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ABSTRACT. Let A be a k-algebra graded by a finite group G, with A 1 the component 
for the identity element of G. We consider such a grading as a "coaction" by G, in 
that A is a k[G]*-module algebra. We then study the smash product A#k[G]*; it 
plays a role similar to that played by the skew group ring R * G in the case of group 
actions. and enables us to obtain results relating the modules over A, A I' and 
A#k[G]*. After giving algebraic versions of the Duality Theorems for Actions and 
Coactions (results coming from von Neumann algebras), we apply them to study the 
prime ideals of A and A I' In particular we generalize Lorenz and Passman's theorem 
on incomparability of primes in crossed products. We also answer a question of 
Bergman on graded Jacobson radicals. 

Introduction. The analogy between rings graded by a finite group G and rings on 
which G acts as automorphisms, in which the identity component in the graded ring 
corresponds to the fixed ring of the group action, has been noticed by a number of 
people [2,6,24]. In particular, when G is abelian and the ring. is an algebra over a 
field containing a primitive nth root of unity, where n = I G I, the two notions 
coincide; for, in that case the ring is graded by G, the dual group of G. Our purpose 
in this paper is to use the fact that gradings and group actions are dual concepts, 
even when G is not abelian, in order to obtain new results about graded rings. The 
idea of duality has already proved very useful in studying von Neumann algebras 
and C*-algebras. The second author wishes to thank G. Pedersen, M. Rieffel and M. 
Takesaki for informative conversations about duality. 

Generally, we first point out that a grading by G can be considered as a 
"coaction" of G. For a k-algebra A graded by G, we can then form a certain algebra 
A#k[G]*; this algebra plays the role for graded rings that the skew group algebra 
A * G plays for group actions, and can be used to form a Morita context relating A 
and AI (the identity component of A). We then use the "Duality Theorem for 
Coactions" to solve problems about graded rings, concerning the Jacobson radical, 
prime ideals, and semiprimeness, by reducing them to known results about group 
actions. 
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238 M. COHEN AND S. MONTGOMERY 

More specifically, let A be a k-algebra with 1, where k is a commutative ring, and 
let G be a finite group. In §l, we show that,just as an action of G as automorphisms 
on A is equivalent to A being a "module algebra" for the group algebra k[G], a 
grading of A by G is equivalent to A being a "module algebra" for the dual algebra 
k[G]*; in this sense the grading is a coaction. Thus when A is graded, we may form 
the smash product A#k[G]*. The formal properties of this algebra are summarized 
in Proposition 1.4. 

In §2, we consider graded A-modules and modules over A#k[G]* and AI. We first 
show that there is a category isomorphism between graded A-modules and 
A#k[G]*-modules. We then form a Morita context for a G-graded algebra A, using 
A as both an AI - A#k[G]* and an A#k[G]* - AI bimodule. We show that 
properties of the Morita context are related to various properties of the grading. In 
particular, we show that A is strongly G-graded (in the sense of Dade [7]) if and 
only if AI is Morita equivalent to A#k[G]*. We also see that the nondegeneracy 
condition of Cohen and Rowen [6] corresponds to non degeneracy of the form ( , ) in 
the Morita context. As a consequence, we show that A#k[G]* is semiprime if and 
only if A is graded semiprime. This is analogous to the theorem of Fisher and 
Montgomery [11] for skew group rings. 

In §3, we give proofs of the two duality theorems. These theorems are essentially 
translations of known results in von Neumann algebras [14,19,27], but our proofs 
are elementary. The Duality Theorem for Actions says that if G acts on A, then 
A * G is graded by G and (A * G)#k[G]* ~ Mn(A), the n X n matrix ring over A, 
where n = I G I . The Duality Theorem for Coactions says that if A is graded by G, 
then there is an action of G onA#k[G]*, and (A#k[G]*) * G ~ Mn(A). 

In §§4-7, A is graded by G. In §4, we consider Jacobson radicals, and show that 
the graded Jacobson radical lG(A) is always contained in the usual Jacobson radical 
leA). This answers a question of G. Bergman [3]. We also show that l(A#k[G]*) = 
ldA)#k[G]*, and thatJ(AI) = leA) n AI. 

In §5 we show similar results for the prime radical N( A). We also show that when 
A has no I G I-torsion, A is semiprime if and only if it is graded semiprime. 

In §6 we compare the prime ideals of A and A#k[ G]*, obtaining results similar to 
those of Lorenz and Passman for crossed products [15]. In particular we show 
(Theorem 6.3) that if Q is a graded prime of A, then A has m ';;;1 G I primes minimal 
over Q, say PI' ... ,Pm; these are precisely the primes satisfying P n AI = Q n AI' 
and if I = PI n ... npm , then JlGi~ Q. 

In §7, the last section, we first prove incomparability for primes of A and A I: if 
P S;;; Q are primes of A, then P n AI S;;; Q n AI. This generalizes Lorenz and 
Passman's theorem on incomparability of primes in crossed products [15], since a 
crossed product is a group-graded ring. 

We then compare the primes of A and AI by a method similar to that used in [18]. 
We show that if P is a prime in A, then there exist k .;;; I G I primes of A I minimal over 
P n AI; conversely, given a primep of AI,p determines a unique graded prime Q of 
A so that p is minimal over Q n AI (Theorem 7.2). Finally, we apply these results to 
show that an "additivity principle" for Goldie ranks holds between primes of A and 
AI· 
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GROUP-GRADED RINGS 239 

Some of the results in §§4-7 were known previously for the special case of 
strongly graded rings [21]. 

Before beginning, we fix our notation. A will always denote a k-algebra with I, 
over a commutative ring k with 1, and G is a finite group. A is graded by G if 
A = ~gEe EEl A g, where the Ag are k-subspaces of A and AgAh c::; A gh , for all 
g, h E G. For any ideal I of A (left, right, or two-sided), we define 

Ie = ~ EEl (I nAg). 
gEG 

We say that I is graded if I = Ie; more generally, Ie is the largest graded ideal of A 
contained in I. 

Other definitions will be made as we need them. 

1. Smash products, group actions, and coactions. In this section we discuss the 
duality of group actions and gradings, using some ideas from the theory of Hopf 
algebras. The advantage of this approach is that it demonstrates that the algebra 
A#k[ G]* mentioned in the introduction arises naturally from a group grading, and 
in fact it is the analog of the skew group ring R * G constructed for a group G acting 
on a ring R as automorphisms. 

A standard reference on Hopf algebras is Sweedler's book [28], and we shall 
follow his notation. 

Let A be a k-algebra and H a k-bialgebra; that is H is an algebra in the usual 
sense, but in addition has a comultiplication Ll: H -> H ® k H and a counit E: H -> k, 
satisfying appropriate properties [28, p. 53]. For any h E H, we use the standard 
notation Ll(h) = ~(h)h(l) ® h(2)' 

In order to form the smash product A#H, the required condition is that A is an 
H-module algebra [28, pp. 138, 153]: 

DEFINITION 1.1. Let A be a k-algebra and H a k-bialgebra, with comultiplication 
Ll and counit E. Then A is an H-module algebra if there exists a map 1/;: H ® A -> A 
satisfying 

(1) A is an H-module under 1/;, 
(2) t/J(h ® ab) = ~(h)l/;(h(l) ® a) l/;(h(2) ® b), for a, bE A, hE H, and Ll(h) as 

above, 
(3) I/;(h ® I) = E(h)lA" 
For simplicity, we will write h . a for I/;(h ® a). Thus for example, condition (2) 

above becomes h . ab = ~(h)(h(I)' a)(h(2)' b). 
Now let A be an H-module algebra. One can then define the smash product A#H, 

as follows: as a vector space, A#H is A ®k H, with elements a ® h written as a#h. 
Multiplication is defined by 

(a#g )(b#h) = ~ a(g(l) . b)# (g(2)h), where Ll(g) = ~ g(l) ® g(2)' 
(g) (g) 

This makes A#H into a k-algebra with unit element I = I A # IH [28, p. 156]. 
We first consider the relationship between group actions and k[G]-module alge-

bras. Note that k[G] is a bialgebra, with comultiplication given by Ll(g) = g ® g and 
co unit given by E(g) = I, for any g E G. By an action of G on a k-algebra A, we 
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240 M. COHEN AND S. MONTGOMERY 

mean a group homomorphism a: G ---> Autk(A); let a g denote the image of g in 
Aut k( G). The following proposition is presumably well known; certainly the first 
part appears in [28]. 

