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Abstract

Necessary and sufficient conditions are given for the existence of the group and Drazin
inverses of bidiagonal and triangular Toeplitz matrices over an arbitrary ring.

Introduction

In the study of matrix equations and generalised inverses (Hartwig
(1975)), the question arises when the bidiagonal hypercompanion block
matrix

M =

L
N L .

N.

L0

0

N L J

possesses a group inverse (Ben-Israel and Greville, (1974)); that is when does
there exist a solution M* to MXM = M, XMX = X, MX = XM. The purpose
of this paper is to answer this question iin the most general setting and to give
an expression for M* in terms of L and N, when it exists. Since the concept of
a Drazin inverse (Ben-Israel and Greville (1974), Drazin (1958)), of a ring
element is closely related to that of a group inverse, we shall at the same time
investigate the existence of this type of generalised inverse for M.

The following results from ring theory (Hartwig (1976)), Proposition 7, will
be assumed. If a is an element of a ring R, then there exists a solution a* to
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[2] Inverses of Toeplitz matrices 11

(1.1) (1) axa = a, (2) xax = x, (3) ax = xa

if and only if there are solutions to a2u = a, a = va2. In either case a* = uau is
unique and

a" = {x | ax = 0} = (a2)0 °a = {x | xa = 0} = "(a2).

In the language of generalised inverses the solutions to (1.1)-1 and (l.l)-2 are
called 1-inverses and 2-inverses of a respectively (Ben-Israel and Greville
(1974)). The Drazin inverse a" (Drazin (1958)) of an element a G R is the
unique solution, if any, to

(1.2) akxa = ak, xax = x ax = xa,

and exists if and only if there are non-negative integers p and q for which
there exist solutions to ap^'u = ap, and vaq+1 = a". The smallest values of p, q
and k for which there exist such solutions, if any, are called the left index
l{a), the right index r(a) and the index i(a) respectively. It was shown in
Drazin (1958) that if /(a) and r(a) are finite then l(a) = r(a) = i(a). It should
further be noted that if i(a) = 0, or 1, then ad = a*, and that ad exists if and
only if {ak)* exists for some positive integer k (so that k =2 i(a)) and is then
given by

(1.3) a" = ak-1(ak)* = (ak)*ak-\

Throughout this paper we denote the ring of n x n matrices over R by Rnxn,
and we shall assume for notational convenience that our rings have unity even
though most of our results do not depend upon this fact.

1. Preliminary Results

We begin with two preliminary results.

LEMMA 1. Let R be a ring with unity 1 and let u, x G R with ux = 1.

Then ud exists if and only if u'x exists.

PROOF. This follows immediately from the fact that

LEMMA 2. Let R be a ring with unity 1 and let a G R. Then a * exists if
and only if a2 and a are associates. In either case a is unit regular and a2 is
equivalent to a.

PROOF. Suppose a* exists. Then u = a* +.(1 - aa*) is invertible with
+ (l~ aa*). Hence
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12 R. E. Hartwig and J. Shoaf [3]

au = aa* = ua, aua = a and a2u = a = ua2.

The converse is clear.
The local result of this lemma should be compared with the results

obtained in Ehrlich (1968), Hartwig (submitted). It is well-known that in the
case of matrices over a field, the equivalence between A and A2 is also
sufficient for A * to exist. This is also true for a skew field as shown in Section
5. We note the following global analogue of the above result, namely that a
regular ring with unity is strongly regular (that is l(a) § 1 for all a G R) if and
only if every element in R is equivalent to its square. Indeed, the necessity is
contained in Lemma 2, while conversely, if pka

2kqk = ak, k = 1,2, • • • and if
a" = 0, n g 2, then a"' = pn-ia

2n2qn-, = 0. Consequently R has no nonzero
nilpotent elements and thus must be strongly regular since all idempotents are
central. It is an open question whether the regularity assumption can be
dropped. Let us now turn to the question of existence of the Group and
Drazin inverses of triangular matrices. We shall see that the existence of the
group inverse requires strong additional consistency conditions.

2. Drazin inverses of triangular matrices

THEOREM 1. Let R be a ring with unity 1 and let M = " G R2*2,

with M' = [ " °, 1 / = 1,2, • • •. If ud{wd] exists, then

(i) Md exists if and only if wd[ud] exists. In which case

d \ uud 0 1

b wd \ ~ Vfyk{udf +{wdfyke wwd \

where e = 1 - uud, f = 1 - wwd,

(2.0) b= - wdvud + fyk(u
d)k+' + (wd)k + 'yke,

k g i(M) and max{/(M), i(w)}S i ( M ) ^ i(w)+i(w).

(ii) M* exists if and only if u* and w* exist and

(1- tvtv>(l- uu*) = 0.

In which case

M « = ' " d °

w J ifvu + w ve ww

where e = 1 — uu*, f = 1 — ww *, and
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[4] Inverses of Toeplitz matrices 13

PROOF, (i) Suppose first that ud and Md exist, with / = i(M), and let

j l . Then M'+ 1M" = M' shows that
d J

(2.1) ul+'a = u',

(2.2) u'+'c=0,

(2.3) yl + ,a + w'+'b = y ,

Moreover, MdM'*x = M' implies by symmetry that

(2.4) w' = dw'+1

(2.5) bu' + ' + dyl+1 = y,,

while the identity Md = MdMMd yields:

(2.6) b = bua + d(va + wb).

