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Abstract. Maximizing a submodular function has a wide range of ap-
plications in machine learning and data mining. One such application
is data summarization whose goal is to select a small set of representa-
tive and diverse data items from a large dataset. However, data items
might have sensitive attributes such as race or gender, in this setting,
it is important to design fairness-aware algorithms to mitigate poten-
tial algorithmic bias that may cause over- or under- representation of
particular groups. Motivated by that, we propose and study the classic
non-monotone submodular maximization problem subject to novel group
fairness constraints. Our goal is to select a set of items that maximizes a
non-monotone submodular function, while ensuring that the number of
selected items from each group is proportionate to its size, to the extent
specified by the decision maker. We develop the first constant-factor ap-
proximation algorithms for this problem. We also extend the basic model
to incorporate an additional global size constraint on the total number
of selected items.

1 Introduction

Submodular function refers to a broad class of functions which satisfy the natu-
ral diminishing returns property: adding an additional item to a larger existing
subset is less beneficial. A wide range of machine learning and AI problems, in-
cluding exemplar-based clustering [7], feature selection [6], active learning [12],
influence maximization in social networks [20], recommender system [9], and
diverse data summarization [19], can be formulated as a submodular maximiza-
tion problem. This problem, whose goal is to select a set of items to maximize
a submodular function, and its variants [14,18] have been extensively studied in
the literature subject to various constraints, including cardinality, matroid, or
knapsack-type restrictions.

We notice that in practise, items or individuals are often associated with
different groups based on various attributes, such as gender, race, age, religion,
or other factors. Existing algorithms might exhibit bias if left unchecked, for
example, some of the groups might be over- or under-represented in the final
selected subset. Therefore, it becomes increasingly important to design fairness-

aware algorithms to mitigate such issues. Towards this end, we propose and
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study the classic non-monotone submodular maximization problem subject to
novel group fairness constraints. Our goal is to select a balanced set of items
that maximizes a non-monotone submodular function, such that the ratio of
selected items from each group to its size is within a desired range, as determined
by the decision maker. Non-monotone submodular maximization has multiple
compelling applications, such as feature selection [6], profit maximization [21],
maximum cut [13] and data summarization [16]. Formally, we consider a set V
of items (e.g., datapoints) which are partitioned into m groups: V1, V2, · · · , Vm

such that items from the same group share same attributes (e.g., gender). We
say that a set S ⊆ V of items is (α, β)-fair if for all groups i ∈ [m], it holds that
⌊α|Vi|⌋ ≤ |S ∩ Vi| ≤ ⌊β|Vi|⌋. Using our model, it allows for the decision maker
to specify the desired level of fairness by setting appropriate values of α and
β. Specifically, setting α = β leads to the highest level of fairness in that the
number of selected items is strictly proportional to its group size; if we set α = 0
and β = 1, there are no fairness constraints. Our goal is to find such a (α, β)-fair
subset of items that maximizes a submodular objective function. Our definition
of fairness, which balances solutions with respect to sensitive attributes, has
gained widespread acceptance in the academic community, as demonstrated by
its frequent use in previous studies [4,10,5]. There are several other notations
of fairness that can be captured by our formulation such as the 80%-rule [1],
statistical parity [8] and proportional representation [17].

1.1 Our Contributions

– Our study breaks new ground by examining the classic (non-monotone) sub-
modular maximization problem under (α, β)-fairness constraints. Our model
offers flexibility in capturing varying degrees of fairness as desired by the de-
cision maker, by adjusting the values of α and β.

– We develop the first constant-factor approximation algorithm for this prob-
lem. We observe that the parameter α is closely linked to the complexity
of solving the (α, β)-fair non-monotone submodular maximization problem.
In particular, when α ≤ 1/2, we design a γ

2 -approximation algorithm and
when α > 1/2, we develop a γ

3 -approximation algorithm, where γ is the
approximation ratio of the current best algorithm for matroid-constrained
submodular maximization. We also extend the basic model to incorporate
an additional global size constraint on the total number of selected items.
We provide approximation algorithms that have a constant-factor approxi-
mation ratio for this extended model.

