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Abstract

In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic pro-
cess corrupted by an additive noise. We propose to estimate the covariance matrix in a high-
dimensional setting under the assumption that the process has a sparse representation in a large
dictionary of basis functions. Using a matrix regression model, we propose a new methodology
for high-dimensional covariance matrix estimation based on empirical contrast regularization by a
group Lasso penalty. Using such a penalty, the method selects a sparse set of basis functions in the
dictionary used to approximate the process, leading to an approximation of the covariance matrix
into a low dimensional space. Consistency of the estimator is studied in Frobenius and operator
norms and an application to sparse PCA is proposed.

Keywords: group Lasso,ℓ1 penalty, high-dimensional covariance estimation, basis expansion,
sparsity, oracle inequality, sparse PCA

1. Introduction

Let T be some subset ofRp, p∈ N, and letX = (X (t))t∈T be a stochastic process with values
in R. Assume thatX has zero meanE(X (t)) = 0 for all t ∈ T, and finite covarianceσ(s, t) =
E(X (s)X (t)) for all s, t ∈ T. Let t1, . . . , tn be fixed points inT (deterministic design),X1, ...,XN
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independent copies of the processX, and suppose that we observe the noisy processes

X̃i (t j) = Xi (t j)+Ei (t j) for i = 1, ...,N, j = 1, ...,n, (1)

whereE1, ...,EN are independent copies of a second order Gaussian processE with zero mean and
independent ofX, which represent an additive source of noise in the measurements. Based on the
noisy observations (1), an important problem in statistics is to construct an estimator of the covari-
ance matrixΣ= E

(
XX⊤) of the processX at the design points, whereX = (X (t1) , ...,X (tn))

⊤.
This problem is a fundamental issue in many applications, ranging from geostatistics, financial
series or epidemiology for instance (see Stein, 1999, Journel, 1977 or Cressie, 1993; Wikle and
Cressie, 1999 for general references and applications). Estimating such a covariance matrix has
also important applications in dimension reduction by principal component analysis (PCA) or clas-
sification by linear or quadratic discriminant analysis (LDA and QDA).

In Bigot et al. (2010), usingN independent copies of the processX, we have proposed to con-
struct an estimator of the covariance matrixΣ by expanding the processX into a dictionary of basis
functions. The method in Bigot et al. (2010) is based on model selection techniques by empiri-
cal contrast minimization in a suitable matrix regression model. This new approach to covariance
estimation is well adapted to the case of low-dimensional covariance estimation when the num-
ber of replicatesN of the process is larger than the number of observations pointsn. However,
many application areas are currently dealing with the problem of estimating a covariance matrix
when the number of observations at hand is small when compared to the number of parameters
to estimate. Examples include biomedical imaging, proteomic/genomic data, signal processing in
neurosciences and many others. This issue corresponds to the problemof covariance estimation
for high-dimensional data. This problem is challenging since, in a high-dimensional setting (when
n>> N or n∼ N), it is well known that the sample covariance matrices

S =
1
N

N

∑
i=1

XiX
⊤
i ∈ R

n×n, whereXi = (Xi (t1) , ...,Xi (tn))
⊤ , i = 1, . . . ,N

and

S̃ =
1
N

N

∑
i=1

X̃iX̃
⊤
i ∈ R

n×n, whereX̃i =
(

X̃i (t1) , ..., X̃i (tn)
)⊤

, i = 1, . . . ,N

behave poorly, and are not consistent estimators ofΣ. For example, suppose that theXi ’s are inde-
pendent and identically distributed (i.i.d.) random vectors inRn drawn from a multivariate Gaussian
distribution. Then, whennN → c> 0 asn,N →+∞, neither the eigenvalues nor the eigenvectors of
the sample covariance matrixS are consistent estimators of the eigenvalues and eigenvectors of
Σ (see Johnstone, 2001). This topic has thus recently received a lot of attention in the statistical
literature. To achieve consistency, recently developed methods for high-dimensional covariance es-
timation impose sparsity restrictions on the matrixΣ. Such restrictions imply that the true (but
unknown) dimension of the model is much lower than the numbern(n+1)

2 of parameters of an un-
constrained covariance matrix. Under various sparsity assumptions, different regularizing methods
of the empirical covariance matrix have been proposed. Estimators based on thresholding or band-
ing the entries of the empirical covariance matrix have been studied in Bickel and Levina (2008b)
and Bickel and Levina (2008a). Thresholding the components of the empirical covariance matrix
has also been proposed by El Karoui (2008) and the consistency of such estimates is studied using
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tools from random matrix theory. Fan et al. (2008) impose sparsity on the covariance via a fac-
tor model which is appropriate in financial applications. Levina et al. (2008) and Rothman et al.
(2008) propose regularization techniques with a Lasso penalty to estimate thecovariance matrix or
its inverse. More general penalties have been studied in Lam and Fan (2009). Another approach
is to impose sparsity on the eigenvectors of the covariance matrix which leads tosparse PCA. Zou
et al. (2006) use a Lasso penalty to achieve sparse representation in PCA, d’Aspremont et al. (2008)
study properties of sparse principal components by convex programming,while Johnstone and Lu
(2009) propose a PCA regularization by expanding the empirical eigenvectors in a sparse basis and
then apply a thresholding step.