Lastly, the identities Md = (Md)'+1Ml = M'(M")'+ 1 give:

(2.7) c = u'x = x,w' for some x, x, in R

and

(2.8) a = u'y, d = y,w' for some y, y, in R.

Note that (2.1) implies that i ( u ) S ( ( M ) . Hence, combining (2.2) and (2.7)
yields

(2.9) c = u'x = (uudy+1u'x = ( u d ) ' + ' w ' + ' c = 0,

while combining (2.1) and (2.8) shows that

(2.10) a = a'y = (uud)'+lu'y = (ud)'+lul+'a = u".

Similarly (2.4) and (2.8) c o m b i n e to show tha t d = wd and i(w)S i(M).
Rewri t ing (2.6) we ar r ive at

(2.11) b = wdvud + buud + ww"b.

Next , obse rve that yk = w k " ' t ) + wk~2vu + • • • + vuk\ which impl ies tha t

(2.12) y,+ , = w'v + y,u = vu' + wy,.

Premultiplication of (2.3) by (wd)'+ l now yields

ww"b = ( w - ) l + 1 w l + 1 f c = (Wy+l(y, - y,+lu
d)

(2.13) =(wdy+'[yl-(ylu + w'v)ud]

= (wrf)'+1y,(l - uud)- wdvud.
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14 R. E. Hartwig and J. Shoaf [5]

Similarly, post multiplication of (2.5) by (ud)l+l gives:

(2.14) buu" = (1 - wwd)yl(u")'*' - wdvud.

Lastly, substituting the latter two expressions in (2.11) we arrive at the desired
expression for b.

Conversely, suppose that ud and wd exist and consider the matrix

X = d , where b is given as in (2.0), with k an integer to be

determined. We shall now verify that for k & i(u)+ i(w), X is indeed the
Drazin inverse of M. First of all, by (2.11), XMX = X is satisfied for all k.
Next, the commutativity condition MX - XM = 0 requires that

(2.15) wb-bu - wdv + vu" = 0.

Substituting for b and using the following identities

(2.16)(a) y k ( O k - w y t ( « T ' = vud - wkv(ud)k + '

we obtain in (2.15)

( 1 - wwd)wkv(u")k^-(wd)k + 'vuk(l- uud),

which vanishes if we take k =? i(u), k g /(w). Lastly , the equations Mk^'X =
Mk = X M ' " will be satisfied provided

(2.17) (\-wwd)yk(\-uud) = 0.

Indeed, wk^b = wwd(yk - yk + ,ud) becomes with aid of (2.12) and (2.0),

- wkvud + wwdyk(\ - uud) = y k ( l - uud)- w"vud,

which reduces to (2.17). It is now clear from the expression for yk, that the
consistency condition (2.17) will be satisfied if k is taken large enough. In
particular k = i(u)+ i(w) would suffice. Hence by the uniqueness of the
solution to (1.2) X = Md and

(2.18) max{ i (u ) , / ( iv )}g i (M)Si (« )+ i ( iv ) .

Thus for example, if w is invertible then i(w) = 0 and i(M)= i(u)\ Using
(2.16), the required form for MMd is now easily obtained, completing the
proof or part (i).

(ii) Suppose first that ud and M* exist with M* = d . Since by-

part (i), max {i(u), i (w)}s l we have ud = u*. wd = w*. By (2.17) the
equation M2X = M will be satisfied only if (1 - ww*)v(\ - MM*) = 0, since
yi = v. The converse follows immediately on verifying that the expression for
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[6] Inverses of Toeplitz matrices 15

M* does obey (1.1), which has a unique solution, namely the group inverse of
M.

Before turning to the immediate corollaries of this theorem, a few
remarks should be made here.

REMARKS. 1. In a general ring the existence of a solution to the
equation u'+1a = «', does not ensure the existence of ud. In fact even if M is
invertible one cannot conclude this, as seen from the following example:

o i r w i - w u i r i o i r w i - w u i r u 0 1

wJL-1 u H o l H - 1 u \[l A
with uw = 1 / wu.

2. It follows from Theorem 1, that strong regularity is not inherited by
R2x2. It is an open question whether this is true for strong 7r-regularity, that is,
when every element has a Drazin inverse.

3. For real matrices the expression for M* was also stated in Meyer
(1975).

4. In Theorem 1, one may obviously replace u, v and w by conformable
matrices over R, since all identities used in the proof then remain valid.

5. The matrix # is a 1-2 inverse, (Ben-Israel and Greville

(1974), page 7) for the matrix , but does not commute with the latter.

In fact it is easily seen that the group inverse of , if any, cannot be

triangular unless the matrix is invertible. We shall return to this in Section 4.
6. If M* and u* exist, then by (2.5) with k = 1,

w[(w*)2(wv + vu)] + (bu)u = v. Using Roth's factorization, (Roth (1952)), we
have

1 0o ] r « o i r I o i r « o 1
l J U w J L - y o j LO w j M

where x = bu and y = w*v + (w*)2vu. Thus M* is equivalent to a diagonal
matrix D. Similarly,

(• i oir u2 o -ir I o w n 2 o i
l-p l\lwv + vw w2\l-q l j LO w2 y

where p = wb + bu and q = (w")2(wv + vu)+ (w*f(wv + vu)u. As expected,
this shows with aid of Lemma 2 that M2 is equivalent to M, as D2 is equivalent
to D.

