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✦

Abstract—Factor analysis provides linear factors that describe relation-

ships between individual variables of a data set. We extend this clas-

sical formulation into linear factors that describe relationships between

groups of variables, where each group represents either a set of related

variables or a data set. The model also naturally extends canonical cor-

relation analysis to more than two sets, in a way that is more flexible than

previous extensions. Our solution is formulated as variational inference

of a latent variable model with structural sparsity, and it consists of two

hierarchical levels: The higher level models the relationships between

the groups, whereas the lower models the observed variables given the

higher level. We show that the resulting solution solves the group factor

analysis problem accurately, outperforming alternative factor analysis

based solutions as well as more straightforward implementations of

group factor analysis. The method is demonstrated on two life science

data sets, one on brain activation and the other on systems biology,

illustrating its applicability to the analysis of different types of high-

dimensional data sources.

Index Terms—factor analysis, multi-view learning, probabilistic algo-

rithms, structured sparsity

1 INTRODUCTION

Factor analysis (FA) is one of the cornerstones of data
analysis, the tool of choice for capturing and understand-
ing linear relationships between variables [1]. It provides
a set of K factors, each explaining dependencies between
some of the features in a vectorial data sample yi ∈ R

D

based on the model

yi =
K
∑

k=1

zi,kwk + ǫi,

where zi,k is the value of the kth unobserved factor,
wk ∈ R

D contains its loadings, and ǫi is Gaussian noise.
To correctly capture the relationships, we need to assume
a diagonal noise covariance with free variance for each
of the variables. If the noise model was more flexible,
having non-diagonal covariance, it would allow describ-
ing some of the relationships as noise. On the other
hand, forcing the variances to be equal would imply
that heteroscedastic noise would need to be explained
as factors, reducing the model to probabilistic PCA [2].
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Building on our preliminary conference paper [3], we
generalize factor analysis to a novel problem formula-
tion of group factor analysis (GFA), where the task is to
explain relationships between groups of variables. We
retain the linear-Gaussian family of FA, but modify the
model so that each factor now describes dependencies
between some of the feature groups instead of individual
variables. Again the choice of residual noise is crucial: it
needs to be flexible enough to model everything that is
not a true relationship between two variable groups, but
restricted enough so that all actual relationships will be
modeled as individual factors. For FA these requirements
were easily satisfied by assuming independent variance
for each dimension. For GFA more elaborate construc-
tions are needed, but the same basic idea applies.

From another perspective, GFA extends multi-battery
factor analysis (MBFA), introduced by McDonald [4]
and Browne [5] as a generalization of inter-battery fac-
tor analysis (IBFA) [6], [7] to more than two variable
groups. MBFA is a factor analysis model for multiple
co-occurring data sets, or, equivalently, for a vectorial
data sample whose variables have been split into groups.
It includes a set of factors that model the relationships
between all variables, as well as separate sets of factors
explaining away the noise in each of the variable groups.
These group-specific factor sets are sufficiently flexible
for modeling all variation within each group. However,
each of the remaining factors is assumed to describe
relationships between all of the groups, which is not suf-
ficient for providing interpretable factors that reveal the
relationships between the data sets as will be explained
below. Nevertheless, the MBFA models are useful tools
for multi-source data analysis, illustrated by the fact that
the problem has been re-discovered in machine learning
literature several times; see Section 4 for more details.

To solve the GFA problem, we need to have also
factors that describe relationships between subsets of
the groups. This makes the solutions to the problem
both more flexible and more interpretable than MBFA.
For example, a strong factor tying two groups while
being independent of the other groups can then be
explicitly modeled as such. The MBFA-based models
would, falsely, reveal such a factor as one that is shared
by all groups. Alternatively, they would need to, again
incorrectly, split them into multiple group-specific ones.

In recent years, the need for the GFA solution has
been identified by several authors, under different ter-
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minology. Jia et al. learned sparse matrix factorization by
convex optimization [8], and Van Deun et al. used group-
lasso penalty to constrain the factors of a simultaneous
component analysis (SCA) model [9]. Various Bayesian
techniques have also been proposed for learning shared
and individual subspaces of multiple data sources [3],
[10], [11], [12].

In this work we lay the foundation for future develop-
ment of GFA solutions, by properly defining the prob-
lem setup and terminology. We also present a general
solution outline and show that the solutions mentioned
above are all instances of the same basic approach; they
all learn structured sparse FA models with varying tech-
niques for obtaining group-wise sparsity for the factor
loadings. We then propose a novel GFA solution that
does not make a strong simplifying assumption shared
by all the previous approaches. They all assume that
we can independently infer, for each factor-group pair,
whether that factor describes variation related to that
group, whereas our solution explicitly models also these
associations with an additional linear model. In brief, our
model hence consists of two linear hierarchical levels.
The first models the relationships between the groups,
and the latter models the observed data given the output
of the higher level. Alternatively, it can be viewed as
a direct generalization of [3] with a more advanced
structured sparsity prior making it possible to reduce
the degrees of freedom in the model when needed.

Before delving into the details on how we solve the
GFA problem, we introduce some general application
scenarios. The model is useful for analyzing multi-
view setups where we have several data sets with co-
occurring samples. The variables can be grouped accord-
ing to the data sets: all variables in one set belong to one
group etc. Then GFA explains relationships between data
sources, and for two data sets it equals the problem of
canonical correlation analysis (CCA; see [13] for a recent
overview from a probabilistic perspective). Alternatively,
each group could contain a collection of variables chosen
to represent a multi-dimensional concept, such as cogni-
tive abilities of a subject, which cannot be summarized
with a single feature. Then GFA could be used for asso-
ciating cognitive abilities with other multi-dimensional
concepts. The groups can also represent a meaningful
partitioning of larger data sets; we present two practical
examples of this kind of a setup. In one example we
split a high-dimensional feature vector over the human
genome into subsets according to functional pathways
to describe drug responses, and in the other example
we split magnetic resonance images of the human brain
into local regions to study relationships between brain
areas.

