e. (y) for almost aU x and so the equivalence class of F de-
fines a unique element in U(X, U(Y, A)); let us caU it i(F). Moreover i is one-one
again by Fubini's theorem; and Fubini's theorem and criterion (3) of Proposition
6 show us immediately that a sequence Fn converges to a limit F if and only if
i(Fn) converges to i(F) so that i is bicontinuous. It remains now only to show
that i is onto.

To do this we remark that if A C B and if the theorem is true for B, then
it is true for A for if we are given / £ U(X, U(Y, A)), we can by assumption find
FE U(X, U(Y, B)) with i(F) = /, but since F(x, y) = fx(y) a.e., it follows that
F takes values a.e. in A and so is an element of U(X, U(Y, A)). Moreover, if the
theorem is true for spaces An, it is by our previous remarks true for the product
IL4n. Therefore by the same technique that was used in Proposition 7, it suffices
to prove the theorem for A = / = [0, 1], the unit interval, and in this case the
result is known but not quite in this language [19, Lemma 3.1]. Let us outUne
how that argument goes in this case. Given/£ U(X, U(Y, I)), fix a rectangle
M x N C X x Y, and finite measure px and ßY on X and Y equivalent to the
given ones. Then define

X(MxN)= fx{SYXN(Sx(y)) dßY(y)^ dßx(x)
where Xn is the characteristic function of N.  Note that Proposition 8 is precisely
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GROUP EXTENSIONS AND COHOMOLOGY. Ill 9

what is needed to know that the integral in brackets is a Borel function of x, and
hence that the formula has meaning. One then shows that X extends to a mea-
sure on X x Y and that \(K) = Sx^K{x)Vxiy)) dpY) ¿Px where K(x) = {v:
(x, y) G K) is given by an iterated integral for any Borel K. Then evidently X is
absolutely continuous with respect to px x pY and has a Radon-Nikodym deriv-
ative F with respect to it, which is a Borel function on X x Y. It is routine to
show that i(F) = / so that F is the desired element of U(X x Y, I). One should
consult Mackey's original paper for further details.

We might remark on several examples of our construction U(X, A); if for
example X consists of countably many points each of positive measure, U(X, A)
is the infinite product TV¡¡LXA of copies of A with the product topology. In a
sense then, U(X, A), in general, may be thought of as a direct integral of copies
of A. One could imagine being given a function x —*■ Ax from X into sets Ax
and attempting to form an analogous direct integral of the Ax's as one does with
Hilbert spaces. No doubt this could be done under suitable hypotheses, but as
no need has been shown for such a construction, we will not proceed.

Up until now the space A has just been a set with a separable metric topol-
ogy.   Let us now specialize to the case of interest when A is a polonais group,
especially an abelian one. It follows immediately from Proposition 6 that the
pointwise multiplication of functions makes U(X, A) into a topological group
and by Proposition 7, a polonais group. As an example, we note that if A = T
is the circle group, then U(X, T) may be identified as the group of all unitary
operators in the von Neumann algebra of multiplication operators on L2(X), and
one immediately sees that the topology we have constructed is precisely the
strong operator topology; incidentally this is in effect why this construction is
so useful. Also, if X = R, then U(X, R) is a (nonlocally convex) topological
vector space which has been introduced in integration theory (cf. [11]); one
might point out that this space has no continuous linear functionals. A related
point which we leave as an exercise is the observation that if X is nonatomic
then U(X, T) has no nonconstant homomorphisms to T, or in other words the
"Pontrjagin dual group" is reduced to a single point. Another interesting exam-
ple of this construction is to choose A = Z2, the group (field) of two elements.
Then U(X, Z2) can easily be seen to be a topological ring which is nothing other
than the measure algebra of (X, p) equipped with its usual topology.

Let us note some additional properties of the groups U(X, A); one of the
most useful is the following:

Proposition 9. If 1 —*■ A' —* A —*■ A" —* 1 is an exact sequence of
polonais groups, commutative or not, then 1 —> U(X, A')—+ U(X, A) —#■
U(X, A")—+ 1 is an exact sequence of polonais groups.
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10 C. C. MOORE

Proof.  The continuity of maps and exactness except at the final point
are routine or foUow from previous comments. If </? is the map from A to A",
then the only point at issue is the surjectivity of the induced map </>„,, but once
one observes that there is a Borel cross section s from A" into A, we have an
immediate way to find a preimage of an/E U(X, A"), namely so/.

In this development we have taken as the basic class of groups, the polonais
groups which from some points of view may be too large a class.  In fact a rather
more natural class of groups from our point of view, although not from others
would be the subclass of P' consisting of those topological groups which may be
realized as (closed) groups of unitary operators on a separable Hilbert space.
This class is closed under taking subgroups, products, the construction U(X, • )
and includes aU locally compact separable groups, but we do not know if it is
closed under quotients, and this is a fatal drawback if not true.

There is one complication in this theory which as we shall see, simply can-
not be avoided and this comes about as foUows:  We have polonais groups A and
B (say abeUan) together with a continuous homomorphism / from A into B.  The
quotient group B/j(A) will be of interest and significance even though in many
cases j(A) is not closed in B. This quotient group would be polonais if j(A) were
closed but in general it is some non-Hausdorff topological group, arising in some
sense as the "quotient" of two polonais groups. It will be somewhat useful to
talk about such objects which with some trepidation one might call pseudo-
polonais groups. We would define such objects as triples C = (A, B, j) where A
and B are polonais and / is a continuous-homomorphism of A into B, subject to
an appropriate equivalence relation which we shall not pursue at this moment.
One would think of this equivalence class as representing the group B/j(A) and
an ordinary polonais group B could be represented by the class of (0, B, 0). For
our purposes the most important thing to define is what is meant by a Borel
map of a space X into such an object; for this we consider the groups B(X, A)
and B(X, B) the Borel maps of X into A and B respectively. There is an induced
map /* from the first to the second and we define

B(X, C) = cokeriy *) = B(X, B)¡j*(B(X, A)).

We proceed in a similar way to define U(X, C), the equivalence classes of measur-
able maps of AT in C in an analogous way as U(X, B)lj*(U(X, A)) so that U(X, C)
is a pseudo-polonais group represented by the triple (U(X, A), U(X, B), /*). One
remark in this regard will be useful later on.

Proposition 10.   The closure of the identity element in U(X, C) consists
of the image in U(X, B)/j*(U(X, A)) of all functions taking values o.e. in the
closure of the range ofj, j(A).
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Proof. The subgroup W of U(X, B) described is clearly a closed subgroup
of U(X, B) containing j*(U(X, A)) and all we have to do is to show that it is pre-
cisely the closure of j*(U(X, A)). Suppose/G W; then evidently/can be approx-
imated as closely as we please by elements of W which take only a finite number
of values in/04),and it suffices to show that each such function is in the closure
of j*(U(X, A)), but this is clear.

This completes our discussion of the kinds of groups to be considered. It
was somewhat extended but this material is apparently not to be found anywhere
else. We now turn to some similar results on group actions.

3. Suppose that G is locally compact, and suppose that A is a polonais
group, where for simplicity we denote the class of abelian such A by P. We say
that G operates on A or that A is a G module if we have a homomorphism p of
G into the automorphisms of A, written p(g)(a) = g ■ a so that (g, a) —► g • a is
jointly continuous. The group G could be any topological group but we have to
restrict to locally compact groups in this paper in order to obtain nontrivial re-
sults. It would, of course, be more satisfying to have G polonais, but even in this
case we do not see how to proceed to develop a reasonable cohomology theory.
We denote the class of abelian polonais G-modules by P(G) and note that the
admissible maps from A to B are the continuous homomorphisms from A to B
intertwining the action of G. One defines submodules, quotient modules, prod-
ucts, finite or infinite in the obvious way, and in addition if A G P(G), then
U(X, A) G P(G) with the same for nonabelian A where we define (g • <¡>)(x) =
g ' (<Kx)) for 0 G U(X, A); in fact we could consider a famUy of actions of G on
A indexed by points in x, varying sufficiently smoothly in x and make a similar
definition.  It is convenient on many occasions to be able to start with an action
of the group G on the group A which satisfies the algebraic conditions necessary
for A to be a G-module together with very weak continuity conditions, and then
deduce the full continuity conditions. The following is an example of one such
result:

Proposition 11.   Let G and A be polonais with G acting algebraically as
a group of automorphisms of A such that (g, a) —*■ g • a is a Borel function in
each of its variables separately.  Then it is jointly continuous, so that A is a G-
module.