1.2 Additional Related Works

In recent years, there has been a growing awareness of the importance of fair
and unbiased decision-making systems. This has led to an increased interest in
the development of fair algorithms in a wide range of applications, including
influence maximization [25], classification [26], voting [4], bandit learning [15],
and data summarization [3]. Depending on the specific context and the type
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of bias that one is trying to mitigate, existing studies adopt different metrics
of fairness. This can lead to different optimization problems and different fair
algorithms that are tailored to the specific requirements of the application. Our
notation of fairness is general enough to capture many existing notations such as
the 80%-rule [1], statistical parity [8] and proportional representation [17]. Unlike
most of existing studies on fair submodular maximization [4] whose objective is
to maximize a monotone submodular function, [10] develop fair algorithms in the
context of streaming non-monotone submodular maximization. Their proposed
notation of fairness is more general than ours, leading to a more challenging
optimization problem which does not admit any constant-factor approximation
algorithms. [24,23] aim to develop randomized algorithms that satisfy average
fairness constraints. Very recently, [22] extend the studies of fair algorithms to
a more complicated adaptive setting and they propose a new metric of fairness
called group equality.

2 Preliminaries and Problem Statement

We consider a set V of n items. There is a non-negative submodular utility
function f : 2V → R+. Denote by f(e | S) the marginal utility of e ∈ V on top
of S ⊆ V , i.e., f(e | S) = f({e} ∪ S) − f(S). We say a function f : 2V → R+

is submodular if for any two sets X,Y ⊆ V such that X ⊆ Y and any item
e ∈ V \ Y ,

f(e | Y ) ≤ f(e | X).

Assume V is partitioned into m disjoint groups: V1, V2, · · · , Vm. We assume
that there is a given lower and upper bound on the fraction of items of each group
that must be contained in a feasible solution. These two bounds, namely α and
β, represent group fairness constraints. The problem of (α, β)-fair submodular
maximization problem (labelled as P.0) can be written as follows.

P.0 max f(S)
subject to:

⌊α|Vi|⌋ ≤ |S ∩ Vi| ≤ ⌊β|Vi|⌋, ∀i ∈ [m].

One can adjust the degree of group fairness in a feasible solution through
choosing appropriate values of α and β. I.e., strict group fairness is achieved at
α = β in which case every feasible solution must contain the same α fraction of
items from each group; if we set α = 0 and β = 1, then there is no group fairness
constraints. We next present the hardness result of this problem.

Lemma 1. Problem P.0 is NP-hard.

Proof: We prove this through reduction to the classic cardinality constrained

submodular maximization problem which we define below.
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Definition 1. The input of cardinality constrained submodular maximization

problem is a group of items U , a submodular function h : 2U → R+, and a

cardinality constraint b; we aim to select a group of items S ⊆ U such that h(S)
is maximized and |S| ≤ b.

We next show a reduction from cardinality constrained submodular maxi-
mization problem to P.0. Consider any given instance of cardinality constrained
submodular maximization problem, we construct a corresponding instance of
P.0 as follows: Let V = U , f = h, assume there is only one group, i.e., V = V1,
and let α = 0, β = b/|U |. It is easy to verify that these two instances are
equivalent. This finishes the proof of the reduction. �

3 Non-monotone Submodular Maximization with Group

Fairness

Warm-up: Monotone Utility Function If f is monotone and submodular, we can
easily confirm that P.0 can be simplified to P.1 by removing the lower bound
constraints. This is because in this case, increasing the size of a solution by
adding more items will not decrease its utility. As a result, the lower bound
constraints in P.0, which state that ⌊α|Vi|⌋ ≤ |S ∩Vi| for all i ∈ [m], can always
be met by adding sufficient items to the solution.

P.1 max f(S)
subject to:

|S ∩ Vi| ≤ ⌊β|Vi|⌋,∀i ∈ [m].

Since f is a monotone submodular function, P.1 is a well-known problem of
maximizing a monotone submodular function subject to matroid constraints3.
This problem has a (1− 1/e)-approximation algorithm.

We then proceed to develop approximation algorithms for non-monotone
functions. We will examine two scenarios, specifically when α ≤ 1/2 and when
α > 1/2.

3.1 The case when α ≤ 1/2

In the scenario where α ≤ 1/2, we use the solution of P.1 as a building block to
construct our algorithm. First, it is easy to verify that P.1 is a relaxed version
of P.0 with lower bound constraints ⌊α|Vi|⌋ ≤ |S ∩ Vi| in P.0 being removed.
Because f is a submodular function, P.1 is a classic problem of maximizing
a (non-monotone) submodular function subject to matroid constraints. There
exist effective solutions for P.1. Now we are ready to present the design of our
algorithm as below.

3 A matroid is a pair M = (V, I) where I ⊆ 2V and 1. ∀Y ∈ I, X ⊆ Y → X ∈ I. 2.
∀X,Y ∈ I; |X| < |Y | → ∃e ∈ Y \X;X ∪ {e} ∈ I.
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1. Apply the state-of-the-art algorithm A for matroid constrained submodular
maximization to solve P.1 and obtain a solution AP.1.

