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I N  his classical papers, “Systems of Mating” (1921 ) , SEWALL WRIGHT devel- 
oped the concept of the inbreeding coefficient in terms of the correlation of 

uniting gametes, and, among other things, related it to the decrease in heterozy- 
gosity and applied it to systems of mating relatives. The next year (1922) he pro- 
duced procedures for calculating the inbreeding coefficient and a measure of the 
relationships among different individuals, which was now labeled coefficient of 
relationship, from pedigrees. In 1931 he showed the consequences of finite popu- 
lation size in terms of the inbreeding coefficient and the related variation and 
random drift of gene frequencies. In many other papers he and other workers 
have further refined the theory and extended the applications to more complex 
situations, but these three papers serve as the bases. 

MALBCOT (1948) provided an alternative view of the coefficient of inbreeding, 
making use of the probability of genes being “identical by descent,” i.e., of being 
copies of the same ancestral gene. His concomitant measure of the relationships 
among individuals, called coancestry herein, is more simply related to the in- 
breeding coefficient than is the coefficient of relationship. While MAL~COT’S defi- 
nitions and methods must lead to the same results as does WRIGHT’S, they are 
generally easier to grasp and apply, requiring only simple probability arguments, 
for those not well versed in path coefficients. 

The purpose of the present paper is to extend the definitions of the inbreeding 
and coancestry coefficients to include groups of individuals. With these extensions, 
and a few further definitions, one can work with pedigrees of groups of individ- 
uals or of subdivisions of a population with almost the same ease as one does with 
pedigrees of individuals. Here again, the classical results are obtained, but the 
ease of application of the methods allows one to consider situations which other- 
wise would appear to be formidable. 

DEFINITIONS A N D  OPERATIONS 

As will become clear, the definitions are for diploids for which segregation 
ratios are assumed to be normal and disturbances such as selection are assumed 
to be absent throughout. 

For purposes of clarification, consider the pedigree of groups of individuals in 
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Diagram 1 .  The upper case letters designate groups of individuals and the lower 
case letters sets of gametes. 

A 

a 
\ 

DIAGRAM 1 

Corresponding to the inbreeding coefficient, F,  of an individual let that, F1, for 
a group of N individuals be the probability that a random pair of alleles are iden- 
tical by descent. This amounts to an average of the 2N(2N-1)/2 probabilities, one 
for each pairing of the 2N alleles. Of these pairs, N are within individuals and the 
remainder are among individuals. Averaging the probabilities of identity by 
descent, for the A group for example with NA individuals, leads to 

where F A  is an average of the NA inbreeding coefficients and gA is an average of the 
N, (N,-I ) /2 coancestries of the individuals. Since F is an expected value, ap- 
plicable to a random member of the group, the bar will generally be dropped. 
The group or line inbreeding coefficient reduces to that of the individual when 
N = 1.  For large lines, FL is dominated by 3, the likeness among individuals or 
homogeneity of the group. The difference, F - s, is indicative of the structuring 
of the group, i.e., a collection of individuals more or less related than they are in- 
bred. 

Corresponding to the coancestry of two individuals, 0, let that, 01, for two 
groups of individuals be the probability of a random allele from one group being 
identical by descent to a random allele from the other group. In  the case of two 
distinct groups, A and B for example, it is just the average of the NAN, coances- 
tries of the A individuals with the B individuals, 

In the case of the coancestry of a group of individuals with itself, it is the average 
of the N 2  coancestries including individuals with themselves, 

- 
01.4R OAB. (2) 

1+FB NB-1- 1+F,-28~ 
eleR = - + - OB = + j B ,  (3) 2NB NB ~ N B  

which reduces to that of an individual with itself when NB = 1.  Note also that 
U l R q  is the probability of two random alleles with replacement being identical by 
descent. With probability 1/2N, the two alleles will be copies of the same gene 
and identical by descent. With probability (2N,-I)/2NB, they will be copies 
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of different genes but may still be identical by descent with probability FzB. Put- 
ting these probabilities together, 

which is a different form of (3).  
Independent sampling of gametic sets from the same group: For these defini- 

tions to be operationally useful, some rules concerning groups of individuals and 
gametic sets must be specified. 

