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CHAPTERI

Introduction

During the 70's and early 80's, considerable effort was devoted to develop-

ing efficient and reliable time-stepping procedures for transient structural analysis.

Mathematically, the equations governing this type of problems are generally stiff',

i. e., they exhibit a wide spectrum in the linear range. For instance, in thermal

analysis problems, the presence of materials with widely differing conductivities,

such as steel and concrete, may contribute to the spread in eigenvalues. As a fur-

ther example in the area of structural vibrations, the bending stiffness of beams is

typically much smaller than their axial stiffness, which again tends to give widely

varying eigenfrcquencies. Another key characteristic of structural problems is that,

in most areas of application, the response lies in the lower part of the spectrum.

Typical examples are: earthquake engineering, fluid/structure interaction problems

in reservoirs, and others.

The algorithms best suited to this type of applications are those which accu-

rately integrate the low frequency content of the response without necessitating tile

resolution of the high frequency modes. This inevitably means that the algorithm

must be unconditionally stable, which in turn rules out explicit integration. Thus,

the early work in the area was primarily geared to developing unconditionally stable

time-stepping algorithms for linear and nonlinear applications. The most promi-

nent example of that class of algorithms, and one which played a central role in all

subsequent developments, is Newmark's method.
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Within its range of unconditional stability, Newmark's method is implicit.

In typical large scale applications involving nonlinear structures, the cost of New-

mark's algorithm is dominated by the equation solving phase. More recent research

has endeavored to alleviate this source of computational cost while retaining the

requisite stability of the algorithm. Examples of contributions in this direction are

implicit/explicit partition methods [1], staggered procedures for coupled problems

[2], the method of alternating directions [3], and semi-implicit procedures such as

Trujillo's algorithm [4] and element-by-element methods [5,6].

However, by far the most exciting possibility in the algorithm development

area in recent years has been the advent of parallel computers with multipro-

cessing capabilities. Considerable research is presently underway to replace the

traditional algorithms devised for sequential machines by others well suited to par-

allel computing. In this work, we are mainly concerned with the developement of

parallel algorithms in the area of structural dynamics. Thus, a primary objective

is to devise unconditionally stable and accurate time-stepping procedures which

lend themselves to an efficient implementation in concurrent machines. Following

a succinct summary in Chapter II of some features of the new computer architec-

tures which bear on subsequent discussions, and a brief overview in Chapter III of

current research efforts in the area, a new class of concurrent procedures, or Group

Implicit (GI) algorithms, is introduced and analyzed in Chapter IV. Our numerical

simulations show that GI algorithms hold considerable promise for application in

coarse-grain as well as medium-grain parallel computers. Examples of such com-

puters are the Alliant series, the iPSC Hypercube computer, the ETA machine and

the Cray series.
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CHAPTER II

Survey of Present Parallel Architectures

This chapter summarizes the state of the art in the area of parallel architec-

tures. Firstly, a brief history of parallel processing is given, followed by a survey

of recent advances in parallel computers. It bears emphasis that parallel process-

ing is a rapidly evolving field and the focus of intensive research worldwide. Over

one hundred projects on parallel architectures are under way in the United States

universities and industry [1].

2.1. Brief History of Parallel Processing

In the last 40 years sequential (serial) architectures have dominated the com-

puter architecture world. During this period several improvements, in terms of

computing speed, have been achieved, mostly due to increasingly faster electronic

components. However, this avenue for progress is limited by a simple fact of

Physics: "No signal can travel faster than the speed of light in the vacuum".

Thus, while the eletronic components themselves may become increasingly faster,

the computer itself is not. Parallel Processing is widely viewed as a solution to this

problem. By performing several subtasks concurrently, tile total time required to

perform the combined task is reduced.

Even though Parallel Processing is a phenomenon of the 80's, the idea of using

parallelism can be traced back to three computers developed in the late 60's [2],
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namely: ILLIAC IV, CDC Starl00 and Texas Instrument ASC. Nonetheless, these

computers are not based oil the same type of architecture. The ILLIAC IV is an

array processor, while the other two are vector processors.

The array processors [3] are very useful in handling operations with matrices.

They are constituted of a control processor and arithmetic processors. Its operation

is initiated by the control processor fetching an instruction and determining if it is

a matrix operation or not. If it is not then it performs it, otherwise it passes the

instruction onto the arithmetic processors, with each processor holding the part

of the matrix being operated inside its own local memory. Since all processors

receive instructions from the control processor simultaneouly, the entire matrix

operation proceeds in parallel. The FPS-164 Scientific Computer 1 is an attached

processor with an architecture based on array processor technology [4]. In order

to ofiqoad the interactive parts of the design and analysis in engineering projects,

Swanson Analysis System Inc., added the FPS-164 attached processor to its DEC

Vax-ll/7S0 superminicomputer [5], making of it a more emcient machine.

The vector processors are also know as pipeline processors [3]. In these com-

puters a particular vector instruction operates in a sequence of operands (a vector)

rather than on single operands. Vector processing involves a technique known as

pipelining, that can be understood simply with reference to an assembly line. Each

stage in the pipeline always performs the same subtask to different opcrands that

go through it. This technique is designed to exploit the bandwidth data movement

outside the pipe in order to keep the pipeline saturated. One of the earliest vector

processors is the CDC Starl00 [6] 2. Its central processor has a pipeline arithmetic

unit, which segments ariLhmetic computations into a sequence of basic operations.

1 Floating Point S_.jstem, Inc.

2 Control Da_a Corporation
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The arithmetic unit can perform basic operations simultancously on independent

pair of data elementsto stream through the pipeline. The Texas Instruments Ad-

vanced Scientific Computer (ASC) a is another example of this first generation

of vector processing supercomputers [7]. The next generation of supercomputers

that exploits vector processing is exemplified by: the CRAY-1 4 which contains 13

independent pipelines referred to as functional units (to carry out a specific task:

multiplication, addition and logical operations), and the CDC Cyber 205 5, which

consists of up to 4 pipelines, each of which performs a variety of operations.

Both array processors and vector processors are SIMD machines (section 2.2.5).

For these machines, the same instruction is executed simultaneously by all proces-

sors on different sets of data.

In a wider sense, some degree of parallelism can be found in other early comput-

ers, in so much as different components could operate concurrently. For instance,

while the central processing unit is busy performing computations, the input could

be read in or the output printed out, by the appropriate devices.

Aside from these limited uses of parallelism, true multiprocessing computers

only began to become widely available in the market and to be the subject of

extensive research over the past decade. Multiprocessing is achieved in MIMD

machines (section 2.2.6). For these, all processors execute simultaneously different

intructions on different sets of data. One of the first computers in this category

was built by linking together two SIMD processors [3], by Cray Research Inc. The

CRAY-XMP consists of two redesigned versions of CRAY- 1 supercomputers placed

back-to-back, which can communicate via a cluster of very faster registers.

3 Tezas Instrument, Inc.

4 Cray Re_earch, Inc.

5 Control Data, Inc.
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A fundamental characteristic of a Parallel Processingsystem is its granular-

ity, [8]. The granularity of a system is the size of the units of work allocated to

each processor. Coarse-grain parallelism involves computational processes at the

outermost level of program control and implies a small number of large and com-

plex processors. On the other hand, in fine-grain parallelism the unit of work is

the execution of a statement and it implies a large number of small and simple

processors. The medium-grain parallelism consist of the cases between the other

two extremes.

Lincoln [9] points out that a major choice confronting computer architectures

is the degree of which they can be considered general purpose or special purpoae.

In the general purpoae category several different parallel architectures have ap-

peared ranging from super computers with only a few powerful processors, i. e.

coarse grained systems (CRAY XMP, CRAY 2, and ETA-10) to massively parallel

computers with thousands of processors, i. e. fine-grained systems (Connection

Machine of Thinking Machine Inc., with up to 65,536 processors). Other architec-

tures (Alliant FXS, Intel iPSC hypercube) fall between these two extremes, i. e.,

while not qualifying as supercomputers, their processors are much more powerful

than those in the massively parallel machines (medium-grained systems). Even

though they are classified as general purpose machines, they arc suited for solv-

ing specifically scientific problems, due to the programming languages available in

them. Special purpose machines are designed to solve a particular problem, or class

of problems. Norrie [3] divide them into two categories:

1) The architecture is modeled to reflect the physical structure of the problem

to be solved. An example would be the Finite Element Machine which is a

research computer built at Nasa's Langley Research Center [10]. It consists

of a minicomputer front end, called controller, attached to a MIMD array of
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asynchronousmicrocomputers, referred to as tile array. There is no shared

memory in the system and each processorruns its own program on its own

data. An additional circuitry providesa rich interconnection environment for

communication and cooperative computation. The basic idea is that each

processoris assignedto eachnode of the finite elementgrid. Each processoris

connected to its immediate eight neighbors [11], and all the processorsin the

systemsare conneted through a global bus. Very fast results can be achieved

in this machine, but difficulties arise when the physical problem structure is

altered.

2) The architecture is designed to reflect the general solution method for that

class of problems. An example is the Parfem, a parallel finite clement machine

developed at University of Calgary, Canada [3]. The generator of element

stiffness matrices, or Gen, is an array-type processor. Programmed in the

controller are the algorithms to bc used for generating the stiffness matrices

and the algorithm for determining the order in which the stiffness matrices are

to be generated. The system-matrix assembler, or Ass, is a vector processor,

while the actual architecture of the Solut, equation solver, has not yet been

established.

Since special purpose machines perform specific tasks, a general approach for

this kind of technology is rare. Nonetheless, Kung [12] provides a general guide-

line by introducing the concept of systolic architecture, which is a methodology

for mapping hlgh-level computations into hardware structures. Law [13] defines

systolic architectures as: "devices attached to a conventional computer to perform

a special purpose function with extreme high speed". In these machines the single

processing element is replaced by an array of processors with built in hardware

instruction. Several systolic algorithms have been developed, especially systolic

matrix algorithms, which are useful in finite element computations.
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Despite recent progress, there remains a need for more efficient processors

and inter-connection networks. For example, Adams and Crocket in [10] show

that floating-point arithmetic, communication and synchronization times repre-

sent a significant shareof the total execution time of a parallel algorithm. On the

other hand, the interface between user and parallel machine is a challenge that

software specialistswill have to deal with promptly. Furthermore, becauseof the

wide variety of parallel architectures, the issue of portability is a major concern

to code developers. The task of porting parallel codesfrom one computer to an-

other still involves a great deal of restructuring of the algorithm in order to make

it work well. Someattemps have been made to help usersof parallel computers.

In [14] a system is presented that helps users "fine-tune" the output of an auto-

matic system. Another approach to portability [15] is to develop and implement

an abstraction (called monitor) that is independent of the architecture or parallel

processing primitive on any particular machine. As a final example, in [16] the

design of user oriented software to support the solution of large problems by en-

gineers and scientists using a 64-bit array processor, which shares memory with a

32-bit minicomputer is developed. It provides the user with tools to help in the

creation and manipulation of large matrices using the hypermatrix scheme.

2.2. Models of Computatlon

Computers operate on a stream of data through a stream of instructions, i.

e., a computer program is a sequence of instructions which modifies a set of data.

According to the nature of these streams, computers can be classified into four

categories:

• Single Instruction stream, Single Data stream (SISD)

• Multiple Instruction stream, Single Data stream (MISD)
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• Single Instruction stream, Multiple Data stream (SIMD)

• Multiple Instruction stream, Multiple Data stream (MIMD)

A basic issuein parallel processingis that of the organization of the system's

memory. The SIMD and MIMD modelsof computation, prevalent among parallel

computers, can be further classified, according to how their processors communi-

cate, into

• Tightly coupled systems or Shared Memory Computers

• Loosely coupled systems or Interconnection Network Computers

A discussion of these two forms of communication is given in sections 2.2.1 and

2.2.2. In sections 2.2.3 to 2.2.6 the models of computation are described.

2.2.1. Shared Memory Computers

Shared Memory computers are also known as Parallel Random Access Ma-

chines (PRAM). In this kind of computers communication between processors oc-

curs through the common memory, via variable sharing. In other words, if processor

A wants to communicate the value of a variable x to processor B, two steps nmst

be performed. First processor A writes the value of x in its address in memory.

Then processor B reads it from the same location.

While a program is being executed, all processors are allowed to access the

common memory. Depending on whether more than one processor is permitted to

simultaneously read from or write into memory, an additional classification can be

established:

• Exclusive_Read, Exclusive_Write (EREW). Only one processor can access (read

from or write into) a specific memory location at a time.
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• Concurrent_Read, Exclusive_Write (CRE\V). Several processors are allowed to

read from the same memory address simultaneously, but only one processor

can write into a specific memory location at a time.