7. The inequality (2.18) is best possible since it cannot be improved for
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16 R. E. Hartwig and J. Shoaf [7]

matrices over a field. Indeed if M = , where U G 9'mxm and

W G 2Fnxn, and if i/»M denotes the minimal polynomial of M then it is
well-known that

LCM (ipu, <Av) | '/'M I Ipu ' '/'v-

There is a universal choice of v for which the left hand inequality in (2.18) is
attained, for all choices of u and v, namely v = 0. It is unknown for what
choices of v the right hand inequality is attained universally.

8. If has a Drazin inverse, so has „ . Indeed, it was
lv w \ [0 u j

shown by Cline (1965) that (ab)d exists if and only if (ba)d exists, in which
case they are related by the equation
(2.19) (ab)d = a[(ba)d]2b.

It follows further from the proof that the indices i (ab) and i (ba) differ at most
by unity. This should be compared with the corresponding results for matrices
over a field, for which the minimal polynomials of AB and BA differ at most
by a factor of A. Thus if (ba)"' exists then i(ab) = 0 or 1 so that ab must have a
group inverse. On the other hand if (ba)* exists then i(ab) = 0,1 or 2. In this
case (ab)d = (ab)* » a [I - (ba)(ba)*]b = 0 while (ab)d = (ab) ' <=>
a(ba)*b = 1. In particular if (ba)* exists and xb = 1 = ay then the identity
xba(ba)*bay = xbay shows that a(ba)*b = 1 guaranteeing that ab has an
inverse. This generalizes the results of Theorem 2 p. 163 in (Ben-Israel and
Greville (1974)).

COROLLARY 1. The matrix M = has a Drazin inverse if and
lv w \

only if wd exists. In which case Md = d 2 d , with

if i(w) = 0

P R O O F . O b s e r v e t h a t Mk+1Md=\ k ° d °k], w h i l e
lw wdv wk J

Mk+2Md =

Mk*' if k g i(w). Note that this implies that M* exists exactly when w* exists
and v = ww*v.

COROLLARY 2. Let M = j " 1 E R2,2. Then
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(i) Md exists if and only if ud exists. In which case

17

UU 0 1
eyk{udf + {udfyke uu

where e = 1 - uud, b = - udvud + eyk(u
d)k + t + (ud)k*'yke, yk =

u"-'v + uk 2vu + ••• + vuk~\ k g i(M) and i ( M ) S i ( M ) S 2 i ( « ) .
(ii) M* exists if and only if u* exists and (1 - uu*)v(l - MM*) = 0. In

which case

M # =

where e = 1 - uu

0
MM = f MM

evu* + u*ve uu° 1

PROOF. Observe that (2.1) and (2.4) now ensure that ud exists (unlike in
the case where u/ w !)and I ( M ) S k. The rest is immediate from Theorem 1.

COROLLARY 3. Let

M =

(i) / / M and all but one of the u, have Drazin inverses (inverses, group
inverses) then all ut possess the same type of inverse. The converse is also true in
the first two cases. In which case i(M) S i ; . , i(uk).

(ii) / / all u, = u, then

Md, (M'\M*) exists => ud(u~\ u*) exists.

The converse is also true in the first two cases.

PROOF, (i) If uf exists for all i, partition M as

(2.20)

u2

9

|0

k = l , 2 , - - - , n - l ,

and apply Theorem l(i) for each value of k, ensuring that Md exists.
Conversely, suppose that Md and all uf exist, except possibly uf. Then we
partition M as:
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(2.21)

in which Ud and

R. E. Hartwig and J. Shoaf [9]

M = [ U 0 0 "I
? u, 0 ,
? ? w j

exist as shown above. Hence by Theorem 1, and

Remark 4, 9 exists, which guarantees that uf does also exist. Suppose

next, that M* and all uf, (V/, exist. Again partitioning M as in (2.20) for

, / — 1, shows with aid of Theorem l(ii) that -jk = 1,2, exists. On

the other hand, using (2.21) shows then that u* exists. Similarly W* exists and
hence again by Theorem 1, uf exists.

The remaining case where the inverses exist is proven similarly.
(ii) This follows from part (i) and Corollary 2.

Let us now turn to the Drazin inverses of triangular Toeplitz and
bi-diagonal matrices.

3. The Drazin inverse of a triangular Toeplitz matrix

THEOREM 2. Let R be a ring with unity and let

Mn =

a0 _
a,

La,-,

0

a i a0

= aol + a,J + a2J
2

be a triangular Toeplitz matrix, where J = [8iJ+l]". Then
(i) Md

n exists if and only if a* exists. In which case Mi is also triangular
Toeplitz

Mi= bj + bj+ ••• +bn-,J"~\ where

b0 = at

ey\k)(b0)
k + l + ]y\k)e

(3-1)

b, = - £ b,-iaib0+y)
k)br - i c,-,yrbr

+ £ zf-Vre,
i - 1

in which e = 1 - boao, k g i(M) and ch y'k\ z<k) are coefficients of J1 in MnM*,
Mk

n and {Mtf respectively.
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[10] Inverses of Toeplitz matrices 19

(ii) M* exists if and only if a* exists and

(3.2) CCk: eXke=0 k = 0,1, • • -, n - 2,

where

Xk = pkat + pk-2a2 + • • • + fotfic + i, Po = 1

and

(3-3) pk = 2 (~ \fanatai2at • • • aikat •
no repetition

In which case

bo= a*

b,= - a*aiaf)+ eata*2 + {aofa,e

(3.4)

bk = - (bn-ia, + • • • + baak)ba- (ck-ta, + • • • + caak)bl

k i

+ akbl + 2 2 bk-ibi-jdje, k = 2,3, • • •, n - 1.