2. Note that AP.1 is not necessarily a feasible solution to P.0 because it might
violate the lower bound constraints ⌊α|Vi|⌋ ≤ |S ∩ Vi| for some groups. To
make it feasible, we add additional items to AP.1. Specifically, for each group
i ∈ [m] such that |AP.1 ∩ Vi| < ⌊α|Vi|⌋, our algorithm selects a backup set
Bi of size ⌊α|Vi|⌋ − |AP.1 ∩ Vi|, by randomly sampling ⌊α|Vi|⌋ − |AP.1 ∩ Vi|
items from Vi \AP.1. Define Bi = ∅ if |AP.1 ∩ Vi| ≥ ⌊α|Vi|⌋.

3. At the end, add ∪i∈[m]Bi to AP.1 to build the final solution Aapprox, i.e.,
Aapprox = AP.1 ∪ (∪i∈[m]Bi).

Algorithm 1 Approximation Algorithm for P.0 when α ≤ 1/2

1: Apply A to solve P.1 and obtain a solution AP.1

2: for every group i ∈ [m] do
3: if |AP.1 ∩ Vi| < ⌊α|Vi|⌋ then
4: select a random backup set Bi of size ⌊α|Vi|⌋ − |A

P.1 ∩ Vi| from Vi \A
P.1

5: else

6: Bi ← ∅
7: Aapprox ← AP.1 ∪ (∪i∈[m]Bi)
8: return Aapprox

The pseudocode of this approximation algorithm is given as Algorithm 1.
Observe that AP.1 is a feasible solution to P.1, hence, AP.1 satisfies upper bound
constraints of P.1 and hence P.0, i.e., |S ∩ Vi| ≤ ⌊β|Vi|⌋, ∀i ∈ [m]. According to
the construction of Bi, it is easy to verify that adding ∪i∈[m]Bi to AP.1 does not
violate the upper bound constraints because ∪i∈[m]Bi are only supplemented
to those groups which do not satisfy the lower bound constraints of P.0, i.e.,
⌊α|Vi|⌋ ≤ |S ∩ Vi|. Moreover, adding ∪i∈[m]Bi to AP.1 makes it satisfy lower
bound constraints of P.0. Hence, Aapprox is a feasible solution to P.0.

Lemma 2. Aapprox is a feasible solution to P.0.

Performance Analysis We next analyze the performance of Algorithm 1. We
first introduce a useful lemma from [2].

Lemma 3. If f is submodular and S is a random subset of V , such that each

item in V is contained in S with probability at most p, then ES [f(S)] ≥ (1 −
p)f(∅).

The next lemma states that if AP.1 is a γ-approximate solution of P.1, then
f(AP.1) is at least γ fraction of the optimal solution of P.0.

Lemma 4. Suppose A is a γ-approximate algorithm for non-monotone submod-

ular maximization subject to a matroid constraint. Let OPT denote the optimal

solution of P.0, we have f(AP.1) ≥ γf(OPT ).
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Proof: Because A is a γ-approximate algorithm for non-monotone submodular
maximization subject to a matroid constraint, we have f(AP.1) ≥ γf(OP.1)
where OP.1 denotes the optimal solution of P.1. Moreover, because P.1 is a
relaxed version of P.0, we have f(OP.1) ≥ f(OPT ). Hence, f(AP.1) ≥ γf(OPT ).
�

We next show that augmenting AP.1 with items from the random set ∪i∈[m]Bi

reduces its utility by a factor of at most 1/2 in expectation. Here the expectation
is taken over the distribution of ∪i∈[m]Bi.

Lemma 5. Suppose α ≤ 1/2, we have EAapprox [f(Aapprox)] ≥ 1
2f(A

P.1) where

Aapprox = AP.1 ∪ (∪i∈[m]Bi).

Proof: Recall that Bi = ∅ for all i ∈ [m] such that |AP.1 ∩ Vi| ≥ ⌊α|Vi|⌋, hence,
adding those Bi to AP.1 does not affect its utility. In the rest of the proof we
focus on those Bi with

|AP.1 ∩ Vi| < ⌊α|Vi|⌋. (1)

Recall that for every i ∈ [m] such that |AP.1 ∩ Vi| < ⌊α|Vi|⌋, Bi is a random set
of size ⌊α|Vi|⌋ − |AP.1 ∩ Vi| that is sampled from Vi \ AP.1. It follows that each
item in Vi \AP.1 is contained in Bi with probability at most

⌊α|Vi|⌋ − |AP.1 ∩ Vi|

|Vi \AP.1|
. (2)