• Exclusive_Read, Concurrent_Write (ERCW). Only one processor can read from

a specific memory location at a time, but several of them can write on the same

address simultaneously.

• Concurrent_Read, Concurrent_\¥rite (CRCW). Several processors are allowed

to read from or write into the same location in memory at the same time.

Writing simultaneously on memory may give rise to contention problems if

several processors attempt to store a different value in the same address. In this

case, a decision needs to be made to select which value is to be stored. Usually,

priorities can be set so that only one of the values is stored. By contrast, simultane-

ously reading from the same memory location does not cause contention problems,

since the contents of the location is not changed as a result of the operation.

A pressing issue regarding Shared Memory computers is that, for a large num-

ber of processors, they may be either expensive to built or simply unfeasable. Akl

[17] discusses this issue:

"When one processor needs to gain access to a datum in memory, some

circuitry is needed to create a path from that processor to the location in

memory holding the datum. The cost of such circuitry is usually expressed

as the number of logical gates required to decode the address provided

by the processor. If the memory consists of M locations, then the cost of

the decoding circuitry may be expressed as f(M) for some cost function

f. If N processors share that memory, then the cost of the decoding
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circuitry climbs to :\r x f(:'tl). For large N and M this may lead to

prohibitively large and expensive decoding circuitry between processors

and the memory".

While costs can be reduced in several ways, such as, dividing the memory

into R blocks, say of M/R locations each, in practice shared memory computers

have only a few processors. Some examples of such computers are the following:

Denelcor Heterogeneous Element Processor (HEP) s with 8 processors, Alliant

FX8 T with up to 8 processors, and Sequent Balance s with up to 30 processors.

2.2.2. Interconnection Network Computers

The Interconnection Network computers are an assembly of loosely coupled

processors. The communication between processors is entirely done via a com-

munication network. Depending on the nature of this network, several different

architectures can be achieved. The ideal network is that in which each processor

is connected to all others. In this case, the communication is immediate between

any two pairs of processors. However for a large number of processors the ideal

network is unfeasible, since the total number of lines to interconnect N processors

is N(N - 1)/2 (N - 1 lines leave each processor). In addition, the physical size

of each of the processors limits the number of connections that can be made to it.

Several communication networks based on direct communication between sets of

processors have been proposed. Some of them are described next.

and

1) Linear Array. Here each processor P, is connected to its neighbors P,-1

Pi+l through a two-way comn-mnication line. The processors on the extremes,

6 Denelcor, Inc.

AIliant Computer oCy_tems Corporation

s Sequent Computer Systems, Inc.
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P1 _ % P. Ps %

Figure 1. Linear array connection, [17].

i. e., P0 and PN have only one neighbor and so only one line is connected to each

one of them. Figure 1 exemplifies this network for N = 6

2) Two-Dimensional Array. Here the processors are arranged in a 2-D array

of N 1/2 by N 1/2 elements. The processor in row i and column j, called Pi,j, is

connected to its neighbors: Pi-l,j, Pi+1,j, Pi,j-1 and Pi,3+l. The processors located

on the extreme rows and/or columns will have only two or three neighbors. Figure 2

exemplifies this network for N = 3.

COLUMN
NUMBER 0 1 2 3

ROW 0
NUMBER

B

Figure 2. Two-dimensional array connection, [17].

3) Cube Connection. Here the total number of processors is N = 2q, where q
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is an integer greater or equal to one. Each processor is connected to q others so

as to form a q-dimensional cube or hypercube. The neighbors of Pi, say Pj, are

obtained as follows: the binary representation of j with q bits is obtained from the

binary representation, also with q bits, of i differing only in one single bit. Figure 23

exemplifies the hypercube network for q = 0, 1,2, and 3. For the processors that

axe not connected directly, communication is done via its neighbors. In this case

it will take at most q steps for a processor to communicate with another.

q=0

q=l q=2

q=3

Figure 3. Cube connection: q = 0, 1, 2, and 3, [8].

4) Tree Connection. He.re the processors are arranged as the nodes of a com-

plete binary tree. Thus, if the tree has d levels then the number of nodes is

N = 2 d - 1. Each node in the tree is a processor. Each processor in level i is con-

nected to its parent at level i + 1 and to its two children at level i - 1. Evidently,

the processor in the root is connected only to its children and the processors in the

leaves are connected only to their parents. Figure 4 exemplifies this network for

d=4.

There is a wide variety of possible interconnection networks. The above are
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LEAVES

LEVEL 3

LEVEL 2

LEVEL 1

LEVEL 0

Figure 4. Tree connection, [17].

just a sample. The choice of which one of them to use depends on the application,

the number of available processors, the computations themselves and the desired

speed-up.

The number of processors in Interconnection Networks computers is typically

much higher than in Shared Memory computers. Some examples of the former are:

Caltech Hypercube(cube connected with q = 6, i. e., 64 processors), Intel iPSC 9

(cube connected with q = 5,6 or 7, i. e., 32, 64 or 128 processors, and Connection

Machine 10 (cube connected, containing 65,536 processors).

2.2.3. SISD Model

This model consists of one single processor that receives a single stream of

operations which modify a single stream of data, Figure 5.

The control sends an instruction to be executed, i. e., an arithmetic operation,

9 Intel Corporalio_._

lo Thinking Machine, _nc.
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CONTROL INSTRUCTION

STREAM t PROCESSOR

OATA

STREAM I MEMORY I[

Figure 5. SISD computer, [17].

on a specific datum that is stored in memory. No parallelism is possible in this

model, since it contains one processor only. Most conventional computers fall into

this category.

2.2.4. MISD Model

In this model, N processors perform different streams of instructions on the

same stream of data, Figure 6.

._ PROCESSOR L INSTRUCTION I CONTROL II I1 STREAM t 1

MEMORY
I DATA , ---_

STREAM _ •

PROC:SSOR

PROCESSOR L '_STRUCTION I CONTROL 1I I2 STREAM 2 2

L INSTRUCTION I CONTROL
F STREAM N N

Figure 6. MiSD computer, [17].

This computer architecture is useful when the same data is to be used for

several different computations. An example of the kind of problem that is amenable
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to efficient solution in a MISD computer is that of determining if a number is prime

[17]. In this case, each processor divides the number by a possible divisor (any

number between 1 and the number itself), issuing a flag in case it succeeds and

thereby stopping the process. The class of problems that can be solved efficiently in

MISD computers is very limited. The main disadvantage of these machines is the

fact that the data cannot be modified by the processors. This is a very stringent

limitation in many fields of application.

2.2.5. SIMD Model

The computers classified under the SIMD model contain N processors. Each

processor contains its own local memory, where programs and data are stored. All

processors operate under the same control unit, which issues the same instruction

to all of them to be performed on a different data set. In this model all processors

operate synchronously, Figure 7.

The level of complexity of the data, as well as the instructions to be executed

in a SIMD computer may vary widely, from a single number to a list of strings and

from an arthimetic operation to a complete program. In many applications, partial

results obtained during the execution by the different processors may need to be

exchanged among them. In this model, the communication among processors is

achieved in one of two ways: through a shared memory (section 2.2.1) or through

an intereonnectlon network (section 2.2.2). Even though the SIMD model can

be applied to a.broader range of problems than tt_e preceding models it still is

limited to those which can be subdivided into identical subproblems. An example

of the SIMD concept can be found on the vector unit of a CRAY, in which the same

operation is to be performed on all components of a vector concurrently. Another

example of a SIMD model is the GF-11 of IBM, a special purpose computer which

has 576 processors (including 64 backup processors). Comnmnications are (lone

- 17-



SHARED ORMEMORY 1INTERCONNECTION NETWORK

DATA DATA DATA

FREAM STREAM STREAM
1 2 N

PROCESSOR PROCE PR

' 2 • • • t,

INSTRUCTION I
STREAM

CONTROL

Figure 7. SIMD computer, [17].

via an interconnect network. Some additional flexibility is achieved by using local

registers to control the behavior of each processor.

2.2.6. MIMD Model

The MIMD model concerns N processors, N streams of instruction and N

streams of data. This architecture enables all problems to be solved in parallel, as

long as parallelism exists in the application. Thus, it is a general purpose architec-

ture. Figure 8 shows a schematic of a MIMD computer.

Each processor has its own control, arithmetic and logic units, as well as a local

memory. Each control unit issues its own stream of instructions to its respcctive

processor. All processors can execute independent programs concurrently. As in
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S

SHARED MEMORY

OR

INTERCONNECTION NETWORK

S

INSTRUCTION
STREAM

1

INSTRUCTION
STREAM

2

DATA
o

INSTRUCTION l

S,REA }

Figure 8. MIMD computer, [17].

the case of the SIMD model, the communication between processors is achieved

through a shared memory (section 2.2.1) as well as through an ]nterconnection

network (section 2.2.2).

=

The MIMD class of computers represent the most general and. powerful model

of parallel computers. Here the problems to be solved are in general asynchronous,

which means that all processors are executing independent tasks simultaneously.

Initially, all processors are free and the parallel algorithm starts to be executed

by an arbitrarily chosen processor, which creates the tasks to be performed. Once

a task is created it is assigned to a free processor (a processor is freed when it

completes the execution of a task). In case no free processor is available, the
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processstands by until a free processorbecomesavailable. It is important to note

that the idle time of processorsdepends very much on the way the problem is

implemented, sinceas long as there is a free processorand a task to be performed

no time is "wasted".

Most parallel computers currently in the market are MIMD models. Some

examplesof MIMD machinesare: Alliant FX8 (with up to 8 processors),Denelcor

HEP (with up to 50 processors)and Intel iPSC (with up to 128processors).

2.3. Parallel Computers

In this section somerecently developedparallel computers arediscussed.Spe-

cial attention is devoted to the description of the Alliant FX8 computer, where

most of the simulations discussedin the sequelwere conducted.

IBM/NYU Ultracolnputer [8,18]

IBM/NYU Ultracomputer is a researchproject at New York University. The

design of the Ultracomputer approximates a paracomputer (a multi processorin

which multiple accessesto the samememory location are servedin the same time

required for a single access)by using message-switchingnetwork connected to a

central shared memory. It is an exampleof a parallel computer whosememory is

reconfigurable betweenglobal and local. The initial configuration, the RP3, has

512 processors,with the peak processingpower of about 500Mflops.

Connection Machine CM-2 [18]

The Connection Machine is designed by Thinking Machine Inc. It is a mas-

sively parallel architecture. It has 65,536 processors. It is an example of a SIMD

machine and it has been extensively used for Artificial Intelligence applications.
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It consistsof two parts: a front end machineand a hypercube of 64k processors.

Singledata instructions areexecutedby the front end, while the CM executeslarge

data items.

Intel IPSC [19]

The Intel iPSC is an exampleof MIMD machine. It is basedon the CalTech's

Cosmic Cubic Design. It was the first commercial computer using an intercon-

nection network of the hypercube type. In present models, it offers up to 128

processors.The individual processorshaveup to 512Kb of memory, and the con-

nections are provided by a high speedEthernet. It also has an intermediate host

machine (Intel 310), which servesasboth the control processorand the user inter-

face running UNIX.

Intel iPSC/2 [8]

The iPSC/2 is the current version of the iPSC, which representssignificant

advancesover the original iPSC. Eachnodeof the iPSC/2 isa fimctionally complete

computer with its own processor,memory and communication facilities. The node

processoron the iPSC/2 is a four-MIPS Intel 80386processor. Each individual

node can have up to 8 MBytes of memory, and the communication is done via

a Direct-Connect routing module (DCM) on each node. The problem of passing

message to distant processors, is solved efficiently by the DCM.

Sequent Balance [20]

The Balance system is a MIMD multiprocc._._or (another name for share(t mem-

ory machines). The Balance CPUs are identical general purpose, 32-bit micropro-

cessors. All processors share a single pool of memory. Also, all processors, memory

modules, and I/O controllers plug into a single high-speed bus. The scheduling for
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the processors is done automatically by themselves, to _'nsure that all processors

are kept busy as long as there are cxecutable processes available. Tile Balance

systems are available in two models, the Balance S000, with 2 to 12 processors,

and the Balance 21000, with 4 to 30 processors. Both Balancc models can be con-

figured with 4 to 28 Mbytes of memory and provide 16 Mbytes of virtual address

space per processor.