PROOF, (i) The first part was shown in Corollary 3. Suppose therefore
that Mi and at exist, and that i(Mn) = I. We shall first show that Mi must also
be triangular Toeplitz.

For each k = 1,2, • • •, n and r = 1,2, ••• we partition (Mn)' and Mi
conformally as

f M'k 0 1 T A k Ck I
(3.5) M-=|_ ? M:-A

 and M " = [Bk Dk\'

where Mi = a0 and Mo is absent. Comparing block components in

we find that

for each k = 1,2, • • •, n, so that Mt exists for these values of k. Moreover, by
Theorem 1, Ak = Mi and Ck = 0 for k = 1,2, • • - ,« . Thus Mi is lower
triangular. If we now partition

[M( 0 0 ~ | |~Mf 0 0 I

? M, 0 , Mi = ? X 0 ,
? ? MkJ L ? ? Mi]

https://doi.org/10.1017/S1446788700020036 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020036


20 R. E. Hartwig and J. Shoaf [11]

for all i + j + k = n, then it is easily seen that X = Mf. On taking in succession
/ = 2,3, • • •, n, for each value of /, taking / = 0,1,2, • • •, one sees that M* must
be striped, that is, have the same elements along any diagonal, say Mi =
bol+bj + • • • + bn-iJ"'\ with b0 = at. It is now clear that Mk, (Md

n)
k and

MnMn are all triangular Toeplitz, say

andt
, =0

2
j-0(3.6)

MnMi =
i=o

Partitioning Mn, Mi and Mk
n as

ak
0

Mk.

where a
 T = [a,, • • -, a . . , ] , j> r = [6,, • •-, 6,,-,] and ^ (k)T = [y(,k), • • •, y«,*_>,],

then we obtain form (2.0);

or

Li.-.

a,

a2 yV"

L / . * - ' , ^

y
(k)
]

- y
( k )

where e = 1 — fcoflo- Equating entries in (3.7) now yields (3.1).
(ii) If M* exists, then by Corollary 3, a* exists. Moreover from

Theorem 1 (ii), the consistency conditions

(3.8) ( / -M n - ,M: . , )ae = 0,

must hold. (This says that ae must be an eigenvector of Mn-,Mt-i associated
with eigenvalue 1.) In addition, (3.7) now becomes:

(3.9) b = -

where bQ= at and e = 1 — boao. On equating entries we obtain the quadratic
recurrence relation (3.4), from which we may generate bk recursively.

Let us now turn to the problem of implicitly eliminating the bk 's from the
consistency conditions (3.8), which may conveniently be written as

(3.10)

in particular ea^e = 0.

+ c,ak)e = k = 0 ,1 , • • • , « - 2,
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12] Inverses of Toeplitz matrices 21

We begin by observing the following identities which are really a
consequence of the triangular Toeplitz structure of our matrices.

(i) Mn_i£ + aco= a or Mn-t£ = ae

(ii) Mn-tl) + abo= £ = M*_, a + ba0

(3.11) (iii) M*-iMn-,£ = £e

(iv) Mn-iM*-ta + £a,,= a or (/ - Mn-|M*_,)a = £a0

(v) M * , £ + j?c<>= b or MZ-\£ = be,

where £ T = [c,, c2, • • •, cn_,]. Using the second of these in (3.9), multiplied by

Mn_i, we obtain

which, on using the second and fourth identities reduces to the triviality

£ = £ (1 - e) + £e. We may still equate components in (3.12), however, to

obtain

ck = - (ck-,a, + ck-2a2+ • • • + c,ak-i)bft+ eakbu+ cke,

(3.13) k=l2---n-l

where c, = ea,bu+ boa,e.
We now use the following result which is proven by induction:

LEMMA 3. / / yk = (yk_,ai + yk-2a2+ • • • + y,ak-,)+ fik-, k & 2 then

where

pk = 2l a,, • • • a,k = p k - i« i + pk-2a2 + • • • + poak,

no repelition

(3.14) qk = (3iPk 1 + /32pi< -2 + • • • + /3kpo, a n d p() = 1, qo — 0 .

For example, p, = a,, p2 = a] + a2, p3 = a J + a2a, + ctia2 + a3 etc. We remark
before continuing, that pk should not be confused with the coefficient of xk in
(1 + a,x + a2x

2 + • • - ) \ in which repetition does occur, and that also

(3.15) pk = a,pk-i + a2pk_2 + • • • + akpa.

Let us now apply Lemma 3 to (3.13) with a, = - a,ba, /3,- = eal + ib0+ c^,e.
Then:

(3.16) ck = c,pk-l + qk-u
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22 R. E. Hartwig and J. Shoaf [13]

where pk is given as in (3.3) and qk as in (3.14). Substituting (3.16) in the
consistency conditions (3.10) and using c, = ea,bo+ bnaxe, we arrive at

k-\ k - 1

e a k e = c , 2 P k , ,a,e + 2 q k , >a,e,
J = i i = i

(3.17)
2 boa,e X Pkiifte.