2 GROUP FACTOR ANALYSIS

2.1 Problem formulation

The group factor analysis problem is as follows: Assume
a collection of observations yi ∈ R

D for i = 1, . . . , N

collected in a data matrix Y ∈ R
N×D, and a disjoint

partition of the D variables into M groups {Gm}. The
GFA task is to find a set of K factors that describe Y so
that relationships between the groups can be separated
from relationships within the groups. For notational
simplicity, assume that the first D1 variables correspond
to the first group G1, the following D2 variables to G2,
and so on. Then we can write Y = [X(1), ...,X(M)], where
X(m) is a subset of the data corresponding to Gm. We use

x
(m)
i to denote the ith sample (row) of X(m). Throughout

this paper we use the superscript (m) to denote variables
related to the mth group or data set.

2.2 General solution

A general solution to the GFA problem can be formu-
lated as a joint factor model for the observed data sets.
The model for the mth group of the ith sample is

x
(m)
i ∼ N (W(m)⊤zi, τ

−1
m I), (1)

where W(m)⊤ = [w
(m)
1 , . . . ,w

(m)
K ], zi ∈ R

K , and τm
is noise precision. Equivalently, we can directly write
yi = W⊤zi+ǫi, where ǫi is Gaussian noise with diagonal
covariance but separate variance for each group, by
denoting W = [W(1), ...,W(M)].

To make the factors interpretable in the GFA-sense,
that is, to describe relationships between the groups, we
need to make W sparse so that it satisfies the following
properties (for a visual illustration see Figure 1):

1) Some factors are private to each group, so that

w
(m)
k 6= 0 only for one m. These factors explain

away the variation independent of all the other
groups, and play the role of residual noise in
regular FA.

2) The rest of the factors describe relationships be-
tween some arbitrary subset of the groups; they are
non-zero for those groups and zero for the others.

A trivial solution would explicitly split the factors into
separate sets so that there would be one set of factors
for each possible subset of the groups (including the
singletons and the set of all groups). This can be done for
small M ; for example Klami and Kaski proposed such
a model for M = 2 [14] and Gupta et al. formulated
the model for general M but ran experiments only with
M = 3 [10]. Due to the exponential number of subsets,
these approaches cannot generalize to large M .

A better approach is to associate the projection matrix
W with a structural sparsity prior that encourages solu-
tions that satisfy the necessary properties. This strategy
was first presented for M = 2 by Virtanen et al. [15],
and extended for general M independently by several
authors [3], [11], [12]. Despite technical differences in
how the structural sparsity is obtained, all of these
approaches can be seen as special instances of our GFA
solution principle. Also the non-Bayesian models that
can be used to solve the GFA problem follow the same
principle [8], [9].
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Fig. 1. Illustration of the group factor setup for three groups. The model learns a linear factorization of a data matrix

Y = [X(1),X(2),X(3)] whose features have been split into (here) three groups, so that the factor loadings W are

group-wise sparse. The model then automatically learns which factors describe dependencies between either all of

the groups or a subset of them, and which describe structured noise specific to each group. The sparsity structure of

W is here represented by coloring; the white areas correspond to zeros whereas the gray areas are non-zero.

3 MODEL

We propose a novel GFA solution that is another instanti-
ation of the general approach described above. The tech-
nical novelty is in a more advanced structural sparsity
prior which takes into account possible dependencies
between the groups, instead of assuming the group-
factor activations to be a priori independent as in the
earlier solutions. The model can also be interpreted as a
two-level model that uses one level to model association
strengths between individual groups and the other level
to model the observations given the association strength.
This interpretation clarifies the conceptual novelty, ex-
plicating how the new structural sparsity prior has an
intuitive interpretation.

The generative model is the one given in (1) coupled
with suitable priors. For zi we use the unit Gaussian
prior zi ∼ N (0, I), and for the noise precisions τm we
employ a gamma prior with both shape and rate param-
eters set to 10−14; the model is fairly insensitive to these
hyperparameters. To find a GFA solution these standard
choices need to be complemented with structured sparse
priors for W, described next.

3.1 Sparsity prior

We denote by αm,k the inverse strength of association
between the mth group and the kth factor, and directly
interpret it as the precision parameter of the prior distri-

bution for w
(m)
k , the projection mapping the kth factor

to the observed variables in the mth group. That is, we
assume the prior

p(W|α) =
M
∏

m=1

K
∏

k=1

Dm
∏

d=1

N (w
(m)
k,d |0, α

−1
m,k).

The same prior was used in our preliminary work [3],
where we drew αm,k independently from a flat gamma
prior to implement group-wise extension to automatic
relevance determination (ARD).

