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Abstract

In this paper, a nonlinear dispersive wave equation Burgers-Poisson
(BP) equation is considered. We present a classification of group invari-
ant solutions for the BP equation by using classical Lie method.
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1 Introduction

BP equation is a nonlinear dispersive wave equation given by

ut + ux + uux − uxxt − (3uxuxx + uuxxx) = 0, (1)

where u(x, t) is a function of the spatial coordinate x and the time t, and
the subscripts t and x denote partial differentiation. This equation has been
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proposed to describe the unidirectional propagation of long waves in dispersive
media [1,2,3].

The application of Lie transformations group theory for the construction of
solutions of nonlinear partial differential equations ( PDEs) is one of the most
active fields of research in the theory of nonlinear PDEs and applications.
The fundamental basis of the technique is that when a differential equation
is invariant under a Lie group of transformations, a reduction transformation
exists. In order to determine solutions of PDE (1) that are not equivalent by
the action of group, we must calculate the one dimensional optimal system.
Most of the required theory and description of the method can be found in
[4,5,6,7]. The aim of this paper is to find the symmetry group of (1) and present
a classification of its one-dimensional subgroup. By using this subgroup is to
perform symmetry reduction and to obtain the group invariant solutions.

2 Symmetry group analysis of BP equation

2.1 Lie symmetry generators

In this subsection, we want to present the most general Lie group of point
transformations, which leaves BP equation (1) invariant.

Definition 1. We consider a scalar k−th order PDE represented by

Δ(x˜ , u˜ , u˜ 1

, . . . , u˜ k

) = 0, (2)

x˜ = (x1, x2, . . . , xn) denotes n independent variables, u˜ = (u1, u2, . . . , um)

denotes set of m dependent (differential) variables, and u˜ j

denotes set of cor-

responding to all jth-order partial derivatives of u˜ with respect to variable x˜ .

The infinitesimal generator of the one-parameter Lie group of transformations
for equation (2) is

X =
n∑

i=1

ξi(x˜ , u˜ )
∂

∂xi
+

m∑
α=1

ηα(x˜ , u˜ )
∂

∂uα
(3)

where ξi(x˜ , u˜ ), ηα(x˜ , u˜ ) are the infinitesimals (3), and the kth prolongation

of the infinitesimal generator (3) [4-6] is

pr(k)X = X +η
(1)α
i (x˜ , u˜ , u˜ 1

)
∂

∂uα
i

+ · · ·+η
(k)α

i1i2...ik
(x˜ , u˜ , u˜ 1

, . . . u˜ k

)
∂

∂uα
i1i2...ik

(4)

where

η
(1)α
i = Diη

α − (Diξj)u
α
j , i, j = 1, 2, . . . , n ; α = 1, 2, . . . , m
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and

η
(k)α

i1i2...ik
= Dikη

(k−1)α
i1i2...ik−1

− (Diξj)u
α
i1i2...ik−1j ,

il = 1, . . . , n for l = 1, . . . , k with k = 2, 3, . . . . (5)

where D is the total derivative operator defined as

Di =
∂

∂xi

+ uα
i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ . . . + uα
i1i2...in

∂

∂uα
i1i2...in

+ . . . ,

ui =
∂u

∂xi
, i = 1, 2, . . . , n (6)

with summation over a repeated index.
Now, we consider the following Lie group of transformations with indepen-

dent variables x, t ; and dependent variable u

x = x(x, t, u; ε), t = t(x, t, u; ε), u = u(x, t, u; ε) (7)

where ε is the group parameter. The infinitesimal generator of BP equation
for the Lie group, (4) can be expressed from the formula (3) in the following
form:

X = ξx ∂

∂x
+ ξt ∂

∂t
+ ηu ∂

∂u
(8)

in which ξx, ξt, ηu are infinitesimal functions of group variables (independent
and dependent variables).

Theorem 2.1 The BP equation has a three-parameter symmetry group,

X = c1 v˜ 1
+ c2 v˜ 2

+ c3 v˜ 3

where

v˜ 1
=

∂

∂t
, v˜ 2

=
∂

∂x
, v˜ 3

= t
∂

∂x
+

∂

∂u
(9)

and, c1, c2, c3 are constants and, called group parameters, and also v˜ 1
, v˜ 2

, v˜ 3

are called symmetry generators.

Proof. To calculate the Lie point symmetries of the governing equation
(1), first we need to write the third order prolongation of the infinitesimal
generator given by (8) since the governing equation include at most third
order derivatives. Due to the formula (4), the prolongation of the infinitesimal
generator including the related terms is in the following form:
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pr(3)X = ξx ∂

∂x
+ ξt ∂

∂t
+ ηu ∂

∂u
+ ηu

x

∂

∂ux
+ ηu

t

∂

∂ut
+ ηu

xx

∂

∂uxx

+ηu
xxx

∂

∂uxxx

+ ηu
xxt

∂

∂uxxt

, (10)

where the formulas of terms ηu
x , ηu

t , ηu
xx, η

u
xxx, η

u
xxt are given by the expression

(5). Applying the third prolongation of the generator (1) and interacting with
mathematica [8], we reach the following determining equations [5-7],

