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GROUP-INVARIANT SOLUTIONS OF DIFFERENTIAL EQUATIONS* 

PETER J. OLVERt AND PHILIP ROSENAUt 

Abstract. We introduce the concept of a weak symmetry group of a system of partial differential equations, 

that generalizes the "nonclassical" method introduced by Bluman and Cole for finding group-invariant 

solutions to partial differential equations. Given any system of partial differential equations, it is shown 

how, in principle, to construct group-invariant solutions for any group of transformations by reducing the 

number of variables in the system. Conversely, every solution of the system can be found using this reduction 

method with some weak symmetry group. 
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1. Background. By a classical or strong symmetry group of a system of partial 

differential equations we mean a continuous group of transformations acting on the 

space of independent and dependent variables which transforms solutions of the system 
to other solutions. As is well known ([4], [11], [13]) solutions of a system of partial 
differential equations which are invariant under a continuous symmetry group are all 

found by solving a reduced system of differential equations involving fewer independent 
variables. Included among these solutions are the important classes of traveling wave 

solutions and similarity solutions, as well as many other explicit solutions of direct 

physical significance. What is not well known is that the basic reduction method 

originated with Sophus Lie himself. Lie was interested in solutions to systems of partial 
differential equations invariant under groups of contact transformations, but his results 

include the local versions of the present-day reduction theorem. In ? 65 of [8], Lie 

proves that the solutions to a partial differential equation in two independent variables, 
which are invariant under a one-parameter symmetry group, can all be found by solving 

a "reduced" ordinary differential equation. The generalization to systems of partial 
differential equations, invariant under multi-parameter groups, is stated and proved 
in ? 76 of the same paper, but, as far as we are aware, has never before been referred 

to in any of the literature on this subject! 
In [3], Bluman and Cole proposed a generalization of Lie's method for finding 

group-invariant solutions, which they named the "nonclassical" method. The method 

also appears in Ames [2, ? 2.10]. In this approach one replaces the conditions for the 
invariance of the given system of differential equations by the weaker conditions for 

the invariance of the combined system consisting of the original differential equations 

along with the equations requiring the group-invariance of the solutions. By this device, 
a much wider class of groups is potentially available, and hence there is the possibility 
of further kinds of explicit solutions being found by the same reduction techniques. 
In practice, however, the determining equations for a nonclassical symmetry group of 

Bluman and Cole type may be too difficult to explictly solve; nevertheless, as is shown 

here, even finding particular nonclassical groups can lead to new explicit solutions of 

the system. (Admittedly, at first sight, the fact that one can expand the range of possible 

symmetry groups by adding in more equations seems contradictory. The explanation 
from a geometrical point of view is that the additional equations restrict us to a smaller 
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subclass of solutions, and, while the entire set of solutions may not be invariant under 
some transformation group, an appropriately smaller subclass may be invariant. From 
a more technical standpoint, the additional equations can be seen to reduce the total 
number of constraints expressed by the defining equations for the group, and hence 
allow a much larger class of groups which satisfy them.) 

The purpose of this paper is to show that the generalization of Bluman and Cole 
is in fact far broader than was previously thought; in principle, not only can equations 
for invariant solutions corresponding to arbitrary transformation groups be found by 
the reduction method, but every possible solution of the system can be found by using 
some such group! In other words, there are no conditions that need to be placed on 
the transformation group in order to apply the basic reduction procedure. In light of 
this result, we can define two types of "symmetry groups" of a system of partial 
differential equations. 

DEFINITION. Let A be a system of partial differential equations. A strong symmetry 
group of A is a group of transformations G on the space of independent and dependent 
variables which has the following two properties: 

(a) The elements of G transform solutions of the system to other solutions of the 
system. 

(b) The G-invariant solutions of the system are found from a reduced system of 
differential equations involving a fewer number of independent variables than the 
original system A. (The degree of reduction is determined by the dimension of the 
orbits of G; see ? 3.) 

A weak symmetry group of the system A is a group of transformations which 
satisfies the reduction property (b), but no longer transforms solutions to solutions. 

In addition, one can extend these concepts to include groups of generalized 
symmetries (also known as Lie-Backlund transformations), [11], leading to both weak 
and strong generalized symmetry groups of the system A. 

Thus, for the problem of constructing explicit solutions of partial differential 
equations, a strong symmetry group can be employed in two distinct ways-either by 
transforming known solutions by group elements, or, by reduction, constructing 
invariant solutions-whereas for a weak symmetry group only the latter option is 
available. (However, a weak symmetry group can map subclasses of solutions to 
solutions, an aspect of the subject we hope to fully investigate in a future paper.) 

In this paper, we are only concerned with groups of point transformations, leaving 
aside problems involving generalized symmetry groups. Strong generalized symmetry 
groups are those used in the general version of Noether's theorem and in the study of 
soliton equations [11, Chap. 5]. The theory of weak generalized symmetry groups is 
equivalent to the recently introduced concept of a differential equation with side 
conditions, which is discussed in detail in [12]. As is shown there, besides the group- 
invariant solutions of the type discussed here, the solutions obtained through weak 
generalized symmetry groups include those arising from separation of variables, par- 
tially-invariant solutions [13], and many others. Fokas [5], has used special types of 
weak generalized symmetries, under the name "conditionally admissible operators," 
for constructing Backlund transformations of nonlinear partial differential equations. 