Here we replace the independent draws with a linear
model for α to explicitly model the association strengths
between group-factor pairs. Since the entries correspond

U

V

τ x
(m)
i W(m)

zi

m = 1...Mi = 1...N

αm

Fig. 2. Plate diagram of group factor analysis. The ob-

servation model, used also by earlier GFA solutions, is

highlighted by the blue dotted region, whereas the novel

low-rank model for the group-factor associations is indi-

cated by the orange dashed region.

to precisions for the second level projections, we model
them in the log-space as

logα = UV⊤ + µu1
⊤ + 1µ⊤

v , (2)

where U ∈ R
M×R and V ∈ R

K×R. The vectors µu ∈ R
M

and µv ∈ R
K model the mean profiles. Here R is the

rank of the linear model, and typically R ≪ min(M,K)
so that we get a low-rank decomposition for the associa-
tion strengths, obtained by element-wise exponentiation
α = exp(UV⊤ + µu1

⊤ + 1µ⊤
v ). Finally, we place an

element-wise normal prior for the matrices U and V

with zero mean and precision set to a fixed constant
λ = 0.1; extensions to further hierarchical priors would
also be tractable if needed. The resulting GFA model is
visualized as a plate diagram in Figure 2, highlighting
the two levels of the model.

The motivation for modeling the αm,k instead of
assuming them independent comes from the original
modeling task of GFA. The goal is to understand the
relationships between the groups, and hence we should
explicitly model them. The earlier models with inde-
pendent priors assume that the groups are independent,
which is unlikely to hold in practical applications. Our
model, in turn, directly represents correlations between
the group activation profiles.

An alternative formulation for correlated groups
would directly draw logαm from a multivariate distri-
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bution, such as multivariate normal [16]. However, spec-
ifying the correlations for such a model would require
M(M−1)/2 parameters, making the approach infeasible
for large M . Since modeling the correlations is expected
to be the most useful for large number of groups, it is
clearly beneficial to use the low-rank model that requires
only (M +K)× (R+ 1) parameters.

3.2 Interpretation

As mentioned above, the model can be interpreted in
two alternative ways. The straightforward interpretation
is that of a factor analysis model for the D observed
variables, with a structural sparsity prior for making
the projections implement the GFA properties. This
viewpoint illustrates the relationship between the earlier
Bayesian solutions for GFA [3], [11], [12]; they follow the
same general approach presented in Section 2.2, but our
sparsity prior is more advanced.

Perhaps the more interesting interpretation is to con-
sider (2) as the primary model. Then the entries of α are
considered as unobserved data describing the groups;
U are the factor loadings and V provide the latent
factors for the groups. The mapping from α to the
observations, parameterized by Z and W, is then merely
a set of nuisance parameters. From this perspective,
the earlier models presented for the GFA problem are
very simple. They do not assume any structure between
the groups, but instead draw the association strengths
independently. Their results will naturally still reveal
such associations, but not as well as the proposed model
that models them explicitly.

As we later empirically demonstrate, the rank R of the
group association level can typically be very low even
for very high-dimensional data collections with a large
number of groups. This makes it possible to visually
study the associations between the groups, for example
via a scatter plot of the columns of U for R = 2. We
discuss approaches for determining the value of R for
practical applications in Section 5.4.

3.3 Inference

For inference, we use mean-field variational approxi-
mation. We approximate the posterior with a factorized
distribution

q(Θ) = q(Z)q(W)q(τ )q(U)q(V),

where Θ = {Z,W, τ ,U,V}, and find the approximation
that minimizes the Kullback-Leibler divergence from
q(Θ) to p(Θ|Y). Equivalently, this corresponds to es-
timating the marginal likelihood p(Y) with maximal
lower bound,

log p(Y) ≥ L(Θ) =

∫

q(Θ) log
p(Θ,Y)

q(Θ)
.

The mean-field algorithm proceeds by updating each of
the terms in turn, always finding the parameters that
maximize the expected lower bound L(Θ), given all the

Algorithm 1 VB inference of GFA

Input: initialized q(W), q(Z), q(τ ), and either q(α) or
U and V.
while not converged do

Check for empty factors to be removed

q(W)←
∏M

m=1

∏Dm

j=1N (w
(m)
:,j |m

(w)
m,j ,Σ

(w)
m )

q(Z)←
∏N

i=1N (zi|m
(z)
i ,Σ(z))

if full-rank GFA (R = min(M,K)) then
q(α)←

∏M

m=1

∏K

k=1 G(a
α
m,k, b

α
m,k)

else
U,V← argmaxU,V L(Θ)U,V

〈α〉 ← exp(UV⊤)
end if
q(τ )←

∏M

m=1 G(τm|a
τ
m, bτm)

end while

other factorized distributions. Since the model uses con-
jugate priors for everything except U and V, the updates
for most parameters are straightforward and match those
of other FA models, for example [13]. The terms q(U)
and q(V) are more complex and hence we derive the
updates for that part in detail below. The VB inference
is summarized in Algorithm 1, and the parameters of the
variational distributions can be found in the Appendix.
An open-source implementation of the model in R is
available as part of the CCAGFA package in CRAN
(http://cran.r-project.org/package=CCAGFA).

For q(U) and q(V) we use fixed-form distributions,
that is, we choose point distributions q(U) = δU and
q(V) = δV, and optimize the lower bound numerically1.
The bound as a function of U and V is given by

L(Θ)U,V =
∑

m,k

(

Dmu⊤
mvk − 〈W

(m)W(m)⊤〉k,ke
u

⊤

mvk

)

+ 2 log p(U,V), (3)

where 〈W(m)W(m)⊤〉 denotes the second moment of
W(m) with respect to q(W(m)), and log p(U,V) collects
the prior terms affecting the factorization. Since the
parameters U and V are highly coupled, we optimize (3)
jointly with second order approximate gradient method
(L-BFGS), using the gradients

δL

δU
= AV +

δ log p(U,V)

δU
,

δL

δV
= A⊤U+

δ log p(U,V)

δV
,

where A = D1⊤ − exp(UV⊤). Full variational inference
over these parameters would also be possible [18], but
we did not consider it necessary for the practical appli-
cations.