Proof.  The kind of reasoning here is completely standard. We note that
a —*■ g • a is a Borel automorphism of A and since A is polonais, it is continuous.
We now show that g —+ g ■ a is continuous, and for this, select a residual set P
in G so that g—*■ g • a restricted to P is continuous. Then let gn —* g0 in G
and consider the residual sets Pg~x and let P0 = fl^o^n1 which is also resi-
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dual. Let£EP0 so thatggn EPfotn = 0, 1,2,-Since ggn —*■ gg0, we
know (ggn) • a —+ (g£0) • a and by the continuity of the automorphism b —*■
g ' b, we see that gn • a—>gQ ■ a as desired.

We have now shown that g • a is separately continuous, whence by [18, p.
285] it is a joint Borel function of both its variables. It foUows then as in [29]
that it is jointly continuous.

One of the most significant types of G modules arises from point actions
of the group G.  Specifically suppose that G acts on an analytic Borel space X as
a Borel transformation group [1] and suppose that it leaves some finite measure
p quasi-invariant. Then for any polonais A we define an action of G on U(X, A)
by (s • f)(x) = fis~x (x)) where s(x) is the action of s on a point x E X and
where we understand (X, p) to be the measure space in question. It foUows
from the fact that p is quasi-invariant that s • /is weU defined.

Proposition 12.   With above definition U(X, A) becomes a G-module.

Proof.  We show that / —► s • f is Borel and in fact continuous; in fact
let /„ —► / so that by Proposition 6, a given subsequence has some subsequence
converging almost everywhere to /, say for xEN.  Then since s • N is a null set
also, the sequence s • /„ has the property that a given subsequence has a sub-
sequence, namely the one above which converges to s • f for x E s • xV, and hence
s • fn —*■ fn again by Proposition 6.

On the other hand, let us fix some /E U(X, A) and consider one of the
functions G(P, 0) of Proposition 8 which generate the Borel field on U(X, A).
To show s —*■ s • f is Borel it is enough to show that

5 -h. G(Y, 0)(j -f)= ¡x XyfrW^C*)) dß(x)

is a Borel function. However, we simply note that the integrand is a joint Borel
function of s and x and therefore the integral with respect to x is a Borel func-
tion of s by the standard version of Fubini's theorem. Our result now foUows
from the previous proposition.

For example, if we take A = Z2, then we see that the measure algebra of
(X, p) is a G-module, complementing the discussion in [25]. Of course, the right
continuity assumption for the point realization theorem in [25] is that a measure
algebra M is a topological G-module so that G acts by algebra automorphisms.

In the above discussion we have taken A to be a group, but the result
immediately extends to separable metric spaces since any such A can be embedded
topologicaUy in an infinite torus 5* and so U(X, A) C U(X, S) and if G acts as a
topological transformation group on U(X, S), it does also on U(X, A).

Perhaps one of the most important examples of the construction above is
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the case when X = G itself with a finite measure equivalent to Haar measure.
Then if A is polonais, we denote the module U(X, A) by 1(A). This G-module
will play a key role for us; in fact it would be fair to call this module the regular
representation of G with coefficients in A. It is also a special case of the more
general notion of induced modules which we shall be defining presently, however,
first let us investigate 1(A). Suppose that in addition that A has already the
structure of a G-module. Then for a G A, consider Fa(s) = s-1 • a which as one
sees is an element of 1(A).

Proposition 13.   The map a—+Fa is a G-module isomorphism of A onto
a closed submodule of 1(A).

Proof.  That Fg.a = g • Fa is routine; moreover if a(n) —*■ a, it is clear
that Fa/„) —► Fa everywhere so that the map is continuous. On the other hand
if Fa(„) —► Fa in U(G, A) = 1(A), then for any subsequence of the a(n), some
subsequence b(m) would have the property that Fb^m^(s) —*■ Fa(s) for almost all
s, and hence trivially b(m) —*■ a. It follows by elementary theorems then that
a(n) converges to a. Thus a —*• Fa is a homeomorphism as desired and its range
is automatically closed as it is complete, and the proof is finished.

We now define i(a) = Fa and let U(A) be the cokernel of i so that U(A) is
a G-module and we have an exact sequence 0 —► A —*■ 1(A) —*■ U(A) —* 0.

Proposition 14.  land Uare covariant functors on P(G) to P(G) and
carry short exact sequences into short exact sequences.

Proof. This routine calculation is omitted.
On the other hand, the foUowing calculation is somewhat more involved

and wiU be most useful.

Proposition 15.   For A polonais, we have a canonical isomorphism of
G-modules U(I(A)) * I(U(A)).

Proof. We note from their definitions both of the modules in the state-
ment of the proposition are quotients of I(I(A)) by subgroups which are both
isomorphic to 1(A) but the copies are embedded differently. Now I(I(A)) =
U(G, 1(A)) = U(G, U(G, A)) which by our Fubini theorem may be identified
with U(G x G, A). Let us agree that the first variable refers to the G in
U(G, 1(A)) so that the action of G on U(G x G, A) under this identification is
(s • F)(x, y) = FXs-xx, y). Now U(I(A)) is obtained from I(I(G)) by factoring
by elements of the form s—*s~x • /for /G 1(A) or in terms of functions of
two variables, all functions of the form F(s, t) = (s~x • f)(t) = fist) for some
f G 1(A); call this subgroup Bx. On the other hand I(U(A)) is obtained by factor-
ing by the subgroup of all elements of the form s —♦ fis) where fis) is the image
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14 C. C. MOORE

of A sitting in 1(A) and hence has the form t —*■ t~x -a, and so the group can
be described as the set of all functions of the form F(s, t) = t~x • a(s) where a
is some function in 1(A) and where t • a is the given G-module structure on A.
Call this subgroup B2, and note that it depends on the G-module structure of A
whereas Bx did not.  Our problem then is to find a G-module automorphism K
of U(G x G, A) with the action as described above which carries 5t onto B2. It
may be verified that (KF)(s, t) = t~x • F(st~x, t) is such a mapping, and this
completes the proof.

We shall now consider an extension of the construction 1(A) which will
provide us with the analogue of induced modules in the case of finite groups.
We suppose that H is a closed subgroup of G and that A is a polonais //^module;
we shall construct the induced module ¡^(A), a polonais G-module. We first
consider 1(A) and then let ^(A) be the subset of 1(A) consisting of all functions
/such that fish) = h~x • fis) for almost aU pairs (s, h) in G x H, the product of
Haar measure being understood. One has to comment that this makes sense since
1(A) consists of equivalence classes of functions instead of functions; or more
precisely, let/j satisfy the condition and let/2 = fl a.e.; then we must show
that/2 satisfies the condition. This is clear, for if xV = [s, ft(s) =£/2(s)} and
M = {(s, h): fyfsh) =£ h~x • f2(s)}, and if 0 is the map (s, h) —*■ s • h, then
<p~x(N) is also a null set and it is clear that {(s, h): f2(sh) =£ h~x • f2(s)} C
M C 0~x (N), and so f2 satisfies the condition.

Proposition 16.   I%(A) is a closed G-invariant subgroup of 1(A) and hence
is a polonais G-module.