Alliant FX8 [8,21,22]

The Alliant FX8 is an MIMD machine with shared memory. Its basic approach

to parallel processing is to use hardware for the scheduling and synchronization of

the multiple processors and to develop compilers that automatically break up pro-

grams into those parts that can be vectorized and those that must run in scalar

form. The Alliant architecture is based on two distinct, but interconnected, re-

source classes:

• The interactive proces._or_* (IP_) comprise an expandable pool of computers

that execute interactive user jobs and the operating system in parallel with

each other and with the computational complex (the second resource class).

• The computational complez introduces the Alliant concurrency, which groups

up to 8 processors, called computational elements (CE._), in a complex. Each

CE is a 4450 - KWhetstone (32-bit) general purpose microprogrammed com-

puter with an integrated vector instruction set. Each CE delivers 11.S MFLOPs

peak performance (32-bit).

Concurrency initiation, synchronization, and suspension are accomplished by

the Concurrency Control Unit (CCU) in each CE and an interconnecting Concur-

rency Control Bu_. The Concurrency Control Bus provides a high-speed commu-

nication path between CCUs that is independent of program data and instructions
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paths. The (CCU) is an 8000-gateCMOS gate array that connects the CEs of

a complex. The CCU controls Alliant concurrency and assureshigh parallel pro-

cessingemcieney. The CCU interfaceswith the instruction unit of a CE and up

to sevenother CCUs to control up to eight CEs running concurrently. Because

it is the hardware that performs the scheduling and synchronization of multiple

CEs in the computational complex, the performancespeed-updeliveredto a single

application approachsthe number of CEs installed.

CONTROL
BUS

(with permission of Alliant Computer Systems)

Figure 9. Alliant architecture, [8].

The Concentrix operating system is an implementation of the Berkeley 4.2
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UNIX operating system. Concentrix supports parallel processing without pro-

grammer or operator intervention. The system manages two types of processes

and dynamically schedules jobs on available processors as long as work remains.

Compute-intensive jobs take priority on the computational complex; interactive

user jobs, input/output, and other operating system activities are scheduled for

any available IP or otherwise idle computational complex. Figure 9 shows a sketch

of the Alliant architecture.

The software optimization is done at compilation time by turning on/off the

optimization options. The optimizations available are: concurrency, vectorization

and global optimization (done by the machine to avoid "unecessary" operations

that might exist in the code).
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" CHAPTER III

Survey of Parallel Algorithms

Akl [1] defines a parallel algorithm as a solution method for a given prob-

lem destined to be performed on a parallel computer. In [2] Noor defines vector

computations as simultaneous processing of several independent data streams on a

single processor, and parallel computationa as simultaneous processing of indepen-

dent streams of data on multiple processors. The main difference between these

two modes of computations is their CPU performance compared with the scalar

mode. While vector processing can significantly reduce CPU time, parallel pro-

cessing increases CPU time (due to overhead), but reduces the wall-clock time.

In computational mechanics a prominent role is played by the finite clement

method. Several avenues for parallelizing this method have been proposed. In [3]

an array of systolic processors for doing finite element calculations is presented.

Systolic arrays are a network of very simple processors, which operate in parallel

and are usually designed as special purpose systems (see Section 2.1). In this

systolic array there is one processor allocated for each node of the finite element

mesh. Each processor maintains one row of the coefficient matrix either in element

or global form. Connectivity and data flow between processors is dictated by the

connectivity of the nodes in the finite element mesh and can be generated as the

element connectivity is defined.

In a more abstract sense, diffcrent approaches to the parallelization of the

finite clement method have been considcred [4]:
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• ,.qubdomainsplitting. It is basedin the "divide and conquer" technique. Here,

the task to be performed is divided into subtasks that arc either independent

or looselycoupled (to reducethe extent of communication amongprocessors).

The idea is one of domain (or spatial) decomposition, i. e., the domain is

divided into regions(that canevenoverlap). The problem is then decomposed

into the solution of boundary valueproblemsin the subdomains. Sincethe data

on the interface of the subdomainsis not known an iterative solution procedure

is necessary.In [5] Rodrigue considerstwo methods of decomposition: one in

which the decomposition is made without regard to the partial differential

equations being solved and the another in which tile decomposition is made

according to the heuristics of the solution of the partial differential equation.

• Substructuring. This concept is closely related to that of subdomain splitting.

It can also be identified at the algebraic level with partitioning of the system

matrices. To achieve a perfectly balanced workload distribution is generally an

intractable combinatorial optimization problem. In [6] Flower et al. propose

a satisfactory approximate solution for this problem by means of an analogy

to the phenomenon of annealing in solids.

• Operator splitting. Splitting provides a generalization of substructuring. Split-

ting strategies can be developed in a variety ways. One example is the method

of alternating directions [7], whereby a multidimensional problem is reduced

into a series of one-dimensional problems. Another example is provided by the

method of fractional steps [8].

Element-by-element strategies. In finite element calculations, global arrays

are assembled fl'om element contributions. This modular characteristic of the

method can be taken as a basis for thc formulation of splitting schemes in which

the elements in the mesh are treated sequentially [9]. Although the method
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considerably reducesthe storage requirements with respect to implicit algo-

rithms, its inherently sequentialnature renders it of limited value for parallel

computing.

In large scalenonlinear analyses, the most costly phase of the computations

is the repeated solution of systemslinear algebraic equations. Considerable re-

searchis presently being devoted to the developmentof parallel equation solvers.

In Section 3.1 somedirect and iterative techniques that have been exploited are

presented. For transient problems, several techniqueshave been proposed for the

integration of the equationsof evolution which broadly fall into two categories: ex-

plicit and implicit methods. In Section 3.2 the tradeoff between explicit or implicit

schemes is discussed.

3.1. Equation Solvers

In many finite element applications, the solution phase is responsible for a

large fraction of the execution times. Whereas the element computations can be

easily performed in parallel, since they constitute independent operations, equation

solvers are not trivially parallelizable. The systems of equations arising in the

displacement method are of the form

Ku --- f (3.1)

where K is the stiffness matrix, u is the vector of nodal displacements, and f is

the vector of effective nodal forces. In nonlinear applications solved 1)y means of

the Newton-Raphson method, K is the tangent stiffness matrix, u is the vector of

increment of nodal displacements, and f is the vector of residual forces.

Methods to solve (3.1) based on the direct factorization of the matrix K are

called direct methods. Itcrativc solvers constitute the other main solution strat-
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egy and have been applied since the early 60s [10]. A typical iterative method

involves the inital selectionof an approximation u(°) to u, and the determination

of a sequenceu(I), u(2),u(3),... , such that the limi__._ u(i) = u. Iterative solvers

typically require considerable less storage than direct solvers. In terms of perfor-

mance, direct methods of solution are generally faster than iterative methods and

have been preferred for use on sequential machines. However, because of the paral-

lelism inherent in iterative solvers, since the advent of parallel and vector computers

methods like preconditioned conjugate gradients, successive overrelaxation (SOR),

Oauss-Seidel, and point Jacobi's have elicited renewed attention.

3.1.1. Iteratlve Methods

Consider the following system of linear equations

Ax = b (3.2)

where A is an nxn coefficient matrix, x is the solution vector with n components

and b is a given column vector also with n components. Widely used iterative

methods [11] to solve a system like (3.2) are: Point Jacobi, Gauss Seidcl and

Successive Overrelaxation methods. The solution vector exists and is unique if nnd

only if A is nonsingular, i. e., A -1 exists, since

x=A-_b (3.3)

From here on it is assumed that the matrix A is nonsingular and furthermore that

its diagonal terms, i. e., a,i are all nonzero. This matrix can be decomposed as

A=D-L-U (3.4)
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where, D, L and U are respectively diagonal, lower triangular and upper triangular

matrices. Their respective elements are:

dii -" aii, dij = 0 for i # j

lij = -aij for i > j, and lij = 0 for i _< j (3.5)

uij=-aij fori<j, anduij=0fori>_j

Using (3.4), equation (3.2) can be rewritten as

Dx = (L + U)x + b. (3.6)

The point Jacobi method is defined by the recurrence relation

Dx (m+l)=(L+U)x (m)+b, m>_O. (3.7)

Since the elements in the diagonal of A are nonzero, D is nonsingular, and (3.7)

can be rewritten as

x (m+_) = D-_(L + U)x (m) + D-lb, rn >_ 0. (3.8)

The matrix J = D-I(L + U) is called point Jacobi matrix associated with the

matrix A.

One of the disadvantages of this method is that all the components of x (m)

need to be saved while computing x (re+l). A way of avoiding this shortcoming is

by taking advantage of how the matrices D, L and U are formed, i. e,

i--1 n

aiiX `m+l, _- -- _-_ClijX_ m+l, - _ ClijX_ rn, -_-hi, 1 < i < r,, rrl >__ O. (3.9)

j=l j=i-t-1

In matrix notation (3.9) can be translated into,

(D - L)x (''+x) = Ux (m) + b,
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Sincethe lower triangular matrix (D - L) is nonsigular (3.10) can finally be rewrit-

ten as

x ('+11 = (D - L) -lUx ('') + (D - L)-lb, (3.11)

This iterative method is the point Gauss-Seidel method and the point Gauss-

Seidel matrix associated with matrix A is defined as G = (D - L) -1U.

An alternative iterative method is the SOIl. (Successive Overrelaxation

method). To derive it, define first the auxiliary vector iterates _(")

D_ ("+_) = -Lx (m+l) - Ux (m) + b. (3.12)

Then, the method is defined as

x (m+') = x (m) + w[_ ('''+1) - x ('')] = (1 - w)x _m) + w:_ (''+1), (3.13)

where w is the relaxation factor. From (3.13) one can vcrify that X (re+l) is a

weighted mean of x (m) and :_(m+l). When w > 1 the weight is an overrelax-

ation weight, otherwise it is an underrelaxation weight. Putting (3.12) and (3.13)

together the following relation is derived:

(D - wL)x (re+l) = [(1 - w)D + wU]x (m) + wb. (3.14)

Note that D - wL is nonsingular for any w, and thus, the final form of the SOR

method can be written as

x (m+_) = (D - wL)-'[(1 - w)D + wU]x (m) + w(D -wL)-'b. (3.15)

The matrix R = (D - wL)-'[(1 - w)D + wU] is called the point successive relax-

ation matrix. Equation (3.15) can be rewritten in the form

X (re+l) = X (m) -[- wD-'(b - Lx (m+') - Ux (m) - Dx ('')) (3.16)
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A moreelaborate iterative procedureis the preconditioned conjugate gra-

dient (PCG) method. The PCG is anextensionof the conjugategradient method,

which is an extensionof the method of the steepestdescent.The latter is basedin

the following [12]:

Let f have a continuous first partial derivative. The gradient vector of

f is g(x) = V'f(x) T, or simply gk. The method of steepest descent, for

minimizing a function, is defined by the iterative algorithm

Xkq-1 _ Xk -- OZkgk, (3.17)

where at, is a nonegative scalar minimizing f(xk - agk). That is, from

the point xk it searches along the direction of the negative gradient -gk

to a minimum point on this line; this minimum point is taken to be xk+l.

The first step in tile conjugate gradient method is identical to a step descent

method; each succeeding step moves in a direction that is linear combination of

the current gradient and the preceding direction vector [12]:

Given an approximation solution x0 to x, define

do =-g0=b-Ax0,

and at each iteration k define the method as

xk+_ = xx. + a'_-dk (3.1o)

--gTdk (3.20)
ak -- dTAd k

dk+l = --gk+l q-flk¢lk
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T

g_+lAdk (3.22)
3k- d_Adk

The conjugate gradient method can be improved by way of preconditioning.

This technique consists of splitting the coefficient matrix in a form: A = M - N,

such that the system: Mx = b is computationally inexpensive compared to the

original system. When M -1 = A -1 the iteration converges in one step. The

closer M -a is to A -1, the faster the convergence of the method. A discussion of

preconditioning strategies may be found in [13].

The implementation of the aforementioned iterative methods in parallel com-

puters has received much attention. Adams in [14] shows how to reorder the compu-

tations in the SOR algorithm to maintain the same asymptotic rate of convergence

as the row-wise ordering and to obtain parallelism at different levels. Two major

problems are introduced when this reordering is performed: it is unlikely that an

ordering can be developed that is best for every new parallel machine, and also

reordering computations can change the mathematical properties of the algorithm.

Discretizing an elliptical partial differential equation on a regular domain of

9-point stencil as in Figure 1 gives rise to a system of linear equations of the type

(3.2).

