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Abstract

In this paper, we consider the Group Lasso estimator of thar@nce matrix of a stochastic pro-
cess corrupted by an additive noise. We propose to estirhatedvariance matrix in a high-
dimensional setting under the assumption that the proc&sslsparse representation in a large
dictionary of basis functions. Using a matrix regressiordelipwe propose a new methodology
for high-dimensional covariance matrix estimation base@mpirical contrast regularization by a
group Lasso penalty. Using such a penalty, the method sedespiarse set of basis functions in the
dictionary used to approximate the process, leading to proapnation of the covariance matrix
into a low dimensional space. Consistency of the estimatstudied in Frobenius and operator
norms and an application to sparse PCA is proposed.

Keywords: group Lasso/* penalty, high-dimensional covariance estimation, basimesion,
sparsity, oracle inequality, sparse PCA

1. Introduction

Let T be some subset &P, p € N, and letX = (X (t)),. be a stochastic process with values

in R. Assume thai has zero meatt (X (t)) = 0 for allt € T, and finite covariance (s,t) =
E(X(s)X(t)) for all s;t € T. Letty,...,ty be fixed points inT (deterministic design)X, ..., Xy
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independent copies of the proce§sand suppose that we observe the noisy processes
X (t) =X () +E () fori=1,..,N, j=1,..,n, (1)

whereZ,, ..., Ey are independent copies of a second order Gaussian préosih zero mean and
independent oK, which represent an additive source of noise in the measurementsd 8asiee
noisy observations (1), an important problem in statistics is to construdtimator of the covari-
ance matrix = E (X X ) of the proces¥ at the design points, whe® = (X (t1),...,X (tn)) .
This problem is a fundamental issue in many applications, ranging fromagestiss, financial
series or epidemiology for instance (see Stein, 1999, Journel, 1977essi€, 1993; Wikle and
Cressie, 1999 for general references and applications). Estimatihgascovariance matrix has
also important applications in dimension reduction by principal componentasé@BCA) or clas-
sification by linear or quadratic discriminant analysis (LDA and QDA).

In Bigot et al. (2010), using)l independent copies of the processwe have proposed to con-
struct an estimator of the covariance maftbby expanding the procesinto a dictionary of basis
functions. The method in Bigot et al. (2010) is based on model selectionitees by empiri-
cal contrast minimization in a suitable matrix regression model. This new apptoaovariance
estimation is well adapted to the case of low-dimensional covariance estimatim ttv num-
ber of replicatedN of the process is larger than the number of observations pointdowever,
many application areas are currently dealing with the problem of estimatingasiaose matrix
when the number of observations at hand is small when compared to the mafhpmrameters
to estimate. Examples include biomedical imaging, proteomic/genomic data, signatging in
neurosciences and many others. This issue corresponds to the prbdenvariance estimation
for high-dimensional data. This problem is challenging since, in a high-difoeal setting (when
n>> N orn~ N), it is well known that the sample covariance matrices

N
S = % ZiXiXiT e R™" whereX; = (X (t1),....% (t)) " ,i=1,...,N
=

and

_ 1N __ . -
S = N leiXiT € R™" whereX; = (Xa (t1),.., % (tn)) Ji=1,...,N
i=

behave poorly, and are not consistent estimatos.dfor example, suppose that t&g’s are inde-
pendent and identically distributed (i.i.d.) random vectoiR'trdrawn from a multivariate Gaussian
distribution. Then, wher — ¢ > 0 asn,N — -+, neither the eigenvalues nor the eigenvectors of
the sample covariance matr& are consistent estimators of the eigenvalues and eigenvectors of
3 (see Johnstone, 2001). This topic has thus recently received a Itienfien in the statistical
literature. To achieve consistency, recently developed methods fodiggmsional covariance es-
timation impose sparsity restrictions on the mafiix Such restrictions imply that the true (but
unknown) dimension of the model is much lower than the nunﬁ‘-@éﬁ of parameters of an un-
constrained covariance matrix. Under various sparsity assumptiorexediffregularizing methods
of the empirical covariance matrix have been proposed. Estimators baskeesholding or band-
ing the entries of the empirical covariance matrix have been studied in Biockdlevina (2008b)
and Bickel and Levina (2008a). Thresholding the components of the iealpiovariance matrix
has also been proposed by El Karoui (2008) and the consistenagliestimates is studied using
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tools from random matrix theory. Fan et al. (2008) impose sparsity on teriaace via a fac-
tor model which is appropriate in financial applications. Levina et al. (R@®8 Rothman et al.
(2008) propose regularization techniques with a Lasso penalty to estimatevdrgance matrix or
its inverse. More general penalties have been studied in Lam and Fa®)(2@nother approach
is to impose sparsity on the eigenvectors of the covariance matrix which leagarse PCA. Zou
et al. (2006) use a Lasso penalty to achieve sparse representatioA,id’R€premont et al. (2008)
study properties of sparse principal components by convex programwiiilg, Johnstone and Lu
(2009) propose a PCA regularization by expanding the empirical eigiargan a sparse basis and
then apply a thresholding step.

In this paper, we propose to estimaiein a high-dimensional setting by using the assumption
that the procesX has a sparse representation in a large dictionary of basis functiong dsiatrix
regression model as in Bigot et al. (2010), we propose a new methgdflotigh-dimensional
covariance matrix estimation based on empirical contrast regularization tnup gasso penalty.
Using such a penalty, the method selects a sparse set of basis functioagdiotibnary used to
approximate the process. This leads to an approximation of the covariance ma¥iinto a
low dimensional space, and thus to a new method of dimension reduction fodimgensional
data. Group Lasso estimators have been studied in the standard linear noaehaultiple kernel
learning to impose a group-sparsity structure on the parameters to résegddardi and Rinaldo,
2008, Bach, 2008 and references therein). However, to the besir &dhowledge, it has not been
used for the estimation of covariance matrices using a functional approxintdtibe procesX.

The rest of the paper is organized as follows. In Section 2, we desznibatrix regression
model for covariance estimation, and we define our estimator by group kegslarization. The
consistency of such a procedure is investigated in Section 3 using oradigalities and a non-
asymptotic point of view by holding fixed the number of replicatesnd observation points.
Consistency of the estimator is studied in Frobenius and operator normsus/aesults existing
in matrix theory show that convergence in operator norm implies conveegefithe eigenvectors
and eigenvalues (for example through the use of th@githeorems in Davis and Kahan, 1970).
Consistency in operator norm is thus well suited for PCA applications. Noalexperiments are
given in Section 4, and an application to sparse PCA is proposed. A tetippendix contains
all the proofs.

2. Model and Definition of the Estimator

To impose sparsity restrictions on the covariance mairjp)our approach is based on an ap-
proximation of the process in a finite dictionary of (not necessarily orthalydasis functions
On: T — Rform=1,...,M. Suppose that

M
X(t) ~ zlamgm (t), )

wherea,, m=1,...,M are real valued random variables, and that for each trajegjory

M

X (tj) ~ zlai,mgm (tj) : (3
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The notatiorr means that the proceXscan be well approximated into the dictionary. A precise
meaning of this will be discussed later on. Then (3) can be written in matrix not@sio

Xi~Gaj,i=1,...,N
whereG is then x M matrix with entries
Gim=0m(tj) for1<j<nand I<m<M,

andaj is theM x 1 random vector of componerdsm, with 1 < m< M.
Recall that we want to estimate the covariance ma&ix E (XXT) from the noisy observa-
tions (1). SinceX ~ Ga with a = (am); ey With am as in (2), it follows that

Y~E (Ga(Ga)T) =E <GaaTGT) = GU*G' with ¥* =E <aaT) .

Given the noisy observation%/i asin (1) withi = 1,...,N, consider the following matrix regres-
sion model L
X X'=24+U+Wi=1...N, (4)

whereU; = XiXiT — X are i.i.d centered matrix errors, and
Wi = EE e R™"whereZ; = (E (t1),...., E (t) ' ,i=1,...,N.

The sizeM of the dictionary can be very large, but it is expected that the pro¢dsss a sparse
expansion in this basis, meaning that, in approximation (2), many of the randefficientsan,
are close to zero. We are interested in obtaining an estimate of the cova¥iandbe formS =
GU G such that¥ is a symmetridM x M matrix with many zero rows (and so, by symmetry,
many corresponding zero columns). Note that settindxttierow of ¥ to 0 € RM means to remove
the functiongy from the set of basis function®m);-my in the function expansion associated to
G.

Let us now explain how to select a sparse set of rows/columns in the miatrixor this, we
use a group Lasso approach to threshold some rows/columBisadfich corresponds to removing
some basis functions in the approximation of the proeés&or two p x p matricesA, B define
the inner productA, B)g :=tr (A" B) and the associated Frobenius notr||Z :=tr (AT A).
Let Sv denote the set dfl x M symmetric matrices with real entries. We define the group Lasso
estimator of the covariance mat¥ by

3, =G¥,G' e R™", (5)

Where\ff)\ is the solution of the following optimization problem:

R l N . 2 M M
¥, = argmin — ‘X-X-T—G‘IIGTH +20 Y Wk W2 ; (6)
TESu {N ;‘ - F kzl rer K

where¥ = (Wni);-mym € RM*M "\ is a positive number ang are some weights whose values
will be discuss later on. In (6), the penalty term imposes to give preferersnlutions with compo-

~ N —
nents¥y = 0, where(¥), . denotes the columns @. Recall thatS = & ¥ X;X; denotes
** i=1
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the sample covariance matrix from the noisy observations (1). It candeket that minimizing
the criterion (6) is equivalent to

R " 2 M M
U, = i{ [|S—GPG" 2\ U2 7
A acher?Mm{H HF+ k;vk\/n; mk} 7

Thus ¥, € RM*M can be interpreted as a group Lasso estimatoEdh the following matrix
regression model N
S=2+U+W=x~G¥'G'+U+W, (8)

whereU € R™"is a centered error matrix given &y = & s, Uy andW = Z Wi. Inthe above

regression model (8), there are two errors terms of a different naTlhI@termW corresponds to
the additive Gaussian errofs, ..., £y in model (1), while the ternlU = S — X represents the
difference between the (unobserved) sample covariance nfaand the matrix® that we want to
estimate.