Substituting for qk-,-i from (3.14) and recalling the definition of /3,- shows that

k - l r k - i - l

eake = 2 2
i - i L y - i

+ boaxeXk-2e,

where Xk is given as in (3.2). Now using (3.15) we obtain

k - l k - 1 k - i - l

eake = - X ePk-,a,e + 2 2 ci+iepk-i-j..iaie
i-i i• - 1 j • - 1

Interchanging summations in the latter term we obtain
k-2 k-j-1 k_2

2 c, + , 2 epk-i.j-,a,e = 2 c,- + 1eXk-,-2e,
7 = 1 ' = 1 / = I

so that the consistency condition (3.18) collapses to

(3.19) 0 = eXk-,e + boa,eXk-2e + c2eXk-,e + • • • + ck ,eXoe.

k = l , 2 , - - - , n - l .

Since the first consistency condition is indeed equal to eX,,e = 0, it is now
clear that (3.10) is equivalent to the conditions eX/ = 0 , i = 0, 1, • • •, n — 2.
Conversely, if a* exists, and eX,e = 0 i = 0, ••- ,«— 2, let

B n = bol + bj+ ••• +bn-lJ
n-\

where the bt are generated recursively by (3.4). Then by Theorem 1 (ii) and
the equivalence of (3.2) with (3.8) it follows that for each k = 1,2, • • •, n,
Bk = M*, completing the proof.

Of special interest is the bidiagonal case:

COROLLARY 4. / / Mn = ul + vJ G Rnxm where J = [5i; + 1]?, then M* ex-
ists if and only if u* exists, and e(vu*)ke = 0 for k = 0,1, • • •, n - 2, where
e = 1 — uu*. In which case

M*= b0I+b,J+ ••• +bn-lJ"-\
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where

bo=u u*2ve

and

bk = - - (ubk-, + vbk-2)vu'
(3.20)

(bk-,b0+ + bobk-,)ve for k = 2,3, • • •, n — 1.

Before turning to the Drazin inverses of companion and hyper-companion
matrices, several remarks are appropriate here.

REMARKS. 1. As expected, the consistency conditions (3.2) for M* to
exist involve all entries a< of M.

2. The process of equating coefficients in (3.7), (3.8) and (3.9) may be
f a c i l i t a t e d o n w r i t i n g Mn = aol+ ••• + an.,J"~\ Md

n = bol + b j + •• • e t c .
and equating powers of J. It does not, however, seem possible to use these
representations directly (without using blocks) to prove that, for example, Mi
exists if and only if at exists. Indeed we have seen that if N is any lower
matrix, that is nti = 0 for ;' g j , then (ul + N)d exists exactly when Ud exists.

We conjecture that this is true for all nilpotent matrices N for which
2?,, r,Ns, is nilpotent for all r,, SjE.Fl and all k = 1,2, • • •. When MJV = Nu we
may apply the following:

LEMMA 4. Let A,N& Rnxn such that N" = 0, and AN = NA. Then A d

exists in Rn*n if and only if (A + N)d exists in Rnxn, in which case

(A+N)d = Ad(I

A" = {A +N)d(I

Ny\ a n d

+N)dNyl.

T h e c o m m u t i v i t y m a y n o t b e d r o p p e d in t h i s , a s s e e n f r o m t h e 4 x 4 i n t e g e r
m a t r i x :

M =

1

0

1

1

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

+

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 0

= E + NG Z4*4

which has a unique Drazin inverse in Q4x4, but not in Z4X4. Even if AB = BA
and Ad, Bd exist in Rnxm (A + B)d may not exist in Rnxn, as seen from the

example where A = B = G Z2x2.
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3. If u is a unit, then as expected no consistency conditions are
necessary as M~' also exists and is also striped ! c.f. (Huang and Cline (1972)).
If u = v, then M = u(I + J) and ev = 0, so that again the consistency
conditions hold automatically and M* = u*(I - J + J2- • • • ± Jn '). If v = 1,
then the identity eve = e2 = e = 0 shows that M* cannot exist unless u is
invertible. Moreover if u is nilpotent of index k, then M is nilpotent of index
n + k - 1 .

4. The identity M*2M = M* yields the identity

u ( b o b k + b 1 b k - , + ••• + b k b o ) + v ( b o b k - , + ••• + bk , f c o ) = bk k = 0 , 1 , - -

which should be helpful in finding a closed form expression for bk.
5. Even in the bidiagonal case Mn = ul + vJ, no closed form formula is

known at the present for the entries bk in Mi or M*. The main difficulty
coming from the non-linearity of the recurrence relation (3.20). It may,
however, be shown by induction that when M* exists, bk has the form

bk =(-\)k{u*v)ku*
i =0

for some suitable coefficients a!k), (i\k). For example,

bi = (u*v)2u* - evu*2vu* - evu*vu*2 - u*vu*2ve - u*2vu*ve

— u*2vevu* — u*vevu*2 + evu**ve.

6. If the consistency conditions eX,e = 0 hold for i = 0,1, • • •, k — 1, but
eXke/ 0, then i'(Mk + ,) § 1 and hence i(Mn) § n - k. It would be desirable to
find a simpler proof of the consistency condition (3.2) using, say, graph theory.