X X X X X X X x x x

X 0 0 0 0 0 0 0 0 x

x o o o:dCo o o o x
X 0 0 0/_\0 0 0 0 x

X X X X X X X X X x

Figure 1. Discretized domain, [14]
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For simplicity, one unknown per node is considered here. An "ordering;' means

that the nodes must be updated sequentially. The first step of this method is to

order the unknowns at the nodes to indicate which nodes must be updated before

the others. Using the multi-color SOR method [15] so that the nodes of same color

are updated simultaneously the desired parallelism is created. There are several

possible multi-color orderings, with probably differing rates of convergence. To aid

the choice of an ordering, one imposes that the new ordering must have the same

rate of convergence as the row-wise ordering of the domain. The row-wise ordering

is shown in Figure 2, which indicates that a node may not be updated at iteration

k + 1 until all the nodes in the stencil to the left and below are updated.

0 0 0

0--0--0

'+'Y'i'\'
0 0

k+l k+l k+l

Figure 2. Stencil rule for row-wise ordering, [14]

A systematic procedure to find the 4-color ordering for this stencil with the

same rate of convergence as that of the row-wise ordering is given in [16]. The basic

idea is to apply the stencil rule given in Figure 2 to the grid in Figure 1, but allowing

the nodes to be updated on subsequent iterations as soon as the appropriate data

is available. Figure 3 shows the sequence of update times for each node. The three

sets are each in a different iteration of the SOR method. In a parallel computer

the update is performed by color, i. e., first all R nodes are updated, followed by

the B nodes, the G nodes and finally the O nodes.
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R B G O [R B G O

5,9 6,10 7,11 g,12 [ 9 10 II 12

G O ] R B G O R B

3,7,1| 4,g,12 [ 5.9 6,10 7,11 8,12 9 I0

R B G O R B G O

1,5,9 2.6.10 3,7.11 4,8.12 5.9 6.10 7,11 8.12

Figure 3. R/B/G/O coloring and ordering, [14]

In [17] Doi et at propose parallel processing and pre-processing algorithms for

the solution of partial differential equations by the finite element method. In the

solution phase a parallel SOR method is proposed, given by

i+1

x(m+l) _.(m) (re+l) ,_ (m) (m--
i = X i + wD-_I[ _ Lij + uijzj + Dijxj 1)], (3.23)

j=i-1

where i = 1,...,n and k = 1,2,... The parallel processing system considered pos-

sesses the following attributes:

(1) It consists of n slave processors SPi (i = 1, ...n) with identical performances

and a master processor MP, which controls the slave processors.

(2) The n SP's constitute an one dimensional array, i. e., each processor SPi can

access the shared memory SMi and SMi-1, which are the shared memories of

processor SPi and SPi-1 respectively.

(3) Each SPi has a local memory LMi that allows it to run its own program.

(4) MP can access any of the SM's.

In the calculation of (3.23), SPi uses Xi-1 , Xi and xi+l. In order for oePi to be able

to take in all the data needed in the calculation directly from SMi-1, oc_fi and L3,[i,
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without any data transfer, xi is assigned to both SMi-1 and SJIli. The convergence

decision for iteration m is made by MP while the SP's perform iteration rn + 1.

An algorithm for solving (3.2) using iterative methods that requires one single

matrix-vector multiplication per iteration is presented by Mclhem in [18]. This

product is performed using the unassembled elemental arrays, therefore eliminating

the need for the irregular assembly stage.

matrix A with any vector p can be done as

More specifically, the product of the

n n

A p = E MeT X_ Mr p = E MeT "/k_ pC, (3.24)
e=l e=l

where M r is a Boolean matrix for each element, such that Miej = 1 if the global

numbering of node i in element e is equal to j. The partial products /k_ pC

for e = 1, 2, ..., n may be pipelined at the same rate at which the arrays A_ are

generated.

Seager in [13] studies a standard PCG algoritlnn for the solution of symmetric

linear systems in the context of multi-processing. The expensive operation, as

noted above, is the matrix-vector product. This computation may be decomposed

into concurrent tasks, each responsible for calculating a different part of the vectors

x, d and g. In this way each processor performs part of the matrix-vector multiply.

These vectors are partitioned so that vectorization is not detrimentally affected.

In [19] Nour-Omid et al. propose a method based on partitioning the mesh

into substructures. The nodes of each substructure are subdivided into interior

nodes and interface nodes. The latter are the nodes shared by more than one sub-

structure. While the interior nodes are eliminated by means of direct fi_ctorization,

(section 3.1.2), the interface nodes are solved for by means of a preconditioned

conjugate gradient iteration. The choice of a direct method for solving the interior
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nodes can be justified by the fact that, for small systems, direct methods are more

efficient than iterative methods. The resulting system of equations resulting after

the elimination of the interior nodes is of the form

P P

i=1 i=1

where, L (i) is the localization operator that maps the nodal displacements within

a substructure (u_ i)) to the global nodal displacement (u_). i.e., u_ 0 - L (i) u_,

p is the number of substructures, I-((_i) is the reduced stiffness matrix and finally

fs(i) is the reduced force vector. A PCG method is used to solve (3.25). At each

iteration of the PCG algorithm the product of the matrix in (3.25) and a vector

d is evaluated (equations (3.20) and (3.22)). Using the definition of the coefficient

matrix such product can be written as

P

hk = _ L (/)r I_ i) L (i) dk (3.26)
i_-i

The cost of computing this product dominates the total cost of the PCG method.

Concurrency can be achieved here by computing each term in this sum separately.

First, d is localized to each processor by means of the localization operator (L (i)).

Then, the product of I_! i) and the localization of d to the ith substructure is

computed. Although computing the product by this means may be two or three

times slower than a direct calculation, the gains afforded by concurrency tend to

dominate provided that the number of processors is high enough.

In [10] Biffie adapts the nonlinear conjugate gradient algorithm to concurrent

vector processing computers, while striving to preserve the vector processing speed

of the algorithm. The efficiency of the conjugate gradient iteration depends crit-

ically on the cost of calculating the residual. Thc method used to perform the
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residual calculation is highly vectorizable. To accomplish multitasking while pre-

serving vectorization, the following data structure is used. The size of each block

of elements is increased to 1024 elements. When a processor becomes available it

is given 64 elements for which to calculate their residual forces. Giving a processor

64 elements allows the processor to run in vector speed. If another processor be-

comes available, then the next available block of 64 elements is processed. When

all the residual forces are calculated for the 1024 elements, then one of the proces-

sors performs the accumulation of the element residual forces into a residual force

vector.

3.1.2. Direct Methods

The most basic direct method to solve symmetric systems of n linear equations

is the Gaussian elimination followed by backsubstitution. The Gaussian elimination

method consists in reducing (factorizing) the given system of equation to one in

which the coefficients matrix is an upper triangular matrix. Once this simplified

system of equations is obtained the solution can be found very straightforwardly.

First the nth component of the solution vector is computer, followed by the (n- 1)th

component and so on, until all of them are computed.

Another widely known and used method for factorizing the coefficient matrix

is the Cholesky method, which is a symmetric variant of the Gaussian elimination

tailored to symmetric positive definite matrices [20]. Considering the system of

equations given in (3.2). Applying Cholesky's method to A yields the triangular

factorization

A = LL T, (3.0-7)

where L isa lowcr triangularmatrix with positive diagonal tcrms. (3.2) can then

be rewritten as

LLTx = b, (3.28)
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and substituting y = LTx, one can obtain x, by solving

Ly=b and LTx=y. (3.29)

It should be pointed out that to solve the first system of equations in (3.29), one

should use forward substitution, i. e., the 1st component of y is computed first,

followed by the second and so on until all the n components are known.

Another way of factorizing matrix A is

A = LDL T (3.30)

where L is a lower triangular matrix and D is a diagonal matrix.

substituting y = DLTx, the solution vector x is obtained by soving

In this case,

Ly = b and DLTx = y. (3.31)

A very used factorization for the direct solution of systems of equations is the

LU decomposition, i. e.,

A = LU, (3.32)

where L and U are lower and upper triangular matrices, respectively. Following the

same idea as the methods abore, one substitutes y = Ux, and obtain the solution

by

Ly=b and Ux=y. (3.33)

In [18] Melhem presents a parallel direct solver for tile system of equations

(3.2). The factorizatlon is done using LU decomposition. A frontal technique to

allow both the asssembly and factorization stages to be performed in paralM and

also to minimize the storage requirement in the assembly phase is developed. In
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most of the parallel schemes for direct solution of (3.2), the rows of A have to

be processed in sequential order. This restriction is satisfied by assigning appro-

priate global labels to the nodes. Tile interaction between the assembly and tile

factorization phases allows automatically the knowledge of when a row is ready to

be passed to the factorization phase, eliminating the preprocessing step. It is also

shown that the bandwidth of the resulting matrix (after the numbering process) is

comparable with the best known algorithm for minimizing tile bandwidth.

Among the features presented by Law [21] to parallelize the finite element

method, is that of performing the solution phase of the method concurrently. There,

a systolic array (see chapter II) is developed for performing the LU decomposition.

Farhat [22] develops a computer program architecture for the solution of finite

element systems using concurrent processing. The basic approach involves tile

automatic creation of substructures. The algorithm, then, consists of solving each

substructure problem independently using LTDL factorization and the solution

for the equations corresponding to the interface nodes (nodes that belong to more

than one substructure) is obtained by means of the Gaussian elimination method,

which possesses inherent parallelism.

In [23] Johnsson presents three classes of concurrent elimination algorithms for

the solution of banded systems of equations. One class exploits the independence

of a single variable from the system of equations, another the independence of the

data sets for the elimination of different variables and the third is a combination

of the other two.

The tradeoffs between parallelization and vectorization are assessed in [24]. For

the LU factorization a method is presented that takes advantage of both parallel

and vector capabilities of the parallel computer Alliant FX8 (see chapter II for
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details). The classical LU decomposition consists mainly of clot products. The

proposed algorithm decomposes the coefficients matrix A into its lower and upper

triangular components, which can be written as

A = [A21 A22 Lel I 0 B '

where all the submatrices are kxk matrices. The first step of the algorithm is

A11 _- A_-l 1, L21 = A21A11, B = A22-L21Al2. (3.35)

The above operations are _hen performed recursively on the smaller matrix B.

This block LU algorithm consists mainly of matrix-matrix operations. To invert

the kxk blocks the classical LU factorization of All is used. The computation of

the inverse of the original matrix is thus avoided. Unfortunately, this block LU is

more expensive by a factor of (1 + 2k2/n 2) than the classical LU factorization.

3.2. Time Stepping Alg0rltlims

The equations of motion governing linear structural systems are of the form

Md + Cd + Kd = f, (3.36)

where K is the stiffness matrix, M is the mass matrix, C is {he damping matrix,

f is the vector of applied discretized loads, and ci and d are the vectors of nodal

accelerations and displacements, respectively. A superimposed dot represents dif-

ferentiation with respect to time. If an initial condition is given, equation (3.36)

can be integrated to produce the time history of the response of the structure.

Integration methods are usually categorized into two groups: explicit and implicit.

Explicit schemes use initial data only to update the solution and do not require

the solution of global systems of equations, in contrast to implicit methods. The
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advantages and disadvantages of both classes of algorithms have been summarized

by Belytschko as follows:

Advantages(+) and disadvantages(-) of explicit schemes:

+ Simplicity.

+ Accuracy for large systems is assured if the time step (At) is stable.

+ No global stiffness matrix needs to be formed or factorized. Saves

storage.

- Conditionally stable.

Advantages(+) and disadvantages(-) of implicit schemes:

+ Unconditionally stable.

- Complex algorithm with low reliability in nonlinear situations.

- Accuracy can deteriorate in semi-implicit algorithms.

- Newton form has large storage requirements.

Implici_;/explicit partition methods [25] are an attempt to combine the best

attributes of both classes of algorithms. In nodally based methods [25], the mesh is

partioned in three sets: explicit, implicit and interface. In element based methods,

the elements are segregated into two sets: implicit and explicit [26]. At each time

step, the explicit subset is integrated first. The results from this step are then used

as boundary conditions for the integration of the implicit subset.

The most widely used direct time-stepping methods are the Newmark family,
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which is defined:

Ma.+l + Cv,,+l + Kd,,+l =

Vn+l

fn+l (3.37)

At _

dn+a = d,, + Atvn + --if-[(1- 2J)a,, + 23an+,] (3.38)

= v,, + At[(1-_,)a_ + 7an+,] (3.39)

where d., v. and a,_ are the approximations of d(t.), el(t,,), and a(t.), respectively.