This approach can be interpreted as a thresholding procedure of tiesesf an empirical
matrix. To see this, consider the simple case wikre n and the basi§ functions and observations
points are chosen such that the matéixis orthogonal. Lety” = G SG be a transformation of
the empirical covariance matr&. In the orthogonal case, the following proposition shows that the
group Lasso estimatoff;\ defined by (7) consists in thresholding the columns/rows afhosel,-
norm is too small, and in multiplying the other columns/rows by weights between Q.arddnce,
the group Lasso estimate (7) can be interpreted as covariance estimatioft-thyesholding the
columns/rows ofy".

Proposition 1 Suppose that M- n and thatG' G = I,, wherel, denotes the identity matrix of size
nxn. LetY = G'SG. Then, the group Lasso estlmalﬁm defined by (7) is the r n symmetric
matrix whose entries are given by

0 if ,/z?":lyjﬁ < Ak,
\/7

() = Vo[ 1= 2% ) i /5M L v2 s
mk 2i=1 ik Yk

VI Y

forl<km<M.

3. Consistency of the Group Lasso Estimator

In this section, we describe the statistical properties of the group Lasswmes.

3.1 Notations and Main Assumptions

Let us begin by some definitions. For a symmepie p matrix A with real entriespmin(A)
denotes the smallest eigenvalueAf andpmaxA) denotes the largest eigenvalue Af For 3 €

RY, ||B|l,, denotes the usual Euclidean normfof For p x g matrix A with real entries]| Alj> =
SURseRa, g0 HHBHHQ denotes the operator norm ¢f. Recall that if A is a non negative definite

matrix with p = q then|| A||2 = Pmax(4).
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Let ¥ € Sy and a vector inRM. For a subsedl c {1,...,M} of indices of cardinality|J|,
thenp; is the vector inRM that has the same coordinatesfasn J and zeros coordinates on the
complementl® of J. Then x |J| matrix obtained by removing the columns@fwhose indices are
notinJis denoted by=;. The sparsity off is defined as its number of non-zero columns (and thus
by symmetry non-zero rows) namely

Definition 2 For ¥ € Sy, the sparsity of’ is
M (P) =#{k: T #£0}.

Then, let us introduce the following quantities that control the minimal eigeesatd sub-
matrices of small size extracted from the ma@X G, and the correlations between the columns of
G:

Definition 3 Let0O < s< M. Then,

Pmin(s) == inf (W) - inf Omin (G}GJ).
Jc{1,...,M} 1Ball7, Jc{1,...,M}

Ji<s J<s
Definition 4 The mutual coherendG) of the column€zy, k=1,...,M of G is defined as
8(G) = max{‘G@Gk}, k#£K,1<kkK < M},

and let
Grax:=max{||G||7,, L<k<M}.

To derive oracle inequalities showing the consistency of the group l&sstismator@)\ the cor-
relations between the columns@f(measured b§(G)) should not be too large when compared to
the minimal eigenvalues of small matrices extracted f@MG, which is formulated in the follow-
ing assumption:

Assumption 1 Let ¢ > 0 be some constant arfii< s < M. Then

Pmin(S)?
)< @S

Assumption 1 is inspired by recent results in Bickel et al. (2009) on thseist@mcy of Lasso es-
timators in the standard nonparametric regression model using a large digtibhasis functions.
In Bickel et al. (2009), a general condition calles$tricted eigenvalue assumptignintroduced to
control the minimal eigenvalues of the Gram matrix associated to the dictionargets of sparse
vectors. In the setting of nonparametric regression, a condition similar tn#on 1 is given in
Bickel et al. (2009) as an example for which the restricted eigenvaluergs®n holds.

Let us give some examples for which Assumption 1 is satisfieldll. 4f n and the design points
are chosen such that the columns of the maf¥ixare orthonormal vectors iR", then for any
0 < s< M one has thapmin(s) = 1 andd(G) = 0 and thus Assumption 1 holds for any valuecef
ands.
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Now, suppose that the columns Gf are normalized to one, that i$Gk|/,, =1, k=1,...,M
implying thatGmax= 1. Letp € RM. Then, for anyd c {1,...,M} with |J| < s < min(n,M)

B) G GBy = |IBallf, — 8(G)s|BsllZ

which implies that
Pmin(sS) > 1—06(G)s.

Therefore, if(1—8(G)(s—1))? > coB(G)pmax(G ' G)s, then Assumption 1 is satisfied.

Let us now specify the law of the stochastic procEssFor this, recall that for a real-valued
random variabl&, they Orlicz norm ofZ is

_ : 4N
|1Z]|yy :=InfSC>0; Eexp ca <25.

Such Orlicz norms are useful to characterize the tail behavior of randobles. Indeed, if
|Z||ly, < 400 then this is equivalent to assuming that there exists two conskanks > 0 such
that for allx > 0

P(|Z] >x) < Klexp(—lﬁ> ,
2

(see for example Mendelson and Pajor, 2006 for more details on Orliozsnafrrandom variables)
. Therefore, ifl|Z||y, < 4 thenZ is said to have a sub-Gaussian behavior afjd|ify, < +co then
Z is said to have a sub-Exponential behavior. In the next sections, dnadealities for the group
Lasso estimator will be derived under the following assumptioXon

Assumption 2 The random vectoX = (X (t1),...,X (t,))" € R"is such that

(A1) There exist (X) > 0 such that, for all vectop € R" with ||B||, = 1, then(E| X B|*) Ve <
P (%)

(A2) SetZ=|X||¢,. There existst > 1 such that|Z||y, < +o.

Note that(A1) implies that|| ||, < p (). Indeed, one has that

1Z]l2=pPmax(2) = sup BTEB: sup EBTXXTB
BeR™, [|Bllr,=1 BERM, [IBl¢,=1
= sup ER'X[P<  sup (ERTX[*<p*(Z).
BERM, [IBlle, =1 BeR, [IBll,=1

WhenX is a Gaussian process, it follows that for ghyg R" with |||, = 1 then(E|X "B[*) V4 _

3Y4(B"=p) 1/2 sinceX "B ~ N(0,B" =B). Therefore, under the assumption thais a Gaussian
process, AssumptiofA1) holds withp () = 3Y/4|| |32,

Assumption(A2) requires that|Z||y, < +, whereZ = || X||,,. The following proposition
provides some examples where such an assumption holds.

1/2

Proposition 5 Let Z= || X ||, = (3.1 |X(t)[?) 7. Then
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- If X is a Gaussian process

1Zlly, < V8/3Vtr ().

- If the random process X is such thigZ||y, < 4+, and there exists a constany Guch that
1= 21X (t)]|ly, < Cp foralli = 1,....n, then

1Z]ly, < Crv/tr ().

- If X is a bounded process, meaning that there exists a constanORuch that for all te T,
IX(t)| <R, then for anyx > 1,

1Z]lge < VAiR(Iog2) /e,

Assumption 2 will be used to control the deviation in operator norm betweesathple covari-
ance matrixS and the true covariance matr® in the sense of the following proposition whose
proof follows from Theorem 2.1 in Mendelson and Pajor (2006).

Proposition 6 Let X, ..., Xy be independent copies of the stochastic process X, let|X||,,
and X; = (X (t1),...,% (t,)) fori=1,...,N. Recall thatS = 2 XiX;"andE =E (XX").

Suppose that X satisfies Assumption 2. Letmiin(n,N). Then, there exists a universal constant
0, > 0 such that for all x> 0

P(HS—EH2>td,N,nx) <exp(—(6;1x)2%u>, (9)
wheretyn = ma><(A,\I v Bn,n), with

v/1ogd(logN)*/@ P%(Z)
VN VN

Let us briefly comment Proposition 6 in some specific cases.isfGaussian, then Proposition
5 implies thatAy n < Ann 1, Where

Anni = /8/3\/r( 519 \';9'\' <\/7HEHM\/E\/Iogd(logN)l/“, (10)

and in this case inequality (9) becomes

L2p

Ann = 121y,

and By =

+11Zl

P (HS— 2“2 > max(A% 1, Buna) x) < exp(-(é;lx)zifa) (11)

for all x > 0, whereBy n1 = )y HEHl/ZAN,n,l-

If X is a bounded process by some consfnt 0 , then using Proposition 5 and by letting
o — o0, Proposition 6 implies that for ak > 0,

P (HS— EHZ > max(AR .2, Bn,n2) x) <exp(-98,'x), (12)
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where

Ann2 = \/7\/|09d andBan_\(F)q_HEHl/ZAN’n’z_ (13)

Contrary to the low-dimensional case << N), in a high-dimensional setting when>> N
or whenn andN are of the same magnitudg§ (~ ¢ > 0 asn,N — +), inequalities (11) and (12)

cannot be used to conclude that the nr#ﬁﬁ— EH concentrates around zero. Actually, it is well

known that the sample covarian&eis a bad est%mator ok in a high-dimensional setting, and
that without any further restriction on the structure of the covariance matrithen S cannot be

a consistent estimator. However, we would like to point out that Propositietages the quality

of S to the “true dimensionality” of the vectaX = (X (t1),...,X (t,)) ' € R" that is measured by
the quantity|Z||y, with Z = || X ||;,. Indeed, ifX is a low-dimensional Gaussian process such that
tr(X) = 1 then Proposition 6 and inequality (10) imply that

IP’(HS—ZHZ>max(A,2\,,BN)X) gexp(—(es;lx)%) (14)

for all x > 0, whereAy = \/%JW\(/I%QNP andBy = f ) 1 ||3||%/2An. Hence, inequality (14)
shows that, under an assumption of Iow—dlmen3|onallty of the pro¢etdse deviation in operator
norm betweenS and X depends on the ratig% and not ong, and thus the quality of as an
estimator of¥ is much better in such settings.

More generally, another assumption of low-dimensionality for the pro¥dsgo suppose that
it has a sparse representation in a dictionary of basis functions, whiclals@improve the quality
of S as an estimator dE. To see this, consider the simplest cXse X0, where the proceg)s0 has
a sparse representation in the bdsgig)1<m<m given by

XO(t) =Y amgm(t), te T, (15)

meJ*
whereJ* C {1,...,M} is a subset of indices of cardinality*| = s, andam, m € J* are random
coefficients (possibly correlated). Under such an assumption, the fotigevoposition holds.