PROPOSITION 1.2. Any action of G on A makes A into a k[G]-module algebra. 
Conversely, if A is a k[G]-module algebra, this arises from an action of G on A. 

PROOF. If a: G ---> Autk(A) is an action of G on A, then (as in [28, p. 154]) the map 
g ® a ---> age a) makes A into a k[ G]-algebra. Conversely, say that A is a k[ G]-mod-
ule algebra and write 1f(g ® a) = g . a. Since A is a k[G]-module, if a, bE A, 
g E G, then a = 1 . a = g-I . (g. a) = g . (g-I . a), and g' (a + b) = g . a + g . 
b. Thus if we set aia) = g . a, ag E Endk(A) is a bijection. Using Ll(g) = g ® g 
and part (2) of the definition, g . ab = (g . a)( g . b), and thus ag is an automor-
phism of A. Finally, the map a: G ---> Autk(A) given by g ---> ag is a group homomor-
phism since aiah(a» = g . (h . a) = (gh) . a = agh(a), any a EA. Thus a is an 
action of G on A. 0 

For the case of group actions, we see that the smash product A#k[G] has 
multiplication (a#g)(b#h) = aaib)#gh. Thus, it is just the familiar skew group 
ring, or trivial crossed product, and we will denote it by A * G. 

We now tum to the dual algebra k[G]*, and show its close connection to G-graded 
algebras. A k-basis of k[G]* is the set of "projections" {Pglg E G}; that is, for any 
g E G and x = 'ihEGahh E k[G],pix) = ag E k. The set {Pg} consists of orthogo-
nal idempotents whose sum is 1. The comultiplication on k[ G]* is given by 
Ll(pg) = 'ihEGPgh-t ® Ph' and the counit is given by e(pg) = 81,g (where 8 denotes 
the Kronecker delta). 

We observe that A being graded by G is equivalent to the existence of a map 
13: G ---> Endk(A) satisfying the following properties (where f3g denotes the image of g 
in Endk(A»: 

(1) for all g, h E G, f3g 0 f3 h = 0 if g =fo h, and f3g 0 f3g = f3g, 
(2) 'igE Gf3g = I, the identity mapping, 
(3) for each g E G, a, b E A, f3iab) = 'ihEGf3gh-t(a)f3h(b). 
The first part of the next proposition was observed by Bergman [2]. 

PROPOSITION 1.3. If A is graded by G, then A is a k[G]*-module algebra. 
Conversely, if A is a k[G]*-module algebra, then A is graded by G. 

PROOF. Assume that A is graded, so A = 'igEG EB A g. Any a E A may be written 
uniquely as a = 'iga g, where ag E A g. We define the action of k[G]* on A by 
Pg ' a = ag, where the {Pg} are the dual basis for k[G]*. That is, Pg is the projection 
onto the "gth" part of any element of A. Using the fact that PhPg = 8h.gPg, it is 
clear that A is a k[ G]*-module. Also, this action satisfies (2) of Definition 1.1. For, 
say x, yEA andpg E k[G]*; then 

pg,(xy)=(xy)g= ~ xgh-'Yh= ~ (Pgh-t·X)(Ph·y), 
hEG hEG 

which is compatible with Ll(pg) = 'ihEGPgh't ® Ph' Property (3) is trivial. Thus A is a 
k[G]*-module algebra. 
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Conversely, say that A is a k[ G]*-module algebra, and denote the action of 
k[G]* on A by Pg ' a, for any a. Let Ag = {Pg ' a, all a E A}; since PgPh = lJg,,,Pg 
and L.gPg = I, it is clear that A = L. gEC EEl Ag. Since the given action satisfies 
(2) of Definition 1.1, and /l( Pg) = L.hECPgh-' 181 p", it follows that Pg ' (xy) = 
L.gEC<Pgh-' . X)(Ph' y). Thus Agh-,Ah c:;; Ag, for any g, hE G, so that A is graded. 
o 

When A is graded, we may thus construct the smash product A#k[G]*. For 
a, bE A, and basis elementsPg,Ph E k[G]*, the product is given by 

(a#pg)(b#Ph) = L a(Pgr l ' b)#(PIPh) = a(bgh-I)#Ph 
lEG 

using /l(pg) = L.IEcPgr' 181 PI' the fact that the {PI} are orthogonal idempotents, 
and the fact that Pgh-1 . b = bgh-l by the module action in Proposition 1.3. 

This notation may be simplified slightly. For, (a# l)(I #Ph) = (a#L.gPg)(l #Ph) 
= a(L.gIgh-1)#Ph = a#Ph' That is, A may be identified with A# I, and k[G]* with 
1 #k[ G]* inA#k[ G]*. We may therefore write the above multiplication more simply 
as: 

We summarize our description of A#k[G]*. 

PROPOSITION 1.4. Let A be graded by the finite group G. Then A#k[G]* is the free 
right and left A-module with basis {Pg I g E G}, a set of orthogonal idempotents whose 
sum is I, and with multiplication given by ( *) above. In particular, 

(I)fora E A,Pha = 'igahg-1Pg, 
(2) for ag E Ag, Phag = agPg-1h' 
(3) each Ph centralizes AI' 

PROOF. The {Pg} are a free k-basis for k[G]*, and so {1#pg} are a free left 
A-basis for A#k[G]*. Using (I), it is clear they are also a free right A-basis. Since 
the {Pg} are orthogonal idempotents in k[G]*, and (I #pg)(I #Pn) = Igh-l#pg = 
Og,h#Pg, the {I #pg} are also orthogonal idempotents in A#k[G]*. 

(I) Using (*),Pha = (I #Ph)(a#L.gPg) = L.gECahg-l#pg' 
(2) By (1), Phag = L.tEc(ag}"t-1#Pt. However, (ag}"r1 = 0 unless ht- I = g, m 

which case t = g-Ih and (ag)g = ago Hence Phag = agPg-lh' 
(3) Clearly if g = I, Phal = alPh' 0 

COROLLARY 1.5. Let A be G-graded, and A#k[G]*, {Pg} be as above. Let I be any 
graded ideal of A. Then 

(1) Ph(I#k[G]*)pg = Ihg-1Pg = Phlpg, 
(2) P 1(I#k[ G]*)p I = I) PI' which is isomorphic as a ring to I). 

PROOF. (1) Choose a E I, Ps E k[G]*. Then Ph(aps)Pg = 0 unless s = g. In that 
case, using (*), Ph(apg)Pg = PhaPg = ahg-1Pg. Thus Ph(I#k[G]*)pg c:;; Ihg-1Pg; by 
reversing the argument, equality follows. 

(2) The first statement follows using g = h = I. Using the fact that PI centralizes 
I) (Proposition 1.4(3», (aPI)(bpl) = abp), for a, bEl), and thus I) ~ I)PI' 0 
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REMARK 1.6. We note here that several of the ideas above have appeared in work 
on operator algebras, in somewhat different form. When A is a von Neumann 
algebra, G a locally compact group, and 6Pc (G) is the von Neumann algebra on 
L2(G) generated by the regular representation of G, a coaction of G on A is defined 
to be a ring isomorphism f3 of A into the closure of A 0 ~R( G) satisfying 
(f3 0 I A) 0 f3 = (I A 0 ~) 0 f3 [20]. When G is finite, one can show that this definition 
is equivalent to the existence of a grading of A by G. To be consistent with the 
terminology of [20], and also in light of Propositions 1.2 and 1.3, we will sometimes 
refer to a grading of A by G as a coaction of G on A. 

Now say that there is a coaction of the locally compact group G on the von 
Neumann algebra A. Then, as in [20], one may construct the "crossed product with 
respect to a coaction", A X f3 G. When G is a finite group, it is possible to show that 
A Xf3 G is simply our algebra A#k[G]* as given in Proposition 1.4. In a somewhat 
different direction, we consider a Banach *-algebraic bundle B over a locally 
compact group G, as defined by J. M. G. Fell [9]; among other things, this means 
that B is a (>algebra graded by G. Given a locally compact Hausdorff space M on 
which G acts continuously, he constructs a new Banach *-algebraic bundle Dover G, 
called the G, M transformation bundle derived from B [9, p. 260]. Once again, when G 
is finite and M = qG] (considered as a vector space, on which G acts by left 
multiplication), D can be shown to be our construction B# q G]*. 