1. The probability that any individual of a parental group contributes a random gamete in an 
output set of gametes is the same for all members, 1/N,  and not dependent on gametes in 
other output sets from the same group. 

2. Numbers of gametes in uniting input sets are equal, e.g., N ,  = Nbl = ND. 
3. Gametes from one input set unite at random with gametes from the other input set, i.e., 

mating is random. 

With these rules we note that the probability of a random allele in one uniting set 
being identical by descent with a random allele in the other uniting set is the same 
as the inbreeding coefficient of the offspring group and the coancestry of the 
parental groups. For example, 

P ( d ’ d )  = Fo = 6 z D E ,  ( 5 )  
where a prime is used to indicate a random gamete (allele) of a set. For the rela- 
tionship between an incoming set of gametes and an output set of gametes for a 
group, we shall use 

P(d’ra) = P(d’cb,) = P(e‘&) = P(e‘cc) = 1/2 (6) 

to denote the probability of a random gene in the output set having an ancestral 
gene in one of the input sets. Since each parental group contributes equally to the 
offspring group, this gamete to gamete transitional probability is 1/2 as it is for 
individuals. 

Expanding the argument of probability of identity by descent to more remote 
ancestral groups, 

Thust 

and the coancestry of one group with another is the average of the coancestries of 
one group with the parental groups of the other, just as it is for individuals. 
Further expanding, 

P(d’=b’,) = 1/2 [P(a’=lfz) + P(b l l= tJ2 ) ]  
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The coancestry of two groups is the average of the four coancestries between their 
two parental groups, which in this example includes the coancestry of one group, 
B, with itself. If groups A, B and C are unrelated, the inbreeding coefficient in 
(10) reduces to 

Fc = 8zes/4. ( 1 1 )  
Note that this is the result obtained by counting paths to common ancestral groups 
in the pedigree. 

P (&=e‘) = P (d’cb, ) P ( b’, = W 2 )  P (e’&) 

So far we have the same simplicity for groups as for individuals. However, 
with groups one must reckon also with ewhich is different from F for subdivided 
populations. The average coancestry among individuals within a group will 
involve genes from the two different uniting sets of gametes % of the time and 
from each of the uniting sets % of the time. Denoting the probability of two 
random alleles in a set of gametes being identical by descent as $, 

We shall generally use a slightly different notation, $ % j  (e.g., qcD = $d. +GE = + e ) ,  

for the set of gametes received by group i from parental group j. The number of 
gametes in the set is Ni, the same as the number in the offspring group. Let the 
probability that two random gametes in a set come from the same parent be 
l/Ngj. Then they are from different parents with probability ( N g l - l ) / N g l .  The 
probability of the alleles being identical by descent is (1+F,)/2 in the first case 
and e j  in the second case. Putting the probabilities together, 

(14) 
1+Fj N .-l - 

qij = ___ + - g i B j .  
2N,i N,f 

We shall relate Ngj, an effective number corresponding in idea to the effective 
population number (WRIGHT 1938), to the mean and variance of the number of 
gametes per parent. Let k, be the number of gametes contributed by the uth par- 
ent. The total number of gametes is the same as the number of offspring, 

with a mean of 
zk, Ni, (15) 

which will be one if the parental and offspring groups are of the same size in con- 
trast to 2 for the effective population number pertaining to a combined set of 
gametes. The total number of pairs of gametes is 
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involve pairs from the same individual. Thus, the probability of two random al- 
leles being from the same parent is 

or the effective number is 

which has the same expression as the effective population number for  a mono- 
ecious population (KIMURA and CROW 1963) .  When each parent has an equal 
chance, l / N j ,  of contributing each gamete, the distribution of the number of 
gametes per parent is binomial, 

with mean 

as before, and variance 

Substitution of (22) and (23) into (20) leads to NQj = Nj,  and the effective num- 
ber is the census number of parents. In this case, with further substitution into 
(14) and comparing with ( 3 ) ,  we have 

and the gametic probability is the same as the coancestry of the parental group 
with itself. 