The parameters /3 and 7 determine both the accuracy and the stability of the

specific algorithm being considered. Equations (3.37), (3.38) and (3.39) can be

viewed as a system of equations in the unknowns d,,+l,vn+l, and an+l. The

values of dn, v., and a. are assumed known from the previous time step. Some

properties of selected members of the Newmark family are [27]:

, Central differences, In this scheme the parameters fl and Y are respectively:

0 and 1/2. This leads to tile following expressions for the algorithm for the

displacements and velocities:

&t 2
d.+l = d,, + ,',tv. + --a,, (3.40)

2

At a
v,.+, = Vn + _--[ n + a.+_] (3.41)

This is an explicit method if both 5/I and C are diagonal matrices. It is second

order accurate and conditionMly stable.

, Trapezoidal Rule. Here the parameters fl and 7 are respectively: 1/4 and 1/2,

which yields to the following expressions for the displacement:

At2 "a
dnq-1 = d,, -Jr- Atvn nt- --'-_---[ n -1t- an+l] (3.42)

This is an implicit method, and it is unconditionally stable. As for the central

difference scheme, the trapezoidal rule is second order accurate.
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3. Linear acceleration method. The parameters in this scheme are: fl = 1/6 and

7 = 1/2. The expression for the velocities remains as above, whereas the

displacements are given by

At 2 .2 a 1 a
d,,+, = d,, + Atvn + T[ 5 , + 5 n+l] (3.43)

This is an implicit method, but it is not unconditionally stable. It is also a

second order accurate method.

One of the earliest works in the area of concurrent time step integration al-

gorithms is that of Noor and Lambiotte [28], in 1978. The CDC Star-100 is the

architecture considered there. In this work both the central difference scheme and

Newmark implicit schemes were implemented in parallel. In [29] Belytschko and

Gilbertsen present a concurrent explicit time integration algoritlm_ for tile non-

linear equations of motion in structural dynamics. Tile essential feature in their

implementation is that it allows the use of different time steps on different parts of

the mesh. The explicit scheme chosen is central differences. To maximize the ben-

efits of vectorization and concurrency, the elements are grouped to obtain vector

lengths appropriate for vectorization. Each element group can then be integrated

with a different time step. The nodal velocities and displacements arc computed

when all groups reach tm,,t, which is the master time. The groups of elements are

integrated concurrently and within each group the computations are vectorized.

Flanagan and Taylor [30] have proposed a concurrent explicit time integration

algorithm. The main task to be performed during each time step are identified as:

1. Update stresses and assemble external forces.

2. Assemble external fi_rces.
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3. Apply kinematic constrains.

4. Update kinematics via lumped massmatrix.

Most of the effort (_ 75-80%) is spent in the first of these tasks. Tile method

proposedsubdivides the stressupdate into the following subtasks,

1. Uncouple-extract nodal kinematics.

2. Update element internal state.

3. Calculate element nodal force contribution.

4. Couple-assemblenodal forces.

The coupling and uncoupling operations cannot be performed concurrently, and

involve gather/scatter stepsbasedon the element connectivity table.

Ortiz and Nour-Omid [31] have advanced a method which shares some of

the attributes with both implicit and explicit schemes. The method starts by

partitioning the structure into elementgroups. Eachoneof thesegroups is treated

implicitly, while the collection of groupsis treated explicitly. Details of this method

are amplified in chapter IV.
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CHAPTER IV

Group hnpllcit Algorithnas

The concept of Group Implicit (GI) algorithm was introduced by Ortiz and

Nour-Omid [1] in 1985. In essence,thesealgorithms are constructed by partition-

ing the finite element mesh into groups of elements, and processingeach group

implicitly and independently over a timc step. This last feature introduces the

desired concurrency into the computations. The requisite compatibility between

the subdomains is enforced a po_teriori, by means of a mass averaging rule. We

show that the resulting algorithms have ranges of unconditional stability similar to

those of globally implicit methods. Guidelines are given for choosing the time steps

so that accuracy does not deteriorate as the number of element groups is increased.

The appeal of GI algorithms is twofold. Firstly, they are highly parallelizable,

with interprocessor communications limited to the exchange of one interface vector

per time step. Secondly, they speed up the computations by reducing the equation

solving effort, even on a single-processor machine. This is so because, as the sub-

domains are reduced, the bandwidths of the local arrays decrease steadily. Fill-in

by off-diagonal zeros is consequently diminished as well. Tile result is a net gain

in efficiency during the factorization phase.

Our numerical simulations have born out these conclusions: by cofirming the

theoretically derived ranges of unconditional stability and accuracy estimates; by

demonstrating the low communication overhead incurred during the computations;
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and by showinghow the equation solvingeffort is diminished well beyond the linear

speed-upexpectedfrom concurrency alone. Simulations run on a 32-nodehyper-

cube have consistently given efficienciesover 95% on a variety of problems. Tests

run on an eight-processorAlliant FX8 have given factorization speed-upsof the

order of 34 in selectedapplications. In view of these results, it would appear

that GI algorithms hold considerablepromise for application in nonlinear struc-

tural dynamics problems,particularly on medium-grainedand fine-grained parallel

machines,suchas the Alliant and Cray seriesand the ETA 10 machine.

4.1. Theoretical Basis

Throughout this work we focus on the structural dynamics problem governed

by the semidiscrete equations of motion of the form

Md(t) + G(d(t),d(t))= f(t),

d(0) = d0, (4.1)

d(O) =

where, following standard notation, M signifies the mass matrix, G and f the

internal and external force vectors, d tile displacement vector, do and vu the initial

displacements and velocities, respectively, and a superimposed dot is used to denote

differentiation with respect to time t. TiLe tangent stiffness and damping matrices

of the structure are defined as

K = egG(d, cl)/c_gd,

C = OG(d, d)/O(1,

(4.2)

respectively. In the linear case, K and C are constant and

G(d, _1) = Kd + Cd. (4.3)
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The linearized equations of motion can be written as
j-

M_I(O + ca(t) + Kd(t) = f(t),

d(O) = do,

d(O)= ,'o.

(4.4)

These equations can be reduced to their first order correspondents by means of a

change of variables. Introducing

d(t)] (4.5)z= a(t)'

equation (4.4) takes the following form

d(t)J [C+ 0][a,,,]Iv]
d(O) v0d,0,]:[d0]

(4.6)

In matrix notation the reduced system of equations can be written as

Ai(t) + Bz(t) = g(t),

z(0) = zo.
(4.7)

The energy norm corresponding to system (4.7) is defined as

IIzII= (zTAz) '/_ (4.s)

For instance, for (4.6), the square of the energy norm is twice the total (strain +

kinetic) energy of the system, and hence the name assigned to the norm.

An algorithm for integrating (4.7) is defined as a matrix F(h), or amplification

matrix, such that

z.+, = F(h)z., (4.9)
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where h is the time step and zn is the approximate solution at t,, = nh,n =

1,2,3,..., with the property that zt/h ---' z(t) as h ---* 0. For linear systems of

ODE's, an algorithm is convergent iff it is consistent and stable. Consistency of

the algorithm with the governing equations is defined as the condition that

lim zn+l - z, _ i, = -A-1Bz,. (4.10)
h--0 h

This condition can be rewritten in terms of the amplification matrix by substituting

(4.9) into (4.10), which yields

[_hF(h)] = -A-_B. (4.11)
h=0

The stability of the algorithm, on the other hand, requires that

IIF(h)ll <__1 (4.12)

where the energy norm of the amplification matrix is defined as

llF(h)zll
IIF(h)ll = max (4.13)

z IIzil

Figure 1. Model.
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A first step in constructing the method is to partition the structure into groups

of elements. The finite elementmeshcan then be viewedas a collection of discon-

nectedsubdomains,Figures 1and 2. The field variableswithin a genericsubdomain

r are fully describedin terms of local arrays, suchas z r.

Figure 2. Partitioned mesh

The eztended variable array g = {z x,...,z _,...,z'}, where a is the number of sub-

domains, completely describes the structure. Moreover, g contains the same infor-

mation as z, the global nodal array. The relation between them is given by the

following linear mapping

zr = L_z, (4.14)

where L_ is a Boolean matrix which localizes z to the subdomain r to obtain z_.

In matrix form this operation can be written as

L2
= z = Lz. (4.15)

.I

It is readily verified by recourse to the principle of virtual work that

g = LT_, (4.16)
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where g and g denote the global force array and the extended force array {gl, ..., g,-,

..., g*}. Tile extended matrices corresponding to _ are defined as

A 2

B 1

B _

$

The assembly operation for global arrays can then be expressed in the form

A = LTAL,

B = LTI_L,

(4.17)

The essential idea of the methods derived here is to allow the various sub-

domains in the partition to evoIve independently over one time step, and to re-

store compatibility by somehow projecting the extended solution so obtained onto

a suitably defined compatible solution. Three different methods for constructing

algorithms of this type are given next.

4.1.1. GI Algorithms for First Order Systems

In this section we focus on first order systems of the type (4.7). For simplicity,

we consider the unforced case, g = 0. A general class of parallel algorithms can be

defined as follows:

• Localize initial conditions z,, to the subdomains to obtain the extended array

• Update the extended array by solving the decoupled equations of motion at

the subdomain level

Ari _ + Brz _ = 0.

The extended predictor obtained this way is called g_,+l"

(4.1s)
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* The extended predictor information is multivalued at the nodes that belong

to more than one subdomain. The algorithm is then completed by averaging

those values at the interface nodes by means of a suitable averaging rule, so

that consistency is restored.

The amplification matrix for this algorithm is given by

F(h) = P_'(h)L, (4.19)

where _'(h) = diag(F'(h),...,F"(h),...,F*(h)), Fr(h) is the amplification matrix

consistent with equation (4.18) and the matrix P defines a projection form the

space of extended arrays to the subspace of compatible arrays.

The subdomain algorithms Fr(h), that constitute the extended algorithm _'(h)

in (4.19), must be consistent with the decoupled equations (4.18), i. e.,

[dF,(h)] = _A-lB. (4.20)
h=0

Using (4.19) one has

A[dF(h)Jh=0= Ap[dF'(h)]h=0 L, (4.21)

But by the consistency (4.20) of the local algorithms, equation (4.21) may be

rewritten as

A IdF(h)/ = AP(-A-' t3)L. (4.22)
tun J h----O

On the other hand, using (4.11)

A [dF(h)] = -B = -Lrt_L. (4.23)
h=O

Comparing (4.22) and (4.23) one concludes that

Ap.& -1 = L T (4.24)
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ory

p = A-1LT2_.. (4.25)

From equation (4.25) it is apparent that the sought projection P is a ma._, averaging

rule on the interface degrees of freedom. This rule can be expressed as

$

z,+l = Pz:+l = A -1 E Arz_'l" (4.26)
r= 1

Thus, ~*" is first to be weighted by the subdomain mass matrix A r, the resulting
_n+l

local vectors asscmbled into a global array which is finally multiplied by A -1.

4.1.2. Interface Compatibility as a Constraint

In [2], a class of concurrent procedures was obtained by regarding the com-

patibility conditions between subdomains as algebraic constraints operating on the

extended solution array. The effect of these constraints is built into the extended

governing equations by means of Lagrange multipliers. Physically, these represent

the reactions between subdomains. By using splitting techniques, the constraints

are relaxed during each time step, which results in the desired lcvcl of concurrency.

Compatibility is enforced a posteriori on the extended predictor. This alternative

methodology is suggestive of various generalizations of the method discussed in the

preceding sect!on: and is 0ut!incd next.