Returning to point transformational groups, our basic result is that every group 
of transformations is a weak symmetry group, and, conversely, every solution can be 
obtained from some weak symmetry group. There is, however, one important caveat. 
Although one can apply the general reduction procedure for any transformation group 
whatsoever, the resulting system of differential equations may turn out to be incompat- 
ible, and so there will not be any invariant solutions for the given group. (This can 
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happen even in the case of strong symmetry groups; see [11, Chap. 3].) Therefore, 
one should distinguish those symmetry groups which have some invariant solutiotis 
from the others. The procedure for determining whether or not a given group is of 

this class is straightforward and described here; however, for a given system of 
differential equations, the determination of the most general weak symmetry group 
which possesses invariant solutions is a very difficult, if not impossible, problem. 

The proposed reduction method is illustrated by a number of examples, including 
the heat equation, a nonlinear wave equation and a version of the Boussinesq equation. 
The paper is divided into two parts: ?? 2 and 3 present the method and illustrative 

examples in a form that can be appreciated by the reader whose primary interests are 
in applications, while ?? 4 and 5 recapitulate the theory of symmetry groups and 

group-invariant solutions, and prove the basic theorems that rigorously justify the 

method. The essential computational techniques which one needs in order to apply 

our method to specific partial differential equations all appear in the first half of the 

paper, with the second half being devoted to the more rigorous, mathematical aspects 
of the analysis. Finally, ? 6 draws some general conclusions and outlines some further 
directions for research that are suggested by our approach. 

2. Illustrative examples. One of the annoying features of the nonclassical method 
as presented in the above-mentioned references has been that all the solutions that 
have been found could, in fact, already have been found by the classical group-invariant 
reduction method, leading one to question whether this generalization of the classical 
method is, in fact, of any real use. Therefore, to illustrate the method, we begin with 
an example where this is not the case. Consider the nonlinear wave equation 

(1) Utt= U- U X 

whose classical symmetry group consists solely of translations in x and t, and the 
two-parameter scaling group (x, t, u) h-> (A,ux, At, u2u), A, u >0, (cf. [4, p. 301]). The 
one-parameter group G of Galilean boosts 

(x, t, u) >- (x + 2et+ E2, t+ E, u+8et+4 E2), 

where E E DR is the group parameter, does not appear among the classical symmetries, 
and so is not a candidate for the usual method of finding group-invariant solutions. 
Nevertheless, we can find G-invariant solutions as follows. The infinitesimal generator 
of G is the vector field 

v = 2tax +at + 8t&u (ax a/lx, etc.), 

so a function u =f(x, t) is invariant under the group G if and only if it satisfies the 
first order partial differential equation 

(2) 8t =2tux + ut. 

Using the basic infinitesimal method of Lie and Ovsiannikov (see below), one easily 
checks that even though the wave equation (1) is not invariant under G, the combined 
pair of differential-equations (1)-(2) is invariant. This is precisely what is needed to 
apply the nonclassical method, and hence we can find G-invariant solutions to (1) by 
solving an ordinary differential equation. According to the basic method, [3], we first 
find the independent invariants of the group, which are 

y = x - t2 and w=u-4t2. 

Treating w as a function of y, so 

u = 4t2+ w(x-t2), 
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we use the chain rule to compute formulae for the relevant derivatives of u in terms 
of derivatives of w with respect to y: 

utt = 8 + 4 t2 wyy -2 wy , uxx = wyy . 

Substituting these into (1),we see that w must satisfy the reduced ordinary differential 
equation 

wwyy +2wy =8 

if u is to be a solution to (1). This ordinary differential equation can be integrated by 
Lie's method for ordinary differential equations (cf. [11, ? 2.5]), using the obvious 
translational symmetry group: we let z = wy, and treat z as a function of w. The resulting 
equation 

wzzw + 2z = 8 

readily separates, leading to the implicit equation 

(w -4)-2 e-W Y/2 =w, 

where c is an arbitrary constant of integration. For each solution w = h (y) of this latter 
first order equation, we obtain an explicit G-invariant solution u = 4t2+ h(x - t2) of 

the original equation (1): most of these do not appear among the group-invariant 
solutions computed using the ordinary symmetry groups of (1), and are thus genuinely 
new invariant solutions not obtainable by the classical method. 

A similar construction is valid in the case of the Boussinesq equation 

(3) Utt = uXX+,8(u 2)x+ YUXXXX 

,89 y constant, which is a soliton equation arising in water waves and plasma physics. 
For y $ 0, its classical symmetry group consists of just translations in x and t and the 
group generated by xax+2tat-(2u+,8-1)au. Let a be a constant and consider the 

one-parameter Galilean group 

(x, t, u) >- (x - 2a/3et - afleE2, t + E, u +4a2,8et +2a2,BE2), 

which is generated by 

v = -2aIBtax + at + 4a2,Itau. 

For a $ 0 this is not a symmetry group; nevertheless there do exist group-invariant 
solutions to the Boussinesq equation. The independent invariants of this group are 
y = x + a,ft2 and w = u - 2a2,3t2, so any invariant solution has the form w = h(y), or, 

equivalently, 

u =2a2/3t2 + h(x + a/t2). 