4. Group inverses and Drazin inverses of companion matrices

Throughout this section we denote the lower companion matrix, the
hypercompanion matrix and the Hankel matrix associated with the monic
polynomial p(A) = po + p,\ 4- • • • + A" by

(4.1)

L[p(\)) =

P°

H[p-(X)] =

L(p)0
N L(p)

N

-0 N L(
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and
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G[p(\)] =

Pi

respectively, where N is the basis matrix £,.„. The appearance of companion
matrices in very general settings is essentially due to the basic cyclic
decomposition theorems for modules over suitable rings (Jacobson (1943),
Chapter 3).

We shall first give several results for arbitrary rings illustrating the "cyclic
nature" of L, thereby generalizing some well-known results for fields. These
are useful in the theory of block companion matrices, with R = 3<nxn, 9< a
field, which appear naturally in the study of systems of differential and
difference equations (Lancaster (1969), p. 193). The left and right functional
values of the polynomial p(A) evaluated at the matrix X (Gantmacher (1960),
p. 81), will be denoted by pL(X) = £,",(> X'p, and pR (X) = 2,1 p,X' respectively,
in which Xp, and p,X indicate entrywise multiplication. A crucial difference
between the commutative and non-commutative case is that the evaluation
map FA '• p(A)—»PL(A) does not preserve products, in that
rA[p(A)^(A)] /• pL(A)qL(A). As always, the unit vectors [0,0 • •, 1, • • 0]r , will
be denoted by e,.

THEOREM 3. Let R be a ring with unity 1; let Rnxn(\) denote the ring of
A -matrices over R and suppose L, H and G are the lower companion, the
hypercompanion and the Hankel matrices associated with p(A) =
po + piA + • • • + A" respectively. Then
(4.2) (i) p(A) (5 a left annihilating polynomial for L[p(A)], and a right
annihilating polynomial for LT[p(A)], that is, pL(L) =
/po + Lp, + L2p2+ • • • + L" = 0 , and pR(LT) = p,,I + pxL

T + • • • + (LT)" =0.

(ii) {pL(H[pm(\)])Y = J'm®Im r = 0 , 1 , - •• where Jm = \° °A and
I'm-I U J

Cg) is the right direct product.
(iii) L is invertible in Rnxn if and only ifp0 is invertible in R. In either case

P2P0

'" I

' + L p 2 p n ' + ••• + L n p , T ' )
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(iv) G lLkG = (LT)k k = 0,1,2, • • • and Z?,n(p,Gy)L' = 0 .
( v ) If p k ( A ) = pk + p k . , A + ••• + A " ~ k fc = 0 , 1 , • • - , « ,

= - d i a g [ p o , p i , •• - ,pn_i] ,

where © denotes the direct sum of two matrices.

(vi) Lk = L ° ^ k l , where Ak = *,(<?„)• •• Lfo- , ) and

••• + p n _ 1 A ^ 1 + At, i = 0 , •

Moreouer,

C = [e2,«3, ••-,«„-)•, «i], Oi = [0, • • - ,0 ,p i ] and pl=-[pk,

P k - i , - • •, P k - 2 , p k - i ] i = 0 , • •• , k - 1 .

(vii) A/-L[p(A)] is equivalent over Rnxn(\) to

A/-H[pm(A)] is equivalent over Rnxn{*) to \P ^ °A.

(viii) L[pm(A)] is similar over Rn*n to H[pm(A)].

PROOF, (i) For a field this is a well-known result stating that a compan-
ion matrix is non-derogatory with characteristic and minimal polynomials
both equal to p(A). In the case of a non-commutative ring the order of
multiplication becomes important. Indeed, it is easily seen that for n = 2,
pol + p\L + L2 ^ 0, that is, p(A) may not be a right annihilating polynomial for
L(p). If we write L = [e2, e^ • • •, en,p] = J + E, where / is given as in (ii) and,
E = [0,--,0,p] with p T = - [ p o , p , , - - - , p n _ , ] , then Lk =

[ c k i i , ek+2, • • •, en, p , Lp, • • -, Lklp] k = 0 , 1 , • • •, n - 1. It is n o w eas i ly s e e n b y
i n d u c t i o n t h a t

(4 .3) Lkp= -(Lk-tp)pnl-(L
k2p)pn-2 ppnk+Jkp

from which, on equating columns, we obtain

{/p<>+ Lpi + • • • + L"}ei = 0 i = 1, • • •, n.

The corresponding result for the upper companion matrix Lr(p(A)) follows
along similar lines or by transposition of the first result (blockwise transposi-
tion in case of R = ^ ,x n ) .
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(ii) The proof given in (Hartwig (1974)) goes over to the ring case if one
uses left functional values and applies the result of (i). It should be noted that
p""(A) is not a left annihilating polynomial for H since rH[pm(A)] ^ [pL(H)]m.

(iii) This follows immediately from Corollary 3a and part (i). It is
further clear that L' is equivalent to another companion mattix.

(iv) It may be verified directly that over any ring with unity

-Po I 0

(4.4) GLT =

| P-

from which the results immediately follow,
(v) From (iv) we see that

(4-5) L[po(\)]G[po(X)] = l-p0

which, when used recursively, yields the desired diagonalization of G[po(A)].
(vi) If E, denotes the permutation matrix corresponding to interchang-

ing columns k - i and n - i, i = 0,1, • • •, k - 1, then it is easily proven by
induction that

(4.6)
\p _[M<7r.i(A)]! 0 ]

L U'\ I C J

r = 0 , 1 , - - -, fc - 1,

where C is the cyclic matrix [e2, • • •, en, e,] and Qr+1 = [0,0, • • - ,p r M] , with
p , r , i = - [pk,Pk\, • • •, p n r -2 , Pk - r - i , • • •, P k - 2 , P k - i ] . H e n c e

LkEnE, • • • £ „ - , = (LEo)(Eo'LEoEl)• • •

• ' • ( t i r " C o Lt0Ci • • • lik-ij — y P '

X = L ( ^ 0 ) - - - L ( q k _ , )

where

and

But

Y = Ck xQk ,.