2. Modules, Morita contexts, and gradings. In this section we are concerned with 
the relationships between modules for A, AI' and A#k[G]*. We first establish a 
category isomorphism between A#k[G]*-modules and graded A-modules, and a 
Maschke-type theorem for A#k[G]*. We then turn to Morita contexts. For a finite 
group G acting on a commutative ring A, Chase, Harrison, and Rosenberg [4] 
showed that there is a Morita context [A G , V, W, A * G] associated with the fixed 
ring A G and the skew group ring A * G, using V = AcAA • G and W = A * GAA". This 
context was studied for noncommutative rings by M. Cohen in [5]. We show in this 
section that an analogous situation holds for coactions: if A is graded by G, there is 
a Morita context associated to A#k[G]* and AI. We then show that several 
properties of the gradings can be interpreted as properties of the Morita context. For 
a general reference on Morita contexts, see [1]. 

For any ring R, let Mod(R) denote the category of all unital right R-modules and 
their R-homomorphisms. If the ring A is graded by G, a right A-module V is graded 
if V = ~gEG EB Vg and if VgAh C; Vgh , for all g, h EO G. One can then form a 
category Gr Mod(A), whose objects are the graded A-modules and whose morphisms 
f: V -> Ware morphisms in Mod(A) such thatf(Vg) C; Wg [7, p. 244]. 

We now consider the relationship between GrMod(A) and Mod(A#k[G]*). 

LEMMA 2.1. (1) Let V EO Mod(A#k[G]*). Then V becomes a graded A-module by 
defining Vg = V· Pg-l. 

(2) Let V EO GrMod(A). Then V becomes an A#k[G]*-module by defining, for 
v EO V, a EO A, Ph EO k [ G] * 
(**) v·(aPh)=(v·a)h- l. 
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PROOF. (1) Clearly V = 2: gEG EB Vg, since the {Pg} are orthogonal idempotents 
whose sum is I. Now choose Vg E Vg, so Vg = VPg-" some v E V. If ah E A h, then 

vg ' ah = V· (Pg-Iah) = V· ahPh-lg- ' = (va h)' P(gh)-' E Vgh · 

Thus V is a graded A -module. 
(2) Choose a, bE A, v E V,Ph,Pg E k[G)*. Then 

v . [(aph)(bpg)] = V· (abhg-IPg) = (vabhg-I)g-I = (va)h-1bhg-1 

= «va)h-1b)g-1 = (vak' . bpg = (v' aph)bpg. 

Finally, v . 1 = v . 2: g Pg = 2: gVg -1 = v. 
Thus V becomes an A#k[G)*-module. 0 
Given V E GrMod(A), we define V# to be V considered as anA#k[G)*-module 

as in the lemma. For any morphismJ: V -. Win GrMod(A), definef#: V# -> W# 
by setting f# = f. Similarly, given V E Mod(A#k[G)*), we define Vc;r to be V 
considered as a graded A-module, and for a morphismf: V -. Win Mod(A#k[G)*), 
define kr: Vc;r -. WGr by setting kr = f. 

THEOREM 2.2. Let A be graded by G. Then there is a category isomorphism between 
Gr Mod( A) and Mod( A#k [G)*) given by the functors 

()Gr: Mod(A#k[G]*) -> GrMod(A), 

()#: GrMod(A) -. Mod(A#k[G]*). 

PROOF. We use the definition of category isomorphism as given in [8, p. 65). We 
first show that the maps ( )Gr and ( )# are indeed functors. To see this it suffices to 
show thatfGr: VGr -. WC;r is a morphism in GrMod(A) and thatf#: V# -. W# is a 
morphism in Mod(A#k[G)*). 

We first considerfGr' where we are given a morphismf: V -. Win Mod(A#k[G)*). 
Since VGr is graded, choose Vg E Vg; by construction VgPg-1 = vg. Thus f( vg) = 
f( VgPg-l) = f( Vg)pg-I E Wg. Thus kr is a graded morphism. 

Next consider f#, where we are given a morphism J: V -. Win Gr Mod( A). For 
v E Vg and aph E A#k[G)*, 

f( vg ' aph) = f(( vg ' a)h-I) = (J( vg ' a»)h-I = (J( Vg) . a )h-I = f( vg) . aPh' 

Thus f# is an A#k [G)*-morphism. 
To see that these functors give a category isomorphism, we show « )#)c;r = 1 and 

« )Gr)# = I. For the first, consider V E Mod(A#k[G)*). In VGr' choose Vg = VgPg-l, 
and let aPh E A#k[G)*. Then in (VGr )#, 

(vg ' aPh) = (vg ' a)h-I = (vg)· a) . Ph = v/aph)' 

the usual action in Mod(A#k[G)*). Thus « )Gr)# = 1. 
A similar argument shows that « )#)c;r = 1. 0 
We note that the theorem is also true for left modules: if V is a left A#k[G)*-

module, it becomes a left graded A-module by defining Vg = pgV; if V is a left 
graded A-module, it becomes a left A#k[G)*-module by defining aPh . v = avh. The 
analogs of Lemma 2.1 and Theorem 2.2 follow. 
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We next prove a Maschke-type theorem, which unlike the corresponding result for 
group actions, does not require any assumptions about the characteristic of A. 

THEOREM 2.3. Let V be a right (left) A#k[G]*-module, and let W be an A#k[G]*-
submodule of V which is an A-direct summand of V. Then W is an A#k[G]*-direct 
summand of V. 

PROOF. We first consider right modules. Let 'IT: V ---> W denote the natural 
A-module projection of V onto W. Define A: V ---> Wby A( v) = LhEG( VPh)"'Ph. 

Now A Iw = 1, for if W E W, then wPh E W, all h E G; hence (WPh)'" = WPh' so 
A(W) = LhEGWP~ = W(LhPh) = w. Also, A is an A#k[G]*-module homomorphism. 
For if v E V, apg E A#k[G]*, using Proposition 1.4 

A{v)apg =[ ~ {v· Ph)"'Ph]apg = ~ (v· Ph)"'(ahg-IPg) 
hEG hEG 

= ~ {v· Phahg-I)"'Pg = ~ {v· ahg-IPg)"'Pg 
h~G hEG 

= [ v . ( ~ a h g-' ) P g r P g = {v . ap g )'" P g 

= ~ (v· apgPh)"'Ph = A{V· apg). 
hcG 

Thus A is an A#k[G]* projection of V onto W, hence W is an A#k[G]*-direct 
summand of V. 

A very similar argument works for left modules; just define A: V ---> W by 
A(V) = LhEGPh(Ph· v)"'. 0 

By Lemma 2.1, Theorem 2.3 is equivalent to the following (which could also be 
proved directly): 

THEOREM 2.3'. Let V be a graded (right) A-module, and Wa graded submodule of V 
which has a complement as an A-submodule of V. Then W has a graded complement. 

We now proceed to the Morita context. 
By Lemma 2.1, A is a right A#k[G]*-module via a . bph = (abh-" and by the 

remark following Theorem 2.2, A is a left A#k[G]*-module via bph . a = bah. It is 
also certainly a right and left AI-module via right and left multiplication. We may 
thus consider the two bimodules 

V = A,AA#k[G)* and W = A#k[G)*AA ,. 

Let [, ]: W 0 A, V ---> A#k[G]* be defined by [w, v] = WPIV. 
Let (,): V0A#k[G)*W ---> AI be defined by (v, w) = (VW)I. 

PROPOSITION 2.4. Let A be graded by G. Then [AI' V, W, A#k[G]*]forms a Morita 
context, where V, W, [ , ], and ( , ) are as defined above. 

PROOF. To satisfy the conditions for a Morita context [1], we must show that 
[ , ] is an A#k[G]*-bimodule map which is middle AI-linear, that ( , ) is an A I -

bimodule map which is middle A#k[G]*-linear and that the "associativity" 
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conditions hold. We first show the associativity conditions. Say that v, v' E V, w, 
w' E W; we need V· [w, v'] = (v, w)· v' and [w, v]· w' = W· (v, w). Now V· 

[w, v']= v . wpJv' = (v . wPJ) . v' = (vw)J . v' = (v, w) . v'. Also [w, v] . w' = 
wpJv· w' =w· (PJ . (vw')) = W· (vw')J = W· (v, w'). 