We are thus led to the ansatz originally proposed by Tomotika and Tamada [15] for 
a nonlinear wave equation arising in transonic gas flow, which corresponds to the 

special case y = 0, and extended to the Boussinesq equation in [10], [14]. To find the 

ordinary differential equation satisfied by w, we compute the derivatives of u in terms 
of those of w: 

U = 4a2p +4af2p2t2wyy + 2a,3wy, u,xx= w 

(U2)XX = 4a2f3t2wYY + (w2), uxxxx = wyyyy 

Therefore, w satisfies the fourth order ordinary differential equation 

ywyyyy + 283wwyy + 2f8wy - 2a,fwy = 4a2,/, 
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and every solution of this will provide an invariant solution of the Boussinesq equation. 
Integrating once, and using the substitution 

w = w + ay, 

we are left with the interesting third order equation 

yi7v + 2,8 "y - 2a,8;i3 - 4a83v = 0, 

where y is a translate of y depending on the constant of integration. This last equation 
arises in the study of the scale-invariant solutions to the Korteweg-de Vries equation, 
and is closely related to the second Painleve transcendent [1], [9]. Hence there are 

solutions of the Boussinesq equation which can be written in terms of the solutions 

to this Painleve equation. (The appearance of Painleve transcendents, cf. [6], for the 

reduced equations for invariant solutions for the Boussinesq equation should come as 

no surprise to readers familiar with the Painleve conjecture (cf. [1], [9], [17]) for 

soliton equations.) 

3. The reduction method. Let us now review the original Lie method for finding 
group-invariant solutions of partial differential equations in order to see how to 

generalize it to other types of transformation groups. (For ease of exposition, we will 
gloss over some of the more technical points in this construction; see [11], [13] for a 

more rigorous discussion.) Consider an nth order system of differential equations 

(4) /v(x,u u))=0? V=1, * ,I 

in p independent variables x= (xl, *, xP) and q dependent variables u = 

(ul,. . , uq). Here u(n) stands for all the derivatives of the dependent variables u with 
respect to the independent variables x up to order n, and the functions A, are, for 
simplicity, assumed to depend smoothly on their arguments for x, u in some open set 
M of the total space X x U = Rp x Dq of independent and dependent variables. 

Let G be a local group of transformations acting on M c X x U. The group 

elements act on functions u =f(x) by pointwise transformation of their graphs. 

Specifically, if g is a group transformation, and u =f(x) is any function whose graph 
Ff {(x,f(x))} lies in the domain of g, then the transformed function f-gf has 

graph Fy = g Ff = {g (x,f(x))}. (It may be necessary to restrict the domain of definition 
of f in order that g-f be well defined.) The transformation group G is said to be a 
symmetry group of the system of differential equations A if each group element g c G 
transforms solutions of A to other solutions to A. (The basic Lie-Ovsiannikov 
infinitesimal method discussed below allows one to explicitly compute the most general 

(connected) symmetry group of practically any given system of differential equations.) 
If G is a symmetry group of the system of differential equations A, then the 

solutions which are actually invariant under G are of especial interest. By definition, 
a function u =f(x) is called G-invariant if all the transformations in G leave it 

unchanged, so whenever g c G, gf=f on their common domains of definition; 
equivalently, the graph of f is a (locally) G-invariant subset of M. Lie's reduction 
method for finding G-invariant solutions to the system A relies on the introduction of 

invariants of the group action. Here a real-valued function 7q(x, u) is called an invariant 
of G if it is unchanged by the group action: q (g (x, u)) = q (x, u) for all (x, u) c M 

and all g e G such that g (x, u) is defined. Assume that G has a complete set of 

globally defined, functionally independent invariants 

=1 1(X u),.., yp-r = P-r(X, U), W = (X, U), .. Wq = = XU), 
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an assumption that can always be realized by suitably shrinking the domain of definition 
M of the group action. (In particular, this requires all the orbits of G to have dimension 
r.) The invariants are parceled into two sets, with y = (y,1*... , yp-r) representing new 

independent variables and w = (wl, ... *, wq) representifig new dependent variables. 

Each G-invariant function u =f(x) on M can be re-expressed in terms of the invariants 

of G: 

(5) '(x, u) = h['q(x, u)], 

and hence is uniquely determined by some function w = h(y) involving the new 

variables. 
The reduced system of differential equations AI G for the G-invariant solutions 

to A will involve just the new variables y, w formed from the invariants of G. To find 

A/ G we need to express the derivatives of u with respect to x in terms of derivatives 

of w with respect to y. We split the variables x = (xl, * , xP) into parametric x = 

x * ) and principal = (xi', , x ) subsets chosen so that the system of 

p + q - r equations 

y ='q(x, u), w = (x, u) 

can be solved, via the implicit function theorem, for the variables x& and u in terms of 

the new variables y and w and the remaining parametric variables x: 

(6) x= y(:, y, w), u =86(k, y, w). 