In this paper, we propose to estimateΣ in a high-dimensional setting by using the assumption
that the processX has a sparse representation in a large dictionary of basis functions. Using a matrix
regression model as in Bigot et al. (2010), we propose a new methodology for high-dimensional
covariance matrix estimation based on empirical contrast regularization by a group Lasso penalty.
Using such a penalty, the method selects a sparse set of basis functions in the dictionary used to
approximate the processX. This leads to an approximation of the covariance matrixΣ into a
low dimensional space, and thus to a new method of dimension reduction for high-dimensional
data. Group Lasso estimators have been studied in the standard linear model and in multiple kernel
learning to impose a group-sparsity structure on the parameters to recover(see Nardi and Rinaldo,
2008, Bach, 2008 and references therein). However, to the best ofour knowledge, it has not been
used for the estimation of covariance matrices using a functional approximation of the processX.

The rest of the paper is organized as follows. In Section 2, we describea matrix regression
model for covariance estimation, and we define our estimator by group Lasso regularization. The
consistency of such a procedure is investigated in Section 3 using oracle inequalities and a non-
asymptotic point of view by holding fixed the number of replicatesN and observation pointsn.
Consistency of the estimator is studied in Frobenius and operator norms. Various results existing
in matrix theory show that convergence in operator norm implies convergence of the eigenvectors
and eigenvalues (for example through the use of the sin(θ) theorems in Davis and Kahan, 1970).
Consistency in operator norm is thus well suited for PCA applications. Numerical experiments are
given in Section 4, and an application to sparse PCA is proposed. A technical Appendix contains
all the proofs.

2. Model and Definition of the Estimator

To impose sparsity restrictions on the covariance matrixΣ, our approach is based on an ap-
proximation of the process in a finite dictionary of (not necessarily orthogonal) basis functions
gm : T→ R for m= 1, ...,M. Suppose that

X (t)≈
M

∑
m=1

amgm(t) , (2)

wheream, m= 1, ...,M are real valued random variables, and that for each trajectoryXi

Xi (t j)≈
M

∑
m=1

ai,mgm(t j) . (3)
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The notation≈ means that the processX can be well approximated into the dictionary. A precise
meaning of this will be discussed later on. Then (3) can be written in matrix notation as:

Xi ≈Gai , i = 1, ...,N

whereG is then×M matrix with entries

G jm = gm(t j) for 1≤ j ≤ n and 1≤ m≤ M,

andai is theM×1 random vector of componentsai,m, with 1≤ m≤ M.
Recall that we want to estimate the covariance matrixΣ= E

(
XX⊤) from the noisy observa-

tions (1). SinceX ≈Ga with a= (am)1≤m≤M with am as in (2), it follows that

Σ≈ E

(
Ga(Ga)⊤

)
= E

(
Gaa⊤G⊤

)
=GΨ∗G⊤ with Ψ∗ = E

(
aa⊤

)
.

Given the noisy observations̃Xi as in (1) withi = 1, ...,N, consider the following matrix regres-
sion model

X̃iX̃
⊤
i =Σ+Ui +Wi i = 1, . . . ,N, (4)

whereUi =XiX
⊤
i −Σ are i.i.d centered matrix errors, and

Wi = EiE
⊤
i ∈ R

n×n whereEi = (Ei (t1) , ...,Ei (tn))
⊤ , i = 1, . . . ,N.

The sizeM of the dictionary can be very large, but it is expected that the processX has a sparse
expansion in this basis, meaning that, in approximation (2), many of the randomcoefficientsam

are close to zero. We are interested in obtaining an estimate of the covarianceΣ in the formΣ̂ =
GΨ̂G⊤ such thatΨ̂ is a symmetricM ×M matrix with many zero rows (and so, by symmetry,
many corresponding zero columns). Note that setting thek-th row ofΨ̂ to0∈RM means to remove
the functiongk from the set of basis functions(gm)1≤m≤M in the function expansion associated to
G.

Let us now explain how to select a sparse set of rows/columns in the matrixΨ̂. For this, we
use a group Lasso approach to threshold some rows/columns ofΨ̂ which corresponds to removing
some basis functions in the approximation of the processX. For two p× p matricesA,B define
the inner product〈A,B〉F := tr

(
A⊤B

)
and the associated Frobenius norm‖A‖2

F := tr
(
A⊤A

)
.