Proof.  The G-invariance is clear and if /„ £ I%(A) and /„ —► /, there is
some subsequence converging pointwise a.e. so we may assume fn(s) —*■ fis),
SEN. Then if the defining condition on /„ faüs on the nuU set Mn C G x H,
we see that {(s, h)\fish) ïh~x • fis)} C \JnMn U 0-1(/V), which as above is a
nuU set.

As in the case of unitary representations, it is sometimes helpful to be able
to identify the underlying group structure of ^(A) with something more com-
mon. Indeed, let c be a Borel cross section from G/H into G, and for any /£
U(G/H, A), we define /by Rc(s)h) = h~xf(s) for i E G/H and h EH, where we
impUcitly place on G/H, any quasi-invariant measure.

Proposition 17.   The function fon G is in ¡^¡(A) and the map f—*-f
defines an isomorphism of topological groups from U(G/H, A) onto ¡^(A).

Proof.  If / is a Borel function, it is clear that /is a Borel function on G
since the map (G/H) x H into G given by (s, h) —* c(s)h is known to be a Borel
isomorphism. Moreover, if/is changed on a null set, /only changes on a null
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set so the map / —► /is weU defined. It is clear that /G ffj(A) since the partic-
ular function /satisfies the defining condition everywhere. Again a straightfor-
ward use of criterion (3) of Proposition 6 for convergence of sequences implies
that /—»■/ is a continuous function, and since it is clearly injective, it wiU suf-
fice to show it is surjective and then appeal to the standard closed graph theo-
rem to conclude that it is an isomorphism.

Consider therefore some F G l9j(A) = B.  Since F(sh) = h~x ■ F(s) holds
for almost aU pairs, it foUows by Fubini that there is a nuU set TV in G so that
if s G N, F(sh) = tí~l • F(s) holds for almost all h G H. We define a function
F' onNc xH by F'(s, h) = h~x • F(s) for s G N, h G H.  Suppose now that
Sj G N and sx = s • hx for s Ö N. Then

h~x • F(sx) = F(sxh) (a.e. h) = F(shxh) = h~xhxx • F(s)

for almost all hxh and hence for almost all h.  Thus ft-1 • F(sf) = h~xhxxF(s)
for almost all h and since both sides are continuous in h, it holds for aU h, so
we see that F'(shx, tí) - F'(s, hxh) when s and shx are in Nc. We then define
a function F" on L = {y: Ih G H, yh G N) D Nc by F" (y) = F"(sh) =
F'(s, h) if sh - y GL and s G N, which is well defined by the above. Clearly
F" is a Borel function and F"(sh) = h~l • F"(s). We extend the definition of
F" to the complement of L in any Borel way so that F"(sh) = h~l • F"(s) for
all h and all s, and F" = F a.e. Then clearly F" is of the form / for some mea-
surable function / on G/H. This shows that the map is onto and we are done.

We shall note some properties of our induced modules, the first of which
is the validity of inducing in stages; let G D K D H.

Proposition 18.   There is a canonical isomorphism of G modules between
r%(A)andI%(I%(A)).

Proof.  We note that as measure spaces G/H — G/K x K/H by appropri-
ate choice of cross sections.  Then by the previous result, we may identify I%(A)
as a polonais group with U(G/H, A), and the second with U(G/K, U(K/H, A))
which in turn by our Fubini theorem (Theorem 1) is isomorphic to
U(G/K x K/H, A) which in turn is identified with U(G/H, A). This simple
observation implies that the natural map, motivated by pure algebra, from fjj(A)
to I%(Ih(A)) is well defined and is in fact an isomorphism of topological groups.
The fact that this map intertwines the G-actions is routine, and so modulo some
routine detaUs which we omit, the result is established.

Proposition 19.   The map A —*■ I%(A) is a covariant functor from H-
modules to G-modules which sends exact sequences to exact sequences. Moreover
the G set of fixed elements ofI<fI(A), (¡^¡(A))0 is canonically isomorphic to the
set of H-fixed elements of A, AH.
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Proof. The first assertion is clear and follows the lines of Proposition 9.
For the second assertion, suppose that a E AH; and then define a £ ^(A) by
a(g) = a.  Since h • a = a, we see that a £ ^(A) and is clearly a G-invariant
element as it is a constant function. This map a —► a is clearly a continuous in-
jection of AH into (IffiA))0 and we need only show it is onto. Let /be in the
latter group so that figs) = fis) for almost aU s for each g. By Fubini's theorem
it follows that there is a nuU net xV in G so that if s ^xV, figs) = fis) for almost
aU g, so that / is in fact equal almost everywhere to a constant, fis) = a. Then
since / £ V# (4), h • a = a for almost aU h and by continuity, for aU h.  Thus
a £ AH and / = a as defined above and we are done.

4. At this point we have discussed the category of groups and modules to
be considered together with a variety of constructions on them and we now at
last turn to the construction of cohomology groups. As we have remarked, the
program is to obtain analogues of the Eilenberg-Mac Lane groups in a way extend-
ing the groups defined in [29] and [30].  We assume some famiUarity with
these groups already and their properties and therefore in this context we will
begin by writing down some axioms that we would want such cohomology groups
to satisfy.

Definition.  Let G be locaUy compact separable; then a cohomological
functor on P(G), the category of polonais commutative G-modules is a sequence
Hn(G, A), n = 0, 1, 2,. . . , of covariant functors on V(G) to the category of
abelian groups such that

(1) for each short exact sequence 0 —► A' —■*■ A —*• A" —► 0 in P(G),
there is the usual long exact sequence of cohomology

0 -*■ H°(G, A')-* H°(G, A) — H°(G, A") -2- H'(G, A')
-*-► xYr(G, A) -> H\G, A") -L->Hr+1(G,A')-+--

with coboundary operators which are functoral.
(2) xY°(G, A) = Ag, the G-fixed points of A.
(3) Hr(G, 1(A)) = (0) for aU r > 1, and all A.
Some comments on this definition are clearly in order. The algebraic con-

ditions in the initial specification and in (1) are entirely routine and would be
expected of any cohomology groups worth the name. Assumption (2) is also
completely routine and comes directly from aU previous experience with group
cohomology. On the other hand, the vanishing axiom (3) is a nontrivial restric-
tion which really gives the theory its flavor and its strength. It can be motivated
from the case of finite groups where it is a theorem based on other axioms plus
the fact that in that case there is no question about what the cohomology groups
should be. Moreover, the condition is motivated by one's very plausible feeling
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that the regular representation ought to have trivial cohomology, at least in di-
mension one and then mutatis mutandi in all higher dimensions also. No doubt
one could choose a different vanishing axiom which might lead to different co-
homology groups, and so the answer to the question of why we choose this one
is that cohomology groups which result turn out to be of interest and to solve a
number of questions which arise in the theory of group representations and the
theory of operator algebras. In other words the proof is in the applications of
our construction. Of course in this discussion we have been talking of the coho-
mology groups arising from these axioms. We now make this unicity theorem
precise; the proof is entirely standard. Momentarily we come to the existence of
groups satisfying these axioms which is a somewhat more difficult question.

Theorem 2. Let //*(G, • ) and H$(G, • ) be cohomological functors on
P(G) satisfying the axioms above.  Then there exists a unique isomorphism of
functors H\* —* H% compatible with the given isomorphism in dimension 0, so in
particular H"(G, A) =* H%(G, A) for all n and all A.