As in the above examples, we can differentiate these expressions with respect to x to 

find corresponding formulae for the nth order derivatives of u, 

(7) U(n) = 6(n)(X y W(n)) 

in terms of y, w, the derivatives of w with respect to y up to order n, plus the ubiquitous 

parametric variables x. The formulae (6)-(7) are then substituted into the original 
system (4), leading to a system of equations 

(8) A/(:, y, w 0) 9 = v= 1,* 

still involving y, w, derivatives of w and the parametric variables x. Provided G is a 

symmetry group of the system, it can be proved that this latter system is, in fact, 
algebraically equivalent to a system of differential equations 

(9) (A/G),(y, w(n))=O, v=1, = * *, 1 

in y and w that no longer involves the parametric variables. (For example, A, might 

be the product of a nonvanishing function of xZ with a function of y, w (n), in which 

case (AI G), would be the latter function.) The system of differential equations (9), 
which has r fewer independent variables, constitutes the reduced system AI G. Every 
solution w = h(y) to (9) gives rise to a G-invariant solution u =f(x) to A, determfined 
implicitly from (5), and, moreover, every G-invariant solution to A can be thus found. 

If G is not a symmetry group to the original system (4), we can still ask whether 
A has any G-invariant solutions. The same reduction procedure, using the independent 
invariants y, w of G, can still be applied, resulting in a system (8) involving the chosen 

parametric variables x. At this point, there are two possibilities. In the first, which is 
the nonclassical method as envisaged by Bluman and Cole, it happens that even though 
G is not a symmetry group to A, nevertheless the system (8) is still algebraically 

equivalent to a system of differential equations (9) involving only the new variables 

y, w and their derivatives. (This is precisely what happens in the examples of ? 2.) As 
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in the case when G is a symmetry group, every solution of the reduced system gives 
rise to a G-invariant solution to A. The second possibility is that the system (8) depends 
in some essential way on the parametric variables x. In this case we can still reduce 

(8) to a system of differential equations for w(y) by requiring y, w (n) to satisfy all 
possible conditions so that (8) becomes an identity in x. (These can be found, for 

instance, by expanding (8) in powers of x.) We are then left with an overdetermined 
system of reduced differential equations for w as a function of y; any solution will, 
just as before, lead to a G-invariant solution to the original system (4). Of course, the 
last reduced system might be incompatible, implying that there are no G-invariant 
solutions to A, so an important question is which transformation groups lead to 
compatible reduced equations. (It is possible, though unlikely, that even a classical 

symmetry group can lead to incompatible reduced equations: consider the translation 

symmetry group (x, y, u) -(x + E, y + E, u) for the equation ux + uy=1.) 
Example. Consider the heat equation 

(10) Ut = Uxx 

The one-parameter group 

G: (x, t, u) _>(Ax,Ak-1t, u+x3(A3-1)) A > O 

is not a classical symmetry group of the heat equation. Nor is it of the form amenable 

to the nonclassical method given by Bluman and Cole [3]. Indeed, its infinitesimal 

generator is the vector field 

v = x&x - tat + 3X3&a, 

so, using their notation on p.1041, we would have X = x/ t, U = 3x3/ t (cf. their equation 
(90)), but these two functions do not satisfy their defining equations (94)-(96). 
Nevertheless, there do exist G-invariant solutions of the heat equation, and we can 
construct them as follows. 

The basic invariants of G are the functions 

y=xt, w=u-x33 

so the most general G-invariant function is of the form w = h(y), or 

u =x3+h(xt). 

Let us treat x as the parametric variable, and find expressions for t, u and derivatives 
of u in terms of y, w and derivatives of w with respect to y. We have 

t = y, u = x3 + w, 
x 

and, using the chain rule, 

ut = xwY, u,, = 6x + x-2 y2W 

Substituting these latter expressions into the heat equation (10), we are left with the 
equation 

(11) xw=6 + X-2+2yw, 

which is equation (8) in this particular example. If G were a classical symmetry group, 
or a nonclassical group of the type considered by Bluman and Cole, then (11) would 
be equivalent to an ordinary differential equation just involving w and y. In the present 
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case, though, we treat (11) as an identity in the parametric variable x; separating the 

coefficients of x and x-2, we are left with two ordinary differential equations 

(12) wy = 6, wyy = 0, 

which must be simultaneously satisfied for a G-invariant solution to the heat equation 

to exist. In this case, the equations are compatible, with general solution w = 6y + c, 

where c is an arbitrary constant. Thus we obtain a one-parameter family of G-invariant 

solutions to the heat equation 

(13) u=x3+6xt+c, 

which do not appear among the classical group-invariant solutions (although they are, 

of course, linear combinations of two such solutions). 
Example. The heat equation example, while reasonably easy to understand, leads 

to a fairly trivial family of solutions; even though they do not explicitly appear among 

the group-invariant solutions, they can be easily derived from them by superposition. 

We therefore give an illustration of the application of the method to a nonlinear partial 

differential equation and construct some new solutions to the Boussinesq equation (3). 

First consider the scaling group 

(x, t, u ) -4(Ax, A t, u ), A > O, 

which is not a symmetry group of the equation unless y = 0. The similarity variables 

(invariants) are y = x/ t and w = u (at least when t > 0). To apply the above reduction 

method, we view w as a function of y only, and substitute into the equation (3). We 

find the equation 

(14) t-2(y2w + yw ) = t-2(wyy +/3 (w2),) + ytW yyyy, 

in which we have chosen t to be the parametric variable. Again, when y $0, (14) 

(which corresponds to (8) in this example) is not equivalent to an ordinary differential 

equation for w(y) which does not involve the parametric variable t, so this scaling 

group is not even a symmetry group of the type discussed by Bluman and Cole. 