Let SM denote the set ofM ×M symmetric matrices with real entries. We define the group Lasso
estimator of the covariance matrixΣ by

Σ̂λ =GΨ̂λG
⊤ ∈ R

n×n, (5)

whereΨ̂λ is the solution of the following optimization problem:

Ψ̂λ = argmin
Ψ∈SM

{
1
N

N

∑
i=1

∥∥∥X̃iX̃
⊤
i −GΨG⊤

∥∥∥
2

F
+2λ

M

∑
k=1

γk

√
M

∑
m=1

Ψ2
mk

}
, (6)

whereΨ = (Ψmk)1≤m,k≤M ∈ RM×M, λ is a positive number andγk are some weights whose values
will be discuss later on. In (6), the penalty term imposes to give preference to solutions with compo-

nentsΨk = 0, where(Ψk)1≤k≤M denotes the columns ofΨ. Recall thatS̃ = 1
N

N
∑

i=1
X̃iX̃

⊤
i denotes
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the sample covariance matrix from the noisy observations (1). It can be checked that minimizing
the criterion (6) is equivalent to

Ψ̂λ = argmin
Ψ∈SM

{∥∥∥S̃−GΨG⊤
∥∥∥

2

F
+2λ

M

∑
k=1

γk

√
M

∑
m=1

Ψ2
mk

}
. (7)

Thus Ψ̂λ ∈ RM×M can be interpreted as a group Lasso estimator ofΣ in the following matrix
regression model

S̃ =Σ+U +W ≈GΨ∗G⊤+U +W , (8)

whereU ∈Rn×n is a centered error matrix given byU = 1
N ∑N

i=1Ui andW = 1
N

N
∑

i=1
Wi . In the above

regression model (8), there are two errors terms of a different nature. The termW corresponds to
the additive Gaussian errorsE1, ...,EN in model (1), while the termU = S −Σ represents the
difference between the (unobserved) sample covariance matrixS and the matrixΣ that we want to
estimate.

This approach can be interpreted as a thresholding procedure of the entries of an empirical
matrix. To see this, consider the simple case whereM = n and the basis functions and observations
points are chosen such that the matrixG is orthogonal. LetY = G⊤S̃G be a transformation of
the empirical covariance matrix̃S. In the orthogonal case, the following proposition shows that the
group Lasso estimator̂Ψλ defined by (7) consists in thresholding the columns/rows ofY whoseℓ2-
norm is too small, and in multiplying the other columns/rows by weights between 0 and1. Hence,
the group Lasso estimate (7) can be interpreted as covariance estimation by soft-thresholding the
columns/rows ofY .

Proposition 1 Suppose that M= n and thatG⊤G= In whereIn denotes the identity matrix of size
n×n. LetY =G⊤S̃G. Then, the group Lasso estimatorΨ̂λ defined by (7) is the n×n symmetric
matrix whose entries are given by

(
Ψ̂λ

)
mk

=





0 if
√

∑M
j=1Y

2
jk ≤ λγk,

Ymk

(
1− λγk√

∑M
j=1Y

2
mk

)
if

√
∑M

j=1Y
2
jk > λγk,

for 1≤ k,m≤ M.

3. Consistency of the Group Lasso Estimator

In this section, we describe the statistical properties of the group Lasso estimator.

3.1 Notations and Main Assumptions

Let us begin by some definitions. For a symmetricp× p matrixA with real entries,ρmin(A)
denotes the smallest eigenvalue ofA, andρmax(A) denotes the largest eigenvalue ofA. For β ∈
Rq, ‖β‖ℓ2 denotes the usual Euclidean norm ofβ. For p×q matrix A with real entries,‖A‖2 =

supβ∈Rq, β6=0
‖Aβ‖ℓ2
‖β‖ℓ2

denotes the operator norm ofA. Recall that ifA is a non negative definite

matrix with p= q then‖A‖2 = ρmax(A).
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Let Ψ ∈ SM andβ a vector inRM. For a subsetJ ⊂ {1, . . . ,M} of indices of cardinality|J|,
thenβJ is the vector inRM that has the same coordinates asβ on J and zeros coordinates on the
complementJc of J. Then×|J| matrix obtained by removing the columns ofG whose indices are
not inJ is denoted byGJ. The sparsity ofΨ is defined as its number of non-zero columns (and thus
by symmetry non-zero rows) namely

Definition 2 For Ψ ∈ SM, the sparsity ofΨ is

M (Ψ) = #{k : Ψk 6= 0} .

Then, let us introduce the following quantities that control the minimal eigenvalues of sub-
matrices of small size extracted from the matrixG⊤G, and the correlations between the columns of
G:

Definition 3 Let0< s≤ M. Then,

ρmin(s) := inf
J ⊂ {1, . . . ,M}

|J| ≤ s

(
β⊤

J G
⊤GβJ

‖βJ‖2
ℓ2

)
= inf

J ⊂ {1, . . . ,M}
|J| ≤ s

ρmin

(
G⊤

J GJ

)
.

Definition 4 The mutual coherenceθ(G) of the columnsGk, k= 1, . . . ,M ofG is defined as

θ(G) := max
{∣∣∣G⊤

k′Gk

∣∣∣ , k 6= k′, 1≤ k,k′ ≤ M
}
,

and let
G2

max := max
{
‖Gk‖2

ℓ2
, 1≤ k≤ M

}
.

To derive oracle inequalities showing the consistency of the group LassoestimatorΨ̂λ the cor-
relations between the columns ofG (measured byθ(G)) should not be too large when compared to
the minimal eigenvalues of small matrices extracted fromG⊤G, which is formulated in the follow-
ing assumption:

Assumption 1 Let c0 > 0 be some constant and0< s≤ M. Then

θ(G)<
ρmin(s)2

c0ρmax(G⊤G)s
.