Start by writing (4.7) in the form

0 0

0 0
.I o1I 0 -L

0 -L T 0

or, in full,

£z + I3_ + A =g

_-Lz=0

- LTA = 0

A =

Z 0

(4.27)

(4.28)
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Tile first equation governsthe evolution of the decoupled subdomains, the second

is a statement of the compatibility condition, and the third requires that the re-

actions between the subdomains be equilibrated. To obtain a class of concurrent

algorithms, we decompose the evolutionary operator in (4.27) as

BI 0jI 0 -L

0 -L T 0

= 0

0

0 0

0 0

0 0

0

+ I

0

''2_

I 0]0 -L

-L T 0

(4.29)

Next, we introduce a product formula based on this split [3]. The first step of the

product formula is governed by the equations

which reduce to

0 0

0 0 0

0 0 0

A =

Z

(4.30)

._z + t]_ = fg (4.31)

These are simply the governing equations for the decoupled subdomains. The

initial conditions for this step are simply _'r, = Lz,, and the result is an extended

predictor _+ 1-

The second step of the product formula is governed by the remainder of the

evolutionary operator, i. e.,

0 0

0 0 0

0 0 0
z
h

i

0

+ I

0

I 0

0 -L

-L T 0

(4.32)

or, in full,

Kz+A=O

f_ - Lz = 0 (4.33)

-- LTA = 0

The initial conditions for this phase of the algorithm are the results from the first

step of the product fornmla, i. e., the extended predictor z_,+1. The outcome of

- GO -



the secondstep is the updated solution z,+l.

meansof the backward-Euler algorithm, to yield

- + zxtA.+l = 0

Zn+l -- Lzn+I = 0

-- LTAn+I = 0

Eqs. (4.33) may be discretized by

(4.34)

The solution of this system of algebraic equations can be found readily. Combine

the first two equations of (4.34) to obtain

._Lz,+i = Az,_+ l - AtAn+l (4.35)

Multiply this expression by L T and use the third of (4.34), with the result

LT-_Lz,,+I = Mz,+l = LT/k_*+I (4.36)

Finally, solve for z,_..[_1 to obtain

zn+l = M-1LT-_zn+ 1 (4.37)

which is a restatement of the mass-averaging rule formulated in Section 4.1.1.

Thus, the algorithm derived in Section 4.1.1 is recovered as a product formula

associated with a particular splitting of the lagrangean form of the governing equa-

tions as expressed in (4.27). From general results concerning product formulae [3],

it follows that the resulting algorithm is unconditionally stable provided that the

extended equations (4.31) are integrated by means of an unconditionally stable

scheme. An alternative proof of this fact was given in [2]. It also follows from the

general theory that the algorithm can only be expected to be first order accurate

even when the extended equations (4.31) are integrated by means of a second order

accurate scheme.
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4.1.3. Group Implicit Algorithms ill Structural Dynamics

In [4] a class of concurrent algorithms for structural dynamics, named there

Group hnplicit algorithms, were proposed. Although the methodology derived in

Sections 4.1.1 and 4.1.2 can be applied to second order ODE's by recourse to the

equivalence with linear systems established in (4.6), it was found, partly by trial and

error, that GI algorithms generally result in superior accuracy. The motivation for

GI algorithms is partly provided by the work of Petzold on systcms of ODE's with

algebraic constraints. Gear and Petzold showed in [5] that the order of accuracy

of numerical methods of solution of differential/algebraic systems is enhanced if

the constraints arc differentiated and enforced in differential form. In structural

dynamics, this means enforcing compatibility of accelerations between subdomains,

rather than displacements or velocities.

A method suggested by these ideas is outlined in Box 1, for the nonlinear case,

and in Box 2, for the special case of a linear structure. As may be seen, the predictor

and corrector phases are chosen to be identical to those in Ncwmark's method [6].

The present scheme is at variance with Newmark's algorithm in the equation solving

phase, where concurrency is introduced. Thus, the predictor displacements an+l

for time t,+l are first localized into the subdomains to obtain a collection of local

predictors - "{d,+l, r = 1,...,s}, where s denotes tile number of subdomains in

the partition. The corresponding local acceleration arrays a,_+l are then computed

from d,_+_ by applying Ncwmark's update at the subdomain level. To restore

compatibility between subdomains the mass averaging rule

$

M-1 r~r (4.38)an+l = E M an+ 1

r= 1

must be applied. Tiffs complctc,_ one application of the algorithm.
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Box 1. A Group Implicit Concurrent Algorithm

• Predictor phase:

¢].+I = dn + Atvn + (1/2 -/3)At2a,_

_'n+1 : Vn + (I - 7)Atan

• Equation solving phase:

an+ 1 : 0

for r = I,s do

Solve:

M a,,+l+ t .+I+P_ a.+l,V.+l+ =

an+l e-- an+l + M an+ 1

an+l +-- M -1 an+l

• Corrector phase:

d,,+1 = _].+I +/3At2a,,+1

v,,+l : v.+_ + TAra.+1
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Box 2. Group Implicit Algorithm - Linear case

• Predictor phase:

a,,+, =dn + Atvn + (1/2 - fl)_t2an

9,,+1 = Vn + (1 -- 7)/ktan

• Equation solving phase:

an+] -- 0

for r = l,s do

_tr _ 2 r --1 r ~ r.+_ -(M _ + 7/xtC _ + /3At K ) K d.+_

an+l _ M-lan+l

• Corrector phase:

d.+l = cln+l + fl/Xt2a,,+l

V.+l = 9n+1 + TAra.+1

It is noted that the algoritlun reduces to Newmark's method for the trivial

partition, s = 1. For s > 1, the subdomains arc effectively dccoupled during
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the equation solving phase. Consequently, they can all be processedin parallel.

No global stiffnessarrays needto be formed or factorized at any time during the

computations. In addition, the communication between processorsduring each

time step reducesto the transfer of the local accelerationarrays. This keeps the

communication overheadto a minimum.

In the nonlinear case,local systemsof nonlinear equations need to be solved

for the accelerations5L_+1. In the procedure outlined in Box 2, this may be accom-

plished by means of a local Newton-Raphson iteration.

4.2. Algorithmic Properties

In this section, the Group Implicit algorithms are analyzed. It is shown that,

although the algorithm has the same range of unconditional stability as Newmark's

method, a Courant type condition must be complied with to avoid accuracy break-

down in the form of inadmissible phase errors. Numerical examples on a membrane

follow to show that such condition leads to a conservative criterion. Theoretical

estimates of the efficiency of such methods are presented.

4.2.1. Accuracy. Phase Errors

Past experience with semi-implicit algorithms points to their limited ability to

propagate information between distant parts of the structure is the main source of

numerical error. For the method under consideration, the fact that information is

exchanged only between neighboring subdomains during each time step places some

restrictions on the time step size necessary to attain a given level of accuracy. This

limitation is common to all semi-implicit algorithms and was first noted by Mullen

and Belytschko [7]. Although their original analysis was specifically concerned with

Trujillo's algorithm, _,he nmin conclusions carry over to the present setting as well,

as shown next.
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A one-dimensional continuum undergoing displacements u(z, t) governed by

the wave equation

/_ = c2u,_ (4.39)

is considered next, where c is the celerity of the waves. The continuum is then dis-

cretized into a finite element mesh of uniform size Ax consisting of two-node linear

elements. For simplicity, element-by-element partitions of the mesh are considered

first, in which the subdomains are taken to coincide with the elements themselves.

Under these conditions, the local acceleration predictors are computed entirely at

the element level. The local amplification matrices (see Box 2), for the undamped

case, are computed to be

F(At) = Me(M e + ¢?At2Ke)-IK e, (4.40)

which in the case considered here reduces to

F(At) = K¢/(1 + ¢_(2r)e), (4.41)

where, r is the Courant number and is defined as

cAt

r- Ax" (4.42)

The equation solving phase of the concurrent algorithnl takes, then, the trivial

form
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1 Ka.+1 = 0 (4.43)
Man+l + 1 + fl(2r) 2

In flail, these equations read

_+, c21Ax_ _ _.+, 2h+,)- 1+/3(2r),(dF-_+-,+1 - (4.44)

where the symbols d:'_, t,_ and o 7 are used to denote the displacement, velocity and

acceleration at x = jAx and t = nat.

Taking for simplicity 7 = 1/2 and fl = 1/4, the preditor phase reduces to

/_t _

d,,+l = d,, + Atv,_ + --_---(a,_ + an+l) (4.45)

and the corrector phase to

/kt 2

d,,+l = d.+1 + --_--a,+l

At

v,,+, = -5-(a. + a.+,)

(4.46)

(4.47)

These equations can be combined to obtain

/kt

d,,+l = d. + y(v. + Yn+i)
(4.48)

Next, a simple wave
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d] _ Ae i(wnzM+kjtxz)

n Bei(wnAtq-kj/xx)
Vj -"

n -_. cei(wnAt+kj_z)
aj

(4.49)

is considered, where w and k are the frequency and wave number, A, B and C

are the amplitudes of displacement, velocity and acceleration, respectively, and

i = xfZ-1. Substituting (4.49) into (4.48) and (4.47) one obtains

9 e iwAt -- 1) 2
2 e iwAt -- 1 A, C = - A (4.50)

B-- At c iwAt + 1 At e i_At + 1

whereby the amplitudes of velocity and acceleration are related to the amplitude

of displacement.

Substituting (4.49) and (4.50) into (4.44) and making use of (4.45), simple

manipulations result in the transcendental equation

cp I 1

c kAx r I 1 + r2(I -cosk&x) (4.51)

where cp = w/k is the celerity at which the wave is propagated by the algorithm.

A plot of eq. (4.51) is shown in Figure 3. For comparison, the corresponding

relation for Ncwmark's algorithm is depicted in Figure 4.

It is seen from this plots that both algorithms retard the waves as the ratio r =

cAt/Ax is increased. The retardation effect is worst for short wave lengths. The

differences between beth algorithms become more apparent in the long wave length

range, owing to the fitct that the concurrent algorithm exhibits a maximum celerity
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Figure 3. Transcendental equation.
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0i//
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10" lo" IO° 10' lo'
¢3,t/5.x

Figure 4. Newmark's Algorithm relation.

cmaz = Az/At, independent of the wave length. In other words, the element-by-

element concurrent algorithm can propagate information at a maximum rate of

one mesh size per time step independently of the wave length, a limitation which

is not shared by Newmark's method. Clearly, this is a consequence of the fact that

the concurrent algorithm allows only for next neighbor interactions between the

subdomains over a time step.
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For arbitrary pm'titions into subdomains of length Ls, the above reasoning

leads to the conchlsion that the celerity of the waves as computed from the con-

current algorithm is bounded by the maximum value

L$

c,,,a_- At (4.52)

independent of the wave length. Therefore, it is clear that for the computations to

be accurate the time step size has to be chosen such that C,,a, <__c, i. e.,

At _< --.L" (4,53)
C

This is a Courant-type condition based on the dimensions of the subdomains.

Condition (4.53) places some restrictions on the time step size to be used in

the computations. It should be emphasized that condition (4.53) stems from accu-

racy rather than stability considerations. In fact, the algorithm is unconditionally

stable, as shown in section 4.2.2, and the solution remains bounded always. This

limitation is common to most unconditionally stable semi-implicit algorithms [7].

It is noticed, however, that the Courant condition (4.53) is formulated on the basis

of the subdomain size L_. This is in contrast to methods of explicit integration for

which the Courant stability condition is based on the mesh size. Thus, for coarse

partitions of the mesh comprising a small number of relatively large subdomains,

condition (4.53) is fi_r less stringent than the stability requirement_ for explicit

integration. This enables the use of practical time step sizes commensurate with

those appropriate for implicit methods.

- 70-



The next set of examplesaims at testing the hypothesis formulated above,

namely, that the accuracy of the concurrent algorithm in wave propagation com-

putations is governed by a Courant-type condition based on the dimensions of the

subdomains. The test problem used for this purpose concerns a square membrane

of size L supported on stiff springs all around its perimeter. The problem is made

nonlinear by supporting the membrane on a nonlinear elastic foundation obeying

a force-deflection htw

f = [:+ (4.54)

where k, a and w0 are material constants. The values of the parameters used

in the computations are: c - ._,,_/p = 1, k//(k,,/L) = 1, a/(wo/L) = 1 and

kb/(km/L) = 10 1, where k,,,, k I and kb are the stiffness of the membrane, founda-

tion and boundary springs, respectively, and p is the mass density of tile membrane.

In all the results reported below, deflections are normalized by L and time by L/c.

The initial conditions investigated consist of a uniform initial velocity v0 = c im-

posed on the underformed membrane. In the linear case, these initial conditions

excite all the modes of vibration of the membrane.

The reason for supporting the membrane on stiff springs rather than on rigid

supports is to illustrate the importance of unconditional stability in inertia-domi-

nated structural computations. In the linear case, the effect of introducing the stiff

supports is to add a set of very high frequency components to the spectrum of the

structure. If the main interest of the analysis lies in the response of the membrane,

methods which accurately integrate the low frequency components without having

to resolve the short periods of vibration become advantageous. This property is

tantamount to unconditional stability. By contrast, conditionally stable methods
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such as explicit integration are restricted to time step sizes governed by the high

frequency components. In the example under consideration, the critical time step

for explicit integration can be made arbitrarily small by increasing the stiffness of

the boundary supports. This process leaves the response of the membrane virtu-

ally unchanged, and thus renders explicit integration increasingly inadequate. By

contrast, the concurrent algorithms under consideration enjoy the unconditional

stability property and the time step can be chosen independently of the stiffness

of the boundary springs without any appreciable effect on the computed response

of the membrane. Thus, in the context of structural computations on parallel ma-

chines this simple example illustrates the importance of achieving concurrency and

accuracy without compromising stability.