Nevertheless, there still exist similarity solutions of the Boussinesq equation invariant 

under this group. We note that (14) requires that the pair of ordinary differential 

equations 

y2wY +YWY =Wyy +,8(W2)YY wyy=0 y y wy= 
be satisfied. From the latter equation, we see that 

w = ay3 + by2 +cy + d 

must be a cubic function of y; substituting into the former, we find that a = c = 0, and 

either b = (3,83)-1 d = -(2,P)-1, or else b = 0, and d is arbitrary. The similarity solutions 

are thus the constants and the special solution u = x2/(3,13t2)- 1/(2,3). The lesson here 

is that even though a partial differential equation may not admit any scaling groups 

of symmetries, nevertheless there still may exist similarity solutions to it, and these 

can be found by the present reduction method. 
In ? 2 we obtained solutions of the Boussinesq equation which are invariant under 

a certain group of Galilean boosts by using Bluman and Cole's nonclassical method. 

We find further Galilean-invariant solutions for a different one-parameter group in 

which the dependent variable u is unaffected by the boost. Consider the group with 
infinitesimal generator v =-2atax + a. Invariants are provided by y = x + at2 and u 

itself. Treating u as a function of y, we are led to the equation 

(15) 4a2t2uYY+2auy =u +l(U)+yuyyyy 
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with t again the parametric variable. As this is not equivalent to a single equation not 
involving t, this Galilean group is not of Bluman and Cole type. However, as above, 
there still exist invariant solutions. We need only solve the pair of equations 

uyy =0 , 2auy = uyy +,B (U 2) yy +Y yUyyy 

stemming from (15). The general solution is easily seen to be u = afY-y + c, where c 
is an arbitrary constant, leading to a second family of Galilean-invariant solutions 
u = a,f-Y(x + at2) + c of the Boussinesq equation. 

The difference between the three methods for finding invariant solutions to differen- 
tial equations is made crystal clear if we look at just one-parameter groups. Suppose 
for simplicity that we have a single partial differential equation in two independent. 
variables and one dependent variable. As long as the infinitesimal generator v of G 

does not vanish, we can always locally choose new coordinates (s, y, w) such that v = as 
(and hence y, w are the independent invariants of G), so that G becomes a translation 

group (s, y, w) H-> (s + E, y, w) in the new coordinates. In the new variables, the differen- 
tial equation has the form 

A(s, y, w, wS, wY, wss, wsy wyy *) = 0. 

There are now three distinct cases pertaining to the construction of G-invariant 
solutions to A. 

Case 1. If G is a strong symmetry group of A, then A is equivalent to an equation 
which does not depend explicitly on s: 

A(y, w, w9, w, w ,y wyy .) . 0. 

G-invariant solutions w = w(y) are determined by the simple translational invariance 
condition ws = 0. Substituting, we immediately obtain the reduced ordinary differential 
equation for the G-invariant solutions 

A(y, w,0 , wY 0,0, 0 wyy*) = 0. 

Case 2. In the nonclassical method of Bluman and Cole, A need no longer be 

independent of s, but when we substitute the invariance condition ws = 0 into A, we 
obtain an equation that is equivalent to an s-independent ordinary differential equation 
for w(y): 

A(Sq y, W, 0, Wy9 0, 0, Wyy ..**). F(s) - 
A(y9 w, wy9 wyyg .. * 0 . 

In this case A =0 constitutes the reduced ordinary differential equation for the G- 
invariant solutions to A. 

Case 3. In the most general case, proceeding as in Case 2, we obtain an equation 
of the form 

A(s,y, w, 0, wYO,0, owyy * * *0, 

which must hold identically in s. Expanding A in powers of s or in a Fourier series 
in s, say, we will obtain a collection of ordinary differential equations for w(y). If 
these are compatible, each solution will determine a G-invariant solution to the original 
system A; otherwise, A has no G-invariant solutions. 

In both Case 2 and Case 3 the group is only a weak symmetry group; the main 
difference is the increase in the number of reduced equations needed for the last case. 

As an illustration of this approach, in the heat equation example we would 
straighten the vector field v by introducing the new variables 

s =-log t, y = xt, W = U-X3, 
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so that v = a, in these coordinates. In the s, y, w-coordinates, the heat equation takes 
the form 

e-sws + ye-Swy = e2sWYY + 6ye-s. 

Any G-invariant solution has w, = 0, and hence must satisfy 

ye-swy = e2sw + 6ye-s 

for all s. This is equivalent to the reduced system 

ywy = 6y, wyy = 0, 

from which we once again obtain the general G-invariant solution (13) to the heat 
equation. 

4. Symmetry groups of differential equations. We now turn to a proof of the key 
result that shows that the above reduction procedure will work for any group of 
transformations whatsoever. We will follow the development of the general theory of 
symmetry groups of differential equations presented in [11], which the reader should 
consult for more details; see also [13]. 