Assumption 1 is inspired by recent results in Bickel et al. (2009) on the consistency of Lasso es-
timators in the standard nonparametric regression model using a large dictionary of basis functions.
In Bickel et al. (2009), a general condition calledrestricted eigenvalue assumptionis introduced to
control the minimal eigenvalues of the Gram matrix associated to the dictionary over sets of sparse
vectors. In the setting of nonparametric regression, a condition similar to Assumption 1 is given in
Bickel et al. (2009) as an example for which the restricted eigenvalue assumption holds.

Let us give some examples for which Assumption 1 is satisfied. IfM ≤ n and the design points
are chosen such that the columns of the matrixG are orthonormal vectors inRn, then for any
0< s≤ M one has thatρmin(s) = 1 andθ(G) = 0 and thus Assumption 1 holds for any value ofc0

ands.
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Now, suppose that the columns ofG are normalized to one, that is,‖Gk‖ℓ2 = 1, k = 1, . . . ,M
implying thatGmax= 1. Letβ ∈ RM. Then, for anyJ ⊂ {1, . . . ,M} with |J| ≤ s≤ min(n,M)

β⊤
J G

⊤GβJ ≥ ‖βJ‖2
ℓ2
−θ(G)s‖βJ‖2

ℓ2
,

which implies that
ρmin(s)≥ 1−θ(G)s.

Therefore, if(1−θ(G)(s−1))2 > c0θ(G)ρmax(G
⊤G)s, then Assumption 1 is satisfied.

Let us now specify the law of the stochastic processX. For this, recall that for a real-valued
random variableZ, theψα Orlicz norm ofZ is

‖Z‖ψα := inf

{
C> 0 ; Eexp

( |Z|α
Cα

)
≤ 2

}
.

Such Orlicz norms are useful to characterize the tail behavior of randomvariables. Indeed, if
‖Z‖ψα < +∞ then this is equivalent to assuming that there exists two constantsK1,K2 > 0 such
that for allx> 0

P(|Z| ≥ x)≤ K1exp

(
− xα

Kα
2

)
,

(see for example Mendelson and Pajor, 2006 for more details on Orlicz norms of random variables)
. Therefore, if‖Z‖ψ2 <+∞ thenZ is said to have a sub-Gaussian behavior and if‖Z‖ψ1 <+∞ then
Z is said to have a sub-Exponential behavior. In the next sections, oracleinequalities for the group
Lasso estimator will be derived under the following assumption onX:

Assumption 2 The random vectorX = (X (t1) , ...,X (tn))
⊤ ∈ Rn is such that

(A1) There existsρ(Σ)> 0 such that, for all vectorβ ∈ Rn with ‖β‖ℓ2 = 1, then
(
E|X⊤β|4

)1/4
<

ρ(Σ).

(A2) Set Z= ‖X‖ℓ2. There existsα ≥ 1 such that‖Z‖ψα <+∞.

Note that(A1) implies that‖Σ‖2 ≤ ρ(Σ)2. Indeed, one has that

‖Σ‖2 = ρmax(Σ) = sup
β∈Rn, ‖β‖ℓ2=1

β⊤Σβ = sup
β∈Rn, ‖β‖ℓ2=1

Eβ⊤XX⊤β

= sup
β∈Rn, ‖β‖ℓ2=1

E|β⊤X|2 ≤ sup
β∈Rn, ‖β‖ℓ2=1

√
E|β⊤X|4 ≤ ρ2(Σ) .

WhenX is a Gaussian process, it follows that for anyβ ∈ Rn with ‖β‖ℓ2 = 1 then
(
E|X⊤β|4

)1/4
=

31/4
(
β⊤Σβ

)1/2
sinceX⊤β ∼ N(0,β⊤Σβ). Therefore, under the assumption thatX is a Gaussian

process, Assumption(A1) holds withρ(Σ) = 31/4‖Σ‖1/2
2 .

Assumption(A2) requires that‖Z‖ψα < +∞, whereZ = ‖X‖ℓ2. The following proposition
provides some examples where such an assumption holds.

Proposition 5 Let Z= ‖X‖ℓ2 =
(
∑n

i=1 |X(ti)|2
)1/2

. Then
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- If X is a Gaussian process
‖Z‖ψ2 <

√
8/3
√

tr(Σ).

- If the random process X is such that‖Z‖ψ2 < +∞, and there exists a constant C1 such that

‖Σ−1/2
ii |X(ti)|‖ψ2 ≤C1 for all i = 1, . . . ,n, then

‖Z‖ψ2 <C1

√
tr(Σ).

- If X is a bounded process, meaning that there exists a constant R> 0 such that for all t∈ T,
|X(t)| ≤ R, then for anyα ≥ 1,

‖Z‖ψα ≤
√

nR(log2)−1/α.

Assumption 2 will be used to control the deviation in operator norm between thesample covari-
ance matrixS and the true covariance matrixΣ in the sense of the following proposition whose
proof follows from Theorem 2.1 in Mendelson and Pajor (2006).