To check the bimodule maps, by additivity it will suffice to check them on 
generators. We first consider [ , ]. It is clearly middle AJ-linear, since PJ commutes 
with elements of A J by Proposition 1.4. Now say that aPh E A#k[G]*, v E V, 
wE W. Then 

aPh[w, v] = aPhwpJv = awhPJv = [awh, v] = [aPh· w, v], 

and 

[w, v]· aph = wpJvaPh = w(va)h-1Ph = wPJ(va)h-1 =[w,(va)h-I] = [w, V· aph]. 

Now for ( , ). It is clearly an AJ-bimodule map, so it suffices to show it is middle 
A#k[G]*-linear. Again, sayaph E A#k[G]*, v E V, wE W. Then 

(v· aPh' w) = ((va)h-1w)J = (vah-1wh = (vawh)J = (v, awh) = (v, aPh· w). 

The proposition is proved. 0 
We now consider nondegeneracy of the two forms [ , ] and ( , ). Since A has a 1, it 

is clear that [ , ]: V I8i W --. A#k[G]* is always nondegenerate: for, if [V, w] = 0, 
then IpJw = 0, so w = 0, and similarly if [v, W] = O. However, the other form can 
be degenerate. In [6], Cohen and Rowen obtain a number of consequences of the 
nondegeneracy of the form ( , ). 

We now define three successively stronger properties that a grading may have, 
related to the Morita context. The first is motivated by the work of Cohen and 
Rowen mentioned above, and the third is due to Dade [7] and Fell [9]. 

DEFINITION. Let A be graded by the group G. 
(I) The grading is nondegenerate if ( , ) is non degenerate. 
(2) The grading is faithful if A is a faithful left and right A#k[ G]*-module. 
(3)A is strongly G-gradedifAgAg-1 = A J, for allg E G. 
Fell calls a graded ring saturated if it satisfies (3). 
We give a more concrete interpretation of (1) and (2). 

LEMMA 2.5. (1) The grading on A is non degenerate = for any 0 =1= ag E A g, 
agAg-1 =1= 0 and Ag-Iag =1= O. 

(2) The grading on A is faithful = for any 0 =1= ag E A g, agAh =1= 0 and Ahag =1= 0, 
for g, hE G. 

PROOF. (1) Say that the grading is non degenerate, but agAg-1 = 0, some ag E A g. 
Then (agA)J = (ag~hAh)] = agAg-1 = 0, and so (a g, A) = O. By nondegeneracy, 
ag = O. Similarly Ag-Iag =1= O. 

Conversely, assume the condition, and say that 0 = (a, A) = (aA)]> some a EA. 
Write a = ~gag' where ag E A g. If a =1= 0, then ah =1= 0 for some h E G. Since 
(aA)J = 0, certainly (aAh-I)] = O. But (aAh-I)J = ahAh-1 = 0, a contradiction. 

(2) Say that A is a faithful right A#k[G]*-module (a similar argument will work 
on the left) but Ahag = 0, some 0 =1= ag E A g. Then (Aag)hg = (AhQg)hg = 0; it 
follows that A . agP(hg)-1 = (Aaghg = 0, which contradicts faithfulness. 
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Conversely, assume the conditions, but say that A . x = 0, some x E A#k[G]*. 
Write x = LiaiPg" where gi =1= gj when i =1= j, and all ai =1= 0. Now, since a, =1= 0, 
(a)k =1= ° for some kEG. Let h = g;lk- l. Since A . x = 0, Ahx = ° = Li(Aha,)g,-I. 
Since the gi are distinct, (Aha)g;1 = 0. Since h = g;lk- l, (Aha)g;' = Ah(a)k = 0, a 
contradiction. D 

It is clear from the lemma that in the definition, (3) ~ (2) ~ (1). To see that the 
three definitions are distinct, we consider some examples. 

EXAMPLE 2.6. A nondegenerate grading which is not faithful. 
This is essentially in [6]. Let A = M 2(R), the 2 X 2 matrix ring over another ring 

R with 1, and let G = (g) be cyclic of order 3. Let Al = (~~), Ag = (8~), and 
Ag-I = (~8). Then AgAg-1 = (~8) and Ag-IAg = (8~), so the grading is nondegener-
ate; however (87) . Ag = (0), so the grading is not faithful. 

EXAMPLE 2.7. A faithful grading which is not strongly graded. 
Let A = Q[ x], the polynomials over the rationals, and let G = (g) have order 2. 

Let Al = Q[x 2 ] and let Ag = {Liaix'i i odd}. Then A = Al E9 A g, and A is faithfully 
graded since it is a domain. However, I f/:. AgAg = AgAg-l, so A is not strongly 
graded. 

The various gradings relate to intersections of ideals. 

LEMMA 2.8. (1) If the grading is nondegenerate and I is a right (left) ideal of A with 
I n Al = 0, then In Ag = 0, all g E G. 

(2) If the grading is faithful and I is a right (left) ideal of A with I n A" = ° for 
some h E G, then I nAg = ° for all g E G. 

PROOF. (1) Let I be a right ideal; a similar argument will work for left ideals. Now 
(/ n Ag)Ag-1 ~ I n Al = (0), so In Ag = (0) by Lemma 2.5 (2) is very similar: 
(/ n Ag)Ag-lh ~ I n Ah = (0), so In Ag = (0) by Lemma 2.5. D 

The next result is the analog of the theorem of Fisher and Montgomery for group 
actions [11]. The graded ring A is graded semiprime if it has no nonzero nilpotent 
graded ideals. 

THEOREM 2.9. The follOWing are equivalent: 
(1) A is graded semiprime. 
(2) Al is semiprime and the grading is nondegenerate. 
(3) A#k[G]* is semiprime. 

PROOF. (l) ~ (2) is just [6, Proposition 1.2(3)]. 
(3) = (1) follows from the fact that if I is a nilpotent graded ideal of A, it 

generates a nilpotent ideal of A#k[G]*. 
It remains to show that (2) ~ (3). Say that A#k[ G]* is not semiprime; then there 

exists ° =1= x E A#k[ G]* so that x( A#k[ G]*)x = 0. Choose Pg in the" support" of x 
so that XPg = apg =1= 0, a EA. Then aPiA#k[G]*)apg = 0, and consequently ° = 
apipgA)apg = a(pgAapg) = a(Aa)IPg by Corollary 1.5. Thus Aa(Aa)1 = 0, and so 
(Aa)f = 0. Since Al is semiprime, (Aa)1 = 0. Thus (A, a) = 0, and so by nondegen-
eracy a = 0, a contradiction. D 

We apply Theorem 2.9 to the prime radical in §5. 
A similar result holds for A#k[G]* being prime. 
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THEOREM 2.10. The following are equivalent: 
(1) A, is prime and A is graded semiprime. 
(2) A, is prime and the grading is nondegenerate. 
(3) A, is prime and the grading is faithful. 
(4) A#k[G)* is prime. 

247 

PROOF. (1) = (2) follows as in Theorem 2.9 by [6, Proposition 1.2). For (2) = (3), 
say that agAh = 0, for some g, h E G, where a g E A g. By nondegeneracy, 0 =1= 
AhAh-, = I, a nonzero ideal of A" and 0 =1= Ag-Iag <: A,. But (Ag-lag)I = (0), which 
contradicts A, being prime. Thus the grading is faithful. 

(3) = (4) follows by an argument similar to Theorem 2.9. That is, if A#k[G)* is 
not prime, then there exist 0 =1= x, Y E A#k[G)* so that x(A#k[G)*)y = O. By 
choosing Pg and Ph in the "support" of x and y, respectively, we may assume that 
x = apg and y = bph' a, bE A. It follows that 0 = apg(AphA)bPh = aAg-'h(Ab), Ph 
= 0, and so aAg-'h(Ab), = O. Hence AaAg-lh(Ab),Ah-'g = 0, and so 
(Aa),Ag-lh(Ab),Ah-'g = O. Now Ag-'h(Ab),Ah-lg is an ideal of A" and it is nonzero 
since (Ab), =1= 0 by nondegeneracy and since by faithfulness, A g-Ih( Ab), Ah-l g =1= 0 by 
Lemma 2.5. But then since A2 is prime, (Aa), = O. Thus a = 0 by non degeneracy, a 
contradiction. 