Consider a system of differential equations of the form (4). We will assume 
(without essential loss of generality) that the system (4) is of maximal rank, meaning 
that the Jacobian matrix of the A, with respect to all the variables (x, u(n)) has rank 
1 at every solution to the system. Let G be a (connected) local group of transformations 
acting on an open subset MCXx U= sapX q of the space of independent and 
dependent variables (x, u). Rather than trying to treat the group transformations 
directly, we look at the infinitesimal generators of G, which are vector fields 

(16) v= L q (x ")dx+ L 9 ( ' )aUa i=1 ax a=1 

on M. Since the equations (4) involve not only x and u but also derivatives of u, we 
need to know how the group transforms these derivatives; this is covered by the theory 
of prolongation [11], [13]. The infinitesimal generators of G will have corresponding 
prolongations, telling how G acts "infinitesimally" on the derivatives of u. The general 
prolongation of the vector field (16) is given by the formula 

P 
(17) prv=prvQ+ Di, 

i=l 

where Di is the total derivative with respect to xi, Q = (Ql, Qq) is the characteristic 
of v, with entries 

(18) 
~~~P I uci 

(18) QCY SP~~~~~c (x u ) iE f (x 'u) dx'= 

and VQ E Qca&/&ua is the corresponding evolutionary vector field, with prolongation 

aa (19) pr vQ = L (DjQa) ,u, U J-DJU. 

(In (19) each multi-index J refers to a specific partial derivative of u , with DJ denoting 
the corresponding higher order total derivative.) The fundamental observation of Lie, 
allowing one to explicitly compute the general symmetry groups of differential 
equations, was that the complicated nonlinear conditions for G to be a symmetry 
group to the system (4) could be replaced by equivalent, linear conditions using the 
infinitesimal generators of G. 
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THEOREM 1. Let A be a system of differential equations of maximal rank. A connected 
group of transformations G is a strong symmetry group of A if and only if for every 
infinitesimal generator v of G 

(20) pr v(A,) = 0, v = 1, 

for all solutions u =f(x) to A. 
In practice, the determining equations (20) of the symmetry group of A constitute 

a large number of elementary linear differential equations for the coefficients (, p' 

of v, which can be explicitly solved, giving the most general (continuous) symmetry 
group. (See [4], [11], [13] for the above theory and illustrative examples of this 
procedure.) 

Often one says, somewhat loosely, that the infinitesimal invariance conditions 
(20) should hold "whenever (x, u(n)) satisfy (4)." There is, in fact, a subtle distinction 

between the way the theorem is stated and the latter statement. It is not true in general 

that if x0 is a point in X = IIRP and uo a collection of prescribed values of the derivatives 
of u at x0 that satisfy the algebraic conditions imposed by the system (4), then there 

exists a smooth solution u =f(x) to the system whose derivatives at the point x0 agree 
with the values u(n). A point (x0, u(n) which does satisfy this condition, and so pertains 
to an actual solution u =f(x) of the system, is said to be a point of local solvability of 

the system [11]. Theorem 1 says that G is a strong symmetry group of the system (4) 
provided the infinitesimal invariance condition (20) holds only at the points of local 

solvability of the system, and not necessarily all (x, u(n)) satisfying (4). 
There are two principal causes of nonsolvability of systems of partial differential 

equations. The first, which will not concern us so much here, are those smooth but 

nonanalytic systems which, like the example due to Lewy [7], have no solutions. More 
interesting for our purposes is the nonsolvability due to integrability conditions coming 
from cross-differentiating the equations in the system. For example, the system 

ux=yu, uy=0 

is not locally solvable at any point 

(x?,y?,u?,u?,u?)=(x? y?,u?,y? u?,0) 

where uo $ 0, e.g. (0, 0, 1, 0, 0). Indeed, cross-differentiation shows that 

0 = uxy = yu y+ U = U, 

and so the only solution is the trivial one u 0. For analytic systems of differential 
equations, a theorem of Tresse [16] says that all the integrability conditions, and hence 
the equations for the points of local solvability, can be found by a finite number of 
such cross-differentiations. (See [11] for a fuller discussion of these issues.) 

5. Group-invariant solutions. Given a system of partial differential equations (4), 
if we are looking at the solutions which are invariant under some transformation group 

G, then there will be further restrictions on the possible values of the variables (x, u(n)) 
which can be assumed by such solutions. In our first example, these were encapsulated 
in the relation (2) between the first order derivatives. The general result is similar: 

LEMMA 2. Let G be a connected group of transformations on M, with infinitesimal 
generators vl, , vs. Let Q1, - - QS be the corresponding characteristics. Then any 

G-invariant function u =f(x) must satisfy the first order system of s q equations 

(21) Qdm(X, Uern) g O, t n = 1, c sI a fo Gq 

determining by the vanishing of the characteristics for G. 
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(In fact, if G acts regularly [11] or, more restrictively, has a complete set of 
functionally independent invariants defined over all of M, then (21) is both necessary 
and sufficient for u to be a G-invariant function.) 

Any G-invariant solution u =f(x) to the system (4) will also be a solution to (21), 
and hence a solution to the combined system 

A, (X, u(n)) =, ? PJ 1, **,1, 

(22) 

Q(a(x, u( )=0, ,u=1, I S, a,=1* q 

as in (1) and (2) in the illustrative example. (In the context of [12], the characteristics 
(21) provide the side conditions that are to be appended to the system in order to 
determine the G-invariant solutions.) 

As detailed in [11], the key to the reduction method lies, not in the invariance of 
the system (4) under the group G, but rather in the invariance of the combined system 
(22). 