Proposition 6 Let X1, ...,XN be independent copies of the stochastic process X, let Z= ‖X‖ℓ2

andXi = (Xi (t1) , ...,Xi (tn))
⊤ for i = 1, . . . ,N. Recall thatS = 1

N

N
∑

i=1
XiX

⊤
i andΣ = E

(
XX⊤).

Suppose that X satisfies Assumption 2. Let d= min(n,N). Then, there exists a universal constant
δ∗ > 0 such that for all x> 0

P

(∥∥∥S−Σ
∥∥∥

2
> τd,N,nx

)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
, (9)

whereτN,n = max(A2
N,n,BN,n), with

AN,n = ‖Z‖ψα

√
logd(logN)1/α

√
N

and BN,n =
ρ2(Σ)√

N
+‖Σ‖1/2

2 AN,n.

Let us briefly comment Proposition 6 in some specific cases. IfX is Gaussian, then Proposition
5 implies thatAN,n ≤ AN,n,1, where

AN,n,1 =
√

8/3
√

tr(Σ)

√
logd(logN)1/α

√
N

≤
√

8/3 ‖Σ‖1/2
2

√
n
N

√
logd(logN)1/α, (10)

and in this case inequality (9) becomes

P

(∥∥∥S−Σ
∥∥∥

2
> max

(
A2

N,n,1,BN,n,1
)

x
)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
(11)

for all x> 0, whereBN,n,1 =
ρ2(Σ)√

N
+‖Σ‖1/2

2 AN,n,1.
If X is a bounded process by some constantR> 0 , then using Proposition 5 and by letting

α →+∞, Proposition 6 implies that for allx> 0,

P

(∥∥∥S−Σ
∥∥∥

2
> max

(
A2

N,n,2,BN,n,2
)

x
)
6 exp

(
−δ−1

∗ x
)
, (12)
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where

AN,n,2 = R

√
n
N

√
logd andBN,n,2 =

ρ2(Σ)√
N

+‖Σ‖1/2
2 AN,n,2. (13)

Contrary to the low-dimensional case (n << N), in a high-dimensional setting whenn >> N
or whenn andN are of the same magnitude (n

N → c> 0 asn,N →+∞), inequalities (11) and (12)

cannot be used to conclude that the norm
∥∥∥S−Σ

∥∥∥
2

concentrates around zero. Actually, it is well

known that the sample covarianceS is a bad estimator ofΣ in a high-dimensional setting, and
that without any further restriction on the structure of the covariance matrixΣ, thenS cannot be
a consistent estimator. However, we would like to point out that Proposition 6relates the quality
of S to the “true dimensionality” of the vectorX = (X (t1) , ...,X (tn))

⊤ ∈ Rn that is measured by
the quantity‖Z‖ψα with Z = ‖X‖ℓ2. Indeed, ifX is a low-dimensional Gaussian process such that
tr(Σ) = 1 then Proposition 6 and inequality (10) imply that

P

(∥∥∥S−Σ
∥∥∥

2
> max

(
A2

N,BN
)

x
)
6 exp

(
−(δ−1

∗ x)
1
2

)
(14)

for all x> 0, whereAN =
√

8/3
√

logN(logN)1/α
√

N
andBN = ρ2(Σ)√

N
+‖Σ‖1/2

2 AN. Hence, inequality (14)
shows that, under an assumption of low-dimensionality of the processX, the deviation in operator
norm betweenS andΣ depends on the ratio1N and not onn

N , and thus the quality ofS as an
estimator ofΣ is much better in such settings.

More generally, another assumption of low-dimensionality for the processX is to suppose that
it has a sparse representation in a dictionary of basis functions, which mayalso improve the quality
of S as an estimator ofΣ. To see this, consider the simplest caseX = X0, where the processX0 has
a sparse representation in the basis(gm)1≤m≤M given by

X0(t) = ∑
m∈J∗

amgm(t), t ∈ T, (15)

whereJ∗ ⊂ {1, . . . ,M} is a subset of indices of cardinality|J∗| = s∗ andam, m∈ J∗ are random
coefficients (possibly correlated). Under such an assumption, the following proposition holds.

Proposition 7 Suppose that X= X0 with X0 defined by (15) with s∗ ≤ min(n,M). Assume that
X satisfies Assumption 2 and that the matrixG⊤

J∗GJ∗ is invertible, whereGJ∗ denotes the n×|J∗|
matrix obtained by removing the columns ofG whose indices are not in J∗. Then, there exists a
universal constantδ∗ > 0 such that for all x> 0,

P

(∥∥∥S−Σ
∥∥∥

2
> τ̃N,s∗x

)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
,

whereτ̃N,s∗ = max(Ã2
N,s∗ , B̃N,s∗), with

ÃN,s∗ = ρ1/2
max

(
G⊤

J∗GJ∗

)
‖Z̃‖ψα

√
logd∗(logN)1/α

√
N

,

and

B̃N,s∗ =

(
ρmax

(
G⊤

J∗GJ∗
)

ρmin
(
G⊤

J∗GJ∗
)
)

ρ2(Σ)√
N

+

(
ρmax

(
G⊤

J∗GJ∗
)