An interesting special case is obtained when R =
min(M,K). Then the factorization is not low-rank, but
instead we can find a unique optimal solution for (3) as

αm,k =
Dm

〈W(m)W(m)⊤〉k,k
,

1. To keep the notation clean we assume the µu and µv have been
appended as parts of U and V, respectively.

http://cran.r-project.org/package=CCAGFA
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assuming λ is negligibly small. This is identical to the
variational update for a model that draws αm,k from a
gamma prior with the parameters approaching zero (the
uniform distribution limit of gamma). This is the prior
used by some of the earlier GFA solutions [3], [12], and
hence we get the earlier models as special cases of ours.

The inference scales linearly in M , D and N , and
has cubic complexity with respect to K. In practice,
it is easily applicable for large data sets as long as
K is reasonable (at most hundreds). However, during
inference empty factors may occur and in this case they
can be removed from the model to speed up and stabilize
computation2.

3.4 Predictive inference

Even though the GFA model is in this work formulated
primarily as a tool for exploring relationships between
variable groups, it can readily be used also as a predic-
tive model. In this prediction setting new (test) samples
are observed for a subset of groups and the task is to
predict unobserved groups based on observed data.

For simplicity of presentation, we assume that only the
mth group is unobserved. Then the missing data are rep-
resented by the predictive distribution p(X(m)∗ |Y−(m)∗),
where Y−(m)∗ denotes partially observed test data con-
sisting of all the other groups. However, this distri-
bution involves marginalization over both W and Z

that is analytically intractable and hence we need to
approximate it. In particular, given Y−(m)∗ , q(W) and
q(τ ), we learn the approximate posterior distribution for
the latent variables q(Z∗) corresponding to Y−(m)∗ and
approximate the mean of the predictive distribution as

〈X(m)∗ |Y−(m)∗〉 = 〈Z∗W(m)〉q(W(m)),q(Z∗)

= Y−(m)∗T〈W−(m)⊤〉Σ−1〈W(m)〉, (4)

where T = diag({〈τj〉IDj
}j 6=m) and Σ = IK +

∑

j 6=m〈τj〉〈W
(j)W(j)⊤〉. In the experiments we use this

mean value for prediction.

4 RELATED WORK

The GFA problem and our solution for it are closely
related to several matrix factorization and factor anal-
ysis techniques. In the following, the related work is
discussed from two perspectives. First we cover other
techniques for solving the group factor analysis problem
or its special cases. Then we proceed to relate the pro-
posed solution to multiple regression, which is a specific
use-case for GFA.

4.1 Factor models for multiple groups

For a single group, M = 1, the model is equivalent
to Bayesian principal component analysis [2], [17]; all
of the factors are active for the one group and they

2. We remove the kth factor from the model if ck =∑N
i=1

〈zi,k〉
2/N < 10

−7.

describe the variation with linear components. We can
also implement sparse FA with the model, by setting
M = D so that each group has only one variable.
The residual noise has independent variance for each
variable, and the projections become sparse because of
the ARD prior.

For two groups, M = 2, the model is equivalent
to Bayesian CCA and inter-battery factor analysis [13];
some factors model the correlations whereas some de-
scribe the residual noise within either group.

Most multi-set extensions of CCA, however, are not
equivalent to our model. For example, Archambeau et
al. [19] and Deleus et al. [20] extend CCA for M > 2,
but instead of GFA they solve the more limited problem
of multiple-battery factor analysis [4], [5]. The MBFA
models provide one set of factors that describe the rela-
tionships between all groups, and then model the varia-
tion specific to each group either with a free covariance
matrix or a separate set of factors for that group. Besides
the multi-set extensions of CCA, also the probabilistic
interpretation of sparse matrix factorization [21], and
the JIVE model for integrated analysis of multiple data
types [22], [23] belong to the family of MBFA models.
These models differ in their priors, parameterization and
inference, but are all conceptually equivalent.

In recent years, a number of authors have indepen-
dently proposed solutions for the GFA problem. They
all follow the general solution outline presented in Sec-
tion 2.2 with varying techniques for obtaining the group-
wise sparsity. Common to all of them is that they do not
explicitly model the relationships between the groups,
but instead assume that the choice of whether a factor
describes variation in one particular group can be made
independently for all factor-group pairs. This holds for
the non-Bayesian solutions of multi-view sparse matrix
factorizations [8] and the group lasso penalty variant
of SCA [9], as well as for the earlier Bayesian GFA
models [3], [11], [12]. Compared to these, our model
explicitly describes the relationships between the groups,
which helps especially for setups with a large number
of groups. Finally, we get the sparsity priors of [3] and
[12] as special cases of our model.

4.2 Factor regression and group-sparse regression

The GFA problem can also be related to supervised
learning, by considering one of the groups as dependent
variables and the others as explanatory variables. For
just one group of dependent variables (that is, M = 2
in total), GFA is most closely related to a setting called
factor regression [24]. It shares the goal of learning a set
of latent factors that are useful for predicting one group
from the other. For more recent advances of factor regres-
sion models, see [25], [26]. By splitting the explanatory
variables into multiple groups, GFA provides a group-
wise sparse alternative for these models. Assuming the
split corresponds to meaningful prior information on the
structure of the explanatory variables, this will usually
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(as demonstrated in experiments) reduce overfitting by
allowing the model to ignore group-specific variation in
predictions.