We next give an upper bound of (2). First,

⌊α|Vi|⌋ − |AP.1 ∩ Vi| ≤ ⌊α|Vi|⌋ ≤ |Vi|/2, (3)

where the second inequality is by the assumption that α ≤ 1/2. Moreover,

|Vi \A
P.1| = |Vi| − |AP.1 ∩ Vi| = (⌊α|Vi|⌋ − |AP.1 ∩ Vi|) + (|Vi| − ⌊α|Vi|⌋)(4)

≥ (⌊α|Vi|⌋ − |AP.1 ∩ Vi|) + |Vi|/2, (5)

where the inequality is by the assumption that α ≤ 1/2.
Hence,

(2) ≤
⌊α|Vi|⌋ − |AP.1 ∩ Vi|

(⌊α|Vi|⌋ − |AP.1 ∩ Vi|) + |Vi|/2
≤

|Vi|/2

|Vi|/2 + |Vi|/2
= 1/2, (6)

where the first inequality is by (5); the second inequality is by (3) and the
assumption that ⌊α|Vi|⌋− |AP.1 ∩Vi| > 0 (listed in (1)). That is, the probability
that each item in Vi \ AP.1 is contained in Bi is at most 1/2. It follows that
the probability that each item in V \ AP.1 is contained in ∪i∈[m]Bi is at most
1/2. Moreover, Lemma 3 states that if f is submodular and S is a random
subset of V , such that each item in V appears in S with probability at most p,
then EA[f(A)] ≥ (1−p)f(∅). With the above discussion and the observation that
f(AP.1∪·) is submodular, it holds that EAapprox [f(Aapprox)] = E∪i∈[m]Bi

[f(AP.1∪

(∪i∈[m]Bi))] ≥ (1− 1
2 )f(A

P.1 ∪ ∅) = 1
2f(A

P.1). �
Our main theorem as below follows from Lemma 4 and Lemma 5.
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Theorem 1. Suppose A is a γ-approximate algorithm for non-monotone sub-

modular maximization subject to a matroid constraint and α ≤ 1/2, we have

EAapprox [f(Aapprox)] ≥ γ
2 f(OPT ).

One option of A is the continuous double greedy algorithm proposed in [11]
which gives a 1/e − o(1)-approximation solution, that is, γ ≥ 1/e − o(1). This,

together with Theorem 1, implies that EAapprox [f(Aapprox)] ≥ 1/e−o(1)
2 f(OPT ).

3.2 The case when α > 1/2

We next consider the case when α > 1/2. We first introduce a new utility function
g : 2V → R+ as below:

g(·) = f(V \ ·). (7)

We first present a well-known result, which states that submodular functions
maintain their submodularity property when taking their complement.

Lemma 6. If f is submodular, then g must be submodular.

With utility function g, we present a new optimization problem P.2 as below:

P.2 max g(S)
subject to:

|Vi| − ⌊β|Vi|⌋ ≤ |S ∩ Vi| ≤ |Vi| − ⌊α|Vi|⌋,∀i ∈ [m].

P.2 is a flipped version of the original problem P.0 in the sense that if there
is a γ-approximate solution AP.2 to P.2, it can be easily verified that V \ AP.2

is a γ-approximate solution to P.0. As a result, we will focus on solving P.2 for
the rest of this section.

To solve P.2, we introduce another problem (labeled as P.3) as follows:

P.3 max g(S)
subject to:

|S ∩ Vi| ≤ |Vi| − ⌊α|Vi|⌋,∀i ∈ [m].

P.3 is relaxed version of P.2 with lower bound constraints |Vi| − ⌊β|Vi|⌋ ≤
|S∩Vi| in P.2 being removed. Because g is a submodular function, P.3 is a classic
problem of maximizing a submodular function subject to matroid constraints.
Now we are ready to present the design of our algorithm.

1. Apply the state-of-the-art algorithm A for matroid constrained submodular
maximization to solve P.3 and obtain a solution AP.3.

2. Note that AP.3 is not necessarily a feasible solution to P.2 because it might
violate the lower bound constraints |Vi|− ⌊β|Vi|⌋ ≤ |S ∩Vi| for some groups.
We add additional items to AP.3 to make it feasible. Specifically, for each
group i ∈ [m] such that |AP.3 ∩ Vi| < |Vi| − ⌊β|Vi|⌋, our algorithm selects
a backup set Bi of size |Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi|, by randomly sampling
|Vi|− ⌊β|Vi|⌋− |AP.3∩Vi| items from Vi \AP.3. Define Bi = ∅ if |AP.1∩Vi| ≥
|Vi| − ⌊β|Vi|⌋.
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3. Add ∪i∈[m]Bi to AP.3 to build Aapprox, i.e., Aapprox = AP.3 ∪ (∪i∈[m]Bi).
Return V \Aapprox as the final solution.