ρmin
(
G⊤

J∗GJ∗
)
)1/2

‖Σ‖1/2
2 Ãd∗,N,s∗ ,

with d∗ = min(N,s∗) andZ̃ = ‖aJ∗‖ℓ2, whereaJ∗ = (G⊤
J∗GJ∗)

−1G⊤
J∗X ∈ Rs∗ .
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Using Proposition 5 and Proposition 7 it follows that

- If X = X0 is a Gaussian process then

ÃN,s∗ ≤
√

8/3

(
ρmax

(
G⊤

J∗GJ∗
)

ρmin
(
G⊤

J∗GJ∗
)
)1/2

‖Σ‖1/2
2

√
s∗
N

√
logd∗(logN)1/α (16)

- If X = X0 is such that the random variablesam are bounded by for some constantR> 0, then

ÃN,s∗ ≤ R‖g‖∞

√
s∗
N

√
logd∗ (17)

with ‖g‖∞ = max1≤m≤M ‖gm‖∞ where‖gm‖∞ = supt∈T |gm(t)|.

Therefore, let us compare the bounds (16) and (17) with the inequalities (10) and (13). It follows
that, in the caseX = X0, if the sparsitys∗ of X in the dictionary is small compared to the number
of time pointsn then the deviation betweenS andΣ is much smaller than in the general case
without any assumption on the structure ofΣ. Obviously, the gain also depends on the control of

the ratio
ρmax(G⊤

J∗GJ∗)
ρmin(G⊤

J∗GJ∗)
. Note that in the case of an orthonormal design (M = n andG⊤G= In) then

ρmax
(
G⊤

J∗GJ∗
)
= ρmin

(
G⊤

J∗GJ∗
)
= 1 for anyJ∗, and thus the gain in operator norm betweenS and

Σ clearly depends on the size ofs∗
N compared ton

N . Supposing thatX = X0 also implies that the
operator norm of the error termU in the matrix regression model (8) is controlled by the ratios∗

N
instead of the ration

N when no assumptions are made on the structure ofΣ. This means that ifX
has a sparse representation in the dictionary then the error termU becomes smaller.

3.2 An Oracle Inequality for the Frobenius Norm

Consistency is first studied for the normalized Frobenius norm1
n ‖A‖2

F for ann×n matrixA.

The following theorem provides an oracle inequality for the group Lasso estimatorΣ̂λ =GΨ̂λG
⊤.

Theorem 8 Assume that X satisfies Assumption 2. Letε > 0 and1≤ s≤ min(n,M). Suppose that
Assumption 1 holds with c0 = 3+4/ε, and that the covariance matrixΣnoise= E(W1) of the noise
is positive-definite. Consider the group Lasso estimatorΣ̂λ defined by (5) with the choices

γk = 2‖Gk‖ℓ2

√
ρmax(GG⊤),

and

λ = ‖Σnoise‖2

(
1+

√
n
N
+

√
2δ logM

N

)2

for some constantδ > 1.

Then, with probability at least1−M1−δ one has that

1
n

∥∥∥Σ̂λ −Σ
∥∥∥

2

F
≤ (1+ ε) inf

Ψ ∈ SM

M (Ψ)≤ s

(
4
n

∥∥∥GΨG⊤−Σ
∥∥∥

2

F
+

8
n
‖S−Σ‖2

F (18)

+C(ε)
G2

maxρmax(G
⊤G)

κ2
s,c0

‖Σnoise‖2
2

(
1+

√
n
N
+

√
2δ logM

N

)4
M (Ψ)

n


 ,
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whereκ2
s,c0

= ρmin(s)2−c0θ(G)ρmax(G
⊤G)s, and C(ε) = 8 ε

1+ε(1+2/ε)2.

The first term1
n

∥∥GΨG⊤−Σ
∥∥2

F in inequality (18) is the bias of the estimatorΣ̂λ. It reflects
the quality of the approximation ofΣ by the set of matrices of the formGΨG⊤, with Ψ ∈ SM and
M (Ψ)≤ s. As an example, suppose thatX = X0, where the processX0 has a sparse representation
in the basis(gm)1≤m≤M given by

X0(t) = ∑
m∈J∗

amgm(t), t ∈ T,

whereJ∗ ⊂ {1, . . . ,M} is a subset of indices of cardinality|J∗|= s∗ ≤ s andam,m∈ J∗ are random
coefficients. Then, in this case, sinces∗ ≤ s the bias term in (18) is equal to zero.

The second term1
n ‖S−Σ‖2

F in (18) is a variance term as the empirical covariance matrix

S is an unbiased estimator ofΣ. Using the inequality1
n ‖A‖2

F ≤ ‖A‖2
2 that holds for anyn× n

matrix A, it follows that 1
n ‖S−Σ‖2

F ≤ ‖S−Σ‖2
2. Therefore, under the assumption thatX has a

sparse representation in the dictionary (for example whenX = X0 as above) then the variance term
1
n ‖S−Σ‖2

F is controlled by the ratios∗N ≤ s
N (see Proposition 7) instead of the ration

N without any
assumption on the structure ofΣ.