Other models using group-wise sparsity for regression
have also been presented, most notably group lasso
[27], [28] that uses a group norm for regularizing linear
regression. Compared to GFA, lasso lacks the advantages
of factor regression; for multiple output cases it predicts
each variable independently, instead of learning a latent
representation that captures the relationships between
the inputs and outputs. GFA has the further advantage
that it learns the predictive models for not only all
variables but in fact for all groups at the same time.
Given a GFA solution one can make predictions for
arbitrary subsets of the groups given another subset,
instead of needing to specify in advance the split into
explanatory and dependent variables.

5 TECHNICAL DEMONSTRATION

In this section we demonstrate the proposed GFA model
on artificial data. To illustrate the strengths of the pro-
posed method we compare it with Bayesian implemen-
tations of the most closely related factor models, always
using a variational approximation for inference and ARD
for complexity control also for the competing methods.
In particular, we compare against the regular factor
analysis (FA) and its sparse version (sFA) to show that
one should not completely ignore the group informa-
tion. We also compare against MBFA, to demonstrate
the importance of modeling also relationships between
subsets of the groups, and against the GFA solution of
[3], obtained as a special case of the proposed model by
setting R = min(M,K), as an example of a method that
makes the group-factor activity decisions independently
for each pair. For MBFA we use two different imple-
mentations depending on the setup; for low-dimensional
data we model the group-specific variation with full-
rank covariance, whereas for high-dimensional data we
use a separate set of factors for each group; see Klami et
al. [13] for discussion on these two alternatives for the
special case of M = 2.

We also compare against SCA [9], a non-Bayesian
solution for the GFA problem using group lasso penalty,
using the same initial K as for the Bayesian models,
with 5-fold cross-validation for the the group lasso
regularization parameter. For predictive inference we
compute point estimates for the latent variables of the
test samples.

5.1 Evaluation

For evaluating the quality of the models we use an indi-
rect measure of predictive accuracy for left-out groups,
based on the intuition that if a factor analysis model is
able to make accurate predictions it must have learned
the correct structure. In particular, given M groups we
will always compute the test data predictive error for

each of the groups one at a time, using the rest of the
groups as explanatory variables.

Since we use a regression task for measuring the
quality, we will also compare GFA against alternative
standard solutions for multiple output regression, in ad-
dition to the alternative factor models mentioned in the
previous section. In particular, we will show comparison
results with group lasso [28] and simple regularized
multiple output linear regression (MLR) model that ig-
nores the group structure. For MLR the prediction is
obtained as X(m)∗ = Y−(m)∗B, where the weight matrix

is given by B = (Y−(m)⊤Y−(m) + γI)−1Y−(m)⊤X(m),
and γ is a regularization parameter. For this model we
learn a separate model for each choice of the dependent
variable groups, which results in M -fold increase in
computational cost compared to GFA that learns all
tasks simultaneously. Furthermore, we validate for the
regularization parameters via 10-fold cross-validation
within the training set, which further increases the com-
putational load.

5.2 Beyond factor analysis and MBFA

We generated N = 100 samples from a GFA model with
D = 30 split into M = 3 equally-sized groups. The true
generative model had K = 7 factors, including one factor
specific for each group as well as for each possible subset
between the groups. Figure 3 shows the true model as
well as the solutions found by the proposed GFA model
(using R = min(M,K) = 3), MBFA, and both regular
and sparse FA. The proposed model finds the correct
structure, whereas MBFA suggests spurious correlations;
each factor describing correlation between just two of
the groups is falsely indicating activity also in the third
one, according to the MBFA specification. The regular
FA result is simply considerably noisier overall, while
sparse FA suffers from a few false factor loadings. For
this simple demonstration SCA learns the same result as
GFA, after manually optimizing the thresholding of com-
ponent activity. For all methods we set K to a sufficiently
large number, allowing ARD to prune out unnecessary
components, chose the best solution by comparing the
lower bounds of 10 runs with random initializations, and
for illustrative purposes ordered the components based
on their similarity (cosine) with the true ones.

The conclusion of this experiment is that the proposed
method indeed solves the GFA problem, whereas the
MBFA and FA solutions do not provide as intuitive and
interpretable factors. For this data GFA with R < 3
(not shown) fails to unveil the underlying (full-rank)
structure. Instead, the loadings lie between those of GFA
and FA of Figure 3, which is understandable since FA is
closely related to GFA with R = 0.

5.3 Performance for several groups

Next we studied how well the proposed solution scales
up for more groups. We generated N = 30 samples from
a GFA model with K = 18 true factors. We used Dm = 7
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Fig. 4. Left: GFA is considerably better in modeling the relationships between the groups compared to MBFA, FA and

SCA; the y-axis shows the average prediction error for a new group on the test data, providing an indirect quality

measure. For large M explicitly modeling the relationships between the groups (R=4) helps compared to earlier

solutions that make the activity decisions independently (R = min(M,K), here R=M ). GFA also outperforms standard

regression models in the prediction task, with the exception of MLR for very low dimensional data. Middle: For M = 100
the R = 4 solution correctly finds the K = 18 factors that are all active in 50 groups, whereas the earlier solution

splits some of the factors into several ones. Right: Scatter-plot of matrix U for a R=2 solution, illustrating clearly the

underlying structure of the data. Here the symbols and colors indicate the ground truth types of the groups that were

not available for the algorithm during learning.

variables for each group and let the number of groups
grow from M = 4 to M = 100. In other words, the total
dimensionality of the data grew from D = 28 to D =
700. The variable groups were divided into four types
of equal size, so that the groups within one type had the
same association strengths for all factors. This implies a
low-rank structure for the associations.