Algorithm 2 Approximation Algorithm for P.0 when α > 1/2

1: Apply A to solve P.3 and obtain a solution AP.3

2: for every group i ∈ [m] do
3: if |AP.3 ∩ Vi| < |Vi| − ⌊β|Vi|⌋ then
4: select a random backup set Bi of size |Vi|− ⌊β|Vi|⌋− |A

P.3∩Vi| from Vi \A
P.3

5: else

6: Bi ← ∅
7: Aapprox ← AP.3 ∪ (∪i∈[m]Bi)
8: return V \Aapprox

The pseudocode of this approximation algorithm is given as Algorithm 2. Ob-
serve that AP.3 satisfies upper bound constraints of P.3 and hence P.2 because
AP.3 is a feasible solution to P.3. According to the construction of Bi, adding
∪i∈[m]Bi to AP.1 does not violate the upper bound constraints because ∪i∈[m]Bi

are added to meet the lower bound constraints of P.2 if necessary. Moreover,
adding ∪i∈[m]Bi to AP.3 makes it satisfy lower bound constraints of P.2. Hence,
Aapprox is a feasible solution to P.2.

Lemma 7. Aapprox is a feasible solution to P.2.

Performance Analysis We first introduce a technical lemma which states that
if AP.3 is a γ-approximate solution of P.3, then f(AP.3) is at least γ fraction of
the optimal solution of P.2. This lemma follows from the observation that P.3
is a relaxation of P.2 .

Lemma 8. Suppose A is a γ-approximate algorithm for non-monotone submod-

ular maximization subject to a matroid constraint. Let OP.2 denote the optimal

solution of P.2, it holds that g(AP.3) ≥ γg(OP.2).

We next show that augmenting AP.3 with items from ∪i∈[m]Bi reduces its
utility by a factor of at most 2/3 in expectation.

Lemma 9. Suppose α > 1/2, EAapprox [g(Aapprox)] ≥ 1
3g(A

P.3) where Aapprox =
AP.3 ∪ (∪i∈[m]Bi).

Proof: Recall that Bi = ∅ for all i ∈ [m] such that |AP.3 ∩ Vi| ≥ |Vi| − ⌊β|Vi|⌋,
hence, adding those Bi to AP.3 does not affect its utility. Therefore, we focus on
those groups i ∈ [m] with |AP.3 ∩Vi| < |Vi|− ⌊β|Vi|⌋ in the rest of the proof. Let
M = {i | |AP.3∩Vi| < |Vi|− ⌊β|Vi|⌋} denote the set containing the indexes of all
such groups and we assume M 6= ∅ to avoid trivial cases. We next show that it is
safe to assume mini∈M |Vi| > 1 without loss of generality, i.e., the smallest group
in M contains at least two items. To prove this, we consider two cases, depending



Group Fairness in Non-monotone Submodular Maximization 9

on the value of β. If β = 1, then |AP.3 ∩ Vi| < |Vi| − ⌊β|Vi|⌋ does not hold for
any group i such that |Vi| = 1, that is, mini∈M |Vi| > 1. If β < 1, then according
to the group fairness constraints listed in P.0, we are not allowed to select any
items from those groups with |Vi| = 1. Hence, removing all groups with size one
from consideration does not affect the quality of the optimal solution.

With the assumption that mini∈M |Vi| > 1, we are now in position to prove
this lemma. Recall that for every i ∈ M , Bi is a random set of size |Vi|−⌊β|Vi|⌋−
|AP.3 ∩ Vi| that is sampled from Vi \AP.3. It follows that each item in Vi \AP.3

appears in Bi with probability at most

|Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi|

|Vi \AP.3|
. (8)

We next give an upper bound of (8). Because we assume α > 1/2, we have
β ≥ α > 1/2. This, together with the assumption that mini∈M |Vi| > 1, implies
that for all i ∈ M ,

|Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi| ≤ |Vi| − ⌊β|Vi|⌋ ≤ 2|Vi|/3. (9)

Moreover,

|Vi \A
P.3| = |Vi| − |AP.3 ∩ Vi| (10)

= (|Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi|) + (|Vi| − (|Vi| − ⌊β|Vi|⌋)) (11)

= (|Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi|) + ⌊β|Vi|⌋ (12)