Finally we show (4) = (1). If A#k[G)* is prime, certainly A is graded semiprime 
as in Theorem 2.9. Moreover, by Corollary 1.5, A, ~ p,(A#k[G)*)p" and so is a 
prime ring. D 

Another interpretation of Theorem 2.10 can be given in terms of Morita contexts. 
For any Morita context [R, RVS' SWR' S), one can form a ring 

C = (~ ~). 
The Morita context is called prime if C is a prime ring. 

COROLLARY 2.11. For A graded by G, [A" A, A, A#k[G)*) is a prime Morita 
context <=> any of the conditions in Theorem 2.10 hold. 

PROOF. (=) If C is prime, let e = (g?). Then also eCe is prime, but eCe ~ S = 
A#k[G)*, a prime ring, and all the conditions in the theorem are equivalent. 

(=) By the theorem, and Lemma 2.5, A is faithful as a left and right A#k[ G)*-
module. Since the form [ , ) is always non degenerate, this implies that [A . s, A) = 0 
implies s = 0, for s E S. Hence by [22, Proposition 3), the Morita context is prime. 
D 

We now characterize strongly G-graded rings in terms of the Morita context. The 
proof is based on an argument of M. Rieffel, who showed that if G is an abelian 
group of automorphisms of an algebra A over the complex numbers, then the skew 
group ring A * G is Morita equivalent to A G if and only if A is strongly G-graded, 
where G is the dual group of G. We wish to thank him for making his argument 
available. 

THEOREM 2.12. Let A be a G-graded ring, and consider the Morita context in 
Proposition 2.4. Then A#k[G)* is Morita equivalent to A, if and only if A is strongly 
G-graded. 
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PROOF. A#k[G]* is Morita equivalent to AI if and only if [ , ] IS onto; 
equivalently, if and only if ApIA = A#k[G]*. 

First assume that ApI A = A#k[G]*. Then by Corollary 1.5, 

AIPg = Pg(A#k[G]*}Pg = (PgAPI)(PIApg) = AgAg-IPg. 

It follows that AI = AgA~-I, all g E G. That is, A is strongly G-graded. 
Conversely, assume AgAg-1 = AI for all g E G. In order to show that 1 E APIA, it 

suffices to show that eachpg E APIA, all g E G. For a fixed g, AgAg-1 = AI implies 
that there exists {ail C Ag, {bi} C Ag-l such that 'i.7=laib, = 1. Thus, using the fact 
that (b,)h-l = 8g,hbi' 

Pg = ± aibiPg = ~ai( ~ (bJh-IPh) 
1=1 i hEG 

n 

~ aiPlbi E APIA. 
i=1 

The theorem is proved. D 
By combining Theorems 2.12 and 2.2, we obtain a result of Dade [7, Theorem 2.8]. 

Alternatively, Theorem 2.12 could have been proved using Theorem 2.2 and Dade's 
result. 

COROLLARY 2.13. A is strongly G-graded if and only if there is a category 
equivalence between Mod( A I) and Gr Mod( A). 

REMARK 2.14. Some of Fell's results in [9] can be interpreted as the C*-algebra 
analogs of Theorems 2.2,2.12 and Corollary 2.13. For let B be a Banach *-algebraic 
bundle over the locally compact group G (see Remark 1.6). The "systems of 
imprimitivity" for B correspond to certain graded B-modules, and in Theorem 30.3, 
Fell gives a one-to-one correspondence between systems of imprimitivity for Band 
certain representations of the transformation bundle D; this is analogous to our 
Theorem 2.2. In his Theorem 32.8, under the assumption that B is saturated 
(strongly G-graded), he gives a correspondence between systems of imprimitivity for 
B over G/H and representations of BH, for any closed subgroup H of G, where BH is 
the part of B over H. When H = (1), this is the analog of Corollary 2.13. The more 
general result extends the classical imprimitivity theorem of Mackey. 

3. The duality theorems. The two duality theorems in this section are already 
known to operator algebraists, for A a von Neumann algebra and G a locally 
compact group; they were proved independently by Landstad [14], Nakagami [19], 
and Stratila, Voiculescu and Zsido [27]. The two dual algebras used were L OO( G), 
where we have used k[G]*, and 0t(G), the von Neumann algebra on L2(G) 
generated by the regular representation of G, where we have used k[G]. These results 
generalize the work of Takesaki on abelian groups [29]. An exposition of these 
results is given by Nakagami and Takesaki in [20]. For results on C*-algebras, see 
[26]. We give here elementary algebraic proofs of the theorems for finite groups; two 
fundamental simplifications in our case are that a coaction of G is just a grading, 
and that the "crossed product with respect to a coaction" is just our smash product 
algebra described in Proposition 1.4, as noted in Remark 1.6. 
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The other crucial ingredient in our arguments is the next lemma, which appears in 
[23, Lemma 1.6, p. 228], and is in essence due to Clifford. We wish to thank D. S. 
Passman for suggesting this as a method of proof. 

LEMMA 3.1. Let W be a ring, and let 1 = e, + e2 + ... +en be a decomposition of 1 
into a sum of orthogonal idempotents. Let G be a subgroup of the group of units of W, 
and assume that G permutes the set {e" ... ,en} transitively by conjugation. Then 
W ~ Mn(T), where T is the ring T = e,We,. 

We first consider the Duality Theorem for Actions. Let G be a finite group of 
order n, and let a: G -> Autk(S) be an action of G on the ring S. Form the skew 
group ring R = S * G. Then R is certainly G-graded, by letting R g = Sg. Thus as in 
§1 we may form R#k[G]*. 

THEOREM 3.2 (DUALITY FOR ACTIONS). (S * G)#k[G]* ~ MiS). 

PROOF. We first claim that G acts transitively on the idempotents {Phlh EO G}. 
Now for any s EO S, sg EO (S * G)g' so by Proposition lA, Ph(sg) = (sg)Pg-lh' 
Letting s = 1, we have Phg = gPg-1h' or g-'Phg = Pg-1h' Thus Lemma 3.1 applies and 
the theorem will follow if we can show thatp,«S * G)#k[G]*)p, ~ S. 

Using that the {Pg} are orthogonal idempotents, we see p,«S * G)#k[G]*)p, = 
PIeS * G)p,. But by Corollary 1.5, PIes * G)p, = (S * G),p, = Sp" which is iso-
morphic to S. The theorem is proved. 0 

We now consider coactions. Let R be a ring graded by a group G of order n, and 
consider S = R#k[G]* as in §1. 

LEMMA 3.3. An action of G on R#k[ G]* is given by 

(rph)g = rPhg' for rEO R,Ph EO k[G]*, g EO G. 

PROOF. It suffices to check that (xy)g = xgyg, for x = rph' Y = SPk EO R#k[G]*. 
Now (xy)g = (rphsPk)g = (rshk-1Pk)g = rShk-1Pkg = rS(hg)(kg)-IPkg = rPhgsPkg = 
xgyg. Thus x -> x g is an automorphism. 0 

Clearly, the action in Lemma 3.3 is related to the regular representation of G. 
We may therefore form the skew group ring S * G = (R#k[G]*) * G, in which 

g-'(rph)g = (rPh)g = rPhg' and so rphg = grPhg' all r EO R, h EO G. 

LEMMA 304. p,«R#k[G]*) * G)p, = Lg EEl Rggp, ~ R. 