For validation we used average leave-one-group-out
prediction error, further averaged over 50 independent
data sets. Figure 4 (left) shows that the proposed model
outperforms the other FA methods by a wide margin.
For small M the difference between the R = 4 and

R = min(M,K) solutions are negligible, since a small
number of factor-group association strengths can just as
well be selected independently. For large M , however,
explicitly modeling the relationships pays off and results
in better predictions. The prediction errors for GFA mod-
els with rank R between 2 and 10 are very similar, and
hence for clarity, only one (R=4) is shown in Figure 4.
GFA also outperforms SCA, an alternative group-sparse
factor model, for all cases except M = 8, for which the
two methods are equal. For cases with only 4 or 8 groups
multiple linear regression is the most accurate method,
but for all other cases, when the total dimensionality
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Fig. 5. The 5-fold cross-validation prediction performances (left), lower bounds (middle) and computation times

(right) for three different artificial data sets as a function of the model rank R. Both approaches provide a reliable

way for choosing the rank R. In the illustrated example the chosen model ranks using cross-validation are 2, 8, and

10 (correct: 2, 6 and 10). By monitoring the lower bounds the true ranks, used to generate the data sets, can be

approximately detected from the figure. For clarity, the vertical positions of prediction and lower bound curves were

here altered, retaining the relative changes. The right subplot illustrates the computational cost as a function of the

rank R, compared against the full-rank solution shown as horizontal lines.

increases, GFA clearly outperforms also these supervised
methods.

Besides showing better prediction accuracy, the low-
rank solution (here R = 4) captures the underlying
group structure better than the naive model of R =
min(M,K). Figure 4 (middle) compares the two by
plotting the number of groups active in each factor for
the case with M = 100. There are K = 18 factors that
should each be active in 50 groups. With R = 4 we find
almost exactly the correct solutions, whereas the naive
model finds K = 40 factors, many of which it believes
to be shared by only 5 − 40 groups. In other words, it
has split some real factors into multiple ones, finding a
local optimum, due to making all the activity decisions
independently. For illustrative purposes, the components
were considered active if the corresponding α-values
were below 10. The cardinality plot is sensitive to the
threshold, but the key result stays the same regardless
of the threshold: inferring the component activities in-
dependently results in a less accurate model.

Finally, Figure 4 (right) illustrates the relationships
between the groups as a scatter plot of the latent factors
for the R = 2 solution, revealing clearly the four types
of variable groups.

5.4 Choosing the model rank

GFA contains a free parameter R and this value needs to
be specified by the user. Acknowledging that choosing
the correct model order is in general a difficult problem,
we resort to demonstrating two practical approaches that
seem to work well for the proposed model. The first
choice is L-fold cross-validation within the training set,
using the predictive performance for left-out groups as
the validation criterion.

A computationally more efficient alternative is to use
the ’elbow’-principle for the variational lower bounds
L(Θ) computed for different choices of R. The bounds

improve monotonically3 as a function of R, but for
typical data sets the growth rate rapidly diminishes after
the correct rank, producing an ’elbow’.

We tested both of these principles for 50 independent
artificial data sets generated from the GFA model with
parameters N = 50, K = 30, M = 50 and Dm = 10, for
three different data ranks: R = {2, 6, 10}, representing
the kinds of values one would typically expect for real
applications. The prediction and lower bound curves as
a function of model rank are shown for a representative
example in Figure 5. In the 5-fold cross-validation the
correct rank was found correctly with over half of the
data sets, and the most common error was overestimat-
ing the rank by one. The computationally lighter ’elbow’-
principle allows the analyst to choose roughly the correct
rank by simply comparing the lower bounds.

The rank R influences also the computation time, as
illustrated in Figure 5. The computation time increases
roughly linearly as a function of R, but for ranks smaller
than the optimal the algorithm requires more iterations
for convergence which slows it down. In this experiment,
the low-rank model is slower than the special case
updating α in closed form, but only by a small factor.
In the real data experiments reported in Sections 6 and
7 the low-rank variant was slightly faster to compute
for all the tested values of R; the relative time spent on
updating α becomes small for larger data, and the low-
rank models prune out excess factors faster.

In the remaining experiments we do not explicitly
select a particular value for R, but instead present the
results for a range of different values. This is done to
illustrate the relative insensitivity of the model for the
precise choice; for both real-world applications a wide
range of values outperform the alternative models and
also the special case of R = min(M,K), implying that
picking exactly the right rank is not crucial.

3. Given that the constant terms in the priors of U and V are
ignored.
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6 ANALYSIS OF BRAIN REGIONS

Functional MRI experiments are commonly used to
study the interactions (or connectivity) between brain re-
gions of interest (ROIs) [29], [30]. One way to learn these
interactions is based on calculating correlations between
individual fMRI BOLD (blood-oxygen-level dependent)
signals using PCA or FA models [31].

We applied GFA to brain imaging data to analyze
connections between multiple brain ROIs, using fMRI
data recorded during natural stimulation with a piece
of music [32], for N = 240 time points covering two
seconds each. We have 11 subjects, and we computed a
separate GFA model for each, providing 11 independent
experiments. We chose M = 81 ROIs, some of which
are lateralized, using the FSL software package [33],
based on the Harvard-Oxford cortical and subcortical
structural atlases [34] and the probabilistic cerebellar
atlas [35]. Further, we divided the voxels in these regions
to
∑

m Dm = 676 local uniformly distributed super-
voxels by spatial averaging. In the end, each ROI was
represented on average by eight such supervoxels and
each supervoxel contained on average 120 voxels. These
ROIs and their corresponding dimensionalities are given
in Supplementary material available at http://research.
ics.aalto.fi/mi/papers/GFAsupplementary.pdf.