Figures 5-10 show the results obtained from the concurrent algorithm for dif-

ferent degrees of mesh refinement and Lime steps chosen according to the Courant

contition (4.53). Since the size L_ of the subdomains decreases with the num-

ber NS of subdomains as L, = L/vrN-S ,,o NS-X/_, the Courant criterion calls

for reducing the time step also as NS -1/2 in order to maintain the level of accu-

racy. Figure 5 shows the results corresponding to the trivial partition, for which

Newmark's method is recovered, and a time step At = 0.05.
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Also shown for referencein Figure 5 are the results obtained from the direct

application of Newmark's method with a time step which renders the algorithm

virtually exact. Thus, Figure 5 illustrates the kind of accuracy which is obtained

from Newmark's method for At = 0.05. Next, Figure 6 showsthe results obtained

from the concurrent algorithm with NS = 4 and a time step _ = 2 times

smaller than that used with Newmark's method. Comparing Figures 5 and 6, it

is concluded that the level of accuracy achieved from the concurrent algorithm is

comparable to that obtained from Newmark's method, with &t = 0.05.
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Figure 6. Uniform Impact (/3 = 0.25, 7 = 0.5)

Figures 7 and 8, depict the results corresponding to NS = 16 and &t = 0.0125,

and to NS = 64 and At = 0.00625, which again do not exhibit any appreciable

accuracy deterioration with respect to Newmark's algorithm.

By the time the number of subdomains is increased to 256 and the time step

is reduced to At = 0.003125, it becomes apparent that the accuracy of the com-

putations is not only maintained but is improved significantly, Figure 9. For an

element-by-element partition with _St = 0.0015625, Figure 10, the computed re-

sults are virtually exact. It should be emphasized that all the time steps utilized
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in the computations are orders of magnitude above the critical time step for ex-

plicit integration by virtue of the stiff boundary supports. As discussed above, in

cases like this explicit methods are placed at a clear disadvantage with respect to

unconditionally stable algorithms.

These results suggest that the Courant condition based on the subdomain

dimensions is indeed a conservative criterion which can be confidently used in wave

propagation problems. However, in some cases this criterion seems to be overly

conservative and results in increased accuracy as the mesh partition is refined.
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This bears on the fact that the Courant condition is based on a worst possible

scenario, namely, a solution dominated by short wave lengths. As discussed in

before, this situation cxacerbates the accuracy limitations of concurrent algorithms.

It is interesting to note that fully implicit algorithms such as Newmark's method do

not fare particularly well either in situations dominated by high frequency modes

such as shock waves. In fact, such cases are optimal for the application of explicit

mcthods. Thus, in typical structural applications it is likely that the Courant

condition can be substantially relaxed without dctriment to the accuracy of the

solution.
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4.2.2. Stability

The stability properties of the concurrent algorithm for first order systems

outlined in Section 4.1.1 wcrc establishcd in [1]. Here we establish the range of un-

conditional stability of the GI algorithm dcfined ill Box 2. The stability properties

of this algorithm are summarized in the following proposition.

Theorem. The GI algorithm is unconditionally stable if7 >- 1/2, fl >_ 7/2.

Proof.

Start by expressing the algorithm in Box 2 as

a.+l = d. +/ktv. + (1/2-fi)/kt2a.

9,,+1 = v,_ 4- (1 -- "/)a,

a,_+l = -M-1LTIVI( I9I +/3At2I_)-lI4L0,,+l

d.+l = dn+l -}- fiAt2an+l

Vn+l = Vn+l -}- _/N_an+l

(4.55)

(4.56)

(4.57)

(4.5S)

(4.59)

The first and last two equations are indentical to those ill the predictor and cor-

rector phases of Newmark's method. Rewrite (4.57) as

- _M-1H(At)a,+1an+l --

H(/X,t) = LTI_I(M + ¢?/kt2K) -' I_L

(4.60)

(4.61)

where L is the localization operator defined in Section 4.1.1. Note that the matrix

H(At) is assembled from subdomain contributions, i. e.,

H(At) = LTH(At)L,

IzI(/M) = M(M + flZ_t2R) -' I(

(4.62)

(4.63)
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Next, formulate the eigenvalue problem

H(At)x - A(At)Mx = 0 (4.64)

When expressed in the basis defined by the eigenvectors of (4.64), eqs. (4.55-59)

reduce to

d,,+_ = d. + Ate,. + (I/2 - _)/Xt2a.

_5,,+1 = vn + (1 - 7)a.

a,,+l + a(At)d,+l = 0

dn-t-I : dn+l +/3At2a,+l

Vn+l = Vn+l + *[/Xtan+l

(4.6_)

(4.66)

(4.67)

(4.68)

(4.69)

where the scalar variables d, v and a represent the modal amplitudes of displace-

ment, velocity and acceleration corresponding a generic eigenmode. Again, these

equations are identical to the modal Newmark relations except for equation (4.67),

which in Newmark's method is replaced by

02 2

a,,+_ + 1 + flw2At 2 d,,+l = 0 (4.70)

where w is the corresponding eigenfrequency. However, we can rephrase (4.67) in

a form similar to (4.70) by defining a time-step dependent fictitious frequency

&2(/kt) = ._(At) (4.71)
1 - _A(At)At 2

in terms of which (4.67) becomes

_2(At) -

a"+_ + 1 + _(/xt)zflt 2d.+,
=0 (4.72)

Next we show that

022(At) < oo, VAt > 0 (4.73)
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By Iron's bounding principle [8],

a(At) < _.,_x(At) (4.74)

where _max(/X.t) iS the maximum eigenvalue of tile extended problem

fI(At),_ - i(A_)M_ = o (4.75)

Using definition (4.63), this can be rewritten as

(4.76)

Inserting for x the maxinmm eigenmode of I< with respect to 1VI, we obtain the

relation

-2

A,n_x= c°m_x (4.77)
-2 2

1 + /3Wma×At

where (_max is the maximum eigenfrequency for the extended system with stiffness

I< and mass 1VI. From (4.77) we have

#a(At)zat _ < #X,_x(At)At _ =
,-2

#O.,'m a × _,1_ 2

< 1, VAt < ec (4.78)

From this and (4.71), it follows that _2(At) is indeed bounded for arbitrarily

large At. The implications of this result are as follows. For a given At, eqs.

(4.65), (4.66), (4.68), (4.69) and (4.72) are identical to Newmark's modal equations

with a frequency g0(At) < oc. Hence, the GI algorithm has the same range of

unconditional stability as Newmark's method, i. e., it is unconditionally stable for

7 >-- 1/2, /5' i> 7/2.

6
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4.2.3. Operation Counts.

In this section the GI algorithms are comparedwith the one-way dissection

method. This method is used for the solution of systemsof linear algebraic equa-

tions arising in finite element applications [9]. In essence,the one-waydissection

method amounts to a reorderingof the elementsin the model. Its main advantage

is the reduction in storagerequirementsand in theoperations neededfor factorizing

the matrix of coefficientsof the system.

Figure 11.An rn by' I grid with rn = 6 and 1 = 11, [9].

Consider a m x l grid, Figure 11, with m _< I. The total number of nodes is

then given by N = Ira. For simplicity of notation, one degree of freedom per node is

assumed. The one-way dissection method is based on a partitioning of the grid by

a vertical lines (separators), which dissect the mesh into a + 1 independent blocks.

Each "sub-mesh" is numbered row by row followed by the separators. Figure 12

shows the case a = 4.

The leading term of the operation count for matrix factorization resulting from

the one-way dissection ordering is found to be [9]

m13 (4.79)
°} ~ + 1)2
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Figure 12. One way dissection ordering of an m by l grid, in-

dicated by the arrows (a = 4), [9].

On the other hand, the number of operations required for the factorization of a

banded matrix is asymptotically [9]

_I = 2 Nb2 (4.80)

with N as defined above and b denoting the semi-bandwidth of the matrix. Each

subdomain in the partition contains a (l + 1)/(a + 1) x m grid. The bandwith of

the subdomain matrices is b = (I + 1)/(a + 1) + 1. Thus, the factorization cost in

the GI algorithm is of the order

o'+ 1/(_ a + 1 + 1 (4.81)

the leading term for which is

mz3 (4.8_0)
(°s)_ ~ 2(° + 1)_

It is thus concluded that, to leading order, the factorization cost of GI algo-

rithms is of the same order than that of one-way dissection. The principles at work
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in both methods are, in fact, identical. Ii1 both cases, the renumbering associated

with the partition or the dissection of the grid eliminates fill-in by off-diagonal

zeros, thus cutting down on unnecessary zero multiplies during factorization.

4.2.4. Theoretical Speed-ups

To estimate the computational efficiency of the method, let us start by recalling

that the number of operations involved in matrix factorization and forward and

backward substitution is

1

FACTORIZ _ _nb 2, SUBSTIT ,_ 2nb (4.83)

where b is the scmiband width and n, as before, is the number of degrees of freedom

of the structure. In typical structural applications, the cost of large scale nonlinear

computations is dominated by the equation solving phase. Under these conditions,

a good estimate of the computational cost is given by

COST _ (FACTORIZ + SUBSTIT) x ITER x STEPS (4.84)

where ITER is the average number of equilibrium iterations per time step and

STEPS is the number of time steps required for a given duration of the analysis

T, i. e., STEPS = T/_t.

In two dimensions, consider a square mesh of l 2 elements. Then,

n = (l + 1) 2 and, thus, a global system solution requires

GLOBAL _ l(l + 2)2(/+ 1) _ + 2(/+ 2)(/+ 1) 2

operations.

b= /+2,

(4.s5)

Assume now that the mesh is partitioned into s = m 2 subdomains.

Then, the equation solving effort involve(t in one application of the algorithm is

PARTITas _+2 m +1 + 2 _+2 m +1 (4.86)
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Figur e 13. Reduction in number of operations required for one

factorization and backsubstitution in square membrane problem

as the mesh is partitioned into an increasing number of subdo-

mains

For nontrivial partitions, this count is less than that pertaining to the global system.

Thus, the net speed-up in equation solving afforded by the partitioning is given by

EQUATION SOLVING SPEED - UP -

GLOBAL

PARTIT
(4.87)

The dependence of this function on the number of subdomains is shown in Fig-

ure 13. It is readily verified that a speed-up of order

EQUATION SOLVING SPEED - UP(2D) _ O(s) (4.88)

is attained asymptotically in the large scale limit n/s _ oo.

The three dimensional case is amenable to an entirely similar analysis. The

resulting speed-up is shown in Figure 14 as a function of the number of subdomains.
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Figure 14. Reduction in number of operations required for one

factorization and backsubstitution in cube problem as the mesh

is partitioned into an increasing number of subdomains

Here, an asymptotic speed-up of order of

EQUATION SOLVING SPEED - UP(3D) ,_ O(,s 4/3) (4.89)

is reached in the large scale limit.

Some aspects of these estimates are noteworthy. Firstly, it is seen from Figures

13 and 14 that some efficiency is gradually lost for a given size n as the number of

subdomains s is increased. This loss is due to the fact that the interface nodes need

to be reduced more than once during the subdomaln factorizations. On the other

hand, it should be noted that these speed-ups cannot be fully realized in practice

due to the fact that, in order to maintain the accuracy of the solution, the time

step needs to bc reduced as the number of subdomains is increased, as discussed

in Section 4.2.1.
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It turns out, however, that accuracy constraints offset the equation solving

speed-ups only partially, and thus net gains remain. To see this, recall that the

Courant condition (4.53) requires the time step to be reduced as O(1/s 1/2) in 2D,

equation (4.93), and as O(1/s ID) in 39, equation (4.97). This leaves a net speed-

up of O(s _/2) in 20 and O(s) in 3D, which in conjunction with the O(p) speed-up

afforded by concurrency yields

NET SPEED - UP(2D) = O(p,/7),

NET SPEED- UP(3D) = O(ps)

(4.90)

It should be emphasized that these speed-up estimates involve two parameters,

namely, the number of subdomains s in the partition and the number of proces-

sors p in the machine. The speed-ups represent the reduction in execution time

obtained with respect to the straight application of Newmark's method (s = 1)

on a sequential machine (p = 1). Factored into the estimates are three effects: a)

the reduction in equation solving effort due to the the partition of the mesh; b)

the linear speed-up afforded by the concurrency of the computations; and c) the

gradual loss of accuracy incurred as the number of subdomains is increased. Even

with this latter effect factored in, it is seen that net speed-ups result, even on one

processor.