F F --[ik o j
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and so

o i r o 7*1 ro
ck\[c-k o\~[i

k ,x o IT o 7*i ro x
' " C

(vii) The derivation of equations (3.13) and (4.8) in (Hartwig (1975))
also hold for an arbitrary ring with unity.

(viii) This result is (as in the case of a field) a consequence of part (vii)
and the two versions of the Frobenius theorem, (MacDuffee (1946), Theorem
29.2-3 and Cullen (1972), Theorem 6.15), generalized to rings with unity. We
shall state it for completeness and clarity.

THEOREM 4. Let R be a ring with unity 1 and let A(X) = Aa +Ax\,
B(X) = Bo+ BtX be two binomials in Rnxn(X). Suppose that either A, and B,
are invertible or that B, is invertible and Rnxn is finite, that is AB = I =£>
BA = I. Then A (A) is equivalent to B(X) over Rnxn(X) if and only if there exist
invertible Po, Oo in Rnxn such that P0A(X)Q0 = B(X).

PROOF. If Rnxn is finite, such as is the case for commutative or unit
regular rings (Henriksen (1973)), and BV exists, then the proof of Theorem
6.15 in Cullen (1972) goes through without modification. Indeed, if PoA^Qo =
B, then Po{AlQoBt')= I = (B^P0A)Q0 so that P o ' and Oo1 both exist.
When R is arbitrary, and Ao\ BV exist then we may combine the proofs of
the two versions to establish, in the notation of Cullen (1972) that

(i) P0A(\)Qn=B(A) (ii) R0B(\)Sn= A (A)

(iii) A(\)O» = RoB(\) (iv) / = R0Pn = S0Q0,

where P(A)= B(A)P,(A) + P0, Q(A) = Q.(A)B(A)+ (?„, P"'(A) =
A(X)RI(\)+ Ro, and Q~'(A) = S,(A)A(A) +S o . It is then clear that
A(\)QUSO= A (A), P0R0B(\) = B(A) implying that Ro = Po~' and So = Oo1.

COROLLARY 7. If R is any ring with unity 1, then A is similar to B over
Rnxn if and only if (A/ — A) is equivalent to XI — B over Rnxn(X).

THEOREM 9. Let R be a ring with unity 1, and let L £)?,«„ be the lower
companion matrix of p(X). Then L has a group inverse if and only if there exist
solutions x and y to

0) [Pn>p

(4.7) (ii) p o y = 0

(iii) [ x , y ] [ £ ] y = 0 .
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In either case

Inverses of Toeplitz matrices 29

• 0

L-2
Xn-i yn- i I

. X 0_

where yt = 5,, + p,y and x, = y,,., + ptx, i = 1, • • •, n - 1.

PROOF. Suppose first that L* exists and has columns [x,,
:ommutivity of L and L* implies first of all that

•, xn]. The

If we set p = - [p0, • • -,pn-,]
T, then from LL*L = L we obtain

[4.8) L* = [xux2,e2, ••-,«„-,], LL*en = en, and LL*p=p.

Using this form of L* again in the commutivity relation we arrive at the
Consistency Conditions

[4.9)

(a) Lx2 = e2

(b) Lx< = x2

(c) L*p = en

The last identity L*LL* = L* shows in addition that

[4.9) (d) L # x 2 = x , .

On writing x, = [xu • • \xn]
T and y, = [y,, • • •, yn]

T = x2
Tone sees from (5.9a)

that

[4.10) p(iyn = 0 and y, = 5,, + p,yn i = 1, • • •, n - 1,

ivhile from (5.9b) one gets

[4.11) /?()*„+p,y,, = l and x, = y, + , + p,xn i = 1, • • •, n - 1.

The Consistency Conditions (5.9c) reduce to

(a) x,p0 + y,p, = 0

[4.12) (b) Xip0 + y,p, = ~ p, i = 2, • • •, n - 2

and (c) xnp0+ ynp, = - 1,

while (5.9d) yields on using (5.10)
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(a) x,p,yn + y,p2yn = 0

(4.13) (b) x,ptyn + ytp2yn = - y,., i = 2, • • •, n - 1

and (c) xnp,yn + ynp2yn = 0.

The conditions of (5.7) are thus clearly satisfied by xn and yn. Conversely
suppose that xn and yn satisfy (5.7) and suppose that we define y, and x,
according to (5.10-11). Then all that remains is to verify that the Consistency
Conditions (5.12a-b) and (5.13a-b) are also satisfied, since then by the
uniqueness of M* these must yield the group inverse of M. This verification is
lengthy but straightforward and will be omitted. It is crucial, however, to use
the following identities which are obtained from (5.7) on pre and postmulti-
plication by p0 and pt respectively:

(a) po = po(-xn)po (b) yn = yn{-pi)yn

(4.14) (c) p,ynpo = 0 (d) ynp() = 0

and (e) poxnp^ = panpQ= - p , - p,ynp,.