For quantitative comparison we again use leave-one-
group-out prediction, predicting the activity of each ROI
based on the others for unseen test data. We set aside half
of the data as test set and train the models varying the
amount of training data for K = 100. The prediction
errors are given in Figure 6, averaged over the ROIs
and 11 subjects. The proposed solution outperforms
(Wilcoxon signed-rank test, p < 10−6) all other factor
models for a wide range of ranks, from R = 2 to R = 10,
and in particular is also clearly better than the special
case with R = min(M,K) [3]. For these ranks, with

N = 30 training samples, GFA also outperforms all
the supervised regression models, whereas for a larger
training set, N = 120, group lasso provides comparable
accuracy.

Figure 6 shows also a visualization of U for R = 2,
averaged over all subjects using all observations. Since
U is not identifiable, before averaging we projected each
U to a common coordinate system. Each dot is one
ROI and the lines connect each ROI to its spatially
closest neighbor (minimum Euclidean distance of su-
pervoxels between the corresponding ROIs) to reveal
that the model has learned interesting structure despite
not knowing anything about the anatomy of the brain.
Further inspection reveals that the model partitions vi-
sual areas, frontal areas, and auditory areas as separate
clusters. Note that these results are a demonstration of
the model’s capability of discovering structure between
groups; for a serious attempt to discover functional
or anatomic connectivity further tuning that takes into
account the properties of fMRI and the anatomy of the
brain should be done.

7 ANALYSIS OF DRUG RESPONSES

Both chemical descriptors and biological responses can
be used to analyze the properties of drugs. However, the
shared variation between these two views may reveal
more of the drug properties than either one of the
views independently [36]. We applied GFA to the drug
response data of [37], consisting of the responses of
N = 684 drugs when applied to three cancer cell lines
(HL60, MCF7 and PC3). For the analysis, we selected
the genes found in CP: Biocarta gene sets4, where the
genes are grouped according to functional pathway
information. We preprocessed the data as Khan et al.

4. http://www.broadinstitute.org/gsea/msigdb/collections.jsp

http://research.ics.aalto.fi/mi/papers/GFAsupplementary.pdf
http://research.ics.aalto.fi/mi/papers/GFAsupplementary.pdf
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Fig. 7. Top left: The group-factor associations of GFA for R = 2 and R = K illustrate how the low-rank model reveals

much clearer structure. The first 13 groups are the chemical descriptors, followed by 139 feature groups (pathways)

for each of the 3 cell lines. Top right: Drug retrieval accuracies (higher is better, the crosses indicate statistical

significance); the GFA solution is clearly the best for a wide range of ranks, and it is the only method outperforming

retrieval based on the chemical descriptors. Here GE denotes raw gene expression of all three cell lines and VS

corresponds to the chemical descriptors. Note that the accuracy of SCA is almost identical to GE, which makes the

two lines hard to distinguish. Bottom left: The group factor loadings U for R = 2, showing how the model is able to

separate the three cell lines and the chemical descriptors almost perfectly. Bottom right: Predictive errors (smaller is

better) for the drug response data. GFA with ranks R = 1, ..., 10 outperforms the comparison methods significantly.

[36] and left duplicate genes only in the largest groups,
removing groups with less than two genes left. As in
[36], we augmented the data by adding 76 chemical
descriptors (VolSurf ) of the drugs, here as separate vari-
able groups. Hence the whole data contain M = 430
groups: 13 contain chemical descriptors of the drugs,
whereas 139 groups describe the response in each of
the three cell lines. The feature groups and their di-
mensionalities are listed in the Supplementary mate-
rial available at http://research.ics.aalto.fi/mi/papers/
GFAsupplementary.pdf. The total data dimensionality is
D = 3172.

Figure 7 illustrates GFA results with K = 400 on this
data (a component amount high enough for GFA with
R < 10). Already with R = 2 the model partitions
the groups almost perfectly into four different clusters
(bottom left subfigure), one for each of the three cell
lines and one for the chemical descriptors. That is, the
model effectively learns the underlying structure it has
no information about. It also reveals clearer factor-group
association structure (top left subfigure) compared to the
earlier solution with R = M [3]. With R = 3 the four
different clusters can be perfectly separated.

Next we quantitatively validated the performance of
the different solutions, using a drug retrieval task [36].
Using one of the drugs as a query, we ranked the remain-
ing drugs based on their similarity with the query, and
used an external database of drug functions for assessing
the retrieval results. By comparing the similarity in the

latent space of the models, we can indirectly evaluate the
quality of the representations the models have learned.
It has been shown that the chemical VolSurf descriptors
capture drug functions significantly better than raw gene
expression data for this data [36], and hence we com-
puted the similarity measures of all the models based on
factors that are active in at least one chemical descriptor
group. For this purpose we thresholded the activities
by regarding components with α < 100 as active; the
results were not very sensitive for the exact threshold
level. The retrieval can be quantified by measuring the
average precision [38], further averaged over all the
drugs (separate retrieval tasks), which is a measure that
gives most weight to the drugs that are retrieved first.
Figure 7 (top right) shows that the proposed solution
again outperforms all of the competing methods for all
ranks above zero (Wilcoxon signed-rank test, p < 10−6),
and for R = 2 to R = 5 and R = 7 it significantly
(p < 0.05) outperforms also the chemical descriptors
that are considerably more accurate than any of the
competing methods. The shown retrieval accuracies are
based on the ten most similar drugs, but the results are
consistent for sets of several sizes.