≥ (|Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi|) + |Vi|/3, (13)

where the inequality is by the observation that β > 1/2. It follows that

(8) ≤
|Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi|

(|Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi|) + |Vi|/3
≤

2|Vi|/3

2|Vi|/3 + |Vi|/3
= 2/3, (14)

where the first inequality is by (13) and the second inequality is by (9) and the
assumption that |Vi| − ⌊β|Vi|⌋ − |AP.3 ∩ Vi| > 0. That is, each item in Vi \ AP.3

appears in Bi with probability at most 2/3. Lemma 3 and the observation that
g(AP.3 ∪ ·) is submodular imply that EAapprox [g(Aapprox)] = E∪i∈[m]Bi

[g(AP.3 ∪

(∪i∈[m]Bi))] ≥ (1− 2
3 )g(A

P.3 ∪ ∅) = 1
3g(A

P.3). �
Lemma 8 and Lemma 9 together imply that

EAapprox [g(Aapprox)] ≥
1

3
g(AP.3) ≥

γ

3
g(OP.2).

By the definition of function g, we have

EAapprox [f(V \Aapprox)] = EAapprox [g(Aapprox)] ≥
γ

3
g(OP.2) =

γ

3
f(OPT )

where the last equality is by the observation that P.2 and P.0 share the same
value of the optimal solution. Hence, the following main theorem holds.
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Theorem 2. Suppose A is a γ-approximate algorithm for non-monotone sub-

modular maximization subject to a matroid constraint and α > 1/2, we have

EAapprox [f(V \Aapprox)] ≥ γ
3f(OPT ).

If we adopt the continuous double greedy algorithm [11] as A to compute
AP.3, it gives a 1/e−o(1)-approximation solution, that is, γ ≥ 1/e−o(1). This, to-

gether with Theorem 2, implies that EAapprox [f(V \Aapprox)] ≥ 1/e−o(1)
3 f(OPT ).

4 Extension: Incorporating Global Cardinality Constraint

In this section, we extend P.0 to incorporate a global cardinality constraint.
A formal definition of this problem is listed in P.A. Our objective is to find a
best S subject to a group fairness constraint (α, β) and an additional cardinality
constraint c.

P.A max f(S)
subject to:

⌊α|Vi|⌋ ≤ |S ∩ Vi| ≤ ⌊β|Vi|⌋, ∀i ∈ [m].
|S| ≤ c.

4.1 The case when α ≤ 1/2

We first consider the case when α ≤ 1/2. We introduce a new optimization
problem P.B as follows:

P.B max f(S)
subject to:

|S ∩ Vi| ≤ ⌊β|Vi|⌋,∀i ∈ [m].∑
i∈[m] max{⌊α|Vi|⌋, |S ∩ Vi|} ≤ c.

It is easy to verify that P.B is a relaxation of P.A in the sense that every
feasible solution to P.A is also a feasible solution to P.B. Hence, we have the
following lemma.

Lemma 10. Let OPT denote the optimal solution of P.A and OP.B denote the

optimal solution of P.B, we have f(OP.B) ≥ f(OPT ).

It has been shown that the constraints in P.B gives rise to a matroid [10].
This, together with the assumption that f is a submodular function, implies
that P.B is a classic problem of maximizing a submodular function subject to
matroid constraints. Now we are ready to present the design of our algorithm.

1. Apply the state-of-the-art algorithm A for matroid constrained submodular
maximization to solve P.B and obtain a solution AP.B .
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2. Note that AP.B is not necessarily a feasible solution to P.A because it might
violate the lower bound constraints ⌊α|Vi|⌋ ≤ |S ∩ Vi| for some groups. To
make it feasible, we add additional items to AP.B. Specifically, for each group
i ∈ [m] such that |AP.B ∩ Vi| < ⌊α|Vi|⌋, our algorithm selects a backup set
Bi of size ⌊α|Vi|⌋ − |AP.B ∩ Vi|, by randomly sampling ⌊α|Vi|⌋ − |AP.B ∩ Vi|
items from Vi \AP.B. Define Bi = ∅ if |AP.1 ∩ Vi| ≥ ⌊α|Vi|⌋.