Proposition 7 Suppose that %= X° with X° defined by (15) with,s< min(n,M). Assume that
X satisfies Assumption 2 and that the mat@ G- is invertible, whereG';- denotes the i |J*|
matrix obtained by removing the columns@fwhose indices are not in*J Then, there exists a
universal constand, > 0 such that for all x> 0,

#(|5-5], 5 tuar) < om{-507%)

wherety s =max(AZ ¢ ,Bns,), with

~ ~ logd*(logN)¥/®
s = pH(G3.G ) 214, OO TSN

and

GJ*) \m Pmin (G:]E GJ*)

1/2
~ Gl.Gy Gl.Gy
B = ( PO G0 ) ) °1B) (Pl GG ) ) e, e,
pmln(
with d* = min(N,s,) andZ = ||ay-||¢,, whereay = (G5.G3) *GJ. X € R™.
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Using Proposition 5 and Proposition 7 it follows that

- If X =X%is a Gaussian process then

Ans < /8/ (pmaX(GJGJ> ]2||1/2\/>\/Iogd* logN)/@ (16)

Pmin (G G

- If X = X%is such that the random variablag are bounded by for some const&t 0, then

Ays < R|g||m\/§\/logd* (17)

with [g[ = MaXi<m<m |G| Where|gm||ce = SURc [Gm(t)]-

Therefore, let us compare the bounds (16) and (17) with the inequali®aiid (13). It follows
that, in the cas& = X0, if the sparsitys, of X in the dictionary is small compared to the number
of time pointsn then the deviation betweefi and X is much smaller than in the general case
without any assumption on the structureXf Obviously, the gain also depends on the control of

zmaxgngJ; Note that in the case of an orthonormal desigin= n andG ' G = I,)) then
min J*

Pmax(G.Gy:) = pmin (GJ.G+) = 1 for anyJ*, and thus the gain in operator norm betweand
3 clearly depends on the size §f compared tag. Supposing thak = X0 also implies that the
operator norm of the error terlid in the matrix regression model (8) is controlled by the r%io
instead of the ratig; when no assumptions are made on the structu®.oThis means that iK
has a sparse representation in the dictionary then the errolfdoecomes smaller.

the ratio

3.2 An Oracle Inequality for the Frobenius Norm

Consistency is first studied for the normalized Frobenius n#nmu,% for ann x n matrix A.
The following theorem provides an oracle inequality for the group Lastimatorf]A = G@AGT.

Theorem 8 Assume that X satisfies Assumption 2.det0 and1 < s< min(n,M). Suppose that
Assumption 1 holds withye= 3+ 4/¢, and that the covgriance matrX¥noise= E (W1) of the noise
is positive-definite. Consider the group Lasso estimaipidefined by (5) with the choices

Yk = 2||Gkll2,\/ Pmax(GG "),

2
A = || Znoisd|2 (1+ \ /£+\/ 26|§QM> for some constard > 1.

Then, with probability at least — M2 one has that

and

A A Ol A G
M(P)<s

rcie) ChobrelC G)nzno'séb(”[ VZ&OQM) )
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wherek3 ) = Pmin(S)* — CoB(G)pmax(G' G)s, and Q) = 875 (1+2/¢)%.

The first term? | G®GT — EHi in inequality (18) is the bias of the estimathl. It reflects
the quality of the approximation & by the set of matrices of the for@¥ G ", with ¥ ¢ Sy and
M () <s. As an example, suppose that= X°, where the proces¢® has a sparse representation
in the basiggm)1<m<m given by

Xo(t) = amdm(t), t €T,

meJ*

whereJ* C {1,...,M} is a subset of indices of cardinalit}*| = s, < sandam, me J* are random
coefficients. Then, in this case, singe< sthe bias term in (18) is equal to zero.

The second ternt ||.S — EHE in (18) is a variance term as the empirical covariance matrix
S is an unbiased estimator &. Using the inequalityln |]A||§ < HA||§ that holds for anyn x n
matrix A, it follows that 1 ||S — 3|2 < ||S —=||5. Therefore, under the assumption tiahas a
sparse representation in the dictionary (for example whenX, as above) then the variance term
% S — ZH% is controlled by the rati§; < ¥ (see Proposition 7) instead of the rafjovithout any
assumption on the structure Bf

The third term in (18) is also a variance term due to the noise in the measurgiertshere
exists a constartt> 0 independent afi andN such thatg < ¢ then the decay of this third variance
term is essentially controlled by the ra%&li) < 2. Therefore, ifM (¥) < swith sparsitys much
smaller tham then the variance of the group Lasso estimzﬂQris smaller than the variance 6f
This shows some of the improvements achieved by regularization (7) of thei@hpovariance
matrix S with a group Lasso penalty.

An important assumption of Theorem 8 is that the covariance matrix of the Bhise. =
E (W) is positive definite. This restriction is clearly necessary as illustrated byoil@ving
example: suppose that the contaminating prode&s = {g;(t) with  ~ N(0,a2), implying that
Y hoise= cfglng with g1 = (g1(t1),...,01(t1)) " hasn— 1 eigenvalues equal to zero. Now, suppose
that X (t) = apxg(t) with a; ~ N(0,03). If 01 > 0, then the group LASSO regularization alone
cannot get rid of the additive error term without eliminating first the riglmponenig,. Hence, in
such settings, group LASSO regularization does not yield to a consistimggion ofS = 63g2g,
with g2 = (gz(tl), ey gz(tn))T.

3.3 An Oracle Inequality for the Operator Norm

~ 2
The “normalized” Frobenius norrﬁ HEA—EHF, that is, the average of the eigenvalues of
~ 2 N 2
(EA — E) , can be viewed as a reasonable proxy for the operator rHcEm— EHZ (maximum

~ 2
eigenvalue of(E)\ — 2) ). Itis thus expected that the results of Theorem 8 imply that the group

Lasso estimataE, is a good estimator d in operator norm. Let us recall that controlling the oper-
ator norm enables to study the convergence of the eigenvectors andadiges of>, by controlling

of the angles between the eigenspaces of a population and a sampleru®/anitrix through the
use of the sifB) theorems in Davis and Kahan (1970).
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Now, let us consider the case wheteconsists in noisy observations of the procX8s(15)
meaning that N
X(t) =Xt +E(®), i=1,...,n, (19)
whereZ is a second order Gaussian proc&ssith zero mean and independenttf. In this case,
one has that
> =G¥*G', where¥* =E (aaT> ,

wherea is the random vector d@&M with ay, = a,, for me J* andam = 0 form ¢ J*. Therefore,
using Theorem 8 by replacimgby s* = |J*|, since¥* € {¥ € Sy : M (¥) <s.}, one can derive
the following corrollary:

Corollary 9 Suppose that the observatio)7i$tj) withi=1,...,Nand j=1,...,narei.i.d random
variables from model (19) and that the conditions of Theorem 8 are satigfithl < s=s, <
min(n,M). Then, with probability at least — M~ one has that

1~ 2
S IEGIVAERCA AR eh )

where
. 8 . 2 G? G'G),,s.
Co(nN,M,N,s,, S, %" G, Xnoise) = (1 +¢€) <nHS_G‘I’ GTHF"‘C(S) maxpizngxc(o ))\Zn)-

To simplify notations, writell = ¥, with ¥, given by (7). Definel, c {1,...,M} as
PN O Il ~ G
J)\EJZ: kka‘I’k H k”£27

V/n

max
andC]_ (n, M, N, S*, S, ‘I’*7 G7 Znoise) == C]_ Wlth

p > Cl(n, M, N,Sk, S, ‘I’*7G72noise)} 3 Wlth 6k == (20)
2

121 1E HS—G\IJ*GTHZ ALTOVS e MINGS. S, 9, G, e

A F €Ks, ¢,

(21)

With Ymax = 2Gmaxy/ Pmax(G ' G). The set of indiced is an estimation of the set of active basis
functionsJ*. Note that such thresholding procedure (20) does not lead immediatelyréaticpl
way to choose the sét Indeed the constaf; in (20) depends on the a priori unknown sparsity
s, and on the amplitude of the noise in the matrix regression model (8) measutiee fyantities
8ls— G\II*GTHi and || Znoisd|3. Nevertheless, in Section 4 on numerical experiments we give a
simple procedure to automatically threshold thenorm of the columns of the matrbTéA that are
two small.

Note that to estimaté* we did not simply takel = J, := {k: H\le

C, = max(yr‘ngxn

, #* O}, but rather apply
2

a thresholding step to discard the columnslofvhosel,-norm are too small. By doing so, we
want to stress the fact that to obtain a consistent procedure with rdspbet operator norm it is
not sufficient to simply takd = Jp. A similar thresholding step is proposed in Lounici (2008) and
Lounici et al. (2009) in the standard linear model to select a sparsd setize variables when
using regularization by a Lasso or group-Lasso penalty. In the papenici, 2008), the second
thresholding step used to estimate the true sparsity pattern depends orowurdamstant that is
related to the amplitude of the unknown coefficients to estimate.
Then, the following theorem holds.
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Theorem 10 Under the assumptions of Corollary 9, for any solution of problem (7)hawee that
with probability at leastL — M1

S Il ~
max —< H\Ilk — Wy
1<k<M+/N b

S Cl(n7 M,N,&’S, ‘P*7G72n0ise) .