(−uxxxη
u + (1 − 3uxx)η

u
x + ηu

t − 3uxη
u
xx

−uηu
xxx − ηu

xxt)
∣∣∣
uxxt=ut+ux+uux−3uxuxx−uuxxx

= 0 (11)

Calculating the needed terms in (6) and equating every one of the coeffi-
cients of independent terms to zero we find the following system of equations
after considerable simplifications

ξx = ξx(x, t), ξt = ξt(t), ηu = ηu
1 (x, t) + u ηu

2 (x, t)
−2ηu

2x + ξx
xx = 0

2ξx
x − ηu

2xx = 0
ηu

2 + (ξt)
′
+ ξx

x − 6ηu
2xx + ξx

xxx = 0
ηu

1 + (ξt)
′ − ξx

t + ξx
x − 2ηu

2xt − 3ηu
1xx + ξx

xxt = 0
ηu

2t + ηu
1x + ηu

2x − ηu
2xxt − ηu

1xxx = 0
ηu

2x − ηu
2xxx = 0

−ηu
2t − 3ηu

1x + 2ξx
xt = 0

−ηu
2 − (ξt)

′
+ ξx

x = 0
ηu

1t − ηu
1x − ηu

1xxt = 0

(12)

¿From (12) it can be seen that the only solution of this over determined system
is

ξt = α1, ξx = α2 + α3t, ηu = α3 (α1, α2 and α3 arbitrary constants) (13)

which shows that the nonlinear BP equation has only a three-parameter sym-
metry group

v˜ 1
=

∂

∂t
, v˜ 2

=
∂

∂x
, v˜ 3

= t
∂

∂x
+

∂

∂u
q.e.d. (14)
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2.2 Optimal system of generators

A relation between two invariant solutions can be defined to hold true if the first
one can be mapped to the other by applying a transformation group generated
by a correct linear combinations of the symmetry generators (operators) (9).
The relation is an equivalence relation, since it is reflexive, symmetric and
transitive, which induces a natural partition on the set of all group invariant
solutions into equivalence classes. We need only present one solution from each
equivalence class, as the rest may be found by applying appropriate group
symmetries; a complete set of such solutions is referred to as an ’optimal
system’ of group invariant solutions.

The problem of deriving an optimal system of group invariant solutions is
equivalent to find an optimal system of generators or subalgebras spanned by
these generators (or operators). The method used here is given by Olver in [5],
which basically consist of taking linear combinations of the generators (9), and
reducing them to their simplest equivalent form by applying carefully chosen
adjoint transformations.

Formally, to find an optimal system of one-dimensional subalgebras of n-
dimensional Lie algebra Ln, one can separate whole algebra to discrete classes
by using equivalent relation

W˜ 1

≈ W˜ 2

⇔ ∃ ε, W˜ : Ad(Exp(εW˜ )) W˜ 1

= W˜ 2

(15)

where (Exp(ε W˜ )) is the one parameter group of linear transformation which

is generated by W˜ and Ad is the adjoint representation mapping with

Ad(Exp(εW˜ )) W˜ 1

= W˜ 1

− ε [W˜ , W˜ 1

] +
ε2

2!
[W˜ , [W˜ , W˜ 1

]] − · · · . (16)

Then the optimal system can be found by choosing one elements from each
classes [5].

Theorem 2.2 The optimal system of one dimensional subalgebra of

L3 =
{

v˜ 1
, v˜ 2

, v˜ 3

}
which is Lie algebra admitted by (1) is

{L1,1(α), L1,2, L1,3, L1,4} where

L1,1(α �= 0) =
{
α v˜ 1

+ v˜ 3

}
L1,2 =

{
v˜ 1

}
L1,3 =

{
v˜ 2

}
L1,4 =

{
v˜ 3

}
(17)
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Proof. First consider the Lie bracket and adjoint representation tables

[ , ] v˜ 1
v˜ 2

v˜ 3

v˜ 1
0 0 v˜ 2

v˜ 2
0 0 0

v˜ 3
− v˜ 2

0 0

Table 1

Lie Bracket table for L3

Ad v˜ 1
v˜ 2

v˜ 3

v˜ 1
v˜ 1

v˜ 2
v˜ 3

− ε v˜ 2

v˜ 2
v˜ 1

v˜ 2
v˜ 3

v˜ 3
v˜ 1

+ ε v˜ 2
v˜ 2

v˜ 3

Table 2

Adjoint representation table for L3

Every elements v˜ in the Lie algebra L3 can be written as v˜ =
∑3

i=1 ci v˜ i
,

where v˜ i
is given in (9). Without lose of generality, one can choose 3 different

cases

case 1 : c3 = 1

case 2 : c3 = 0, c1 = 1

case 3 : c2
3 + c2

1 = 0, c1 = 1

and try to find ’the most simple’ element from each of them by using (15).