Hence when L* exists it is not only necessary that p0 and yn be regular
elements (in the sense of Von Neumann) in R, but also that there exists a
1-inverse of pa which obeys

(4-15) popopi = p,po~pn-

We remark further that if p0 (/• 0) is not a divisor of zero then L * exists if and
only if p0

] and hence L ' exists, while if p0 = 0 [p, = 0] then L* exists if and
only if pV [po'] exists.

In the remaining part of this paper let R be a skew-field (division ring) @.
We may now use the concept of rank, which equals the common row and
column rank of a matrix (Jacobson (1953), p. 46), to establish necessary and
sufficient conditions for L # to exist. Annihilating polynomials, however, are
of little use unless 2 is commutative.

We first observe that for a square matrix over a skew field

(4.16) A * exists if and only if rank A = rank A2.

This follows exactly as in the field case from Sylvester's inequality (Jacobson
(1953), p. 46), generalized to 3), or from Fitting's core-nilpotent decomposi-
tion which, as well as the Frobenius Canonical form, also go over to 2n*n

(Jacobson (1943), pp. 50-51; Jacobson (1953), p. 47). In particular, the Drazin
inverse Ad always exists over 2. The conditions of Proposition 9 can be
weakened considerably for the case where L is a block companion matrix
over S), partitioned as
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and

<ow rank L = rank / + rank Po, while by Proposition 7 (vi)

rankL = rank /(n-2)m + rank
L In f 1 J L ' » "n-1 J

= (n-2)m+rank[£ £ ] .
Thus

rank L = rank L2 <=> rank I" „" „ 1 = rank I" ^° ° 1.

"his may either be calculated by using the rank formula for partitioned
natrices (Hartwig (1976), Equation 4.19), which generalizes also to 3), or by
loting that

r Po o i = r Po o 1 r / 0 1
|_p, PoJ Lo /JL-P, PO_T

The latter shows that L* exists if and only if I ° and ° have the
, . L "i "a J [ U ' J

ame range, that is,

("Po o i r x , x 3 i = [Po o i
[p, po\[x2 x4\ Lo i\

DT some X,. This implies that P0X3 = 0 and P,X, + P0X4 = Im. Conversely, if
uch solutions X3, Xt exist, then

("Po OlTZ-XaP , X3]= ("Po 0 ]
IPx Poll - X 4 P , xA LO /m J '

'hich shows that the first and last matrices have the same range and hence the

ime rank. A similar result follows on using ° . As remarked earlier

le companion matrix L[p(\)] has a group inverse over 2 if and only if either
o/ 0 or po - 0 and p, ^ 0. Now suppose that p(A) = pk\

k + • • • + A", pk/ 0,
SO. Then by (4.2i) the matrix equation Lk+1X = Lk has a left polynomial

ilution which implies, on using rank, that YLk*' = Lk also has a solution
facobson (1943), Theorem 9, p. 51), and hence i(L)= k. In general Ld =
kXk*' will not be a left polynomial in L, however. We may now partition L
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IN W]}n-k'

where J = [Si+U], N = Elk and W = L[pk(A)] with pk(A) as given in (4.2v).
Since J is nilpotent and W is invertible we may use (2.0) to calculate the
Drazin inverse of L. Indeed, this shows independently that i(L)= k and that

(4.17)

where

L ' = ° LL"~ [wk

-

-

and X = Wk
k~'Zk with

x = W;2N

(4.18) =[Wk'
kl

= [Wk
kp,

where

P

In particular, when k =

Pk+iPk1

P:-,Pv
~\

z,k — w k

f Wk
3NJ +

e,, VVt
ke , , •

= " [P^P
1,

/„-

N +

• •> v

k - l

0

wk
k~

2

+ wk

VP]

•,P-,J

(n-fc)x(n-fc)

+ Wk
k~

2NJ + ••• + NJk~'. W h e n c e

(4 19)

Now let us return to the hypercompanion matrix H[pm(\)], where
i(L) = k. We first observe that while (2.18) implies that k g i(H)Smk, the
similarity of H and L(pm) over ® shows that in fact i(H)= mk. Next, we
see that by Theorem 1 H* exists if and only if L* exists and
( / - L L # ) ( N L * ) ' N ( 7 - L L * ) = 0 / = 0 , l , - - - ,m - 1 . Substituting from (4.19)
we. see that

{I-LL*)N{I-LL*) =
P2P1

P.

0

and hence we may conclude that over an arbitrary skew field
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(4.20) H* exists <=> L ' exists <=> pn / 0.

This may also be seen from the similarity of H and L(pm). Indeed, since
pm = \k(p?+ • • •), {L(pm)}* exists if and only if mk = 0 or 1, that is if and
only if k = i(L) = 0. This generalizes the corresponding result for Jordan
matrices as remarked at the end of Section 3. Since Ld always exists over 3),
we may apply Proposition 6 to the hypercompanion matrix H[pm (A)] to give

(4.21) H " = / <g> B,, + J 0 B , + • • • + J " 1 ( g ) B n ,

where B,,= L", and B, = - LdNLd + (I - LLd)N(L")mk^ +
(Ld)mk^lN(I - LLd), in which we substitute from (4.19). This in turn will be
similar to L(pm)d as given by (4.17).

Added in proof. After this manuscript had been prepared, the authors
learned that a formula similar to (2.0) had been developed by Meyer and Rose
(submitted) for matrices over a field.
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