If in addition

rkTg]!]r’)T H‘I’kHéz > ZC]_ (n M N Sk S ‘I’ G EHOISE‘) (22)

then with the same probability thg set of indideslefined by (20), estimates correctly the true set
of active basis functionsJthat isJ = J* with probability at leastl — M2,

The results of Theorem 10 indicate that if thenorm of the columns off; for k € J* are
sufficiently large with respect to the level of noise in the matrix regressiorehf8yland the sparsity
s., thenJ is a consistent estimation of the active set of variables. Indeed,(i®*) = s, then by
symmetry the columns o¥* such¥y # 0 have exactl;e;k non-zero entries. Hence, the condition

(22) means that th&-norm of ¥} # 0 (normalized by2 ) has to be larger thaﬁ}i\f\f A
simple condition to satisfy such an assumption is that the amplitude &f then- vanlshlng entries
of Wy # 0 are larger thalﬂg4 (1+¢) \ﬁ which can be interpreted as a kind of measure of the noise
in model (8). This suggests to take as a final estimatt ttie following matrix:
whereG 5 denotes the x |J| matrix obtained by removing the columns@fwhose indices are not
inJ, and

~ ~ 2

U= argmin{ HS— GJ‘I’G}HF} ,

wheres; denotes the set f| x |J] symmetric matrices. Note that(ﬁ—'JTGj is invertible, then
~ - -1 - -1
- (6]G5) “Gisc;(Giay)
Let us recall that if the observations are i.i.d random variables from n{@égthen
> =G¥'G',
where®* =E (aa"), anda is the random vector &M with am = am for me J* andam = 0 for
m¢ J*. Then, define the random vectaj- € RY whose coordinates are the random coefficients
amforme J*. Let¥; =E (aJ*a}) and denote by= ;- then x |J*| matrix obtained by removing

the columns ofG whose indices are not i#f. Note that® = G\]*‘I’J*G};.
Assuming thaGJT* G- is invertible, define the matrix

-1
2y =2+ Gy (G}.Gy) Gy SnoisdGy- (GJI GJ*) Gj.. (24)
Then, the following theorem gives a control of deviation betwﬁ)grandzy in operator norm.
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Theorem 11 Suppose that the observations are i.i.d random variables from modeb(iPjhat
the conditions of Theorem 8 are satisfied witk s=s, < min(n,M). Suppose thaGJIGJ* is an
invertible matrix, and that

Ok .
E;!]D% HlIlk”[z > 2C]_(n,M,N,S*,S,\I/ ,G,Znoise),

where G (n,M,N,s,, S, ¥* G, Xnoise) is the constant defined in (21). Let

Y = (G;GJ*)AG;Y

- 1/4
andZ = Y|, . Letp(Snoise) = (SURcsn g, EIEBI*) " where = (£(t)... £())

Then, with probability at least — M1 _ M’(%)m , withd > 1 andd, > 8. one has that

2+a

Hﬁj_ D8 5 < Pmax (G:]EG‘]*) s O, (log(M)) o

wherey s, = max('&ﬁsuéN,sk)a with AN& = HZH%%W and

e — P (5 ZnoisdPmn (G5.Gor)
Sk T
| VN

where d = min(N,s,) andp(X, Zneise) = 84 (p* () + p* (Znoise))

4 (12310 (GT.G ) [Bnoisds) A,

1/4

First note that the above theorem gives a deviation in operator normﬁ‘\}pm the matrixX ;-
(24) which is not equal to the true covarianEeof X at the design points. Indeed, even if we
know the true sparsity sét, the additive noise in the measurements in model (1) complicates the
estimation ofX in operator norm. However, althoudly- # X2, they can have the same eigenvectors
if the structure of the additive noise matrix term in (24) is not too complex. Asxample, consider
the case of an additive white noise, for whiBhise = 021, whereo is the level of noise and
I, the n x n identity matrix. Under such an assumption, if we further suppose for simplicty th
(G}.Gy)t =I5, thenZy = ¥ + 0°G3(G}.G3)1G). = = + 0?I, and clearlyX; and =
have the same eigenvectors. Therefore, the eigenvectcf‘g chn be used as estimators of the
eigenvectors ok which is suitable for the sparse PCA application described in the next section
numerical experiments.

Let us illustrate the implications of Theorem 11 on a simple exampl& i Gaussian, the
random vecto” = (G.Gy.) ' GJ. (X +E) is also Gaussian and Proposition 5 can be used to
prove that

IN

121, V873 /tr ((G}GJ*) G (4 Bnois) G (GL.Gy) *1)

VB/BIZ + Znasd P’ (G3.Ga ) VS
Then Theorem 11 implies that with high probability

IN

2+a

|£5-%0 |, < pmax (G3.G) Tus 13 (10g(M)) &
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wherety s 1 = maxAZ ¢ ;,Bns. 1), With

~ - s
AN,s,, 1= \/8/73”2 + Enoiseﬂg/zpmlln/2 <G;GJ*) IOgd*(IogN)l/O‘ / N
and

= P2(%, Znoise) p%iln (G:]E GJ*)
Bns.1= N

Therefore, in the Gaussian case (but also under other assumptiofisdoh as those in Proposition

4 (122 1+ 0 (G3.Gr ) [Znoisdl) Buvs

~ 2
5) the above equations show that the operator nHﬁ’@— 3 g+ Hz depends on the ratiy. Recall

that||.S — 2\\% depends on the ratif. Thus, usingﬁi clearly yields significant improvementssf
is small compared ta.

To summarize our results let us finally consider the case of an orthogesigind Combining
Theorems 8, 10 and 11 one arrives at the following corrolary:

Corollary 12 Suppose that the observations are i.i.d random variables from model EL@)pose
that M = n and thatG ' G = I,, (orthogonal design) and thzit%atisfies Assumption 2. Let> 0
and1 <'s, <min(n,M). Consider the group Lasso estima®y defined by (5) with the choices

2
Yk=2k=1,....,nandA = || Znoisd|2 <1+1/;:|+\/ 25IEQM> for some constard > 1.

Suppose thaWnH\Il I, > 2n/2C,; (o,n,s,,N,d), where

GionsNg = ETOVE & ons N

and

Gions. ) ~(ure) (2 ow | et (14 /5 + )

TakeJ:= {k : H\flk
l

>n/2C, (o,n,s, N,6)}. LetY = GJ.X andZ = ||Y ¢, . Then, with prob-

ability at leastl — M19 — M- (8) 7 , withd > 1 andd, > d. one has that

2+a

85— 20|, < s 8. (log(v) <"

where  Tns = maxAZg . Bns), with  Ays = [ 2]y, 09T MON™  gng

VN
B2 P | (@[}, + | Snoisdlo) *Ans..

§N7S* — \/N
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3.4 Comparison with the Standard Lasso

In this work, we chose a Group Lasso estimation procedure rather tHangasd Lasso. As
a matter of fact, for covariance estimation in our setting, the group structatgles to impose a
constraint on the number of non zero columns of the ma#and not on the single entries of the
matrix W. This corresponds to the natural assumption of obtaining a sparsseatation of the
processX(t) in the basis given by the functiorgs’s and replacing its dimension by its sparsity.
Alternatively, the standard Lasso in our setting would be the estimator ddfjned

N _ 2 M M
U = in{ IS—G¥G"|| +2A Wi b,
o (L ES SR

whereA > 0 is a regularization parameters and ¥hgs are positive weights. This procedure leads
to the following Lasso estimator of the covariance maktix

§|_ = G\/I\’LGT e R™N,

In the orthogonal case (thathd = n andG ' G = I,,), this gives rise to the estimat&r._ obtained
by soft thresholding individually each entyy of the matrixy = G SG with the threshold&ymk.
Proposition 13 (see below) allows a simple comparison of the statistical penfices of the group
Lasso estimatoE, with those of the standard Lasso estima¥grin terms of upper bounds for the
Frobenius norm. To simplify the discussion, we only consider the orthdgasa and the simple
model

X(t)=X2t)+E®), j=1,...,n, (25)

where the procesx® is defined in (15). The statement of the result for the group Lasso is an
immediate consequence of Theorem 8, while the proof to obtain the upped bauthe standard
Lasso is an immediate adaptation of the arguments in the proof of Theorem 8.

Proposition 13 Assume that X satisfies mo2b) and that the covarignce matrXnoise=E (W1)
of the noise is positive-definite. Consider the group Lasso estinafoand the standard Lasso
estimatorX, with the choices

25logM
N

2
Yk =2, Ymk= 2, A = || Znoisd|2 <2+ > for some constard > 1.

Then, there exist two positive constants@ not depending on,iN, s, such that with probability
at leastl — M1-% one has that

4
l)a 2 G 2 > 2dlogn\ s,
fZ—EH <SS —T|2 4Gl Znoisdl? | 2 >
~ |2 -3 < IS - IR+ Cal ol | 2+ 20 ) 2
and
1 2 C 25logn e
C|B-= | <2 1S - SIR +Coll Bnasdl3 | 2 >
-] < T s - SR + ol Bnond B ( 24/ T )
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Proposition 13 illustrates the advantages of the Group Lasso over thestdrasso. Indeed, the
second term in the upper bound for the group Lasso is much smaller (ofdlee %) than the

second term in the upper bound for the standard Lasso (of the §Méfhis comes from the fact
that the sparsity prior of the Group Lasso is on the number of vanishinghoslof the matrixy,
while the sparsity prior of the standard Lasso only controls the numbermtzem entries of!.
However, to really demonstrate the benefits of our method when comparesl perflormances of
the standard Lasso, it is required to also derive lower bounds. Thisisauifficult task which has
been considered in few papers and that is beyond the scope of this papeecent work in this
direction, we refer to Huang and Zhang (2010) for regression modelsunici et al. (2011) and
Lounici et al. (2009) for linear regression and multi-task learning.

However, the analysis in Huang and Zhang (2010); Lounici et al.{P6flGroup Lasso regular-
ization is carried out the setting of multiple regression models where the pararieegstimate are
vectors and with error terms that are centered. Therefore, the restitsaimy and Zhang (2010);
Lounici et al. (2011) cannot be applied to the matrix regression modsir{dg, in our setting, the
parameter to estimate is the matbixand the error term¥&/; + W; in (4) are not centered.

4. Numerical Experiments and an Application to Sparse PCA

In this section we present some simulated examples to illustrate the practiceicaelad the
covariance matrix estimator by group Lasso regularization proposed indper.pIn particular,
we show its performances with an application to sparse Principal Compofratgsis (PCA).
In the numerical experiments, we use the explicit estimator described instiopdl in the case
M = n and an orthogonal design mati@®, and also the estimator proposed in the more general
situation whem < M. The programs for our simulations were implemented using the MATLAB
programming environment.