Proof. We are given the isomorphism in dimension zero, and suppose by
induction that we have constructed an isomorphism in dimensions / < n — 1,
and we show how to extend it to i = n. For A G P(G), consider the short exact
sequence 0 —* A —*■ 1(A) —*- U(A) —* 0 of §3. Then if n > 2, we know by
our axioms that H?(G, A) = H?~X(G, A) = (0) for i = 1, 2 and then the long
exact sequences read as follows:

0 -*• H\-x(G, U(A)) -* H1(G, A)-*0
10 -> HI -x (G, U(A)) -+ HÏ(G, A) -*■ 0,

where the left-hand vertical arrow comes from the inductive hypothesis.  It is
clear that one has an isomorphism on the right, H"(G, A) —* H2(G, A) as de-
sired. Moreover it is unique subject to functoraUty and subject to uniqueness in
dimension n - 1. Thus the uniqueness is established by induction at the same
time as existence. It remains to consider the case n — 1 and here the long exact
sequences read

0 -* AG —> I(A)G ¿+ Í/ÍG*4 -* HJ(G, A) -> 0,

and it is clear that HJ(G, A) is unique and has to be the cokernel of the map
/: I(A)G -* U(A)G. This completes the proof.

It is clear from the above that everything is determined by H°, but it is
perhaps better to also describe it in terms of H1 and the functor U.  Indeed let
Un(A) = U(U( ' • ■ (A)- • • ))n-times-grantedly a very complicated object.

Corollary.   We have isomorphisms Hn(G, A) =* Hx(G, Un_ X(A)) for
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any cohomological functor for every « and every A.

The point of this comment is that any sensible group cohomology functor
in dimension one virtuaUy has to be on heuristic grounds the group of continuous
homomorphisms of G into A if G acts trivially, or the equivalence classes of
continuous crossed homomorphisms if the action is nontrivial. The above then
gives a description of cohomology groups in all dimensions in terms of crossed
homomorphisms.

We turn to the question of existence; although presumably one could in
fact use the previous corollary as a definition and prove the axioms, it is essential
for our purposes to proceed directly via cochain complexes.  In fact we shall
construct two cochain complexes.  For A £ ?(G), let C"(G, A) denote the set
of all Borel functions from G" into A.  We equip this with the usual coboundary
operator [16], [29],

(S"/)(Sj, s2, . . . , s„+1) = st -f(s2,... , s„+1)-/(s1s2, s3.s„ + 1)

+ fisv s2s3, . . . ,s„+1) + ---

+ (-l)"As1,...,vn+i)

+ (-l)"+1As,.sn),

where we have written A additively. Secondly let us define C"(G, A) to be
U(G", A) in the sense of §2; C"(G, A) can of course be obtained from C"(G, A)
by identifying «-cochains which agree almost everywhere. We now define the
coboundary operator 5" by exactly the same formula. We should point out
that Cn(G, A) are polonais groups (whereas there is simply no way at all to give
C"(G, A) a reasonable such structure if G is not discrete).  Finally we note that
the possibility that the complex C"(G, A) would work at all is suggested to us
by the final theorem in [23].

Proposition 20.   C*(G, A) with 8* and C*(G, A) with 8* are complexes.
Moreover each 5" is a continuous homomorphism.

Proof.  The assertions for 5" are all entirely straightforward and in effect
are in [29]. We add a few comments about 5", the first of which is that it is
weU defined; more specifically if/= g a.e., then one sees that 8n(f) = 8"(g)
a.e. the key observation being that if ip(x, y) = xy then the inverse image under
¡p of a null set in G is a null set in G x G. Thus we can define 8"(£), £E
C"(G, A), as the equivalence class of 8n(f) for any/E/. Finally that 5" is con-
tinuous follows at once from our remark above on null sets and criterion (3) of
Proposition 6 for convergence of sequences in spaces U(X, B).

We denote by Z"(G, A) (Zn(G, A)) the kernel of S" (5"), the «-cocyles,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUP EXTENSIONS AND COHOMOLOGY. Ill 19

and by B"(G, A) (B"(G, A)) the image of Ô""1 (6"_1), the n-coboundaries, and
by Hn(G, A) (Hn(G, A)) the quotient group which we call the nth cohomology
group of G with coefficients in A.

Proposition 21.   The functors A —*■ H"(G, A) and A —* H"(G, A) sat-
isfy conditions (1) and (2) in the definition of cohomological functor. Moreover
there is a natural mapping of functors H"(G, A) —*■ H"(G, A).

Proof.  If A, B G P(G) and 0 G Hom(/l, B), there is an induced map
Cn(G, A) —► Cn(G, 5) by /—»■ 0 o /and similarly for C", which commutes with
the coboundary maps. Thus there are induced maps on cohomology which clear-
ly make these covariant functors. Now if Q—+A' —+A —+ A" —>■ Q is a short
exact sequence in P(G), we have observed in [29] and also in Proposition 9 that

0 — C"(G, A') —■ Cn(G, A) -* Cn(G, A") -+ 0

and also Cn(G, • ) are exact. It follows immediately by standard theorems that
we have long exact sequences of cohomology as in the definition.

Finally we show H°(G, A) =* H°(G, A) ■" AG. Since 5° - (0) we show
this for Z° and Z°. Now A = C°(G, A) - C°(G, A) and (5 • a)(s) - s • a - a,
so that a G Z°(G, A) <=> s • a = a for all s or in other words a G A G. On the
other hand, a G Z°(G, A) <=* s • a = a for almost all s, but by continuity this is
the same as for all s and so a GAG and this shows (2).  Finally as we have al-
ready remarked, the map C(G, A) —+ C"(G, A) which associates to each /its
equivalence class provides natural homomorphisms commuting with the cobound-
ary maps and hence functoral maps H"(G, A) —* Hn(G, A) which as we have
seen are isomorphisms in dimension zero.

Before we proceed further it will be useful to investigate these groups in
dimension one; as we have remarked, any respectable cohomological functor
should have HX(G, A) equal to continuous crossed homomorphisms modulo
principal ones. On the other hand ZX(G, A), say, consists of measurable functions
/ from G to A such that fisxs2) = sx • f(s2) + fisx) for almost all pairs (sx, s2).
The foUowing closes the gap.

Theorem 3. Let G be locally compact separable, and let H be a separable
metric group with G acting as automorphisms on H. Let ip be any measurable
map G—+H such that <p(xy) = x • <p(y)(<p(x)) for almost all pairs x and y.  Then
there exists a unique crossed homomorphism <¿>0 from G to H agreeing with <p
almost everywhere. Moreover tpQ is continuous.

Proof.  For convenience let us replace H by the semidirect product H • G
defined using the action of G on H, and let us replace <p by <p'(g) = (p(g), g).
Then ip' is an ordinary homomorphism and if we prove the theorem for ip' it will
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follow for ¡p. In other words, we assume hereafter that there is no action of G
on H and that (¿> is an ordinary homomorphism. For simplicity we may also
assume that </> is Borel.

We now define U = {y: <p(xyp(y) = <p(xy) for almost all x}. By a straight-
forward application of Fubini's theorem, U is a Borel set in G and is conull.
Suppose that x, y, and xy are aU in U; then for almost aU z,

<p(zyp(x>P(y) = <p(zx}p(y)   (asxEU)

= ip(zxy)   (for almost all zx as y £ U)

- <P(z}p(xy)   for almost all z as xy E U.

In particular we can find a z for which all three equalities hold and we discover
that <p(xyp(y) = <p(xy). For simpUcity we may also assume that <p(e) = e so that
eEU.

Now if a¡ is any finite (or countable) sequence of elements in G,U~l U
C\^=la¡U is conull and hence in particular nonvoid, so that U satisfies the hypoth-
eses of Lemma 6 of [33].   The conclusion of this lemma is as follows:  We
form the abstract group G which is specified by generators and relations. The
generators are denoted (x), one for each x EU and are subject to all relations of
the form (x)(y) = (xy) whenever x, y, and xy are all in U.  It is clear that
(x) —> x extends to a homorphism of G into G and the lemma says that this is
in fact an isomorphism. It is also obvious in this context that G = U • U, and
we define a map 0 from U x U to H by 0(x, y) = <p(x)>p(y). Now let p be the
mapping of U x U onto G defined by p(x, y) = xy. Now Weil's result together
with the fact that <p(xyp(y) = <p(xy) if*. y> xy £ tV imphes that if p(a) = p(b) for
two elements a, b E U x U, then 0(a) = 0(e). In other words, 0 factors through
the mapping p and there exists a unique map <x>0 from G to H so that 0 = <p0 °
it. Weil's result says further that <x>0 is a homomorphism, and since e E U, we see
that <p = <x>0 almost everywhere; this shows the existence of <x>0.