THEOREM 3. Let A be a system of differential equations on M c X x U. Let G be 
a transformation group acting on M which has a complete set of globally defined, 
functionally independent invariants y1 =-ql1(x,u), _,yP-r= ,qP-r(x,u), wI = 

(I(x, u), , wq = Vq(X, u), which provide local coordinates on an open subset M/Gc 
Y x W = RP-r x Rq (the quotlent manifold of M by G). Let Q1,-.. I Qr be the characteris- 
tics for a basis of the space of infinitesimal generators of G. If the combined system (22) 
consisting of the equations in A plus the vanishing of the characteristics is invariant under 
the prolonged action of G, then G is a weak symmetry group of A, and the basic reduction 
procedure of ? 3 will lead to a well-defined system of differential equations Al G in the 
new variables y, w. Each solution w = h(y) of this reduced system A/ G leads, via (5), 
to a G-invariant solution to A and, conversely, each G-invariant solution to A arisesfrom 
a solution to A/G. 

The key to the proof of this theorem [11], [13] is that the combined system (22) 
be invariant under G, so that the infinitesimal conditions of Theorem 1 hold for all 
(x, U(n)) satisfying (22). In particular, if G is a strong symmetry group to the original 

system (4), then it is automatically a symmetry group of the combined system (22), 
since it is trivially a symmetry group of the characteristic system (21). For more general 
transformation groups, we might not expect the entire system (22) to be invariant 
under G; indeed, Bluman and Cole's nonlinear conditions for G to be a nonclassical 
symmetry group, (cf. [3]) are the same as the infinitesimal invariance conditions that 
the entire subvariety 

{(x, U(n)): A,(X, u(n)) = 0, IJ = 1, 
Q , '(X, U( )) = 0, ,u=1, *** ,a=1 ,q 

be invariant under the prolonged group action (cf. (20)). However, as we saw in our 
discussion following Theorem 1, as far as the solutions of (22) (i.e. the G-invariant 
solutions to (4)) are concerned, we really need only look at the points (x, u(n)) of local 
solvability of (22), and the imposition of the infinitesimal invariance conditions just 
at these points will impose less stringent requirements on the group G. 

We can now state the basic result of this paper, which is, perhaps surprisingly, 
that the subset consisting of the points of local solvability of (22) is always invariant 
under G. In other words, no matter what the group G is, the combined system (22) 
always admits G as a symmetry group in the sense that G transforms solutions u =f(x) 
to solutions, and hence G is always a weak symmetry group of the original system. 
Therefore, provided we are in the domain of applicability of Tresse's theorem, once 
we append to (22) all the integrability conditions coming from cross-differentiations, 
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we are left with a system of the same form which is invariant under G, and hence 
gives rise to a reduced system in the new variables whose solutions corresponding to 
all the G-invariant solutions to (4). Put another way, the reason why Bluman and Cole 
find nontrivial conditions on their groups in order to apply their nonclassical method 
is that they fail to take into account the additional restrictions on the derivatives of u 
coming from these integrability conditions. 

THEOREM 4. Let G be any group of transformations acting on M c X x U. Let A 
be any system of differential equations defined over M. Then G is always a symmetry 
group of the combined system (22) consisting of the equations in A and the vanishing of 
the characteristics of the infinitesimal generators of G, and hence is always a weak 
symmetry group to A. 

Proof Let v = Vk be an infinitesimal generator of G with characteristic Q = Qk. 

Writing out the infinitesimal conditions of invariance (20) for the system (22), we find 

(23) 
pr v(A,) = pr VQ(A,) + E e'DiAV = 0, 

prv(Ql) = prvQ(Q)+Z e'DiQlQ = 0, 

which must hold for all solutions to (22). Note first that the coefficients of the prolonged 
evolutionary form pr VQ of any infinitesimal generator v of G are just total derivatives 
of the entries Qa of the characteristic Q of v (cf. (19)) and hence vanish on solutions 
to (22). Second, the remaining terms in (23) just involve the first order derivatives 

DiA,, DiQ' of the equations in (22), and hence also vanish on solutions. Thus the 
infinitesimal criterion of invariance (20) for the combined system (22) is verified, 
proving the theorem. 

The discussion preceding the theorem indicates the possibility of a second 
approach to determining G-invariant solutions to a system of partial differential 
equations. Namely, one writes down the combined system (22), and then differentiates 
to find the relevant integrability conditions. According to Tresse's theorem, this process 
will, in a finite number of steps, lead to a G-invariant system of differential equations, 
from which the reduced equations A/ G for the G-invariant solutions to the original 
system can be determined. For example, consider the case of the heat equation (10) 
discussed above. In terms of the invariants y, w of the one-parameter group G, we have 

ut = xwY, ux = twy + 3X2, U = x2W 

(24) uxt= xtwyy + WY, uxx = t2wyy + 6x, u x3W 

Uxtt =x 2twyyy + 2xwyy, uxxt = xt2wyyy + 2 twyy, uxx = t3wyyy + 6, 

and so on. If we substitute these expressions into just the heat equation ut = u.x itself, 
we obtain the equation 

(25) xwY = t2 wYY + 6x, 

which, as we noted above, is not an ordinary differential equation for w as a function 
of y. However, if we append the equations for the first prolongation of the heat equation, 
namely 

(26) Utt = uxxt uxt = 

and substitute according to (24), we find 

x2 
2 

xt2WYYY + 2 twyy, XtWyy + WY = t3 Wyyy +6. 

Eliminating wyyy from this latter pair of equations, we have 

(27) xwy = 6x-2 t2 . 
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Comparing with (25), we see that w has to satisfy the same pair of ordinary differential 
equations we deduced earlier in (12). We again have found the one-parameter family 
of G-invariant solutions (13). 

Note that, in contrast to Bluman and Cole's procedure, here we were forced to 
