Group Input Machine

Ruslans Tarasovs Rūsiņš Freivalds
University of Latvia

SOFSEM'2009

Introduce a stronger computation model

- Previous models and history.
- Our approach: Group Input Machine.
- Examples and results.
- Technical details.

Problem: Finite state machines are too primitive

$$
\left(\Sigma, S, s_{0}, \delta, F\right)
$$

- Actions are deterministic.
- Finite memory (number of states).
- Actions on input are limited.
- Input structure is too simple.

Solutions: Finite state machines are too primitive

Actions are not deterministic

- Non-detereministic automata.
- Probabilistic automata.

Infinite memory

- Pushdown automata.
- Turing machines.

Extended action set

- Two-way automata.

Flexible input structure

- Storage modification machines.

The Idea

- Replace linear tapes by structured input area.

Group Input Machine

- Group elements = data cells.
- Generating set of the group $=$ movements.
- Special \$ symbol = movement restriction.

Group Input Machine: Examples

$$
\begin{aligned}
\text { (a) } G & =(\mathbf{Z},+), D=\{1\} . \\
\text { (b) } G & =(\mathbf{C},+), D=\{1, i\} . \\
\text { (c) } G & =(\mathbf{C},+) . \\
D & =\{1, i, 1+i, 1-i\} . \\
\text { (d) } D & =\{a, b, c\} . \\
\text { (e) } G & =<\{a\}>, a^{n}=a .
\end{aligned}
$$

(c)

${\underset{\text { (d) }}{\text { a }}}_{\bar{a}}^{\bar{a}} \stackrel{\bar{b}}{\frac{b}{c}} \stackrel{\bar{c}}{c}$

Group Input Machine: Examples

Figure: Free group

Figure: Braid group

Definition

Word

Let G be a group, A is a finite set, and w is a function $G \rightarrow A$. Then we say that w is the word over group G and A is the word alphabet.

Automaton

Finite deterministic group automaton (FDGA) is a halting automaton with transition function $f: Q_{0} \times A \rightarrow Q \times\left(D \cup D^{-1}\right)$, where $D^{-1}=\left\{d \mid d^{-1} \in D\right\}$.

Definition

Configuration

Let w be a word over group (G, \bullet), and M is an arbitrary FDGA. Let define computation of M on w as a tuple (K, \xrightarrow{t}), where K is set of configurations and \xrightarrow{t} is a transition relation. Configuration is a tuple (q, c), where $q \in Q$ and $c \in G$. We say that configuration is terminal if $q \in\left\{q_{a}, q_{d}\right\}$. We define that $(q, c) \xrightarrow{t}\left(q^{\prime}, c^{\prime}\right)$ if $c^{\prime}=c \bullet d$ and $f(q, w(c))=\left(q^{\prime}, d\right)$, where $d \in D \cup D^{-1}$.

Execution

Let say that $k_{0}, k_{1}, \ldots, k_{n}$ is execution of M on w if $\forall i: k_{i} \xrightarrow{t} k_{i+1}$, $k_{0}=\left(q_{0}, e\right)$, where e is a neutral element of G, and k_{n} is a terminal configuration.

Examples: Free Group

- Let say that G is a free group if there exists such $S \subseteq G$ that every element $x \in G$ could be written as $s_{1} s_{2} \ldots s_{n}$ in one and only one way, where $s_{i} \in S \cup S^{-1}$ and $\forall i: s_{i} \neq s_{i+1}^{-1}$.

- Simple structure: no additional dependencies.

Free Group: 1-based languages

- $\left(L_{1}\right)$ How to find if area size is even?
- Follow wall, remember state.
- Deterministic algorithm.

Free Group: 1-based languages

- (L_{2}) How to find if root tree branches have the same size?
- Deterministic algorithm is impossible.
- Does not have enough memory to remember and compare sizes.
- Probabilistic algorithm exists.
- Use probabilistic nature of automata as additional memory (R.Freivalds, 1981).

Free Group: 1-based languages

- (L_{3}) How to find if all root tree branches are exactly the same?
- Both deterministic and probabilistic algorithms are not possible.
- Uses The Markov Chain Tree theorem (F.T.Leighton, R.L.Rivest, 1983).

Free Group: 1-based languages, details

Problem

- $\left(L_{2}\right)$ How to find if root tree branches have the same size?
- Deterministic algorithm is impossible.

Free Group: 1-based languages, details

Proof

- Each subtree - one fixed size square result matrix. Each (row, column) pair coresponds to (input state, output state). For automaton with n states there will be $n \times n$ matrix.
- Such matrix fully define everything particular input subtree does to the state of automaton.
- Get contradiction on large enough branches.

$$
\begin{gathered}
w_{0}(x)= \begin{cases}1, & \exists i, k \in \mathbf{N}, k \leq n!+2: d_{i}^{k}=x, \\
\$, & \text { otherwise } .\end{cases} \\
w_{1}(z)= \begin{cases}w_{0}(z), & z=d_{i}^{k}, \text { where } d_{i} \neq d \\
1, & \exists i, k \in \mathbf{N}, k \leq n!+2-(|y|-|x|): d^{k}=x, \\
\$, & \text { otherwise } .\end{cases}
\end{gathered}
$$

Free Group: 1-based languages, details

Problem

- $\left(L_{2}\right)$ How to find if root tree branches have the same size?
- Probabilistic algorithm exists.

Free Group: 1-based languages, details

Solution

(1) Let define $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$.
(2) For each i from 1 to $n-1$ repeat:
(1) $k_{1}:=0 ; k_{2}:=0$;
(2) Repeat t times:
(1) Walk around d_{i} branch. On each visited element break with probability $1-c$.
(2) Walk around d_{i+1} branch. On each visited element break with probability $1-c$.
(3) If d_{i} branch was visited fully then $k_{1}:=k_{1}+1$.
(4) If d_{i+1} branch was visited fully then $k_{2}:=k_{2}+1$.
(5) If both were not visited fully, repeat iteration.
(3) If $k_{1} \neq k_{2}$ then decline the word.
(3) If all iterations finished accept the word.

Conclusion

Summary

- Group Input Machine definition.
- Working examples of the machine.
- Results related to free groups.

Future

- More resuts on other groups, more generic results.
- Relationship between group properties and algorithm properties.

Questions?

Why use groups?

- Groups are simple.

Why use groups?

- Groups are simple.
- Inverse elements.

Why use groups?

- Groups are simple.
- Inverse elements.
- Similar to maze.

Why use groups?

- Groups are simple.
- Inverse elements.
- Similar to maze.