Moreover p is a Borel map and as U x U is standard it follows by well-
known results (see [1, Chapter I]) that p induces a Borel isomorphism of the
quotient space (U x U)/p with G (as Borel spaces). Moreover since 0 is a Borel
map from U x U into H, it follows that 0 viewed as a map from (U x U)\p into
H is Borel, but this is reaUy just the map <x>0 once we identify (U x U)/p with
G. Thus <x>0 is Borel and hence continuous (cf. Proposition 5).

FinaUy ix>0 is unique since if \pl were another such map, «Pj = ip0 = «^ say
on the conuU set XCG.  But then necessarily X • X = G so <p0 = ^ everywhere.

This result clearly impUes that ZX(G, A) can be described as aU continuous
crossed homomorphisms and hence that HX(G, A) consists of equivalence classes
modulo the principal ones; that is, those of the form g —*■ g • a - a. It follows
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immediately of course that ZX(G, A) consists of the continuous crossed homo-
morphisms also and so we obtain the foUowing fact.

Corollary 1.   The natural map HX(G, A) —* HX(G, A) is an isomorphism
for all A.

The theory would not be complete if we did not take up some aspects of
cohomology with coefficients in nonabelian coefficient groups, and it is known
that that can be done at least in dimension one. Specifically let us define
Zl(G, A) as Borel maps from G into A satisfying f(sxs2) = sx • fis2)fisx); this
famUy of functions is no longer a group but only a set. Moreover we say that /
and /' are equivalent if there exists a G A such that fis) = af'(s)(s • a)~l. We
define the quotient by this equivalence relation to be the set HX(G, A). Similarly,
we define ZX(G, A) as the set of such / satisfying the same identity almost every-
where, with /~ /' if there is an a with fis) = af'(s)(s • a)~l almost everywhere.
Then HX(G, A) is the quotient space. Again one has an obvious map <p from
Hl(G, A) into HX(G, A) and the same reasoning as above yields the following
fact.

Corollary 2.   The natural map HX(G, A) to HX(G, A) is an isomorphism
of sets if A is noncommutative.

We come to one of our major results concerning the cohomology groups.

Theorem 4.  We have Hn(G, 1(A)) = H"(G, 1(A)) = (0) for A G P(G).

Consequently as a result of Theorem 2 we have

Theorem 5.   The canonical homomorphisms above H"(G, A) —* Hn(G, A)
are isomorphisms for all n and all A G P(G).

The proof of Theorem 4 proceeds in several steps; the first shows that the
functors//", and Hn satisfy a "Buchsbaum" criterion (cf. [7]).

Proposition 22. For any A, and for any n > 0, the maps H"(G, A) —*
H"(G, 1(A)) and H"(G, A) — Hn(G, 1(A)) induced by the inclusion A -* 1(A)
are the zero maps.

Proof. We note that
C"(G, A) = U(Gn, A) = U(Gn+1 xG,A)~ U(Gn~x, U(G, A))

(by Fubini) and in turn this is C"~X(G, 1(A)). We compose this isomorphism
with the map of Cn~1(G, 1(A)) into itself given by

flgv g2.---, gn-i)(x) ~ x'1 * F(Zv g2>---> gn-ifeñ-v •-" Si"1*)-
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AU of this shows that for /£ Cn(G, A), the formula

h(sv ... , s„_i)(x) = x-1 • h(sl.sn-usñ-i-• si"1*)

makes good sense and defines an element hECn~x(G, 1(A)). In exactly the
same way we show that if/E C"(G, A), then the same formula defines an ele-
ment h E C"~X(G, 1(A)).

We now assume that /E Z"(G, A) (resp. Z"(G, A)), and we compute the
coboundary Ô"-1 or 8"~x of/and we find that this is precisely equal to the
image of ±/in Z"(G, 1(A)) or Zn(G, 1(A)) obtained from the inclusion A —*■
1(A). We omit the routine details of the calculation.

Remark.   This is a special case of the usual argument for discrete groups
to show that Hn(G, 1(A)) = 0 where one takes /£ Zn(G, 1(A)) and defines

ft(gv-gn-i)(x) = x~1 'fev ••• » g„-v iñ-v •••> i^xfo).

In our case this is illegal as it would essentially involve taking a measurable func-
tion of « + 1 variables and restricting it to an «-dimensional subset of its domain
which is in fact a null set, and so this operation would be meaningless. We avoid
this problem above by starting with an / which is constant in one of its variables
so that we can perform this construction in that case.

We now proceed with the second step in the proof of the theorem. Specifi-
cally let us assume that the theorem has been proved in aU dimensions less than
or equal to n with « > 1, and let us prove it by induction for « + 1. Let us
consider the short exact sequence

0 -> 1(A) — I(I(A)) -> U(I(A)) -+ 0

with corresponding long exact sequence

Hn(G, I(I(A))) -* H"(G, U(I(A))) -*-► Hn+X(G, 1(A)) j*Hn+ X(G, I(I(A))).

By the lemma above we see that / is the zero map, and so by exactness, g is
surjective. On the other hand by Proposition 15, U(I(A)) — I(U(A)), and hence
by induction, Hn(G, U(I(A))) = 0, and since g is surjective, we immediately find
Hn+X(G, 1(A)) = 0, which completes our inductive step.

The final step which remains is to prove the theorem for « = 1, and here
we must compute directly.

Proposition 23.   We have Hx (G, 1(A)) = Hx(G, 1(A)) = (0).

Proof.  According to the corollary to Theorem 3, it is enough to do it for
Hx. If fE Zx(G, 1(A)) we may by our Fubini theorem (Theorem 1) identify /
with a Borel function / on G x G into A such that fist, x) = fit, s~xx) • fis, x)
holds for almost all triples (s, t, x). Let use define g(s, x) = fixs, x) and then
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g(st, x) = fixst, x) = f(t,s-1)- fixs, x) = g(s, x) • fit, rx )

holds for almost aU triples (s, t, x). But now let F\s) for s G G be the element
of 1(A) given by x —► g(s, x). Then of course s —► F(s) is a Borel function of
G into 7L4).  Further, let Fx(s) be the image of F(s) in 7(4 )A4 - U(A) where .4
is viewed as a trivial G-module so that A C 7(4) consists of constants. Then the
equation above for£ says that F(st) = F(s)f(t, s~x) or in terms of Fx, that
Fj (st) = F, (s) for almost all pairs (s, r). It follows that Fx is almost everywhere
a constant in U(A) and we pick an element c G 1(A) projecting onto this constant
so that now F(s) = d(s)c for some Borel function d from G into A.  Finally we
see that /Txs)(x) = fis, x) = d(s)c(x) for almost all pairs, and so by substitution
of variables, we obtain fis)(x) = d(x~xs)c(x) and finally letting a(x) = c(x)~x
and b(s) = d(s~x), we obtain fis)(x) = b(s~xx)a(x)~x for almost aU pairs, and by
Fubini this holds for almost all x for almost all s.

We view a and b as elements of 1(A) and then our equation reads fjg) =
(g • b)a~x for almost all g.  On the other hand, Theorem 3 assures us that /as a
function from G to 1(A) is, in fact, continuous and since the other side of the
above is patently continuous, we see that fig) = (g • b)a~l holds for aU g.  Since
fie) — 1, we see that b = a and so fig) — (g • b)b~x = 8° (ft) is a coboundary.
This completes the proof of the proposition and hence also the proofs of Theo-
rems 4 and 5.