At the extreme of control of matings let each parent contribute the same num- 
ber of gametes so that U; = 0, which requires that k take integral values. In this 
case, 

which has a minimum of Nj when X is CO and a maximum of 00 when k= 1. 
Substitution of Ngj =CO into (14) leads to 

- 
+ . . = e .  2.1 3 7 (26) 

since no two gametes in a set come from the same parental individual. The same 
result (26) is obtained when k < 1 and each contributing parent contributes only 
one gamete, because 

and 
- 

Ngj = CO , = t’j . 
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Returning now to Diagram 1 and rewriting ( 1 3 ) ,  

gG = % ( q G D  + q G E  + 2 0 l D E )  (29 1 
we must specify the UL’S or corresponding N,’s to further expand the relation- 
ships. In the case of equal chance of each parent in a group contributing each 
gamete in a set, 

and 
$GD = 0 l D D 7  $GE 0 l E E  ( 30 )  

(31) 
- 
0 G =  % ( 0 1 D D  f 0 l E E  f 2  0 l D E ) .  

On the other hand, if the groups are of equal size and U: = 0, 

and 
(32 )  

( 3 3 )  

In each case the various measures can be expanded back to include ancestral 
groups. 

Sampling of combined gametic sets from the same group: Certain situations 
require the treatment of combined gametic sets from one group or generation to 
another. To do so, consider the combined gametic output of a group; for example, 
the double set, b, U b,, from B in Diagram 1 .  Reverting to our general notation, 
let i and i’ denote the off spring groups in case they are different and j the parental 
group as before. The number of gametes in the combined set is Ni + N i ,  = N,.  
Since dimensions were left general in developing the gametic probabilities (14 )  
and effective numbers (2O), we only introduce new notations, q for $, Ne for No, 
Ni for N+,  %Ti for &, and U: - for U: , to distinguish that we are treating the com- 

bined gametic output of group j .  The mean number of gametes per parent is now 
ii ii 

(34) 
- - - Ni f Nir k;j = kij + kirj = Nj  ’ 

which, if i and i! are one and the same group, reduces to 
- 2Ni k-:.=- 

2 3  N j  (35) 

and in either case is 2 for  a constant size of groups. The other measures for the 
combined set are 

Next consider the subdivision of the combined gametic set into the two sets of 
Ni and Nip gametes in a manner such that it is random with respect to the 
parents. We note now that the probability of alleles being identical by descent 
in two random gametes is the same for  both gametic sets, !@ij = q i 9 j  = qZi , and also 
is the same for a random gamete in one set and a random gamete from the other 
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set. For the gametic sets involving group B in Diagram 1, we have with this 
sampling plan, 

where primes indicate random genes (gametes). 
A modification of rule one must be made for nonindependent sampling of 

gametic sets from the same group in order to operate with pedigrees of groups as 
we did previously. The transitional probabilities (6) are unaffected by this modi- 
fication, and so is e ( 13) , 

[~?(b\~b”) = q D B ]  = [ I ? ( b ~ ~ b ’ ~ )  IZ q B B ]  = [Z?(b;=&) = * . B E ] ,  (38) 

- * a  *e  FG 
4 4 2  

e G = - + - + - ,  (39) 

except the gametic probabilities are for the appropriate sampling plan. The 
essential difference is that the coancestry of a population with itself, elEB in (IO, 
11,12) , is replaced by q B B .  

With equal chance of any parent contributing each gamete in a set, the effec- 
tive number is unaffected by the number of gametes in the set, and 

(40) 
Consequently, 

(41 1 
and the results are the same as for independent sampling of gametic sets (24,30). 
On the other hand, if all gametic variances are zero, which is compatible with 
Ni = Nip = Nj for example, 

and 

Nej = Ngj = Nj . 

q . .  = q. *.. = (j 23 z’i 3 1  lii, 

Nej = 2Nj-1, (42) 

I+Fj + 2(Nj-l) - 
ei q.. = = q.. - 

2 3  ” -  2(2Nj-I) 2Nj-1 
in comparison to 

and 
N,j= 0 0 ,  

(43 ) 

(44) 

1+Fj Nj-I - 
B l i j  = - + - ei 2Nj Nj 

for independently sampled sets of gametes. The two sampling plans are the same 
with equal chance of each parent contributing any gamete in a set and differences 
arise only when the gametic variance is different from that for equal chance. 