3. At the end, add ∪i∈[m]Bi to AP.B to build the final solution Aapprox, i.e.,
Aapprox = AP.B ∪ (∪i∈[m]Bi).

Algorithm 3 Approximation Algorithm for P.A when α ≤ 1/2

1: Apply A to solve P.B and obtain a solution AP.B

2: for every group i ∈ [m] do
3: if |AP.B ∩ Vi| < ⌊α|Vi|⌋ then
4: select a random backup set Bi of size ⌊α|Vi|⌋ − |A

P.B ∩ Vi| from Vi \A
P.B

5: else

6: Bi ← ∅
7: Aapprox ← AP.B ∪ (∪i∈[m]Bi)
8: return Aapprox

The pseudocode of this approximation algorithm is given as Algorithm 3. Ob-
serve that AP.B satisfies the group-wise upper bound constraints of P.A because
AP.B meets the first set of constraints in P.B. According to the construction of
Bi, adding ∪i∈[m]Bi to AP.B does not violate the group-wise upper bound con-
straints of P.A because ∪i∈[m]Bi are added to meet the lower bound constraints
of P.A if necessary. Moreover, adding ∪i∈[m]Bi to AP.B does not violate the
global cardinality constraint of P.A because AP.B meets the second set of con-
straints in P.B. At last, it is easy to verify that adding ∪i∈[m]Bi to AP.B makes it
satisfy the lower bound constraints of P.A. Hence, Aapprox is a feasible solution
to P.A.

Lemma 11. Aapprox is a feasible solution to P.A.

Following the same proof of Theorem 1, we have the following theorem.

Theorem 3. Suppose A is a γ-approximate algorithm for non-monotone sub-

modular maximization subject to a matroid constraint and α ≤ 1/2, we have

EAapprox [f(Aapprox)] ≥ γ
2 f(OPT ).

4.2 The case when α > 1/2

We next consider the case when α > 1/2. Recall that g(·) = f(V \ ·). We first
present a flipped formation of P.A as below:

P.C max g(S)
subject to:

|Vi| − ⌊β|Vi|⌋ ≤ |S ∩ Vi| ≤ |Vi| − ⌊α|Vi|⌋,∀i ∈ [m].
|S| ≥ n− c.
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Suppose there is a γ-approximate solution AP.C to P.C, it is easy to verify
that V \ AP.C is a γ-approximate solution to P.A. We focus on solving P.C in
the rest of this section. We first introduce a new optimization problem (labeled
as P.D) as follows:

P.D max g(S)
subject to:

|S ∩ Vi| ≤ |Vi| − ⌊α|Vi|⌋,∀i ∈ [m].

P.D is relaxed version of P.C with both group-wise lower bound constraints
|Vi| − ⌊β|Vi|⌋ ≤ |S ∩ Vi| and global lower bound constraints |S| ≥ n− c in P.C

being removed. Hence, we have the following lemma.

Lemma 12. Let OP.C denote the optimal solution of P.C and OP.D denote the

optimal solution of P.D, we have g(OP.D) ≥ g(OP.C).

Recall that if f is submodular, g must be submodular (by Lemma 6). Hence,
P.D is a classic problem of maximizing a submodular function subject to matroid
constraints. We next present the design of our algorithm.

1. Apply the state-of-the-art algorithm A for matroid constrained submodular
maximization to solve P.D and obtain a solution AP.D.

2. Note that AP.D is not necessarily a feasible solution to P.C because it might
violate the group-wise or the global lower bound constraints of P.C. We
add additional items to AP.D to make it feasible. Specifically, for each group
i ∈ [m], our algorithm selects a backup setBi of size |Vi|−⌊α|Vi|⌋−|AP.D∩Vi|,
by randomly sampling |Vi|−⌊α|Vi|⌋−|AP.D∩Vi| items from Vi\AP.D. Define
Bi = ∅ if |Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi| = 0.

3. Add ∪i∈[m]Bi to AP.D to build Aapprox, i.e., Aapprox = AP.D ∪ (∪i∈[m]Bi).
Return V \Aapprox as the final solution.

Algorithm 4 Approximation Algorithm for P.A when α > 1/2

1: Apply A to solve P.D and obtain a solution AP.D

2: for every group i ∈ [m] do
3: if |AP.D ∩ Vi| < |Vi| − ⌊α|Vi|⌋ then
4: select a random backup set Bi of size |Vi|−⌊α|Vi|⌋−|A

P.D∩Vi| from Vi \A
P.D

5: else

6: Bi ← ∅
7: Aapprox ← AP.D ∪ (∪i∈[m]Bi)
8: return V \Aapprox

The pseudocode of this approximation algorithm is given as Algorithm 4. Ob-
serve that adding ∪i∈[m]Bi to AP.D ensures that each group contributes exactly
|Vi| − ⌊α|Vi|⌋ number of items to the solution. Because n − c ≤

∑
i∈[m](|Vi| −

⌊α|Vi|⌋) (otherwise P.C does not have a feasible solution), AP.D ∪ (∪i∈[m]Bi)
must satisfy all constraints in P.C. Hence, we have the following lemma.
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Lemma 13. Aapprox is a feasible solution to P.C.