Case 1 : The equation

Ad(Exp(ε v˜ 3
)) W˜ = W˜ + c1 ε1 v˜ 2

(18)

for W˜ =
2∑

i=1

ci v˜ i
+ v˜ 3

can be found by using (16). By choosing ε1 =
−c2

c1
, one

can set the coefficient of v˜ 2
in the right-hand side of (18) to zero, for all c1, c2

since c1 can never be zero. As a result of this choice, every element of L3 with
the condition c3 �= 0 must be in the some class with w˜ i

′ = c1 v˜ 1
+ v˜ 3

. Let’s

denote c1 = α ∈ R (real numbers). There are two possibilities here

i) α �= 0, L1,1 =
{
α v˜ 1

+ v˜ 3

}
ii) α = 0, L1,4 =

{
v˜ 3

}
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Case 2 : By taking W˜ = v˜ 1
+ c2 v˜ 2

, one can find the equation

W˜ ′ = Ad(Exp(ε2 v˜ 3
)) W˜ = v˜ 1

+ (c2 + ε2) v˜ 2
. (19)

By choosing ε2 = −c2 in (19) we can find W˜ ′′ = v˜ 1
. We denote

{
W˜ ′′

}
= L1,2

Case 3 : We take W˜ = v˜ 2
from this class to add to the optimal system and

let’s also denote

{
W˜

}
= L1,3 q.e.d.

2.3 Transformation Groups

Lie group of local point transformations group generated by the vector field
v˜ = c1 v˜ 1

+ c2 v˜ 2
+ c3 v˜ 3

is

x = (c2 + c1 c3 ε) ε + t c3 ε + x
t = c1 ε + t
u = c3 ε + u.

(20)

It is obvious that the transformation (20) transform any solution of (1) of the
form u = u(x, t) to function u = u(x, t) which are solution of (1) itself with
x → x, t → t, u → u.

3 Symmetry reductions and group invariant

solutions

In this section, we use the method of characteristics to determine the invari-
ants and reduced ordinary differential equations (ODEs) corresponding to each
subalgebra given in (17). Symmetry variables and the invariants of the sub-
algebras of the Lie algebra L3 are given in Table 1. The result of this can
be summarized as follows, where ξ is the symmetry variable, F (ξ) is invariant
function related to u, and have to be determined using the reduced ODEs.
They lead us 4 different types of solutions.

Subalgebra Symmetry variable Function u(x, t)

L1,1(α) ξ = α x − t2

2
u = F (ξ) +

t

α
L1,2 ξ = x u = F (ξ)
L1,3 ξ = t u = F (ξ)

L1,4 ξ = t u = F (ξ) +
x

t
Table 1

Invariants of the subalgebras of the Lie algebra L3
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3.1 Solutions

3.1.1 L1,1(α) =
{
α v˜ 1

+ v˜ 3

}
=

{
α

∂

∂t
+ t

∂

∂x
+

∂

∂u

}

The reduced equation for the subalgebra L1,1(α) is

α4FF ′′′ + 3α4F ′F ′′ − α2F ′ − 1 = 0. (21)

The equation (21) can be rewritten as

F ′′′ =
1

α4F
+

F ′

α2F
+

F ′

α2
− 3

F ′

F
F ′′. (22)

The equation (22) has a first integral of

W ′′
FF = ± 2

α4
√

WF
+

2

α2F
+

2

α2
− 3

F
W ′

F (23)

where W (F ) = (F ′)2.

3.1.2 L1,2 =
{

v˜ 1

}
=

{
∂

∂t

}

The reduced equation corresponding to L1,2 is

FF ′′′ + 3F ′F ′′ − FF ′ − F ′ = 0. (24)

The general solution of the equation (24) can be given implicitly as

∫
F

2
√

3|F |√
3F 4 + 8F 3 + 12c1 F 2 − 6c2

dF = x + c3 (25)

where c1, c2 and c3 are arbitrary constants. By taking c1 = 1 and c2 = 0, a
solution of (1) can be found as

u(x, t) =
2

3

(
−2 +

√
5 sinh

x

2

)
. (26)

3.1.3 L1,3 =
{

v˜ 2

}
=

{
∂

∂x

}

The reduced equation of L1,3 is

F ′ = 0 (27)

and gives only constant solutions of (1).
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3.1.4 L1,4 =
{

v˜ 3

}
=

{
t

∂

∂x
+

∂

∂u

}

The reduced equation for the subalgebra L1,4 is

tF ′ + F + 1 = 0. (28)

The solution of linear equation (28) is

F = −1 +
c1

t
(29)

where c1 is an arbitrary constant. (29) gives a one parameter solution family
of (1), as follows

u(x, t) =
x + c1

t
− 1. (30)

4 Conclusions

This paper deals with the symmetry group analysis and classification of the
invariant solutions of the Burgers-Poisson equation. In order to obtain exact
analytic solution of nonlinear differential equations, the most effective and
important approach is the Lie symmetry group analysis. For this purpose,
the most general symmetry groups that leave invariant the equation under
consideration are investigated. By the standard application of the approach
we first prove that the BP-equation has a three-parameter symmetry group.
We also give all possible group invariant solutions by using one-dimensional
optimal system of Lie symmetry generators of BP-equation in (17), and also
the transformation groups which generate those vector fields in (20).
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