4.1 Description of the Estimating Procedure and the Data

We consider a noisy stochastic proces¥esn T = [0, 1] with values inR observed at fixed
location pointdy, ...,t, in [0, 1], generated according to

X(tj)) = X°(t)) +ogj, j=1,...,n, (26)

whereo > 0 is the level of noisey, . . ., €, are i.i.d. standard Gaussian variables, ¥Ads a random
process independent of thgs. For the proces¥® we consider two simple models. The first one is
given by

XO(t) = af(t), (27)
wherea is a Gaussian random coefficient such tRat= 0, Ea? = y?, and f : [0,1] — R is an
unknown function. The second model %? is

XO(t) = ag f1(t) +ax fa(t), (28)

wherea; anda, are independent Gaussian variables suchaat= Ea, = 0, EaZ = y2, Ea3 = y2
(with y; > vy»), and f1, f2 : [0,1] — R are unknown functions. The simulated data consists in a
sample ofN independent observations of the procksat the pointds, ....t,, which are generated
according to (26). Therefore, throughout the numerical experimentshas that

2
Yhoise= 0°Ih.
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In model (27), the covariance matr® of the procesx? at the locations points is given by
¥ = ?FF, where by definitionF' = (f (t1), ..., f (t1))" € R". Note that the largest eigenvalue of
3 is y2\|F|]§2 with corresponding eigenvectdt. We suppose that the signihas some sparse rep-
resentation in a large dictionary of basis functions of 8#zgjiven by{gm, m=1,...,M}, meaning
that f (t) = TM_; BmOm (t), with J* = {m, B # 0} of small cardinalitys.. Then, the process® can
be written asxO(t) = TM_; aBmgm (t), and thus® = y*G¥;3-G' T, where® . is anM x M matrix
with entries equal t@yBny for 1 <mm < M.

Similarly, in model (28), the covariance mati¥ of the proces® at the locations points is
given byX = v?F1 F| +y3F,F, , where by definition

Fi=(fi(t1),...f(t1)" eR"andF, = (f2(t),..., f (t))| € R".

In the following simulations, the function§ and f, are chosen such thdf; and F», are or-
thogonal vectors iR" with || Fy|l,, = 1 and||F3||,, = 1. Under such an assumption and since
Y1 > Yo, the largest eigenvalue d& is yﬁ with corresponding eigenvectdr;, and the second
largest eigenvalue o is y3 with corresponding eigenvectd®,. We suppose that the signals
and f, have some sparse representations in a large dictionary of basis funfisiae M, given

by f1(t) = SM_Bigm(t), and f2(t) = TM_; B2am(t). Then, the proces¥® can be written as
XO(t) = TM  (auBL + @2B2)gm(t) and thusE = G(y2 1 + 3 ¥2)G T, where¥!, o2 areM x M
matrix with entries equal t81,(B%,)’ andB3,(B3,)’ for 1 < m,m < M respectively.

In models (27) and (28), we aim at estimating eit#&ior F}, F, by the eigenvectors corre-
sponding to the largest eigenvalues of the maﬁ’},xdefined in (23), in a high-dimensional setting
with n > N and by using different type of dictionaries. The idea behind this is§}3a'$ a consistent
estimator of¥ ;- (see its definition in 24) in operator norm. Although the matriEgsandX may
have different eigenvectors (depending on the design points andrcllitionary), the examples
below show the eigenvectors ﬁ)‘j can be used as estimators of the eigenvectoBs. of

The estimatoﬁ)j of the covariance matrix is computed as follows. Once the dictionary has
been chosen, we compute the covariance group Lasso (CGL) estﬁpr@XGT, where\flx
is defined in (7). We use a completely data-driven choice for the regatamizparametex, given

2
by A = || Znoisd| 2 <1+ VRt Za'ﬁg"") , Where||Znoisd|2 = 62 is the median absolute deviation

(MAD) estimator ofa? used in standard wavelet denoising (see for example Antoniadis et &), 200
andd = 1.1. Hence, the method to comme; is fully data-driven. Furthermore, we will show in

the examples below that replacihgbe into the penalized criterion yields a very good practical
performance of the covariance estimation procedure.

As a final step, one needs to compute the estimﬁtpof ¥, as in (23). For this, we need to
have an idea of the true sparsiy; sinceJ defined in (20) depends ag and also on unknown
upper bounds on the level of noise in the matrix regression model (8) . A sipriddlem arises
in the selection of a sparse set of active variables when using regtilamiby a Lasso penalty in
the standard linear model. As an example, recall that in Lounici (200&gans thresholding step
is aso used to estimate the true sparsity pattern. However, the suggessédltting procedure in
Lounici (2008) also depends on a priori unknown quantities (sucheaariplitude of the coeffi-
cients to estimate). To overcome this drawback in our case, we can deffiretromvariance group
Lasso (FCGL) estimator as the matrix

ij: GJ"‘/I\’J“GJT, (29)
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with J = Jg = {k: H\le , > e}, whereg is a positive constant. To select an appropriate value of
2

g, one can plot the cardinality ok as a function ok, and then use an L-curve criterion to only
keep inJ the indices of the columns (!IIX with a significant value irf,-norm. This choice fod is
sufficient for numerical purposes.

In the simulations, to measure the accuracy of the estimation procedure onesalthe empiri-
cal average of the Frobenius and operator norm of the estim&oand3: ; with respect to the true

P iia P i~
covariance matri defined byEAFN= 1 5 HE;’ - EHF andEAON=1 5 HE? - 2”2 respec-
p=1 p=1

tively, over a numbeP of iterations, wher&P and flg’ are the CGL and FCGL estimators B,
respectively, obtained at theth iteration. We also compute the empirical average of the operator

- P i~
norm of the estimatoE ; with respect to the matrif;-, defined byEAON = 3§ 5 HE?— B,
p=1

4.2 Model(27)- Case of an Orthonormal Design (Withn = M)

First, the size of the dictionayl as well as the basis functioggm,m=1,...,M} have to be
specified. In model (27), we will use for the test functibtthe signals HeaviSine and Blocks (see
for example Antoniadis et al., 2001 for a definition), and the Symmlet 8 andWwkazelet basis for
the HeaviSine and Blocks signals respectively, which are implemented in thetidapen-source
library WaveLab (see for example Antoniadis et al., 2001 for furtheregfces on wavelet methods
in nonparametric statistics). Then, we took= M and the location points, ...,t, are given by
the equidistant grid of points = ﬁ j=1,...,M such that the design matr&z (using either the
Symmlet 8 or the Haar basis) is orthogonal.

In Figure 1 we display the results obtained for a particular simulated sampleedfs= 25
according to (26), with =M = 256, 0 = 0.015,y = 0.5 and with f being either the function
HeaviSine or the function Blocks. It can be observed in Figures 1(@)1do) that, as expected
in this high dimensional settingN(< n), the empirical eigenvector o associated to its largest
empirical eigenvalue does not lead to a consistent estimatbt of

The CGL estimatoﬁ]x is computed directly from Proposition 1. In Figures 1(c) and 1(d), we

display the eigenvector associated to the largest eigenvalﬁ]; abk an estimator of'. Note that
this estimator behaves poorly. The estimation considerably improves by takif@@BL estimator
flj defined in (29). Figures 1(e) and 1(f) illustrate the very good perfoomaf the eigenvector
associated to the largest eigenvalue of the mzftrjms an estimator of".

It is clear that the estimatorﬁi and flj are random matrices that depend on the observed
sample. Tables 1 and 2 show the valueE&f-N, EAON andEAON" corresponding t& = 100
simulated samples of different sizdsand different values of the level of noise It can be observed
that for both signals the empirical averadgesFN, EAONandEAON* behaves similarly, being the
values ofE AONsmaller than its corresponding valuestEoAFN as expected. Observing each table
separately we can remark that, férfixed, when the level of noise increases then the values of
EAFN, EAONandEAON also increase. By simple inspection of the valueE AFN, EAONand
EAON in the same position at Tables 1 and 2 we can check that foed, when the number
of replicatesN increases then the values BAFN, EAON andEAON" decrease in all cases. We
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Figure 1: Orthonormal case - Model (27). Signal HeaviSine - (a) Egor associated to the
largest eigenvalue of, (c) Eigenvector associated to the largest eigenvalug;of(e)

Eigenvector associated to the largest eigenvaluﬁ)pf Signal Blocks - (b) Eigenvec-

tor associated to the largest eigenvalue§of(d) Eigenvector associated to the largest
eigenvalue o, (f) Eigenvector associated to the largest eigenvalus pf
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Signal o 0.005 | 001 0.05 0.1 0.5 1
HeaviSine| EAFN | 0.0634| 0.0634| 0.2199| 0.2500| 0.2500| 0.2500
HeaviSine| EAON | 0.0619| 0.0569| 0.1932| 0.2500| 0.2500| 0.2500
HeaviSine| EAON" | 0.0619| 0.0569| 0.1943| 0.2600| 0.5000| 1.2500

Blocks EAFN | 0.0553| 0.0681| 0.2247| 0.2500| 0.2500| 0.2500

Blocks EAON | 0.0531| 0.0541| 0.2083| 0.2500| 0.2500| 0.2500

Blocks | EAON" | 0.0531| 0.0541| 0.2107| 0.2600| 0.5000| 1.2500

Table 1: Values oEAFN, EAONandEAON" corresponding to signals HeaviSine and Blocks for
M =n=256,N = 25.

Signal o 0.005 | 001 0.05 01 0.5 1
HeaviSine| EAFN | 0.0501| 0.0524| 0.1849| 0.2499| 0.2500| 0.2500
HeaviSine| EAON | 0.0496| 0.0480| 0.1354| 0.2496| 0.2500| 0.2500
HeaviSine| EAON" | 0.0496| 0.0480| 0.1366| 0.2596| 0.5000| 1.2500

Blocks EAFN | 0.0485| 0.0494| 0.2014| 0.2500| 0.2500| 0.2500

Blocks EAON | 0.0483| 0.0429| 0.1871| 0.2500| 0.2500| 0.2500

Blocks | EAON" | 0.0483| 0.0429| 0.1893| 0.2600| 0.5000| 1.2500

Table 2: Values oEAFN, EAONandEAON" corresponding to signals HeaviSine and Blocks for
M =n=256,N = 40.

can also observe how the difference betw&ON and EAON* is bigger as the level of noise
increases.