PROOF. From the group action, gp, = Pg-lg, for any g EO G. Since the {Pg} are 
orthogonal, it follows thatp,«R#k[G]*) * G)p, = p,(LgR#pg-lg) = Lg EEl RgPg-lg 
= Lg EEl Rggp" since p,RPg-l = RgPg-l by Corollary 1.5. We claim that LgRggp, ~ 
R. Any rEO R may be written as r = Lgrg' where rg EO Rg; so define <1>: R --> LgRggp, 
by <I>(r) = Lgrggp,. <I> is clearly an isomorphism of abelian groups. To show it 
preserves multiplication, it suffices to show <I>(rgrh) = <I>(rg) . <I>(rh), for rg EO R g, 
rh EO R h. Now <I>(rg)<I>(rh) = (rggp,)(rhhp,) = rgg(p,rhPh-1)h = rggrhPh-lh 
rgrh(gh)p, = <I>(rgrh), since rgrh EO R gh . The lemma is proved. 0 

THEOREM 3.5 (DUALITY FOR COACTIONS). (R#k[G]*) * G ~ Mn(R). 
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PROOF. It is clear from the action of G on R#k[G]* that G permutes the 
orthogonal idempotents {Pg }. Thus the theorem follows immediately from Lemmas 
3.1 and 3.4. 0 

A natural question to ask at this point is the following: for what other finite-
dimensional Hopf algebras H, with dual Hopf algebra H*, do the analogs of 
Theorems 3.2 and 3.5 hold? That is, when is (A#H)#H* ~ Mn(A)? 

4. Jacobson radicals and a question of Bergman. Returning to a k-algebra A graded 
by G, we compare the Jacobson radicals of A#k[G]* and AI' and the graded 
Jacobson radical of A; in doing so we answer the question of Bergman mentioned in 
the introduction. 

As in [3], the graded Jacobson radical JdA) is defined to be the intersection of all 
annihilators of graded irreducible right A-modules. By standard arguments, Jc(A) is 
also the intersection of the maximal graded right ideals, and the definition is 
left-right symmetric. 

We first consider A#k[G]*. 

THEOREM 4.1. J(A#k[G]*) = Jc#k[G]*. 

PROOF. First, choose any x E J(A#k[G]*), say x = 2.,a,px,' for a, E A, and let V 
be any graded irreducible A-module. By Lemma 2.1, V is an A#k[G]*-module, and 
it is certainly irreducible as an A#k[G]*-module since it is irreducible as a graded 
A-module. Thus V· x = O. We claim Va; = 0, all i (and so a; E Jc(A) and x E 
JdA)#k[G]*). SinceJ = J(A#k[G]*) is an ideal, xPg, = a,Pg, E J. Using the group 
action in Lemma 3.3, since J is certainly G-stable, a;px,h E J, all h E G. Thus 
a; . I = a/2.hPg,h) E J, so Va; = 0, proving the claim. Thus J(A#k[G]*) <: 
JdA)#k[G]*. 

Conversely, let W be an irreducible A#k[G]*-module. By Lemma 2.1, W is a 
graded A-module, by setting Wg = WPg-l. Then W is irreduible as a graded A-mod-
ule, since for any graded sub module V = 2.x EB Vg, we have VPh = 2.15 EB VgPh = 
Vh-I <: V, and so V is an A#k[G]*-submodule. Thus WJc(A) = O. Since Jc(A) 
annihilates all such W, JdA) <: J(A#k[G]*). The theorem is proved. 0 

The fact thatJc(A)#k[G]* <: J(A#k[G]*) could have been obtained from known 
results. For, if H is any Hopf algebra and A any H-module algebra, a Jacobson-radi-
cal type constuction is given by J. R. Fisher in [10]. Where }(A) is the analog of our 
JdA), he proves that }(A)#H <: J(A#H). The other containment is open III 

general. 

COROLLARY 4.2. If A is graded by the finite group G, then J(A I ) = Jc(A) n AI' 

PROOF. For any ring S with idempotent e E S, it is well known that J( eSe) = 
eJ(S)e [12]. Applying this with S = A#k[G]* and e = PI' and the fact that 
PISPI = AIPI (Corollary 1.5), we see that 

J(AI)PI = J(AIPI) = PIJ(S)PI = pl(Ic(A)#k[G]*)pl 

= JC(A)IPI = (IdA) n AI)PI' 

Thus J(AI) = JdA) n AI' 0 
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We now consider leA). We use the following result of Villamayor [23, Chapter 7, 
Theorems 27, 31]. Although proved for group rings, the same arguments work for 
skew group rings [25, Theorem 7.1]. 

PROPOSITION 4.3. Let G act on the ring R. Then feR) * G C; l(R * G), with equality 
if I G I-I E R. Moreover l(R * G)IGl C; l(R) * G. 

We now answer Bergman's question, mentioned in the Introduction, by showing 
that le( A) C; l( A). Bergman had shown that it was true if G was solvable [3]. The 
question was also answered in the special case that A was strongly G-graded in [21]. 

THEOREM 4.4. Let A be graded by the finite group G. Then 
(l)Je(A) C; leA); in fact le(A) = l(Ab 
(2) l( A )IG1 C; le( A), 
(3) if I GI- I E A, then le(A) = leA). 

PROOF. Consider (A#k[G]*) * G, with the group action as in Lemma 3.3. Then by 
Theorem 4.1 and Proposition 4.3, l«A#k[G]*) * G) d l(A#k[G]*) * G = 
(Je(A)#k[G]*) * G, with equality if I GI- I EA. Thus l(PI«A#k[G]*) * G)PI) = 
pll«A#k[G]*) * G)PI d pl«lcCA)#k[G]*) * G)PI· Using Lemma 3.4, l(L.gAggpl) 
d L.gCle(A)\gPI· Since L.gAggpl ~ A, it follows that leA) d le(A). But as Berg-
man notes in [3, Definition 11], le(A) is the largest graded ideal I of A such that 
I n AI is a quasi-regular ideal of AI. Thus l(A)e C; leCA), proving (1). Since the 
containments are equalities if I G I-I E R, (3) follows also. 

For (2), use the fact from Proposition 4.3 that l«A#k[G]*) * G)lGl C; 
l(A#k[G]*) * G = (Je(A)#k[G]*) * G. Since for any ideal I, (PIIPI)IGlC; P/IGlpl' 
the result follows. D 

A consequence of the theorem is that le( A) is a quasi-regular ideal of A. We can 
therefore obtain as a corollary the graded version of a theorem of Amitsur on 
polynomial rings. If A is graded by G, then A[x] is also graded by G if we use 
(A[x])g = Ag[x]. 

COROLLARY 4.5. If A has no nil graded ideals, then lcCA[x]) = O. 

PROOF. Follow the proof in [12, p. 150], with appropriate adjustments for graded 
rings. D 

5. Prime radicals. In this section we compare the prime radicals of A, A#k[G]*, 
and AI' as was done in §4 for the Jacobson radical. These results are analogs of 
results known for groups acting on rings [17]. The prime radical of A will be denoted 
N(A). 

For G acting on a ring S, an ideal 1 is G-prime if whenever (f'iB C; 1, where (f, 'iB 
are G-stable ideals of S, then (f C; 1 or 'iB C; 1. Equivalently, 1 = n g0'g, where 0' is a 
prime ideal of S [15]. 

Analogously, for A a graded ring, a graded ideal I is graded prime if whenever 
lK C; I, for l, K graded ideals of A, then 1 C; I or K C; I. The graded prime radical 
Ne(A) is the intersection of all graded prime ideals of A. 
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LEMMA 5.1. If A is any graded ring and I a graded ideal of A, then I is a graded 
prime <=> I = Pc, the associated graded ideal of some prime P of A. 

Consequently NC<A) = N(A)c, the associated graded ideal of N(A). 

PROOF. It is trivial that if P is prime, then Pc is a graded prime. Conversely, say 
that I is a graded prime. Let;;:; be the set of all ideals J of R so that Je; = I; we may 
apply Zorn's lemma to ;;:; and choose a maximal such ideal, call it P. Say that K :> P, 
L :> P are ideals with KL ~ P, then KcLc ~ P, so either Kc ~ Pc or Lc ~ Pc since 
Pe; = I is a graded prime. By the maximality of P, it follows that K ~ P or L ~ P. 
Thus P is a prime of A. 0 

The prime radical N(A) can also be characterized as an ascending union {N,,} of 
ideals as follows: if a is not a limit ordinal, N" is the sum of all ideals of A which are 
nilpotent mod N,,_I; if a is a limit ordinal, N" = U p<"Np' For A graded by G, we 
make the analogous definitions: (Nc )" = U p<,,( Nc)p if a is a limit ordinal, and 
(Nd" is the sum of all graded ideals of A which are nilpotent mod (Nc),,-I when a 
is not a limit ordinaL 

PROOF. We proceed by induction on a. If a is a limit ordinal, the assertion is 
trivial, so assume a has a predecessor a-I. By induction (Nc),,-I = (N,,-I)C' 
Since (N,,)c is a sum of ideals nilpotent mod (Nd,,-I' clearly (Nc )" ~ (N,,)c' 
Conversely, choose any x E (N,,)c' Since x is in a graded ideal, we may assume that 
x is a homogeneous element. Now x EM, where Mk ~ N,,_I; but then (AxA)k is a 
graded ideal, so (AxA)k ~ (N,,-I)C = (Nc),,-I' Thus x E (Nc )", proving the lemma. 
o 

THEOREM 5.3. N(A#k[G]*) = Nc(A)#k[G]* = N(A)c#k[G]*. 