With these modifications outlined for combined sampling of sets of gametes, 
pedigrees of groups can be treated in the same manner as for independent sam- 
pling of sets of gametes. 

EXAMPLES 

As an example, consider the following Diagram 2 for a dioecious population. 
The numbers in each sex will be assumed to be constant over time. Small m and f 
are used to designate male and female groups, respectively. 
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DIAGRAM 2 

Using (10) and preceding formulae for independent sampling of sets of gametes, 
Ft = F,t = Fft = e zmft-1 

= ?4 (&mnzt-2 + ez,,-, + 20~,~,-,) (46) 

[ (l+Ft-z + "-1 - ) + (l+Ft-, Nf-1 - 
2N, N ,  Omt-, 2Nf +- Nf eft-, ) 2FtPl ] . (47) =y+ I__ 

Turning now to the coancestry coefficients (1 3), 
- emt= %i ($nzmt-l + $mjt-l + 2e~~j t - l )  
Fft = % ($fft-l+ $fmt-1+ 20lnzft-1), 

(48) 

and we must specify the distribution of gametes per parent. With equal chance 
of each parent in a group contributing each gamete, we may use (24) and 

(49) 
- - emt = O f t  = y+ (Otmmt-, + Olfft-l + , 

which when - compared - to (46) is seen by inspection to be Ft+l. The substitution 
of Ft-, for B,t-, and e,,-, in (47) gives 

(50)  
1 +- 

the appropriate result obtained by WRIGHT ( 1931). 
With a constant number for each sex over time k, = &f = 1, and one can 

control the gametes per parent so that uz = 0, and the corresponding 
effective numbers are infinite (25). Further, for N ,  < N,, and each female con- 
tributing no more than one gamete to the male offspring group, the effective 
Lametic number is a h  infinite (27,28). Thus, from (26) and (28) 

1 -  1 --- 
N, 4Nm 4Nf '  

- 
k" - "i,, 

- 
(51) 

- 
+mmt-1=8mt-1, 9mft-1 = $fft-1 = Oft-, . 

For integral values of > 1, and with U; = 0, from (25) and (22) we find 
fm. 
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Substitution into (48) leads to different values forTmt and B f t ,  
- 
Otnt = % (Tmt-1 -t Zj t -1  + 2Ft)  

Consider first the situation in which N ,  = N f  = N/2 ,  and consequently, 

Substitution of (54) into (47) gives for the recurrence relation of F ,  

Adding F t J 2  to the right hand side of (55) and subtracting it out in the corre- 
sponding expression for Ft leads to 

which is the result given by ROBINSON and BRAY (1965) for a slightly different 
but analogous situation. If the initial (zeroth generation) members are nonin- 
bred, inbreeding is avoided in the first generation and is 1/2N in the second gener- 
ation, after which the inbreeding coefficient may be found by repeated applica- 
tions of (56).  The average coancestry within a group may be found by either 
from of (54) and begins with 1/4N in the second generation. The average co- 
ancestry between males and females is O l l n f t  = F t + ,  for all variations in numbers 
of each sex and of 4)’s. 

For unequal numbers in each sex, the statistics for the first three generations 
are 

Genera tion F 

0 0 

1 0 

- 
6 ni 

0 

0 

1 1 Nj-Nna 1 5 ( N f 4 , )  -+ -+ - 2 
2 N ,  4 N ,  3 2 N , ( N f - I )  4 N ,  32N,(N, -I )  

where N ,  was defined in (50). These statistics may be carried forward by re- 
peated applications of (53) and (47) .  An alternative recursion form, similar in 
some respects to ( 5 6 ) ,  still requires an accounting of the 9 s .  
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The last term vanishes with N f  = N ,  and the result is the same as given in ( 5 6 ) .  
The last term is small with large N ,  and N f  because of the coefficient and because 
of the concomitant effect on the difference Ft-, - dft--3,  The difference also de- 
creases with time since F and 8 converge, so that with good approximation in 

many cases the last term can be dropped. The term (- 32” + -) 32Nf was given 

by GOWE, ROBERTSON and LATTER (1959)  as the reciprocal of twice the effective 
population number for the drift variance. 