The third term in (18) is also a variance term due to the noise in the measurements(1). If there
exists a constantc> 0 independent ofn andN such thatnN ≤ c then the decay of this third variance

term is essentially controlled by the ratioM (Ψ)
n ≤ s

n. Therefore, ifM (Ψ)≤ swith sparsitysmuch

smaller thann then the variance of the group Lasso estimatorΣ̂λ is smaller than the variance of̃S.
This shows some of the improvements achieved by regularization (7) of the empirical covariance
matrix S̃ with a group Lasso penalty.

An important assumption of Theorem 8 is that the covariance matrix of the noiseΣnoise=
E(W1) is positive definite. This restriction is clearly necessary as illustrated by the following
example: suppose that the contaminating processE (t) = ζg1(t) with ζ ∼ N(0,σ2

1), implying that
Σnoise= σ2

1g1g
⊤
1 with g1 = (g1(t1), . . . ,g1(tn))⊤ hasn−1 eigenvalues equal to zero. Now, suppose

that X(t) = a2g2(t) with a2 ∼ N(0,σ2
2). If σ1 > σ2 then the group LASSO regularization alone

cannot get rid of the additive error term without eliminating first the right componentg2. Hence, in
such settings, group LASSO regularization does not yield to a consistent estimation ofΣ= σ2

2g2g
⊤
2

with g2 = (g2(t1), . . . ,g2(tn))⊤.

3.3 An Oracle Inequality for the Operator Norm

The “normalized” Frobenius norm1
n

∥∥∥Σ̂λ −Σ
∥∥∥

2

F
, that is, the average of the eigenvalues of

(
Σ̂λ −Σ

)2
, can be viewed as a reasonable proxy for the operator norm

∥∥∥Σ̂λ −Σ
∥∥∥

2

2
(maximum

eigenvalue of
(
Σ̂λ −Σ

)2
). It is thus expected that the results of Theorem 8 imply that the group

Lasso estimator̂Σλ is a good estimator ofΣ in operator norm. Let us recall that controlling the oper-
ator norm enables to study the convergence of the eigenvectors and eigenvalues of̂Σλ by controlling
of the angles between the eigenspaces of a population and a sample covariance matrix through the
use of the sin(θ) theorems in Davis and Kahan (1970).

3197



BIGOT, BISCAY, LOUBES AND MUÑIZ-ALVAREZ

Now, let us consider the case whereX consists in noisy observations of the processX0 (15)
meaning that

X̃(t j) = X0(t j)+E (t j) , j = 1, . . . ,n, (19)

whereE is a second order Gaussian processE with zero mean and independent ofX0. In this case,
one has that

Σ=GΨ∗G⊤, whereΨ∗ = E

(
aa⊤

)
,

wherea is the random vector ofRM with am = am for m∈ J∗ andam = 0 for m /∈ J∗. Therefore,
using Theorem 8 by replacings by s∗ = |J∗|, sinceΨ∗ ∈ {Ψ ∈ SM : M (Ψ)≤ s∗}, one can derive
the following corrollary:

Corollary 9 Suppose that the observationsX̃i(t j) with i = 1, ...,N and j= 1, . . . ,n are i.i.d random
variables from model (19) and that the conditions of Theorem 8 are satisfied with1 ≤ s= s∗ ≤
min(n,M). Then, with probability at least1−M1−δ one has that

1
n

∥∥∥Σ̂λ −Σ
∥∥∥

2

F
≤C0(n,M,N,s∗,S,Ψ

∗,G,Σnoise) ,

where

C0 (n,M,N,s∗,S,Ψ
∗,G,Σnoise) = (1+ ε)

(
8
n

∥∥∥S−GΨ∗G⊤
∥∥∥

2

F
+C(ε)

G2
maxρmax(G

⊤G)

κ2
s∗,c0

λ2s∗
n

)
.

To simplify notations, writêΨ= Ψ̂λ, with Ψ̂λ given by (7). DefineĴλ ⊂ {1, . . . ,M} as

Ĵλ ≡ Ĵ :=

{
k :

δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

>C1(n,M,N,s∗,S,Ψ
∗,G,Σnoise)

}
, with δk =

‖Gk‖ℓ2

Gmax
, (20)

andC1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) =C1 with

C1 = max

(
γ−1

maxn
−1/21+ ε

λ

∥∥∥S−GΨ∗G⊤
∥∥∥

2

F
;
4(1+ ε)√s∗

εκs∗,c0

√
C0(n,M,N,s∗,S,Ψ∗,G,Σnoise)

)
.

(21)
with γmax = 2Gmax

√
ρmax(G⊤G). The set of indiceŝJ is an estimation of the set of active basis

functionsJ∗. Note that such thresholding procedure (20) does not lead immediately to a practical
way to choose the set̂J. Indeed the constantC1 in (20) depends on the a priori unknown sparsity
s∗ and on the amplitude of the noise in the matrix regression model (8) measured bythe quantities
8
n

∥∥S−GΨ∗G⊤∥∥2
F and‖Σnoise‖2

2. Nevertheless, in Section 4 on numerical experiments we give a

simple procedure to automatically threshold theℓ2-norm of the columns of the matrix̂Ψλ that are
two small.