4.3 Model(28)- The CaseM = 2n by Mixing Two Orthonormal Basis

Consider now the setting of model (28) wiyhh = 0.5, y» = 0.2, 0 = 0.045,N = 25 and an
equidistant grid of design points, ..., t, given byt; = % j=1,...,nwith n= 128. For the signals
f1 and f, we took the test functions displayed in Figure 2(a) and 2(b). Obvioustysidmnal f;
has a sparse representation in a Haar basis while the sigreds a sparse representation in a
Fourier basis. Thus, this suggests to construct a dictionary by mixing tlwormrmal basis. More
precisely, we construct ax n orthogonal matrixG** using the Haar basis andnax n orthogonal
matrix G2 using a Fourier basis (cosine and sine at various frequencies) atslymaoints. Then,
we form then x M design matrixG' = [G* G?] with M = 2n. The CGL estimatof]x is computed
by the minimization procedure (7) using the Matlab packageConfof Schmidt et al. (2008).

In Figures 2(c) and 2(d), we display the eigenvector associated to gestaigenvalue oﬁi

as an estimator af, and the eigenvector associated to the second largest eigenva?lﬁeasfan
estimator ofF%. Note that these estimators behaves poorly. The estimation considerablyéspro
by taking the FCGL estimatoﬁj defined in (29). Figures 2(e) and 2(f) illustrate the very good
performance of the eigenvectors associated to the largest eigenvdlgeamnd largest eigenvalue
of the matrixi‘j as estimators af} and F5.
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Finally, to illustrate the benefits of mixing two orthonormal basis, we also displ&jgare 3
and Figure 4 the estimation @ and F> when computing the matriflj by using either only the
Haar basis (that i& = G* andM = n) or only the Fourier basis (that & = G* andM = n). The
results are clearly much worse and not satisfactory.

4.4 Model(27)- Case of Non-Equispaced Design Points such that< M

Let us now return to the setting of model (27). The test functibasge either the signal Heavi-
Sine and or the signal Blocks. We also use the Symmlet 8 and Haar wavaketdrahe HeaviSine
and Blocks functions respectively. However, we now choose to takétiagwhere the number of
design pointsi is smaller than the sizil of the dictionary. Takingy < M, the location points are
given by a subsets, ...t} C {ﬁ :k=1,...,M} of sizen, such that the design matrX is ann x M
matrix (using either the Symmlet 8 and Haar basis). For a fixed value thie subsef{ts,...,tn}
is chosen by taking the first points obtained from a random permutation of the elements of the
set{%, %,...,1}. In Figure 5 we present the results obtained for a particular simulated sainple
sizeN = 25 according to (26), witln =90, M = 128,06 = 0.02,y= 0.5 and with f being either
the function HeaviSine or the function Blocks. It can be observed in Efghi(a) and 5(c) that, as
expected in this high dimensional setting £ n), the empirical eigenvector & associated to its
largest empirical eigenvalue are noisy versiongofAs explained previously, the CGL estimator
33 is computed by the minimization procedure (7) using the Matlab packaég@onfof Schmidt
etal. (2008). In Figures 5(c) and 5(d) is shown the eigenvectocied to the largest eigenvalue
of 3 as an estimator af". Note that this estimator is quite noisy. Again, the eigenvector associated

to the largest eigenvalue of the matﬁ)gdefined in (29) is much a better estimatorof This is
illustrated in Figures 5(e) and 5(f). To compare the accuracy of the estigrfatodifferent simu-
lated samples, we compute the value&&f- N, EAONandEAON" with fixed values oty = 0.05,

M = 128,N = 40, P = 50 for different values of the number of design pointd-or all the values
of n considered, the design poirtts...,t, are selected as the finstpoints obtained from the same
random permutation of the elements of the{aét %,...,1}. The chosen subséty, ...,t,} is used
for all the P iterations needed in the computation of the empirical averages (fixed desgthe
iterations). Figure 6 shows the valuestEbAFN, EAON andEAON* obtained for each value of
for both signals HeaviSine and Blocks. It can be observed that thesvafike empirical averages
EAONandEAON* are much smaller than its corresponding valueE AFN as expected. We can
remark that, whem increases, the values BIAFN, EAON andEAON first increase and then de-
crease, and the change of monotony occurs witetN. Note that the case= M = 128 is included
in these results.
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Figure 2:

GROUPLASSOESTIMATION OF HIGH-DIMENSIONAL COVARIANCE MATRICES

0.15 015
e
H 1 S P ’
H \ i i Y '
o1 1 ; 01t [ Pt Y !
ittt 1 | \ R R 1 i
: ! ' H i " \ F i “ '
H ! 1 i 1 i ) 1 L} 1 i I
0.05F ! [ = AR PO 005F ; 1 E i i ' H
[ ' f R ' \ ! i K \ [ ' h
: ' : ' i 1 i : 1 B [l 1 | 1
ok ! ' i i of 1 ! [ i [ i H i
H ! ' ' P ' \ ! ' H ' i ' i
! ! H ' H ] [l ! [ H [ 1 '| 1
! LI ! ' 1 [ [l ! [ B 1 1 H 1
0,05 1 ' H 005 \ 1 f f H ' i
] H 1 ! 1
1 1 1 1 1 1
1 H 1 ! 1
' v vy Voo ]
-0.1 ! 1 0.1 vy vy v 1!
1 i v [ [ 1
’ ‘ \
' i v . A 2]
015 015
02 02 L v
o 01 02 03 0.4 05 0.6 07 08 09 1 01 02 0.3 0.4 05 06 0.7 0.8 09 1
02 02

L L L L L L L L L L L L L L L L L L
0 0.1 0.2 03 04 05 06 0.7 0.8 0.9 1 “o 0.1 0.2 03 0.4 05 0.6 07 0.8 0.9 1

(e) (®
Casé/! = 2n (Haar + Fourier basis). (a) Signi, (c) SignalF; and eigenvector associ-

ated to the largest eigenvalueXf, (e) SignaF; and eigenvector associated to the largest
eigenvalue o@jwith G =[G G?|. (b) SignalF,, (d) SignalF, and eigenvector asso-
ciated to the second largest eigenvalu&Xf (f) SignalF, and eigenvector associated to
the second largest eigenvalueXf with G' = [G* G2].
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| ‘F
-0.05

Figure 3: Orthonormal cadd = n (Haar). (a) SignaF; and Eigenvector associated to the largest

eigenvalue oifljwith G = G*, (b) SignalF, and Eigenvector associated to the second
largest eigenvalue cﬁ]jwith G =G

Figure 4: Orthonormal casé = n (Fourier). (a) SignafF; and Eigenvector associated to the largest

eigenvalue o ; with G = G?, (b) SignalF, and Eigenvector associated to the second
largest eigenvalue & ; with G = G2.
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Appendix A.
This appendix contains the proof of the main results of the paper.
A.1 Notations

First let us introduce some notations and properties that will be used tiwatighis Ap-
pendix. The vectorization of @ x g matrix A = (&j)1<i<p1<j<q IS the pgx 1 column vector
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Figure 5: Non equi-spaced points with< M. Signal HeaviSine - (a) Eigenvector associated to
the largest eigenvalue o, (c) Eigenvector associated to the largest elgenvaIUE@f

(e) Eigenvector associated to the largest elgenvaILiEJofS|gnal Blocks - (b) Eigen-

vector associated to the largest eigenvalug ofd) Eigenvector associated to the largest
eigenvalue o, (f) Eigenvector associated to the largest eigenvalus pf
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Signal HeaviSine, N = 40 Signal Blocks, N = 40
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Figure 6: (a) Values oEAFN, EAON and EAON* for Signhal HeaviSine as a function af (b)
Values ofEAFN, EAONandEAON" for Signal Blocks as a function of

denoted byec(A), obtain by stacking the columns of the matéxon top of one another. That
isved A) = [ai1, ..., Ap1, &12, ...,apz,...,alq,...,apq]T. If A= (aj)1<i<k1<j<nis ak x n matrix and

B = (bjj)1<i<p1<j<q is ap x q matrix, then the Kronecker product of the two matrices, denoted by
A® B, is thekp x ngblock matrix

a]_]_B Lo a]_nB
ARB=
In what follows, we repeatedly use the fact that the Frobenius normasiamt by thevecoperation
meaning that

1A|IE = [vec(A) |17, (30)
and the properties that
vec(ABC) = (CT ® A) vec(B), (31)
and
(A B)(C®D)=AC®BD, (32)

provided the above matrix products are compatible.

A.2 Proof of Proposition 1
Lemma 14 Let ¥ = ‘i’x denotes the solution df7). Then, fork=1,....M

~

[(G@G)T(vec(§)—(G®G)veq®))}k = )\ka;;T'ZZ it W #0
H[(G@)G)T(vec(g)—(GGbG)vec(\fl))}k[ < Aw i @y =0
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where ¥, denotes the k-th column of the mati and the notation[B]k denotes the vector
(Bkm)m=1...m in RM for a vector = (B m)km=1...m € RM?,

Proof of Lemma 14For & € RM*M define

~ 2 ~
L(®) = Hs - G\I:GTHF - Hveo(S) — (G®G)veq D)

2
6’

and remark thall’ is the solution of the convex optimization problem

M M
¥ =argming L) +2A 5 vy | > Wrwe -
RASKY k=1 m=1

It follows from standard arguments in convex analysis (see for exampfe Bnd Vandenberghe,
2004), that¥ is a solution of the above minimization problem if and only if

N M Mo
—0OL(¥) € 200 W
295w 3,55

whereDL(\fl) denotes the gradient afat ¥ andd denotes the subdifferential given by

M M ‘I’k
0 Yey| S W2 :{G)ERMXM:@k:yk if O £0,| O, < ykif \pk:o}
(kzl rer mk) 1%]le, 19Kl

where®y denotes thé-th column of® € RM*M which completes the proof. g

Now, let ¥ € Sy with M = n and suppose th& "G = I,. LetY = (Ymk)1<mk<m = G'SG
and remark thatedY) = (G® G) " ved'S). Then, by using Lemma 14 and the fact tiat G =
I, implies that(G ® G)T (G® G) = I, it follows that ¥ = ¥, satisfies fork = 1,...,M the
following equations

U, (l+}\w) = Y for all ¥y #0,

\/ Y1 W2,

M
\/ z Y2, < Ay for all ¥y = 0.
m=1

where ¥y = (W) 1<mem € RM and Yy = (Y 1<mem € RM, which implies that the solution is

and

given by
R 0 it /T Y < Ak
_ Yk i /<M 2
Yk (1 z?”ﬁ’,-ﬁ) if Y me1 Yo > Ak
which completes the proof of Proposition 1. O
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A.3 Proof of Proposition 5

First suppose thaX is Gaussian. Then, remark that r= || X ||¢,, one has thatZ||y, < +oo
which implies that|Z ||y, = [|Z2[|{.2. Sincez2 = S, [X(t)[? it follows that

n n n
-1/2
1220 < 3 1280 = 3 12 = 5 2%, 2z 3,
= 1= 1=

wherez; = X(tj),i =1,...,nandX; denotes thé&h diagonal element @E. Then, the result follows
by noticing that]Y ||y, < +/8/3if Y ~N(0,1). The proof for the case whekeis such that|Z||y, <

+o0 and there exists a constali such thalﬂz_l/zz. lly, <Cqforalli=1,... ,nfollows from the
same arguments.