Remark.   The observant reader will recognize that this lemma for A = T,
the circle group, is in fact for all intents and purposes Mackey's version of the
Stone-von Neuman theorem [19] ; more specifically to obtain the full force of
that result one would have to replace the circle group T by the full unitary group
U on a separable Hilbert space 77.  This is a noncommutative group but we have
defined cohomology sets in dimension one for noncommutative polonais G-mod-
ules. The point at issue then is simply the vanishing theorem HX(G, I(U)) = (0)
for unitary groups as above, but indeed the result is true for any noncommutative
polonais group, and the same argument we give here extends immediately with
no changes at all.

Corollary (of the proof of Proposition 23).   We have HX(G, I(U))
= (0) for any polonais U, commutative or not, where the cohomology set is de-
fined in the usual way as above as equivalence classes of continuous crossed
homomorphisms.

We have now achieved our first goal-that is, the definition of rather natur-
ally defined cohomology groups 77"(G, A) for A G P(G) and we have in fact
characterized them uniquely by a very simple set of axioms.  Additionally, we
have also shown that the two different definitions 77"(G, A) and H"(G, A) rather
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surprisingly coincide with each other, and consequently in what foUows we wiU
use these two notations interchangeably. We know what these groups are in di-
mension one and we wiU shortly show also that they give exactly what we want
in dimension two.

Right now we estabUsh one property of our groups immediately-namely
the analogue of Shapiro's lemma about cohomology of induced modules. RecaU
our definition of induced modules ̂ (A) in §3. The following is a simply con-
sequence of the circle of ideas above.

Theorem 6.  We have canonical isomorphisms H"(H, A) °« H"(G, 7^(4))
for a closed subgroup H of G and A E P(H).

Proof. We view both sides as cohomological functors on V(H) and observe
the left-hand side, by definition, satisfies the axioms. Moreover, since A —*■
I%(A) is a covariant functor preserving short exact sequences by Proposition 19,
it foUows that the right-hand side satisfies condition (1) of the definition. More-
over, H°(G, I%(A)) = (Ih(Á))g a AH again by Proposition 19 so it also satisfies
condition (2) of the definition. FinaUy, if B = I^e)(A), then ¿¿¡(^(A)) =
lfe)(A) by the proposition on inducing in stages so that Hn(G, x^(/^)(4))) = (0)
for « > 0 and the right-hand side satisfies the third axiom. It follows from our
uniqueness theorem that there are isomorphisms H"(H, A) — H"(G, I%(A)) which
are unique subject to extending the given isomorphism in dimension 0.

We should note in this context that this theorem in dimension one, and for
A = T, is essentiaUy Mackey's imprimitivity theorem for induced representations
[22]. To get the fuU force of that result one has to replace the xY-module A by
a noncommutative module, namely the fuU unitary group on a separable Hubert
space, and as before one has cohomology sets. It is not hard to find a proof
modeled on the ideas used here and we let the matter go with a statement.

Proposition 24 (Mackey imprimitivity). // U is any polonais H-mod-
ule, commutative or not, and ifI%(U) is the induced G-module defined as usual,
we have an isomorphism of cohomology sets HX(H, U) — HX(G, ̂ (U)).

5. We now want to examine the ramifications of the observation that the
groups H"(G, A) are not just abelian groups, but in fact are also topological
groups. Since Cn(G, A) is polonais and 6" is continuous, Z"(G, A) is polonais
and x?"(G, A) is the continuous image of a polonais group, although it may not
be a closed subgroup.  In any case, the quotient xY"(G, A) is a (not necessarUy
Hausdorff) topological group.  It is Hausdorff if and only if B"(G, A) is closed,
and in this case it is a polonais group. Moreover if (i) denotes the closure of the
identity in H"(G, A) so that it is B"(G, A)lB"(G, A), then Hn(G, A)l(e) is always
a polonais group. We want to show now that the H"(G, A) are in fact functors
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into the category of topological groups. We first note the following facts

Proposition 25.   (1) 7///s a continuous G-homomorphism from A to B,
the induced map Hn(G, A) —* Hn(G, B) is continuous.

(2) If 0 —> A' —* A —*■ A" —> 0 is short exact, then the coboundary maps
3": H"(G, A") -* Hn+l(G, A') are continuous.

Proof.  For (1) observe that the induced map on cochains is continuous
by results in §2 and hence so is the map on cohomology. On the other hand,
part (2) is somewhat more subtle. We first select a Borel cross section c: A" —*
A, and note that if/G Zn(G, A"), then c ° /G Cn(G, A) and according to the
coroUary to Proposition 8,/—* c ° fis a Borel map. Finally 5_"(c ° f) G
Zn+1(G, A') and its class is, by definition, the image of the class of/under 3".
Since 5" is continuous /—► 5_"(c ° f) is a Borel map. We are interested in the
continuity of the map /(5_"(c » /)) where / is the projection of Z"(G, A') onto
77"(G, A'). Now this group may not be Hausdorff but we claim that a map into
such a group is continuous if and only if this map composed with the quotient
map onto 77"(G, A') modulo the closure of the identity element is continuous.
But now this is the same as considering the map 0(/) = p(S"(c ° /)) where p is
the map of Zn(G, A') onto Zn(G, A')/Bn(G, A'). Now indeed this map 0 is
Borel as p is continuous, and it follows by a standard theorem (cf. Proposition 5)
that 0 is then continuous, and we are done.

It is helpful if we have a certain strengthening of this in a special case.
Recall that Theorem 2 gives rise to isomorphisms H"(G, U(A)) =* Hn+X(G, A)
for n > 1 and where U(A) - I(A)/A.

Proposition 26.   The isomorphisms H"(G, U(A)) °" Hn+X(G, A) are
homeomorphisms.

Proof.  We have to construct a continuous inverse for 9", and indeed if
fGZn+x(G,A) we defined

«lOXi..s„)(x) = x"1 • f(sx,.   . , sn, s-1..... sxlx) G Çn(G, 1(A)).

Then by using Proposition 6, we see that/—* <px(f) is continuous and if q is the
projection of Ç"(G, 7C4)) onto Cn(G, U(A)), then /—► 0(/) = q(<Px(f)) is contin-
uous, and we observe in fact that 000 G Z"(G, U(A)). The induced map on co-
homology 77"+1(G, A) —> 77"(G, U(A)) is therefore continuous and is precisely
the inverse of 3" and the proof is complete.

We have the following corollary which follows by iteration.

Corollary.  The group isomorphisms H"(G, A)=* HX(G, Un_x(A)) as
defined in the corollary to Theorem 2 are homeomorphisms.
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The above gives a description both algebraicaUy and topologically of the
higher groups in terms of xV1 and indeed one could if desired go down to the
groups H°. We know the algebraic structure of HX(G, B), namely the classes of
continuous crossed homomorphisms of G into B.  This group also has a rather
directly and naturally defined topology for we can give Z1 (G, B) the compact
open topology as functions on G.  (One could give a similar description of this
topology over on ZX(G, B), but it gets a bit involved as we are dealing there with
equivalence classes of functions.) In any case let us give

HX(G, B) = ZX(G, B)IBX(G, B)

the quotient topology. We can do exactly the same for B noncommutative where
we have cohomology sets rather than groups. The foUowing answers the obvious
question about these two topologies.

Theorem 7. The isomorphism HX(G, B) — HX(G, B) is a homeomorphism
from the "compact open1'' topology on the first group, or set, if B is nonabelian,
to the topology on HX(G, B) coming from CX(G, B) = U(G, B).