PROOF. By Theorem 2.9, A#k[G]* /NG(A)#k[G]* ~ (A/NG(A»#k[G]* is semi-
prime, and so N(A#k[G]*) ~ NG(A)#k[G]*. 

Conversely, by Lemma 5.2, it suffices to show that (Nd,,#k[G]* ~ N(A#k[G]*), 
for each a. But if a is not a limit ordinal, (NG)"_I#k[G]* ~ N(A#k[G]*) by 
induction, and (Nd,,#k[ G]* is a sum of nilpotent ideals mod (NG ),,-I#k[ G]*. Thus 
(NG),,#k[G]* ~ N(A#k[G]*). The case of a limit ordinal is triviaL 0 

We note that another proof of Theorem 5.3 could be given using Theorem 6.2. 
However, the present proof is shorter, and Lemma 5.2 is of some interest in its own 
right. 

PROOF. This follows from the theorem, using the same argument as in Corollary 
4.2, and the fact that N(A) n Al = NG(A) n AI' 0 

COROLLARY 5.5. Assume that A has no I G I-torsion. 
(1) NC<A) = N(A). 
(2) If Al is semiprime and the grading is nondegenerate, then A is semiprime. 
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PROOF. (1) It is known that A/N(A) has no IGI-torsion [17, Lemma 1.8] and it 
follows that A/N(A)c has no I GI-torsion; that is, we may assume that A is graded 
semiprime, and we wish to show it is semiprime. Now A#k[G]* is semiprime by 
Theorem 2.9; using the action of G on A#k[ G]* (Lemma 3.3) we may consider the 
skew group ring (A#k[G]*) * G, which is semiprime by Fisher and Montgomery 
[11]. But the Duality Theorem for Coactions gives (A#k[G]*) * G ~ Mn(A). Thus A 
is semiprime. 

(2) By Theorem 2.9, the hypotheses imply that A is graded semiprime. Thus A is 
semiprime by (1). 0 

We remark that Corollary 5.5 was proved in [21] in the special case that A is 
strongly G-graded. 

6. Prime ideals of A and A#k[G]*. In this section, we compare the prime ideals of 
A and the prime ideals of A#k[G]*; these results are analogs of the theorems of 
Lorenz and Passman on crossed products [15]. As a consequence, we obtain an 
incomparability theorem for primes of the ring extension AI <:;;; A. 

Our method of proof is to use the Duality Theorem for Coactions and reduce the 
problem to Lorenz and Passman's theorems; thus we must examine more carefully 
the action of G on A#k[G]*. Recall from §3 that this is given as follows: for a E A, 
Ph E k[G]*, g E G, 

(aph)g = aPhg· 

Note that the fixed ring (A#k[G])c = A . I = A. 

LEMMA 6.1. Let 1 be an ideal of A#k[G]*. Then 
(1) 1 n A = (ng1g) n A, 
(2) 1 n A is a graded ideal of A, 
(3) if 1 is also G-stable, then 1 = (1 n A)#k[G]*. In particular, g n A =1= 0 if 

g =1= o. 
PROOF. (1) Since g n A is just the set of fixed elements in 1, certainly g n A = 

gg n A, allg E G, and so(ng1g) n A = ngCgg n A) = 1 n A. 
(2) Say that a = a . I E 1 n A. For any h E G, Pha = Lgahg-'Pg E g, using 

Proposition 1.4. Since the {Pg} are orthogonal, PhaPk = ahk-,Pk E 1 for kEG. 
Since both hand k are arbitrary, this mean that agPh E 1, all g, h E G. But then 
ag = a g . 1 = aiLhPh) E 1. Thus 1 n A is graded. 

(3) Now assume that g is also G-stable, and choose x = L;a;Pg, E g where g; =1= gj 
if i =1= j. It suffices to show that a; E 1 n A, for all i. Now XPg = ap E 1, and so 

I I gj 

LhEC(a;Pg/ = a;(LhPg,h) = a; . 1 E 1 n A. The lemma is proved. 0 
We can prove the first main result of this section. 

THEOREM 6.2. Consider A#k[G]*, where A is graded by G. 
(1) If P is a prime ideal of A, then there exists a prime q]l of A#k[G]* so that 

q]l n A = Pc. q]l is unique up to its G-orbit {q]lg}, and Pc#k[G]* = ngq]l'\ a G-prime 
ideal of A#k[G]*. 

(2) Ifq]l is any prime ideal of A#k[G]*, then q]l n A = Pc, for some prime P of A, 
and (1) applies. 
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PROOF. (I) Since P is prime, Pc; is a graded prime ideal of A by Lemma 5.1. Then 
PG#k[ G]* is a G-prime ideal of A#k[ G]*, for if tt', ~Ij are G-stable ideals of 
A#k[G]* with U'[:G c::: Pc;#k[G], then «(:I' n A)(':G n A) c::: Pc. Since by Lemma 6.1, 
u' n A and ~i) n A are graded ideals of A, either U' n A c::: Pc; or ~I) n A c::: Pc,' Say 
that u' n A c::: Pc;. Then by Lemma 6.1, L'l' = (d' n A)#k[G]* c::: Pc#k[G]*. Since it 
is a G-prime ideal, there exists a prime ideal l:P of A#k[G]* so that Pc;#k[G]* = 
ngl.pg. Certainly (ng(:pK) n A = Pc;, and by Lemma 6.1, this is just ~.p n A. Finally. 
the uniqueness part: let :2 be another prime of A#k[G]* with :2 n A = Pc;. Then 
n :2 g is a G-stable ideal with (n :2 g) n A = P so bv Lemma 6.1 n ,'l g = K g G~..I ' g"'" 

PG#k[G]* = ng(·pg. But now since G is finite and the {:2g}, {(:pg}. are all primes, it 
follows that :2 = (,ph, for some h EO G, 

(2) Let (:P be any prime ideal of A#k[G]*. Then (:? n A is a graded ideal of A by 
Lemma 6.1; we claim it is a graded prime. For if J, J are graded ideals of A with 
JJ c::: ~p n A, then J#k[G]* and J#k[G]* are ideals of A#k[G]* whose product is in 
~.?; as 6p is prime, one of them, say J#k[G]* c::: (:? But then J c::: Gp n A. proving the 
claim. Now by Lemma 5.1, there exists a prime P of A with Pc; = 6p n A. The 
theorem is proved. 0 

We note that an easy consequence of Theorem 6.2 is that A is a graded prime ring 
<=> A#k[G]* is G-prime. This would provide an alternate proof of Theorem 5.3. 

We now turn to primes of A. Again duality is the key to the argument, reducing 
the problem to Lorenz and Passman's theorem [15, Theorem 1.3]. 

THEOREM 6.3. Let A be graded by the finite group G. and let Q be a graded prime 
ideal of A. 

(l) A prime ideal P of A is minimal over Q <=> Pc = Q. 
(2) There are finitely many such minimal primes, say PI"'" Pm' and m ~I G I. 
(3) If J = PI n··· npm , then JlGlc::: Q, and I = Q if A/Q has no IGI-torsion. 

PROOF. By passing to the ring A/Q, we may assume that A is a graded prime ring 
and that Q = (0). Letting R = A#k[G]*, which is a G-prime ring by Theorem 6.2, 
we apply Lorenz and Passman's theorem to R * G = (A#k[G]*) * G to see the 
following: (1) a prime ideal P' of R * G is minimal <=> P' n R = 0; (2) there are 
m ~I GI such minimal primes. call them P{, P;, ... ,P~,; and (3) l' = P{ n ... np,;, is 
the unique largest nilpotent ideal of R * G and (I')IGl= (0). 