Now, consider the case wheXeis a bounded process. Since there exists a conRtard such
that for allt € T, |X(t)| <R, it follows that forZ = || X ||¢, thenZ < \/nRwhich implies that for
anya > 1,||Z||y, < v/nR(log2)~Y/%, (by definition of the normjZ||y, ) which completes the proof
of Proposition 5. O

A.4 Proof of Proposition 7

Under the assumption that= X°, it follows that> = G¥*G " with &* =E (aa '), where
a is the random vector oRM with any, = ay, for me J* andam, = 0 for m¢ J*. Then, define
the random vectoa;- € R whose coordinates are the random coefficiemts‘or me J*. Let
‘I’J*—E(GJ*(IJ*) Note thaty = G+ ¥ 3 GJ* andsS = GJ*‘I’J GJ*,WIth‘I’J*—NZI 1aJ*(aJ*) ,
wherea!;. € RY" denotes the random vector whose coordinates are the random coesféjiefor
me J* such that(t) = 3 mes- a gm(t), teT.

Therefore, ¥ ;- is a sample covariance matrix of sigex s, and we can control its deviation
in operator norm from¥ ;- by using Proposition 6. For this we simply have to verify conditions

similar to (A1) and(A2) in Assumption 2 for the random vectay: = (G.G3 ) 1GJ. X € RS.
-1

First, letp € R with ||B|,, = 1. Then, remark thaa].p = X 'B with B = Gy (GJ.G3.) B.
since||]r, < (Pmin (G, GJ*))_l/Z and using thaX satisfies Assumption 2 it follows that
1/4 .
(BlajB*) " <p(2)pmm (G1G). (33)

5 ~1/2
Now letZ = ||ay:|l¢, < pi” (G- G-

existsa > 1 such that

| X||s,- Given our assumptions oX it follows that there

1Zllge < Pru” (GI-Ga ) 12y < 0, (34)

whereZ = || X||,,. Hence, using the relations (33) and (34), and Proposition 6 itinstead of
X), it follows that there exists a universal constadnt- 0 such that for alk > 0,

(|8 -ws

~ — .
, 2 Td*,N,s*,lx) < exp(f(ﬁ* ) M) )

VIogd™(logN)V® 5
VN

where Ty ns.1 = Max(Ad \ ¢ 1.Bans.1), With Ag st = [1Z]ly, , Barns1 =

P?(2)Ppin(G 1. Gy+)

N + || Py H;/ZAdaN,s*’l andd* =min(N,s,). Then, using the inequalityS — X||» <
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Pmax(GJ.Gy-) |W 3. — Wy |5, it follows that

P(IIS - =2 = pax (GT. G ) T s 4X)
< P (pmax (G; GJ*) 5 2 Pmax <G} GJ*) fd*,N,s*,lx)
P

(8-

Uy — U

> Ty x)
2 d*,N,s,,1
< exp(—(é;lx)z%u> .
Hence, the result follows with

Tns, = Pmax (G:]r* GJ*) Ta* Ns..1
= max(Pmax (GJT GJ*) A3 Ns..1-Pmax (GJT GJ*) Ba N.s.,1)
= ma)('&g*,N,&aéd*,N,&)a

whereAg. s, = p%{azx(GJT* Gy)

|2 ) g R 6'(\/'%9"\')1/“ and, using the inequality

[AIAR

2= H (G}GJ*)_la}*zGJ* (G;GJ*)_lHZ <P (G3.Go ) 152,

B o — [Prax(GrGr) ) p2(®) | [ Pra(GLGy) v G
NS = Pmin(GJT*GJ*) VN * Pmin(GJT*GJ*) H H2 Ad*N?SK.

A.5 Proof of Theorem 8

Let us first prove the following lemmas.

Lemma 15 Let E,, ..., Ey be independent copies of a second order Gaussian pra€esith zero
N
mean. LetV = 1 5 W with
i=1
Wi=EE eR™andE = (% (t1),... E(t) ', i=1,...,N.

Suppose thaEise= E (W1) is positive-definite. Foll < k < M, let nx be the k-th column of the
matrix G' W G. Then, for any x> 0,

2
n 2X
e ( Il > Gl pmax<GGT>H2noiseuz<1+ﬁ+\/N) < exp().

Proof of Lemma 15: by definition one has thqijtnkufz = G, WGG™ W Gy whereGy denotes the
k-th column ofG. Hence

I7lIZ, < | Gkll7,Pmax(GG ) [W 3. (35)
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Using the assumption th&ise IS positive-definite define the random vect@is= Z;&éiﬁ-,i =

1,...,n. Note that thezj’s are i.i.d. Gaussian vectors R" with zero mean and covariance matrix
the identity. Then, define thd x n matrix

ZT

R
-4
vN 7

Sincerl is a matrix with i.i.d. entries following a Gaussian distribution with zero mean andnggia
1/N, it follows from the arguments in the proof of Theorem 11.13 in Davidsod Saarek (2001)

that for anyx > 0
2
P ||FT1“\22<1+,/|:+,/|2\T> < exp(—X). (36)

Now, sinceW = Y2 rTrxY2 it follows that | W |2 < ||[Sneisd|2/|T T |l2. Hence, inequality

(36) implies that for anyx > 0

2
n 2X
B W2 [Snoiel2 <1+ \fN i ﬂl) < exp(—),

and the result finally follows from inequality (35). d

Lemma 16 Let 1 < s < min(n,M) and suppose that Assumption 1 holds for soge ©. Let
JcC {1,...,M} be a subset of indices of cardinality| < s. LetA € Sy and suppose that

> Akl <co ) (Al
keJe ked

whereAy denotes the k-th column . Let
1/2
Kseo = (Prin(9)? ~ CoB(G)pmax( G G)s) .
Then, ,
|GacT|| =k lau?.
whereA ; denotes the Mk M matrix obtained by setting to zero the rows and columnAafhose
indices are notin J.

Proof of Lemma 16: first let us introduce some notations. Fre Sy andJ C {1,...,M}, then
A jc denotes thé x M matrix obtained by setting to zero the rows and columnAefhose indices
are not in the complementady of J. Now, remark that

HGAGTHZ - HGAJGTHZ+HGAJCGTH2+2tr (GAJGTGAJCGT)
F F F

v

HGAJGTHE S+t (GAJGTGAJcGT) . (37)
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Let A=GA;G" andB =GAxG'. Usingthatr (A" B) =ved A) "ved B) and the properties
(30) and (32) it follows that

tr (GAJGTGAJCGT) —vedAy)" (GTG ® GTG) ved Ag). (38)

LetC = G"G ® GG and note thaC' is aM? x M2 matrix whose elements can be written in the
form of M x M block matrices given by

Cij=(G'®)jG'G, for1<i,j <M.
Now, write theM? x 1 vectorsved A ;) andved A x) in the form of block vectors ageq A ;) =
[(A3)i']1<icm andved Aye) = [(AJC)JT]ISJ-SM, where(A;)i € RM (Ax); e RM for 1 <i,j < M.,
Using (38) it follows that
tr (GAJGTGAJCGT) = Y (A Cij(ax)
1<i,)<M
= Z (G'G)ij(A) G G(Ay)j.
jex
Now, using tha{(G" G)ij| < 8(G) for i # j and that
(M) GTG(AR);| < IGA)ILIG ARl < Prax(GT (Al (A2 e

it follows that
tr (GAIGTGAXGT) 2 ~8(G)pra( G G) (anni@ (-Z ||<Aac>jue2> -
e jede

Now, using the assumption th§ifcjc || Ak||r, < CoSkeq || Akl|s, it follows that

tr(GAJGTGAJcGT) > coB(GQ)pmax(G ' G) (ZH Aj) Hb)

> _COG(G)pmax(G—r )S||AJHF> (39)

where, for the inequality, we have used the properties that for the posssc; = ||(A)ills,, | €I
2
then(§ics6)* < 9| Tiey @ < S¥icyc? and thaty ey [|(Ag)i[12, = I|Ag][Z.