Proof.  We shall prove that the corresponding map ZX(G, B) - ZX(G, B)
is a homeomorphism and that will suffice. We note indeed that the map is an
algebraic isomorphism by Theorem 4 and the observation that if/. £ ZX(G, B)
and agree a.e., then fx — f2. Now suppose that /„ —► /in ZX(G, B) in the com-
pact open topology; then fn —* f pointwise and hence surely in the topology of
ZX(G, B) by Proposition 6.  If B is abelian we can argue that ZX(G, B) is easily
seen to be polonais, and since we know ZX(G, B) is, it follows that the map
above is a homeomorphism by the closed graph theorem (cf. Proposition 5).
(Note that this wiU work if we know only, say, that ZX(G, B) is an analytic Borel
space; the fact that it is polonais would follow from this and the above argument.)
On the other hand, if B is not abelian, we must proceed differently and more
directly. What is at issue is the fact that if fn is a sequence of crossed homo-
morphisms of G to B converging to / in measure, then /„—»•/ uniformly on
compact sets.  First of all, for simplicity we may use the device employed in
Theorem 3 and replace all crossed homomorphisms by ordinary homomorphisms,
which we do.

Now as fn —*■ f in Z1 (G, x?) every subsequence gm of the fn has a subse-
quence hk which converges pointwise almost everywhere to /, say hk(s) —► fis)
for s E K, a conuU set. But as K ■ K = G and hk(st) = hk(s)hk(t) -* fis)fit) =
fist), it follows that hk—*-f everywhere.  It follows then by standard reasoning
that the original sequence/, converges to/pointwise everywhere. Now the
problem is to make this uniform.  Let p be a bounded left invariant metric on A,
and let E be any compact set of positive finite Haar measure on G with E = E~x
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Then given any subsequence gm of the /„ and given any p(E) > 8 > 0, we can
find by an obvious variant of Egorov's theorem a subsequence hk of gm and a
set F C E with p(E -F)<8 and with hk(s) —* fis) uniformly with respect to p
for s G F. We can also select F = F~x so that F • F contains a neighborhood of
the identity, say U as p(F) > 0. Let e > 0, and choose N so large that if n > N,
we have p(hn(t), fit)) < e/2 uniformly for t G F.  Moreover, since E is compact,
fiE) C B is compact, and it follows that we may find a 5 sufficiently small such
that if p(b, e)<8 then p(s~xbs, e) < e/2 for every s G fiE); in particular,
p(bxf(t), b2f(t)) < e/2 fortGF whenever p(bx, b2) = p(b2xbx, e) < 8. Then
we make our N above larger^ if necessary, so that in addition, p(hn(s), fis)) < ô
for n > N uniformly for s G F.  Now if u G U is arbitrary, u = st, with s, t G F
and

P(h„(u),fiu)) = p(hn(st),fist))

< P(hn(s)hn(t), hn(s)f(t)) +P(ft„(sM0, /torTO)
= p(hn(t), h(t)) + p(hn(s)f(t),f(s)f(t))

< e/2 + e/2 = e   for n > N.

Thus hn—>f uniformly on U and hence, by an easy argument, on any left trans-
late of U, and hence on any compact set in G.  Thus we have shown that any
subsequence of the original sequence fn has a subsequence converging uniformly
on compact sets to / which is enough to show that fn itself converges uniformly
on compact sets to / and this completes the proof.

In the course of the argument we have, of course, shown the following fact
of some interest which we cannot point to in the literature in this generality.
Many special cases are, of course, well known and classical.

Theorem 8. If fn is a sequence of homomorphisms (or crossed homomor-
phisms) of a locally compact separable group G into a separable metric group B
which converge pointwise, then they converge uniformly on compact sets.

These results give a rather direct and natural description of the topology
on HX(G, B) and, hence, using the corollary of Proposition 26, we get some sort
of description of the topology on 77"(G, A) for any n and any A.

In the above we have concentrated on the behavior of the topology on
77"(G, A) as A varies, but it is equally important to investigate the behavior as G
varies.  Specifically, if <p: 77 —*■ G is a continuous homomorphism and if A G P(H)
and A G P(G) with >p(h) • a = h -a, where the two dots refer to the actions of
G and 77 on A and A, respectively, we expect induced maps (p*f): H"(G, A) —*■
Hn(H, A) which should be continuous. One usually defines these maps by assoc-
iated cochain maps
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(*) (0*/)(î,. • • - , sn) = MsJ,.... <p(sn))

which is fine for/E Cn(G, A) and gives the desired homomorphisms from
Hn(G, A) to H"(H, A). However, if we tried the same thing for the groups
Hn( •, x?), we run into trouble, for suppose *p(H) C G is a Haar nuU set (e.g.
Z C R). Then the right-hand side of (*) above is meaningless since we are at-
tempting to evaluate an equivalence class of measurable functions on a null set.
Indeed the very existence of such maps H"(G, A) —* H"(H, A), much less their
continuity, would be somewhat mysterious if taken in isolation.

Proposition 27.   The maps (</>*/): H"(G, A)—+H"(H,A) are continuous.

Proof. We proceed by induction on «, the result being clear for « = 0.
For n = 1, it is enough to consider the cocycle groups Z1 which we identify as
groups of continuous crossed homomorphisms with the compact open topology
by Theorem 7. The continuity for the map ZX(G, A) —*■ ZX(H, A) in question
is then clear, since tp maps compact sets in H into compact sets in G.

Assume now that we have established the lemma in dimension « > 1 ; we
prove it in dimension « + 1. We write the usual exact sequence 0 —*• A —*■ 1(A)
—* U(A) —► 0 of G-modules, and use the map of H into G to make this sequence
into a sequence of H modules in a compatible way. The long exact sequences of
cohomology then read:

0 -> tY"(G, U(A)) -^-* Hn+ x (G, A)^>0

fn+l

H"(H, 1(A)) -> Hn(H, U(A)) -Z-* Hn+X(H, A)-*---

We know that /„ is continuous and that bH is continuous. Moreover since 3G is
a homeomorphism by Proposition 26,/n+1 = dH/„9o1 is continuous as desired.

We conclude this section with a description of the situation regarding the
spectral sequence of a group extension in our context—a tool that has been shown
to be absolutely invaluable. Let H be a closed normal subgroup of G and let A
be a G-module. Then one hopes for a spectral sequence Ep,q converging to
xY*(G, A) with Ep2-q * HP(G/H, Hq(H, A)). One should consult [16] for the
algebraic treatment and [29] for a first approximation of a topological treatment.
For this statement to begin to make sense we need a topology on the groups
Hq(H, A), and fortunately we have one rather naturally defined via Hq(H, A)
although it may unfortunately fail to be Hausdorff.  In any case we have the
following fact.
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Proposition 28.   The group 77*(77, A) is a topological G/H module and
hence if it is Hausdorff, it is in P(G/H).

Proof.  We note that the group G acts on the polonais group Zq(H, A) by
(s */)(ftit.... hq) = s • f(shxs~l.shqs~x). The function s -/is contin-
uous in s by an easy variant to Proposition 12, and is continuous in /by Propo-
sition 6. Hence the action is jointly continuous by Proposition 11. By going over
to the quotient mod B?(H, A), we see that 77'(77, A) is indeed a topological G-
module.

Theorem 9.   There is a spectral sequence Epr,q, in fact the same one as in
Theorem 1.1 of [29] if A is locally compact, converging to H*(G, A) such that
ep.i = hp(G/H, H"(H, A)) at least whenever H"(H, A) is Hausdorff.

Proof.   The argument in [29] works virtuaUy verbatim and indeed the
situation is even simpler since we have avaUable our Fubini theorem, Theorem 1,
and the proposition above. In [29] we introduced the notion of the complex
C*(77, A) being regular in dimension i. What is needed here is that C*(77, A) is
regular in the sense that we can find a Borel mapping tp¡ from B'(H, A) into
Cl~x(H, A) which is a right inverse for the coboundary differential. Such a Borel
map wiU have all the necessary properties as described in Definition 1.5 of [29].
In our context it is easy to construct 0f for we simply take a Borel cross section
s¡ from />' = Ç'x(77, 4)/Z'" *(77, A) into &~ l(H, A). Then S1- ' induces an
injection d' of the polonais group D1 onto Bl(H, A) C C'(H, A). Although dl is
not a homeomorphism unless B'(H, A) is closed it is a Borel isomorphism (cf.
Proposition of Chapter I of [1]). We then take 0¿ = s¡ ° d¡~x.