In addition to the retrieval task, we measured the
performance of the models in a leave-one-group-out
prediction task with N = 616. The average errors are
shown in Figure 7 (bottom right). GFA with R = 1, ..., 10
outperforms all the competing models significantly.

http://research.ics.aalto.fi/mi/papers/GFAsupplementary.pdf
http://research.ics.aalto.fi/mi/papers/GFAsupplementary.pdf
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8 DISCUSSION

Joint analysis of multiple data sets is one of the trends
in machine learning, and integrated factor analysis of
multiple real-valued matrices is one of the prototypical
scenarios for that task. In recent years multiple authors
have re-discovered the multiple-battery factor analysis
(MBFA) task originating from the early works in statistics
[4], [5], [6], [7], calling it either multi-set CCA [19],
[20], or simply as a model for integrated analysis of
multiple data sources [22], [23]. Despite varying technical
details, all of these models can be seen as FA models
with two sets of factors: one set describes dependencies
between all of the variable groups, whereas the other
set describes, or explains away, variation specific to each
group.

The group factor analysis problem formulated in this
article, extending the preliminary treatment in [3], differs
from the MBFA models in one crucial aspect. Instead of
only modeling relationships between all of the groups,
we also introduce factors that model relationships be-
tween any subset of them. While some other recent
works [8], [9], [11], [12] have also addressed the same
problem, in this paper the GFA setup is for the first time
introduced explicitly, putting it into its statistical context.
We described a general solution principle that covers the
earlier solutions, identifying the structural sparsity prior
as the key element. We then presented a more advanced
sparsity prior that results in a novel GFA solution:
Instead of choosing the activities of each group-factor
pair independently, we explicitly model the relationships
between the groups with another linear layer. Our model
hence directly provides factor loadings also between
the groups themselves, which was exactly the original
motivation for the GFA problem. Our preliminary model
[3] is a special case with a priori independent loadings.

We showed, using artificial data, how the GFA prob-
lem and solution differ from the MBFA-problem and
classical FA. We also demonstrated that, especially for a
large number of groups or data sets, it pays off to explic-
itly model the relationships between the groups. Finally,
we applied the model on two real-world exploratory
analysis scenarios in life sciences. We demonstrated
that the model is applicable to connectivity analysis of
fMRI data, as well as for revealing structure shared by
structural description of drugs and their response in
multiple cell lines. These demonstrations illustrated the
kinds of setups the GFA is applicable for, but should
not be considered as detailed analyses of the specific
application problems.

Besides showing that the proposed model solves the
GFA problem considerably better than the alternatives
MBFA, FA and SCA [9], the empirical experiments re-
vealed that there is a qualitative difference between
the proposed model having the more advanced struc-
tural sparsity prior and the earlier GFA solutions such
as [3]. Even though the earlier models also solve the
GFA problem reasonably well, they are outperformed

by supervised regression models in predictive tasks.
The proposed solution with a low-rank model for the
group association strengths is clearly more accurate in
prediction tasks and, at least for small training sets,
outperforms also dedicated regression models trained
specifically to predict the missing groups. This is a strong
result for a model that does not know in advance which
groups correspond to explanatory variables and which to
the dependent variables, but that instead learns a single
model for all possible choices simultaneously.

The model presented here is limited to scenarios where
each training sample is fully observed. Support for
missing observations could be added using the fully
factorized variational approximation used for PCA and
collective matrix factorization with missing data [17],
[39]. A similar approach can also be used for semi-
paired setups where some samples are available only
for some groups [40], by filling in the remaining groups
by missing observations. Empirical comparisons on these
are left for future work. Another possible direction for
future work concerns more justified inference for the
rank parameter R; even though the experiments here
suggest that the method is robust to the choice, the
method would be more easily applicable if it was se-
lected automatically.
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APPENDIX

The latent variables are updated as q(Z) =
∏N

i=1N (zi|m
(z)
i ,Σ(z)), where

Σ(z) =

(

Ik +
M
∑

m=1

〈τm〉〈W
(m)W(m)⊤〉

)−1

m
(z)
i =

M
∑

m=1

Σ(z)〈W(m)〉〈τm〉x
(m)
i .

The projection matrices are updated as q(W) =
∏M

m=1

∏Dm

j=1N (w
(m)
:,j |m

(w)
m,j ,Σ

(w)
m ), where

Σ(w)
m =

(

〈τm〉
N
∑

i=1

〈ziz
⊤
i 〉+ 〈αm〉

)−1

m
(w)
m,j = Σ(w)

m 〈τm〉

(

N
∑

i=1

x
(m)
ij 〈zi〉

)

,

and αm is the mth row of α transformed into a diagonal
K ×K matrix.

Noise precision q(τ ) =
∏M

m=1 G(τm|a
τ
m, bτm) parame-

ters are updated as

aτm = aτ +
DmN

2

bτm = bτ +
1

2

N
∑

i=1

〈

(x
(m)
i −W(m)⊤zi)

2
〉

.

Finally, for the low-rank model, α = eUV
⊤+µu1

⊤+1µ
⊤

v

is updated by optimizing the lower bound numerically.
The bound as a function of U and V is given by

∑

m,k

Dm log(αm,k)− 〈W
(m)W(m)⊤〉k,kαm,k

− λ(tr(U⊤U) + tr(V⊤V)).
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The gradients w.r.t. the cost function are given as

δL

δU
= AV + λU,

δL

δµv

= A1,

δL

δV
= A⊤U+ λV,

δL

δµv

= A⊤1,

where A = D1⊤ − exp(UV⊤ + µu1
⊤ + 1µ⊤

v ).
With full rank [3] the ARD parameters are updated as

q(α) = G(aαm, bαmk), where

aαm = aα +
Dm

2

bαmk = bα +
w

(m)⊤
k w

(m)
k

2
.
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