We next analyze the performance of Aapprox. The following lemma states
that adding ∪i∈[m]Bi to AP.D reduces its utility by a factor of at most 2/3 in
expectation.

Lemma 14. Suppose α > 1/2, we have EAapprox [g(Aapprox)] ≥ 1
3g(A

P.D).

Proof: Observe that Bi = ∅ for all i ∈ [m] such that |AP.D ∩ Vi| = |Vi| − ⌊α|Vi|⌋,
hence, adding those Bi to AP.D does not affect its utility. Therefore, we focus on
those groups i ∈ [m] with |AP.D∩Vi| < |Vi|−⌊α|Vi|⌋ in the rest of the proof. Let
Z = {i ∈ [m] | |AP.D ∩Vi| < |Vi|−⌊α|Vi|⌋} denote the set containing the indexes
all such groups. We assume Z 6= ∅ to avoid trivial cases. We next show that it is
safe to assume mini∈Z |Vi| > 1 without loss of generality, i.e., the smallest group
in Z contains at least two items. To prove this, we consider two cases, depending
on the value of α. If α = 1, then |AP.D ∩ Vi| < |Vi| − ⌊α|Vi|⌋ does not hold for
any group i such that |Vi| = 1. Hence, mini∈Z |Vi| > 1. If α < 1, then according
to the group fairness constraints listed in P.A, we are not allowed to select any
items from those groups with |Vi| = 1. Hence, removing all groups with size one
from consideration does not affect the quality of the optimal solution.

With the assumption that mini∈Z |Vi| > 1, we are now ready to prove this
lemma. Recall that for every i ∈ Z, Bi is a random set of size |Vi| − ⌊α|Vi|⌋ −
|AP.D ∩ Vi| that is sampled from Vi \ AP.D. It follows each item in Vi \ AP.D

appears in Bi with probability at most

|Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi|

|Vi \AP.D|
. (15)

We next give an upper bound of (15). Because we assume α > 1/2 and
mini∈Z |Vi| > 1, it holds that for all i ∈ M ,

|Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi| ≤ |Vi| − ⌊α|Vi|⌋ ≤ 2|Vi|/3. (16)

Moreover,

|Vi \A
P.D| = |Vi| − |AP.D ∩ Vi| (17)

= (|Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi|) + (|Vi| − (|Vi| − ⌊α|Vi|⌋)) (18)

= (|Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi|) + ⌊α|Vi|⌋ (19)

≥ (|Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi|) + |Vi|/3, (20)

where the inequality is by the assumptions that α > 1/2 and |Vi| > 1. It follows
that

(15) ≤
|Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi|

(|Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi|) + |Vi|/3
≤

2|Vi|/3

2|Vi|/3 + |Vi|/3
= 2/3, (21)

where the first inequality is by (20) and the second inequality is by (16) and the
assumption that |Vi| − ⌊α|Vi|⌋ − |AP.D ∩ Vi| > 0. That is, each item in Vi \AP.D
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appears in Bi with probability at most 2/3. Lemma 3 and the observation that
g(AP.D ∪ ·) is submodular imply that EAapprox [g(Aapprox)] = E∪i∈[m]Bi

[g(AP.D ∪

(∪i∈[m]Bi))] ≥ (1− 2
3 )g(A

P.D ∪ ∅) = 1
3g(A

P.D). �
Suppose A is a γ-approximate algorithm for non-monotone submodular max-

imization subject to a matroid constraint, we have

EAapprox [g(Aapprox)] ≥
1

3
g(AP.D) ≥

γ

3
g(OP.D)

where the first inequality is by Lemma 14. This, together with g(OP.D) ≥
g(OP.C) (as proved in Lemma 12), implies that EAapprox [g(Aapprox)] ≥ γ

3 g(O
P.C).

By the definition of function g, we have

EAapprox [f(V \Aapprox)] = EAapprox [g(Aapprox)] ≥
γ

3
g(OP.C) =

γ

3
f(OPT )

where the last equality is by the observation that P.A and P.C share the same
value of the optimal solution. Hence, the following main theorem holds.

Theorem 4. Suppose A is a γ-approximate algorithm for non-monotone sub-

modular maximization subject to a matroid constraint and α > 1/2, we have

EAapprox [f(V \Aapprox)] ≥ γ
3f(OPT ).

5 Conclusion

This paper presents a comprehensive investigation of the non-monotone submod-
ular maximization problem under group fairness constraints. Our main contribu-
tion is the development of several constant-factor approximation algorithms for
this problem. In the future, we plan to expand our research to explore alternative
fairness metrics.
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