Remark.   Since one might think of 77'(77, A) as a pseudo-polonais G/77
module, one might attempt to construct its cohomology groups, since we do have
a definition of what it means for a function from a space X into such groups to
be Borel. This definition is fortuitous in that it is precisely what comes up when
one looks closely at the spectral sequence. One thus could in principal identify
all the terms of the spectral sequence in terms of such suitably defined cohomol-
ogy groups.   We shaU, however, refrain from pursuing this approach and content1
ourselves with the description in case 77'(77, A) is Hausdorff.

6. There is one essential element of our development which is missing so
far and that is the identification of H2(G, A) as a set of group extensions. We
now proceed to fill this gap; it is interesting to note that our argument here,
which is valid for general polonais A, is in some ways simpler and more construc-
tive than the original argument of Mackey [24] in the case A locally compact.
The simplification results from an effective use of the idea of identifying cocycles
equal almost everywhere.
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Theorem 10.   We have an isomorphism H2(G, A) - H2(G, A) =* Ext(G, A),
the group of all equivalence classes of topological group extensions of G by the
G-module A.

Proof.  First let us suppose that 1 —* A —*■ E -^-* G —*■ 1 is such an ex-
tension.  It follows from Proposition 3 that E is polonais, and then by the funda-
mental cross section theorem (cf. Proposition 4), there exists a Borel map s from
G to E with (it » s)(g) = g.  Then we define a(g, h) = rx(s(g)s(s)s(gh)~x) and
note that it is an element of Z2(G, A) with cohomology class a(E) independent
of the choice of s which provides a map of Ext(G, A) into H2(G, A). It is purely
algebraic and classical that en is a group homomorphism (using the Baer product
on Ext(G, .4)). We show first that a is injective. If a(E) = 0, then we claim that
we can choose the Borel cross section s so that the corresponding cocycle a(g, h)
= 1. This says that s is a homomorphism, and being Borel it is automaticaUy
continuous. Then the map (a, g) —* i(a)s(g) defines a continuous bijective homo-
morphism of the semidirect product A • B onto E as group extensions. Since
A • G and E are polonais, this map is a homeomorphism and E is the identity
element of Ext(G, A). It remains to show that a is surjective, which of course is
the hard part.

For this let b E H2(G, A) and let b E Z2(G, A) be a representative. By
way of motivation for what follows, let us note that the image of b in xY2(G, 1(A))
under the map induced by the inclusion A —* 1(A) is the trivial class, and hence
the corresponding group extension is the semidirect product 1(A) • G.  It is then
very natural to expect that the group extension of G by A which we are seeking
as a preimage for the class b should be constructible as a specific subgroup of
1(A) • G, and this is precisely what we shall do.

We note that for fixed g the function x —*■ x~x ■ b(g, g~xx) can be viewed
as an element of 1(A) and as such we denote it by Tig)\ then define the element
L(g) of 1(A) ■ G as the pair L(g) = (T(g), g). We compute that L(g)L(h) =
(A(g, h), gh) where A(g, h) as a function of x is given by

A(g, «)(x) = x"1 • (b(g, g~xx) + g • b(h, h-xg-xx)).
Now

L(gh) = (t(gh),gh)   and   7Tjr«)(x) = x~x ■ (b(gh, h~xg~xx)).

An elementary application of the cocycle identity satisfied by b shows that

A(g, h)(x) = T(gh)(x) + x"1 • (b(g, h))   or   A(g, h) = T(gh) + i(b(g, h))

where i is the map embedding A into 1(A). Thus we see that L(g)L(h) =
i(b(f> g)> £) ' L(gh) where e is the identity of G.  Let us consider the subgroup E
of the semidirect product 1(A) • G generated by the elements L(g), g EG, and
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i(a), a G A.  The above identity for L(g)L(h) shows that every element of E can
be written as i(a)L(g), and indeed this representation is unique, for if i(a')L(g') =
i(a)L(g), then (x~x • a + x"1 • b(g, g-xx),g) = Ox"1 • a + x~x ■ b(g, g-xx),
g) so g = g and a -a' = big, g~xx)- b(g, g~ xx) = 0 a.e. so a = a'. We give E
the topology it inherits as a subgroup of 7(4) • G, and we show that it is a closed
subset, hence polonais.

Let p be the projection of 7(4) onto U(A); then the equation for L(g)L(h)
says that p ° L is a homomorphism of G into 1/(4).  It is clear moreover that 7,
is a Borel function into 7(4) by use of Proposition 8, and hence p ° £ is Borel,
and also continuous. Thus if gn —*■ g in G, p « £(£„) —► p ° ¿0?) in t/(4)> and
hence there is a sequence cn in .4 such that i(cn) + L(qn) —* L(g). Now suppose
we have a sequence i(an)L(gn) in F converging to an element (c, g) of 7(4) • G.
Then of course gn—+ g and i(an) + L(gn) —*■ c and, by the above, i(an) - i(cn)
+ L(g) —* c and, hence, the difference an - c„ must converge to some limit d,
and we have d + L(g) = c so that (c, g) = i(d)L(g) is in E and E is closed.

Further i gives a topological embedding of A into F as a closed normal sub-
group. Moreover ir(i(a)L(g)) = g defines a homomorphism of F onto G with
kernel i(A). The map n is continuous as it is the restriction to F of the natural
projection of 7(4) • G onto G.  As F is polonais, F is then an extension of A, and
as the action is correct, of the G module A.  Moreover E comes equipped with a
Borel section g —* L(g) of G in E such that the associated cocycle is precisely ft.
Thus F is an extension of G by A corresponding to given cohomology class ft,
and the proof is complete.

We defer a discussion in more detail of the topology on H2(G, A) until a
following paper where it fits more naturally.

We might remark that one may show just as in [1, Chapter IV], that
H3(G, A) contains the naturally defined obstructions arising in the consideration
of nonabelian extensions.  It is a routine exercise which we shall not pursue fur-
ther.

7. The above completes the general description and properties of the
cohomology groups 77"(G, A) and Hn(G, A). In conclusion we should point out
the relation of these groups with other constructions. D. Wigner's thesis [34]
clarifies these relationships and let us recall his major results here. If G is any
topological group, it has a classifying space BG [27], and if A is any G-module
with the discrete topology, one may construct a locally constant sheaf A on BG
with fiber A with the nonconstancy reflecting the action of G on A.  Then Wigner
shows that:

(1) If G is finite dimensional, and A is discrete, there are isomorphisms
77"(G, A) =* H"(GB, A) (sheaf cohomology).
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Note that this could not be expected to hold for modules A with a topology
since the topology on A enters on the left-hand side of the above but cannot
enter on the right. We note, in particular, that this result says that our groups
coincide with the groups used in class field theory Hn(G, A) defined for pro-
finite groups G and discrete modules A [10]. Wigner also shows:

(2) If G is finite dimensional and V a finite dimensional vector space which
is a linear G-module, then H"(G, V) =» Hnc(G, V) where the latter group is the
one defined by Hochschild and Mostow [15], [28] using continuous cochains
rather than Borel cochains.

On the other hand, our groups do not coincide with the groups introduced
by Johnson [14] for modules which are Banach spaces. Note that he restricts
attention only to bounded cochains.

It would appear on the basis of the axioms characterizing our groups
H"(G, A) or H"(G, A), and on the interpretation of these groups in dimensions
one and two, and on the basis of the isomorphisms above m special cases, that
our groups Hn(G, A) have a certain claim to being the appropriate generalization
of the Eilenberg-Mac Lane groups.  In a subsequent paper we shall indicate a
number of diverse applications of these groups to such topics as the structure of
topological groups.
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