If we consider now that sex of the offspring is determined at random for any 
mating, subject only to the restriction that N ,  male and N f  female offspring are 
produced, the gametic sampling plan is that outlined for combined gametic sets 
from a parental group. A male (female) parent may have only male (female) 
off spring, the outcome being determined randomly. 

With the modifications (34  through 39)  for nonindependent sampling of 
gametic sets, 

- 

3 1 

Ft = F m t  = F f t  = O w - 1  

1 $4 ( q m m t - 2  + q f f t - 2  + 2O~~rt-2)  ( 5 9 )  
[I ( i + F t - ,  Nem-l - ) + (1-kFt-Z N,j-l - + ___ O f t  .2 ) 4- 2Ft-,]  (60) 2Nef Nef 

= fh ~ f- Omt-2 
2Nem Ne, 

The average coancestries of males and of females are always the same, - 

(61 ) 

( 6 2 )  
and if,-, into (60) leads to a general recurrence form 

- 
~ m t  = 3ft = $4 (*mmt-1+ *ff t - i+  2 0 ~ ~ ~ ~ - ~ )  , 

and when compared to ( 5 9 )  is seen to be 

Substitution of Ft-l for 

- .- 
Omt = O j t  = Olmft = F t + l  * 

for F ,  

Writing the means and effective numbers (34,  36)  for males in notations appro- 
priate for this example, we have 

- - .- N + N f -  N k G , = k  + k f m = L - -  
Nm Nm mm 

- 
kzm(Nmx;m-l 1 N J V ( N - 1 )  

( 6 5 )  - - Nem = - 
U:- + k;, (%zm-l) N% U;- + N N f  ’ 

mm nznl 

and the corresponding ones for females are obtained by interchanging m and f .  
The overall effective number in (63). 
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although not readily apparent, is the same as the one given by KIMURA and CROW 
(1963) for separate sexes, and it was this sampling plan that they treated. For 
equal chance of parents, N e ,  = N,,, Nef  = Nf, N ,  = N,,  and the result (63) is 
the same as in ( 5 0 ) ,  which we already knew from (40, 41). For equal numbers 
of each sex and equal gametic variances, N e  = 2N,, and has a maximum value 
of N e  = 2(N-l)  with zero gametic variance. For unequal numbers in each sex, 
N,, < N , ,  and for integral values of EJ,, the gametic variance for males can be 
made zero, and from (65) 

" ( N - 1 )  . 
Nt 

Ne,, = Kmf (N-1) = 

The minimum gametic variance for females, however, is 

Substitution of (68) into the counterpart of (65) for females gives 

Putting (67) and (69) together for an overall effective number, we have 
4NmN (N-I  ) 

N' + N,, (N,,-Nf) 
N e = -  

Inbreeding starts in the second generation with a value of 1/2Ne and accrues 
according to (63). While the initial inbreeding is less, the rate of inbreeding is 
slightly greater than for independent sampling of gametic sets, except with equal 
chance of the parents when the two sampling methods are the same. Another 
difference, except for equal chance, is that always = a f t  = O l m f t  for the com- 
bined gametic sampling, whereas all three may be different with independent 
sampling of gametic sets. 

Consider as a final example a monoecious population, Diagram 3. With sexual- 
ity of gametes, gametic sets are involved, and the numbers of each, pollen and 
egg cells, must be the same, just as they are for separate sexes. 

DIAGRAM 3 

For independent sampling of the two sets of gametes, and dropping the lettered 
subscripts, 

1+Ft-1 N-1 - + et-l , 2N 
F~ = elt-l = 

and from (29), 
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since the two gametic probabilities are the same. With equal chance of each 
parent contributing any gamete in the set, 

and 

so that 

$t-1 6,t-i = Ft (73) 

Ot = Ft or = Ft-, , ( 74) 
- - 

given by WRIGHT (1931) .  

gametic sets. In this case, 

and 

If each parent furnishes one male and one female gamete, then U; = 0 for both 

- 
$t = et , (76) 

- 
- Ft - Ft Ft-l Ft-2 + .  . . et=-+--- +-+- 2 2 2 4 8 7 

which leads to 

Proceeding in the same manner as from (55) to (56),  

(77) 

The following general formula encompasses both (75) and (79) as special cases, 

The inbreeding coefficient is 1 /2N in the first generation and proceeds with time 
according to (80). 