But the Duality Theorem for Coactions gives that R * G ~ M,,(A); since for any 
ideal J' of M,,(A), J' = M,,(J) where J is an ideal of A, there is a one-to-one 
correspondence cp: J' --+ J, preserving intersections and inclusions, between ideals of 
(A#k[G]*) * G and ideals of A. Thus there are m ~I GI minimal primes of A, say 
PI" .. ,Pm, and if J = PI n ... npn1' then JlGl= (0). By Corollary 5.4, when A has no 
I G I-torsion, A is semiprime, and so J = 0 = Q. It remains only to show (I): P is a 
minimal prime if and only if Pc = (0). 

To see this, we must examine the Duality Theorem more carefully. From Lemma 
3.4, the copy of A appearing in Mn(A) is actually 

PI((A#k[G]*) * G)PI = Lg EB AggPI ~A. 
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From above, the prime P' is minimal in R * G = P' n R = O. Using </>, we have P is 
minimal in A = </>(P') n </>(R) = 0 = PIP'PI n pI(A#k[G]*)pI = 0 = PIP'PI n 
Al PI = 0, by Corollary 1.5. Thus, P is minimal in A = P n Al = O. We now apply 
Lemma 2.8 to see that P n Ag = 0 for all g E G; that is Pc = (0). The theorem is 
proved. 0 

As a corollary, we may extend Corollary 5.5(1), to the case when I G I-torsion is 
allowed. 

COROLLARY 6.4. N( A)lGl C Nc ( A). 

PROOF. For any graded prime Q of A, let I = PI n ... nPm as in Theorem 6.3, 
where for each Pi' (Pi)c = Q. Since N(A) C I, N(A)IGlC Q. Since this is true for all 
such Q, N(A)IGlC n Q = Nc(A). 0 

7. Prime ideals of A and A I. In this last section, we compare the prime ideals of A 
and A I. Our first main theorem, on incomparability of primes, follows directly from 
the results of §6. As mentioned in the Introduction, it generalizes Lorenz and 
Passman's theorem on incomparability of primes in the extension R C R * G, where 
R * G is a crossed product. 

THEOREM 7.1. Let A be graded by the finite group G. If P ~ Q are prime ideals of A, 
then P n A I s;;: Q n A I· 

PROOF. By passing to AI Pc, we may assume A is graded and Pc = O. But then Q 
is not a minimal prime, and so Qc =1= 0 by Theorem 6.3. Thus Q n Al =1= 0 by 
Lemma 2.8. 0 

We now turn to the question of primes of A lying over those of AI' and conversely. 
The idea is analogous to that used to study primes of Rand R C , when I G r l E R. 
However, no characteristic assumptions are required here. We summarize what is 
needed about a ring extension fSf C S, where f is a nonzero idempotent of the ring 
S. Although it is well known, a very clear proof appears in [15, Lemma 4.5]. Let 
Spec/S) denote the set of prime ideals of S not containingf, and let Spec(fSf) be 
the set of primes of fS/. 

LEMMA 7.2. Let f be a nonzero idempotent of the ring S. Then the map 1/;: 
P -> fPf = P n fSf sets up a one-to-one correspondence between Specf(S) and 
Spec(fSf). Moreover,for P, PI' P2 prime ideals of s, pt C pi if and only if PI C P2 , 

and p'" is primitive if and only if P is primitive. 

We shall use S = A#k[G]* andf= PI; by Corollary 1.5,fSf= AIPI ~AI. Thus 
there is a one-to-one correspondence between Specp,(A#k[G]*) and Spec(AI). Our 
fundamental theorem is the following: 

THEOREM 7.3. Let A be graded by the finite group G. 
(1) If P is any prime ideal of A, then there are k .,;;1 G I primes PI'··· ,Pk of Al 

minimal over P n AI' and moreover P n Al = PI n ... npk· The set {PI'··· ,pd is 
uniquely determined by P. 
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(2) Given any prime p of Ap there exists a prime P of A so that p is minimal over 
P n A I' There are at most m ..;;; 1 G 1 such primes PI"" , Pm of A; they are precisely 
those primes satisfying (P;)G = PG. 

PROOF. (I) Since P n AI = PG n AI' we may pass to the graded prime ring A/PG, 
and so it suffices to prove the result when 0 = PG = P n AI' By Theorem 6.2(1), 
there exists a prime 0' of A#k[G]* so that 0' n A = (0), and ng0'g = (0). 0' is 
unique up to its G-orbit {0'g}. Now apply t/; in Lemma 7.2; t/;: Specp,(A#k[G]*) ~ 
Spec(AI)' Thus ni0'g)>i- = (0) n AI' Lettingp; = (0'g,)>i-, we have PI n ... nPn = 
(0); throwing away any which are redundant, we have the desired set of m ..;;; 1 G 1 

minimal primes of AI' The uniqueness of the G-orbit {0'g} determines the {pJ. 
(2) Now consider a prime p of AI; P = 0'>i- for some prime 0' of A#k[G]*. By 

Theorem 6.2(2), 0' n A = PG' for some prime P of A. By Theorem 6.3, there are 
finitely may such primes Pp""Pm, with m ";;;IGI, so that (P;)G = PG = 0' n A; 
they are the primes of A minimal over PG. Applying (1), the primes of AI which are 
minimal over P n AI = PG n AI are precisely the set {(0'g)>i-}. Since p is in this set, 
p is minimal over P n A. 0 

As our last topic, we improve the result on Goldie rank obtained by Cohen and 
Rowen in [6]. We will show that the Joseph and Small "additivity principle" [13] 
holds between primes of A and AI' by an argument similar to that used for fixed 
rings in [16]. 

We denote the Goldie rank of a ring R by rk(A); if R is graded by G, rkG(R) is 
the graded Goldie rank of R. The following proposition is due to Cohen and Rowen 
[6, Propositions 1.5, 1.6, Theorem 1.7], suitably restated. 

PROPOSITION 7.4. Assume that A is graded semiprime. 
(I) rk(AI) is finite ~ rkG(A) is finite; in that case rk(AI) ..;;; rkG(A) ";;;1 G 1 rk(A). 
(2) AI is Goldie ~ A is graded Goldie ~ A is Goldie. 
(3) If (2) holds, then A has an Artinian classical quotient ring Q(A) = AT' where 

T = {regular elements in A I}' 

We also recall the additivity principle. 

PROPOSITION 7.5 [13, LEMMA 3.8]. Let ReS be Artinian rings with the same 1, let 
P be a prime ideal of S, and let QI"'" Qr be the primes of R minimal over P n R. 
Then there exist positive integers z I' ... ,z r such that 

r 

rk(S/P) = ~ z;rk(R/QJ. 
i=1 

We can now prove our theorem. 

THEOREM 7.6. Let A be graded by G, and let P be any prime of A such that A/PG is 
a graded Goldie ring. Let PI"" ,Pk be the primes of AI which are minimal over 
P n AI' given by Theorems 7.2. Then AI/p; is Goldie,for all i, and there exist positive 
integers z I' ... ,z k such that 

k 

rk(A/P) = ~ z;rk(AI/p;). 
i=1 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUP-GRADED RINGS 257 

PROOF. By passing to the ring A / Pg , we may assume that A is a graded prime ring 
which is graded Goldie, and P is a prime ideal with Pc = (0) = P n AI = 
PI n ... npk' By Proposition 7.4, A is Goldie, with an Artinian quotient ring 
S = Q(A) = AT' where T is the set of regular elements of AI' Also AI is Goldie, and 
semiprime; since PI is a minimal prime of AI' AI/Pi is Goldie, all i. Now let 
R = Q(AI) =(AI)T; R is also Artinian, so we may apply Proposition 7.5 to ReS. 
Since P n AI = (0), P n T = (0), and so PT survives as a prime in S; moreover 
rk(A/P) = rk(S/PT). Similarly Pi n T= (0) as Pi is a minimal prime; thus 
(Plh, ... ,(Pk)T are precisely the primes of R, and rk(AI/pJ = rk«R/pJT)' Thus 
the theorem follows by Proposition 7.5. 0 

We do not know whether it would suffice to assume that A / P is Goldie, rather 
than A/Pc is Goldie. 
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