use the first derivatives of the differential equation in order to uncover the reduced 
ordinary differential equations for the invariant solutions. Another way of seeing this 
is to look at the combined system 

ut = uXX xux-tut-3x3 = 0, 

which is (22) in this particular case. This system is not G-invariant, but a suitable 
prolongation of it is. In fact, differentiating the second equation once with respect to 
t and twice with respect to x, we have 

xuxt-tutt-ut = 0, xuxxx + 2ux -tuxxt - 18x = 0. 

Substituting into the latter equation according to (26), we find 

xuxt + 2ux - tutt - 18x = 0; 

comparison with the former equation yields the G-invariant system 

ut = 6x = ux, 

from which we can also deduce the general G-invariant solution (13). 
Now that we know how to implement the reduction method for an arbitrary group 

of transformations on the space of independent and dependent variables, it is easy to 
prove that any solution u =f(x) to a system of differential equations can be found by 
these group-theoretic methods. All we need to do is to find some local group of 
transformations G that leaves the graph of f invariant. In fact, there are many such 
groups; a specific example would be the one-parameter group with infinitesimal 
generator vi =&/x'+ZE (afa/axi)a/aua for any 1?- i-p, or, more generally, any 

variable-coefficient linear combination of these generators. 
THEOREM 5. If A is any system of partial differential equations and u =f(x) is any 

solution, then there exists a weak symmetry group G of A such that f is invariant under 
G and hence f can be obtained by the reduction method of the preceding theorem. 

This substantiates our claim that any given solution could be found by the general 
reduction method for weak symmetry groups. However, if one has already obtained 
the solution by some other method, the reasoning in Theorem 5 is, perhaps, of an a 
posteriori nature. In other words, Theorem 5, while certainly of interest, is not meant 
to supplant other valid and useful methods for finding explicit solutions to partial 
differential equations. Moreover, as shown in [12], while one can always derive 
individual solutions from the group reduction method, the same cannot be said for 
parametrized families of solutions such as those arising from separation of variables; 
they may not all come from one and the same symmetry group. 

6. Conclusions. We have shown how the basic group reduction method for finding 
group-invariant solutions to systems of partial differential equations can be applied to 
any group of transformations whatsoever, without regard for any underlying symmetry 
conditions imposed by the system itself. On the one hand, this observation is liberating, 
in that one is no longer shackled by possibly artificial symmetry constraints in the 
search for explicit group-invariant solutions. On the other hand, this appears to open 
up a whole Pandora's box: how is one to determine which groups will actually be 
useful, a) in the sense that the resulting reduced system is compatible and hence 



GROUP-INVARIANT SOLUTIONS 277 

invariant solutions do exist, or b) more restrictively, in the sense that the reduced 

system can be explicitly solved to determine the solutions in closed form? It would 
be quite enlightening to determine the answer to these questions, even in just one 

specific example, such as the heat equation, but this we leave to future research. The 
chances are that the conditions, like those of Bluman and Cole, are extremely compli- 

cated, so one can never know in full detail the entire range of possible reductions 

which are available. Indeed, since in principle one can determine any solution by a 

suitably clever choice of weak symmetry group, one would scarcely be able to determine 
all possible weak symmetry groups having invariant solutions unless one explicitly 
knew all possible solutions. 

An alternative tactic, which seems more practical, is to specify the group by 
external symmetry considerations; for example, one might try symmetries relevant to 

the physical problem that the system is modeling (whether or not these are symmetries 
of the system itself), or symmetries which preserve any boundary conditions that are 

present in the problem. Once the group has been prescribed, one can algorithmically 
implement the reduction procedure presented here, and thereby determine all solutions 

which are invariant under the given group. If the combined system (22) is compatible, 
invariant solutions to the system will exist, despite the fact that the given group is not 
a symmetry group of the system. Alternatively, one may find (22) to be an incompatible 
overdetermined system of differential equations, and hence there are no solutions to 
the system that are invariant under the given group. (As remarked above, this latter 

possibility exists even for strong symmetry groups; see [11, Chap. 3] for physical 

examples.) Even this information, we believe, could be important for the analysis or 

physical applications of the problem at hand. At the moment, the principal direction 
of research should be on applying the method to specific, physically interesting 
examples, thereby gaining an appreciation of its usefulness and range of applicability. 

Finally, it is worth mentioning that these results are subsumed under the more 
general concept of a differential equation with side conditions proposed in [12]. This 
idea not only includes group-invariant solutions of all the above types, but also 

separable solutions and more general types of special solutions to partial differential 

equations. As discussed in detail in [12], side conditions, and not group theory, appear 
to provide the real unifying framework for all the methods for finding special solutions 
to differential equations. Nevertheless, simple group invariance can, as we have demon- 

strated, still lead to many new, explicit solutions of physical importance, and retains 
its validity as a practical method for the study of partial differential equations. 
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