If male and female gametes are random with respect to the parents, we turn 
to combined gametic sampling, and find 

and 

( 8 2 )  Ft-1 *t-2 - et-l = - + -- = F 
2 2 t-l . 

The recurrence formula for F, and effective number, N e ,  

are those given by KIMURA and CROW (1963). The effective number, Ne,  is 
2 ( 2 N - 1 ) / ( 4 + 2 )  for a constant size of population (WRIGHT 1938) ,  with a maxi- 
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mum of 2N-I when U; = 0. Inbreeding is 1/2Ne in the first generation and 
increases with time according to (83) .  Except for equal chance when the two 
gametic sampling methods are the same, inbreeding is less initially but increases 
at a faster rate than for independent sampling of the two gametic sets. Also the 
probabilities of genes being identical by descent are always the same within and 
among individuals, i.e., P ,  = 8,, whereas they are not the same for independent 
sampling of gametic sets and reduced gametic variance. 

When self-fertilization is avoided in a monoecious population, the differences 
that arise between the two methods of specifying gametic samples disappear. With 
independent sampling of the two sets of gametes, the average coancestry is 

1 H F t - 1  2N-3 s + - q t - 1  
et=---+1/2 

2 [ 2 ( N - 1 )  2 ( N - l )  t-* 

= F t + i  
for the avoidance of self-fertilization. The term in the brackets (84) replaces elt 

in ( 7 2 )  because gametes are not united at random. Of the N ( N - 1 )  pairs of genes 
among individuals which also involve genes between the two gametic sets, all of 
those pairs from the same parent must be among individuals when self-fertiliza- 
tion is not allowed. The expected number of pairs from the same parent is N 
regardless of No, and genes in the remaining pairs, N ( N - 2 ) ,  are related as among 
random parents. The effective number in ( 8 5 ) ,  

2 N g ( N - 1 )  - - 4(NL1) N e  = No+N-1 2+2a; ’ 
is found to be equivalent to the one for the combined gametic set for which the 
gametic variance is twice that, U;, of a half set. Since Ft = gt-* in both situations, 
the recursion formulas for F and Bare the same for both types of gametic sam- 
pling, and equivalent to those for separate sexes, equal numbers in each sex and 
sex of offspring determined randomly. 

DISCUSSION 

Many of the applications and simplifications which stem from the definitions 
and concepts developed herein for groups or subdivisions of populations remain 
to be elaborated. Some require further exploration. In particular, generalizations 
concerning avoidance and rate of inbreeding and the variance of gene frequencies 
due to random drift will be published subsequently. 

The line inbreeding and coancestry coefficients, and their component parts, 
provide different measures of probabilities of identity by descent of genes among 
and within subdivisions and within individuals. While primary emphasis has 
been placed on the manipulations involving subdivisions of a population, the same 
concepts may be applied to the total finite population. It turns out in this con- 
nection that the coancestry of the population with itself, B l p ,  bears a simple rela- 
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tionship to F in certain situations whereas the average coancestry, gp, does in 
other situations. 

With separate sexes, and sex of offspring random with respect to the parents, 
we have from (62), 

Omt = Oft = o l m f t  = F t + i  . (87 )  
Thus, 

Opt  =Ft+i (88 )  
for all variations in gametic variances, and proceeds as F just one generation 
in advance. 

Giving equal weight to each sex since their gametic contributions are the same, 
the population coancestry coefficient is 

When gametic sets are independently sampled, from (46), the population coan- 
cestry coefficient, 

proceeds the same as F two generations in advance. With equal chance, both re- 
lationships hold, 

- - 

- 

OZPt  = ? 4 [ 0 l ? n m t  + O l f f t  + 202,ftl. 