4.3. Numerical Experiments

In this section, we endeavor to assess the performance of GI algorithms by

way of numerical testing. Firstly, we seek to verify the time step requirements

for accuracy derived in Section 4.2.1. Our numerical simulations suggest that the

Courant-like condition (4.53) is indeed of value in actual 2D and 3D applications.

Next, we compute th,: actual speed-ups afforded by the GI algorithm as the number

of subdomains and processors is increased, while choosing the time step so as to
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maintain a constant level of accuracy in all cases. Finally, somesimulations are

shownwhich demonstrate the high communication cfi:icicncy of the method.

4.3.1. Actual Time Step Required in 2D

In Section 4.2.1, it was demonstrated how accuracy considerations place limits

on the size of the time step which become increasingly stringent as the partition is

refined. Hcrc we seek to determine the exact time steps requirements in an actual

application. As a two dimensional example, the problem of an elastic membrane

undergoing finite deflections is considered. This analysis is representative of struc-

tural computations in that the element operations are relatively inexpensive, so

that the cost of tile analysis is dominated by equation solving. The purpose of the

simulation is to determine the actual time step required to maintain a prescribed

level of accuracy as the number of subdomains is increased.

The element utilized in tile calculations is a four node quadrilateral obtained

by averaging two triangular assemblies, each splitting tile quadrilateral along one

of its diagonals. The constituent triangular elements are endowed with a strain

energy of the form

T A 2

W- 2 A0 (4.91)

where T is the tension of the membrane, and A and A0 are the areas of the deformed

and undeformed triangles. It is easily checked that this formulation reduces to the

usual small deflection theory of membranes when A _ A0.

The membrane in the analysis is taken to be square and to be simply sup-

ported all around its perimeter. The values of the material parameters adopted

are T = land a mass density p = 1. Initially, the membrane is supposed to liein its

undeformed configur_tion, and to be subjected to blast loading resulting in a uni-

form initial velocity throughout its surface. The magnitude of the prescribed initial
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velocity, v0 = 1, is enough to generate strains of the order of 30% and rotations of

the order of 45 °. The half size of the membrane is taken to be L = 1. By virtue

of the symmetries of the solution, the analysis may be restricted to one quarter

of the membrane. Throughout the computations, this domain is discrctized into a

64 x 64 regular mesh. The deflected shapes of the membrane at various stages of

tile solution are shown in Figure 15.

The partitions adopted in tile calculations divide tile domain of the analysis

into equal square subdomains. Let rn be the number of subdomains per side. Then,

the number of subdomains in the partition is s = m 2. Clearly, with increasing m

the size of the subdomains diminishes according to

AL = L/rn (4.92)

Hence, the Courant condition (4.53) necessitates a steady reduction of the time

step of the order

At Ato/,-= Atotv"7 (4.93)

for the accuracy of the calculations to remain unchanged under increasing refine-

ment of the partition. At0 denotes a choice of time step appropriate for Newmark's

algorithm, i. e., for the case s = 1. It is seen that, according to estimate (4.93),

the required time step is a decreasing function of the number of subdomains. In

Section 4.3.3 it is shown that this effect is amply offset by the reduction in equation

solving effort afforded by the method. Thus, a net gain in efficiency remains over

Newmark's algorithm, even on a single processor.

The membrane calculations are carried out for an increasing number of subdo-

mains, with several time steps around the theoretical value (4.93). The time step

adopted for Newmark's algorithm is At = 0.05. Figure 16 depicts the time history
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of center deflection computed from various partitions of the mesh. The error in the

solution is then computed as

T/- dr

ERROR 2
= J0 (4.94)

where w(t) and We=act(t) are the computed and exact center deflections, respec-

tively. In lieu of an exact solution, the results from Newmark's method with a small

time step (At = 0.005) are utilized. The above definition of the error provides a

measure of the period elongation in the computed solution. In particular, it can

[/0T--_lim I si,z(_:t)- sin((_o +/x,a.,)t) 12 _dt cx Z_o (4.95)

be shown that

For each partitien of the mesh, the calculations are repeated for several time

steps around the theoretical estimate (4.93), and the error measure (4.94) corn-
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puted. Then, by linear interpolation, the actual time step is computed to maintain

the level of error resulting from Newmark's method. The results are shownin Fig-

ure 17, together with the estimate (4.93). As may be seen,the theoretical accuracy

requirements are realized quite closely.

4.3.2. Actual Time Step Required in 3D

Here we repeat the analysis of Section 4.3.1 for a threS-dimensional problem.

_,Vc consider the case of an elastic cube supported on a rigid foundation and un-

dergoing finite deformations. The material behavior is characterized by the simple

stress-strain relation

Sxj = _Et,t(6rj + 21_EIj (4.96)

where SIj and Zij are the components of the second Piola-Kirchhoff stress ten-

sor and the Lagrangean strain tensor, respectively, and A and p are Lame-type

constants. The material parameters used in the calculations are A = 8 x 109 and

# = 8 x I0 _, which results in nearly incompressible behavior. The mass density

of the material is taken to be p = 200. The dimensions of the cube are L = 100.

The body is loaded by means of uniform velocities vl = 150, v2 = 300 suddenly

applied on the foundation in the directions of the sides of the cube. The magni-

tude of the velocities suffices to produce strains of the order of 30%. The cube is

discretized into 64 brick elements. The method used to avoid mesh locking due to

near-incompressibility is described in [10].

Following the application of the initial velocities, the cube undergoes a slosh-

ing motion. In the linear range, the low fi'equency modes of this response are

dominated by the shear response of the solid. Our choice of parameters is intended

to underscore tile benefits derived from unconditional stability. Thus, whereas the

response of interest lies m,ainly in the low frequency part of the spectrum, explicit
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algorithms are required to resolve the high frequency modes corresponding to the

volumetric response, which in the problem under consideration necessitates the use

of impractically small time steps.

As in the two dimensional simulation, the mesh is partitioned into a varying

number of cubic subdomains. If rn is the number of subdomains per edge of the

cube, so that s = m 3, the Courant condition (4.53) then demands that

At .._ &tolm = Atols 1/a (4.97)

To determine the actual time step requirements, the accuracy of the compu-

tations is monitored at the uppermost center node of the cube. The histories of

one of the horizontal displacements at this location are shown in Figure 18 for

the various mesh partitions used in the computations. Figure 19 shows the time
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step requirements resulting from the accuracy analysis. As in the two dimensional

case, the actual time step requirements conform closely to the theoretical estimate

(4.53).

4.3.3. Performance Assessment

From the theoretical estimates derived in Section 4.2.4, it is evident that the

execution times are primarily dependent on two variables: the number of processors

p and the number of subdomains s in the partition. Figure 20 shows the execution

times for the membrane problem described in Section 4.2.1 as a function of the

algorithmic paranaeters p and ,s. The calculations are run with the actual time step

required to maintain the level of accuracy as the number of subdomains is varied.

For the test problem under consideration, these time step requirements are given in

Section 4.2.1. Thus, the execution times being compared correspond to solutions

of comparable accuracy.

It should be noted that Figure 20 gives equation solving times only. For

typical large scale nonlinear structural problems, the execution times are indeed

dominated by the equation solving phase of the computations. A main motivation

for reporting these data, however, is that equation solving, unlike other aspects

of finite element computations, is a fairly standardized procedure. This renders

comparisons of data from different codes more straightforward. In the calculations

reported here, we have used Taylor's variable bandwidth implementation of Crout's

method [11].

It is seen from Figure 20 that, for a fixed number of subdomains, the speed-

ups obtained are roughly linear in the mmlber of processors p. The proportionality

factor between speed-up and p is a measure of the efficiency of the computations,

and is investigated in the next section. For a fixed number of processors, a net
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speed-up is obtained as the number of subdomains is increased. The single proces-

sor case, p -- 1, is shown in Table 1. As may be seen, the observed speed-ups lag

behind the O(v/S) asymptotic estimate. This is not unexpected since such estimate

is only realized in the large scale limit n/s --* cx_. Despite the relatively small size

of the test problem under consideration, the net gains afforded by the algorithm

may be quite substantial even on one processor. For instance, for 256 subdomains

an almost five fold speed-up is obtained over Newmark's method.

Figure 20 also illustrates the synergism between concurrency and refinement

of the partition, i. e., the fact that ;he corresponding speed-ups combine multi-

plicatively, rather than additively. For the case p = 8, the maximum number of

processors in the FX8, and 256 subdomains, the net equation solving speed-up is

of the order of 33.7, a rather formidable performance enhancement. By compar-

ison, parallel solvers result in speed-ups which are, at best, linear in the number
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of processors.In the present method, by contrast, an additional speed-up (asymp-

totically O(v/_) in 2D, O(s) in 3D) is introduced by the partitioning of the mesh

which provides an additional edge over parallel solvers.

TABLE 1.- Equation solving timings on one processor.

Membrane example.

4096 ELEMENT CASE

s Seconds Speed-up Asymp.

1 271O0 1 i

4 20515 1.32 2

16 9529 2.84 4

64 7006 3.87 8

256 5898 4.59 16

4.3.4. Computational Efficiency on the CalTech Hypercube

Another important performance measure is the fraction of time the processors

are actually kept busy, i. e., the efficiency of the computations. Overhead due

to extensive interprocessor communication has a negative effect on computational

efficiency. The minimization of the extent of data transfer between processors thus

becomes a principal concern in algorithm design. For the GI algorithms considered

here, the exchange of information between processors is reduced to the transfer of

one linear array per time step. Thus, interprocessor communications are kept to

a minimum. An illustration of the high performance of the algorithm is given in

[12], where actual simulations on the CalTcch/JPL Mark III hypercube machine

are presented. This computer consists of 32 (25 ) processors (or nodes), configured

as a 5-dhnensional hypercubc.

The GI algorithm was implemented within a finite element program on the

Mark III hypercube and used to analyze the plane stress model of a cantiIever

beam with a tip load, Figure 21.
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Figure 21. Cantilever beam, neq -- 2142, nel = 1024

The purpose of this study is to evaluate the efficiency of the algorithm on a local

memory architecture. Computational efficiency is here defined as

_ T, (4.98)
pTp

where Tp is the time for performing the analysis on p processors, and T1 is the time

for an identical analysis on a single processor. In a typical run all the processors

begin simultaneously, but end their tasks at different times. Tp is then the time

for the slowest processor. This time difference is due to two effects. The first is

a load imbalance whereby some processors may have a larger task (in our case

more elements to process). The second arises when some processors have more

information to send/receive than others.

The beam is discretized into a 16 x 64 regular mesh of plane stress elements,

Figure 21. The mesh is then partitioned into 4,8,16, and 32 identical sub-structures.

All the separators (partition lines) are through the thickness (vertical). Since all

processors are assigned the same number of elements, these partitions ensure opti-

mum load balancing and are chosen to illustrate the performance of the algorithm.

As a result of this partitioning scheme all processors will have the same computa-

tion time. Thus, the difference between 7'1/p and Tp is the required communication
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time and for this problem the efficiency becomes

= I- Tco .,(p)
(4.99)

where Too,.., and Tcatc are the maximum communication time and calculation time,

respectively. Note that the above choice of partitioning results in the same number

of interface nodes on all processors (with the exception of the domains at each end)

and thus the same communication time.

Efficiency

(%)

99

9B

97

96

95

94

i

10 20 30 40

Number of Processort

Figure 22. Efficiency Results for the beam problem.

Figure 22 gives a plot of the measured efficiency rate for an increasing number

of processors. In all cases, an efficiency of well over 90% is observed. Since the mesh

is partitioned vertically, the number of interface nodes between subdomains, and

thus the communication time among processors, does not change with the number

of processors. However, as the number of processors increases, the number of
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elements per processor decreases. As a result, the calculation time drops resulting

in a reduction in the efficiency rates. When 32 processors are used, the subdomains

are small (a2 elements per processors). In larger problems, the efficiency rates are

expected to improve further. Note that when going from 16 to a2 processors, one

could choose the neutral axis of the beam as a partitioning line. This in turn would

reduce the communication overhead and thus increase efficiencies over those shown

in Figure 22.
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