Using the properties (30) and (31) remark that

HGAJGTH'ZZ = |Gy2GyvedAy)|?,

Pmin (GJ ® GJ) ||VquJ) ng
Pmin(8)2[|AJ]1Z, (40)

whereved A;) = [(A;)]i-,. Therefore, combining inequalities (37), (39) and (40) it follows that

>
>

HGAGTHE = (pmi”(s)z_COe(G)pmax(GTG)s) A2,
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which completes the proof of Lemma 16. O
Let us now proceed to the proof of Theorem 8. Part of the proof isredby results in Bickel

etal. (2009). Les < min(n,M) and ¥ € Sy with M (¥) <s. LetJ = {k; ¥y # 0}. To simplify
the notations, writab = W, . By definition of ), = G¥ G one has that

|s —G@GTHE +2A§1vk||®k|m < HE—G\PGTHE +2Aévk\wkue2. (41)
Using the scalar product associated to the Frobenius §arB). = tr (A" B) then
H§—G\TJGTH2 - HS+W—G@GTH2
F F
- HW||§+HS—G\TJG’THE+2<W,S—G\TIGT>F. (42)
Putting (42) in (41) we get
HS—G\TIGTHi—l—Z)\Iﬁlyk\\f’kHez < HS—G\IJGTHE+2<W,G(¢:—\1:)GT>F

M
+2A z ka‘Ilkufz'
k=1

Fork=1,...,M define theM x M matrix Ay with all columns equal to zero except theh
which is equal to¥ — ¥y. Then, remark that

(we(i-w)eT) - 3 -3 (e wea), -3
W G(¥-v)G = W, GAG = G WG, Ay M \Ilk—\IJk
F Z F kzl kzl
M
< S Il @k — Tl
k=1
whereny is thek-th column of the matribxG'" W G. Define the event
M
A= {2mlle, <A} (43)

k=1

Then, the choices

2
n 25logM
Yk = 2| Gillez/ Pmax(GG ), A = [ Znoisel|2 <1+ \/;+ Ng > 5

and Lemma 15 imply that the probability of the complementary ev#reatisfies

M
%)< Y P2y > Av) < M3,
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Then, on the event one has that
HS—G@GTHZ < HS—G\IIGTHZ +)\§ Vil @ — Tl
F o~ F 4 2
M o~
20 Y e (I2klle, — 1%l ) -
K=1
Adding the termh zﬁ"zl ka\ilk — Wy||,, to both sides of the above inequality yields on the evént
~ 112 M ~ 112
|s-GoaT| 2y wiF-w, < [s-cua|
F =1 F
M o~ o~
20 Y (18— @il + 1@l — il )
K=1

Now, remark that for alk ¢ J, then|| @ — ¥z, + || @k, — || ¥«|¢, = O, which implies that on the
event4

HS—G\TIGTHiJr)\kika\le—\Ilk]gz < HS—G\IIGTHi (44)
NS Wl Tk — i,
ked
2
< HS—G\IIGTHF (45)
+4A¢M<w>¢kzjv§\|@k—wk|@.
S

where for the last inequality we have used the property that for the pos@discy = ka\flk —
Wiy, ke Ithen(Fyeso)? < M(¥) Fies G
Lete > 0 and define the event

ﬂll:{4)\%yk||\flk—\11k||g2>8HS—G\I'GTHE}. (46)

Note that on the event N 45 then the result of the theorem trivially follows from inequality (44).
Now consider the evemi N 4; (all the following inequalities hold on this event). Using (44) one
has that

M
AS W= Tl <41+ 1/e)A S Wl [k — Tl (47)
k=1 ked

Therefore, o1 N 4,

g W[ @k — By|p, < (3+4/¢) Zlyk||@k_wk||fz'
keJ ke

Let A be theM x M symmetric matrix with columns equal Ay = vk (lf'k — lIlk) k=1,...,M,
andcy = 3+4/¢. Then, the above inequality means tiyat jc || Axlle, < CoSkes||Aklle, and thus
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Assumption 1 and Lemma 16 imply that

KéCOkZJyﬁH\/I\lk— W2 < HGAGTHIZZ <4G2_pmax(GT Q) HG(@ — \II)GTH'ZZ . (48)
S

Let VZ,ax = 4G2 ,Pmax(G' T G). Combining the above inequality with (45) yields

HS—G\TIGTHE < HS—G\IIGTHi+4AK;§0ymax,/M(\1:)HG(@—\P)GTHF
< HS—G\IIGTHIZ:+4)\K;010Vmax\/M(‘Il)(HG@GT—SHF

+eweT-s|,)

Now, arguing as in Bickel et al. (2009), a decoupling argument usingnéguality Xy < bx? +
b1y2 with b > 1, x = 2AKs Vnax/ M (¥) andy being eithef G¥GT — S| _or[|GEGT - 5|
yields the inequality

b+1

|s-cve| < (5

T 2 8b2Vr2nax 2
)Hs—a\pa Hﬁ(b—l)xgcf M(T).
Then, taking b = 1 + 2/¢ and using the inequalities HE—G\TIGTHE <
2|S—3|2 +2HS—G\TIGTHE and |S—GUGT|% < 2|S—%|2 + 2|2 - G®GT|? com-
pletes the proof of Theorem 8. O

A.6 Proof of Theorem 10

Part of the proof is inspired by the approach followed in Lounici (2088) Lounici et al.
(2009). Note first that

max H\fl — oy
1gkgMyk k K

M
< H\If -y
b2 _kzlyk Tk

b

Since¥* € {¥ € Sy : M () <s,}, we can use some results from the proof of Theorem (8). On
the eventq N 4;, with 4 defined by (43) andi; defined by (46), inequality (47) implies that

N

M o~
> VkH‘I’k_ Wy
&

1 ~
< 414> H\If s
B < £>k;*\/k k=P,

(1) gl

Let A* be theM x M symmetric matrix with columns equal 8 = yk (\flk — \Ilf;), k=1,...,M,

let Ymax = 2Gmax\/ Pmax(G T G) andcy = 3+ 4/€. Then, the above inequality and (48) imply that
on the eventan 4;

IN

2
0
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M R 1 N
Sl wi], < S foarer| Mo (a-w) e,
= 4(181_:710\/§ymax i)\_EHF
4(1+¢)\/s.

ymaX\/ﬁ\/CO (n7 M7 N7 S*v S’ ‘I’*7 G7 2n0i59)7
SKS(7C0

Then, using (44) one has that on the evamt 47

<

1—1—8‘
A

% H\I/k—\pk

‘s GU* GTH

Therefore, by definition o€, the previous inequalities imply that on the eveh{of probability
1— M176)
3 [Gklle
K=1 \meaX

\II;QHZ < C1(0,n,M,N;s,,G, Znoise) With probability at least - M9,
2
which proves the first assertion of Theorem 10.

SCl(n7M7N7S*7‘S’5\I’*7G72I’10i56)' (49)

Uy — Py
2]

Hence max

7 * & I, * & * _
Then, to prove thaf = J* we use thatTkn “PKH@_ H‘I’ksz < \ s . for all k =
1,...,M. Then, by (49)
6k *
” k||£2 <Ci(N,M,N;s,, S, %", G, Znoise) ,
which is equivalent to
~C1(MM,N,s., S, ¥*, G, Snoise) < H H H\I:kugz <Ci(N,M,N,s., 5, ", G, Snoise)
(50)
If k e Jthen 6k \IlkH > Cy(n,M,N,s,, S, ¥* G, Znoise)- Inequallty H H\IJ sz
Cl(n,M,N,sk,S,\Il*,szlno.se) from (50) imply that H\If sz >

% \leH —C1(n,M,N;s,,S,¥* G,Xnoise) > 0, where the last inequality is obtalned using that

k e J. Hence||\Il H[ > 0 and thereforek € J*. If k € J* then || ¥; Hz £ 0. Inequality

—C1(MM,N,5., 5, %", G, Enoise) < % 7 H —iH\IlkHé from (50) imply thata—fk \flk +
Ci1(n,M,N;s,, S, ¥*, G, Znoise) > fH‘I’kHz > 2C;1 (M,M,N,s., S, ¥*, G, Znoise), Where the last
inequality is obtained using Assumption (22) oﬁk— K% He Hence —n >
2C; (N, M,N,s,, S, ¥* G, Znise) - Ci(n, M N,s., S, ¥* G, Znoise) =

Ci1(n,M,N,s,,S,¥* G, Xise) and thereforek € J. ThIS completes the proof of Theorem 10.
O
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A.7 Proof of Theorem 11

Under the assumptions of Theorem 11, we have shown in the proof ofdinel0 thati = J*
on the event? defined by (43). Therefore, under the assumptions of Theorem & ive checked
that on the evend (of probability 1— M%)

$5=3%r =Gy¥GY.,

with
Ty = (G}*GJ*)_1G}*§GJ* (GJIGJ*)_l.

Now, from the definition (24) ok;- it follows that on the even#l

(5520 = (6365

) (51)

whereAy = Uy + (G;GJ*)ilG;Enoisﬁ\]* (G;GJ*)il. LetY; = (G;GJ*)71 GIZ fori=
1,...,N and remark that

~ 1 N ) ~
Uy =g ZYiYiT with E® 3. = Ay
i=

Therefore, ¥ ;- is a sample covariance matrix of sigex s, and we can control its deviation in

operator norm frormi\ ;- by using Proposition 6. For this we simply have to verify conditions similar

to (A1) and (A2) in Assumption 2 for the random vectdf = (G;GJ*)_lG}*fe RS-, First,
let 8 € RS with [|B]l, = 1. Then, remark tha¥ "3 = X ' B with f = G- (GJ.G5-) B. Since
1Blle, < (Pmin (G}.G:)) 2 it follows that

4 _
(BEYTB*)" <B(S Snoisdn” (GFGo ). (52)

wherep (=, Znoise) = 84 (p*(Z) + p* (Enoise))l/4. Now let

-1/2
min

Z= 1Y lli, < P’ (G1.G ) IX |1

Given our assumptions on the procéss: X + £ it follows that there exists > 1 such that

5 -1/2
1Zlle < Prin” (G3:G) (12 +IWllye) < -+ (53)

whereZ = || X ||, andW = || E||,, with X = (X (t1),...,X(t))" and E = (E(t1),...,E(tn)) .
Finally, remark that

A5

2 <15 [+ Py (G5 G ) [ o (54)

Hence, using the relations (52) and (53), the bound (54) and Propo8ifwith Y instead ofX),
it follows that there exists a universal constant> 0 such that for alk > 0,

IP(H@J*_/\J*

,> TN&X) < exp(—(é;lx)z%ﬁ , (55)
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wherefy s, = maxA ¢ B, ), with Ays, = [|Z]|y, 7”“"”\/'%9'\')1/& and

By = po(=, Enoise)pr#n (G;« GJ*)
S =

with d* = min(N, s,). Then, define the event

4 (125 0 (G5.G) [ Zeisdlz) s,

2+a

=& —Ax |, <Tusd. (l0gM) =

and note that, fox= 9, (Iog(M))sza with &, > 8., inequality (55) implies tha® (B) > 1— M- (8)7
Therefore, on the evert N B (of probability at least - M1~ — M’(%)m), using inequality (51)
and the fact thai = J* one obtains

2+a

ng— DIRE 5 < Pmax (GJT*GJ*) Tne 8s (log(M)) & |

which completes the proof of Theorem 11. O
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