O Z P ~  = Ft+z , 

(89) 

- 
o l P t  = = F ~ + ~ .  (90) 

The same kind of situation is found for monoecious populations. If type of 
gamete is random with respect to the parent, from (82), 

(91 1 
and genes are related the same within and among individuals. On the other hand, 
the population coancestry coefficient is related to F simply for independently sam- 
pled sets of male and female gdmetes. From (71 ) , 

Again, with equal chance, both relationships hold, 

- - 
Opt = O t  = F t  , 

O z P t  = Ozt  = F t + l .  (92) 

O Z P ~  = Q t + i  = F t + i .  (93 1 
The line or group coaiicestry coefficient plays an analogous role in the average 

relationship of relatives stemming from parental lines as the coancestry coefficient 
does for relatives from individual parents. This should be obvious from the defi- 
nitions but may need emphasizing in terms of the covariances of relatives. Re- 
ferring to Diagram 1 as a pedigree of individuals, D and E are half sibs. If A, B 
and C are unrelated, 

- 

As a pedigree of groups, D and E are half-sib groups. Relationships of individuals 
in D with those in E can range from true half sibs to lesser related relatives. Again, 
assuming parental groups A, B and C to be unrelated, the average coancestry of 
relatives between the half sib groups is expected to be 

4 8N,  4N, 
which reduces to the correct result for an individual parent, N B  = 1.  

Under certain assumptions, COCKERHAM (1963), when individual mates are 
unrelated, the covariances of relatives may be expressed in the following form 

(95 1 Olsn - 1 f F R  NB-I - 
Qs 7 OZDE = - - - + ___ 
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c = au;+ sub+ (YW ffsu;D+ . . . , (96) 

where the variances are the additive, dominance, and so on components indicated 
by their subscripts. The coefficients, (Y and 6, depend upon the relationship of the 
relatives such that (Y = 28, or is twice the coancestry of the two relatives, and 6 is 
the probability that both alleles of one relative are identical by descent to both 
alleles of the other relative. For certain relatives which are related only through 
their paternal (m) genes and/or through their maternal ( f )  genes, MAL~COT 
(1948) showed that 

where +, (+f) is the probability of the paternal (maternal) genes being identical 
by descent. For half and full sib relatives, 

1 +F, 1+Fj +,=e,,=- , + J = 9 I f = 7 ?  

where B m n a ( B r , )  is the coancestry of the paternal (maternal) parent with itself. 

need only replace B with 91. For paternal half sib groups from paternal lines, 
It should be clear by now that if parental lines replace individual parents, one 

(99) e Zmm 
2 4, = elm,, + r  = 0. a =-, s = 0 .  

In this case, 8~,,,,, is the coancestry of a paternal line with itself corresponding to 
O,,,,,, in (98). Similarly, for maternal half sib groups, 

and for full sib groups, 

(101) 

When the parental lines are homozygous, F = e = 1, and the result is the same 
as for a homozygous individual which it should be. 

Mating designs of lines may be accomplished in the same manner as they are 
for individuals (COCKERHAM 1963). In some species certain designs such as the 
factorial and diallel can be accommodated only by using lines. In cases where 
lines have keen used in the estimation of genetic variances, they have been as- 
s m e d  to be homozygous. Now, one can make valid interpretations of the design 
components of variance in terms of covariances of relatives and genetic variances 
for partially inbred lines, providing that the line coancestries are known suffi- 
ciently well. The less homozygous and related are the members of the parental 
lines, the smaller are the coefficients, 01 and 6, however, which reduces the pre- 
cision of any estimates of genetic variances. 

SUMMARY 

Definitions analogous to the inbreeding coefficient and the coancestry coeffi- 
cient of individuals, in terms of the probability of genes being “identical by 
descent,” were developed for groups of individuals. Additional probability meas- 
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ures of genes being identical by descent in gametic sets were defined and related 
to the other probability measures. For two methods of sampling, independent and 
combined, of sets of gametes from the same group, but always with random 
union (mating) of gametes between uniting sets, procedures were developed for 
operating with pedigrees of groups of individuals, or subdivisions of populations, 
in a manner analogous, although with some more complications, to that of pedi- 
grees of individuals.-The various probability measures taken together provide a 
quantitative accounting of the structuring of a population. For any system of 
mating continued over time, recursion formulae for each measure can be estab- 
lished. Examples are given for dioecious and monoecious populations with varia- 
tions not considered previously.-It is also pointed out how the coancestries of 
parental lines with themselves play a role corresponding to coancestries of par- 
ental individuals in the estimation of genetic variances from a mating design 
utilizing lines instead of individuals. 
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