Note that to estimateJ∗ we did not simply takeĴ = Ĵ0 :=

{
k :
∥∥∥Ψ̂k

∥∥∥
ℓ2

6= 0

}
, but rather apply

a thresholding step to discard the columns ofΨ̂ whoseℓ2-norm are too small. By doing so, we
want to stress the fact that to obtain a consistent procedure with respectto the operator norm it is
not sufficient to simply takêJ = Ĵ0. A similar thresholding step is proposed in Lounici (2008) and
Lounici et al. (2009) in the standard linear model to select a sparse set of active variables when
using regularization by a Lasso or group-Lasso penalty. In the paper (Lounici, 2008), the second
thresholding step used to estimate the true sparsity pattern depends on a unknown constant that is
related to the amplitude of the unknown coefficients to estimate.

Then, the following theorem holds.
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Theorem 10 Under the assumptions of Corollary 9, for any solution of problem (7), wehave that
with probability at least1−M1−δ,

max
1≤k≤M

δk√
n

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

≤C1(n,M,N,s∗,S,Ψ
∗,G,Σnoise) .

If in addition

min
k∈J∗

δk√
n
‖Ψ∗

k‖ℓ2
> 2C1(n,M,N,s∗,S,Ψ

∗,G,Σnoise) (22)

then with the same probability the set of indicesĴ, defined by (20), estimates correctly the true set
of active basis functions J∗, that isĴ = J∗ with probability at least1−M1−δ.

The results of Theorem 10 indicate that if theℓ2-norm of the columns ofΨ∗
k for k ∈ J∗ are

sufficiently large with respect to the level of noise in the matrix regression model (8) and the sparsity
s∗, thenĴ is a consistent estimation of the active set of variables. Indeed, ifM (Ψ∗) = s∗, then by
symmetry the columns ofΨ∗ suchΨ∗

k 6= 0 have exactlys∗ non-zero entries. Hence, the condition

(22) means that theℓ2-norm ofΨ∗
k 6= 0 (normalized byδk√

n) has to be larger than4(1+ε)
εκs∗ ,c0

√
s∗
√

C0. A

simple condition to satisfy such an assumption is that the amplitude of thes∗ non-vanishing entries
of Ψ∗

k 6= 0 are larger than
√

n
δk

4(1+ε)
εκs∗,c0

√
C0 which can be interpreted as a kind of measure of the noise

in model (8). This suggests to take as a final estimator ofΣ the following matrix:

Σ̂Ĵ =GĴΨ̂ĴGĴ (23)

whereGĴ denotes then×|Ĵ| matrix obtained by removing the columns ofG whose indices are not
in Ĵ, and

Ψ̂Ĵ = argmin
Ψ∈S|Ĵ|

{∥∥∥S̃−GĴΨG⊤
Ĵ

∥∥∥
2

F

}
,

whereS|Ĵ| denotes the set of|Ĵ|× |Ĵ| symmetric matrices. Note that ifG⊤
Ĵ
GĴ is invertible, then

Ψ̂Ĵ =
(
G⊤

Ĵ GĴ

)−1
G⊤

Ĵ S̃GĴ

(
G⊤

Ĵ GĴ

)−1
.

Let us recall that if the observations are i.i.d random variables from model(19) then

Σ=GΨ∗G⊤,

whereΨ∗ = E
(
aa⊤), anda is the random vector ofRM with am = am for m∈ J∗ andam = 0 for

m /∈ J∗. Then, define the random vectoraJ∗ ∈ RJ∗ whose coordinates are the random coefficients
am for m∈ J∗. LetΨJ∗ = E

(
aJ∗a

⊤
J∗
)

and denote byGJ∗ then×|J∗| matrix obtained by removing
the columns ofG whose indices are not inJ∗. Note thatΣ=GJ∗ΨJ∗G

⊤
J∗ .

Assuming thatG⊤
J∗GJ∗ is invertible, define the matrix

ΣJ∗ =Σ+GJ∗(G
⊤
J∗GJ∗)

−1G⊤
J∗ΣnoiseGJ∗

(
G⊤

J∗GJ∗

)−1
G⊤

J∗ . (24)

Then, the following theorem gives a control of deviation betweenΣ̂Ĵ andΣJ∗ in operator norm.
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Theorem 11 Suppose that the observations are i.i.d random variables from model (19)and that
the conditions of Theorem 8 are satisfied with1≤ s= s∗ ≤ min(n,M). Suppose thatG⊤

J∗GJ∗ is an
invertible matrix, and that

min
k∈J∗

δk√
n
‖Ψ∗

k‖ℓ2
> 2C1(n,M,N,s∗,S,Ψ

∗,G,Σnoise) ,

where C1(n,M,N,s∗,S,Ψ∗,G,Σnoise) is the constant defined in (21). Let

Y =
(
G⊤

J∗GJ∗

)−1
G⊤

J∗X̃

and Z̃ = ‖Y ‖ℓ2 . Let ρ(Σnoise) =
(

supβ∈Rn,‖β‖ℓ2=1E|E⊤β|4
)1/4

whereE = (E (t1) , ...,E (tn))
⊤.

Then, with probability at least1−M1−δ −M−( δ⋆
δ∗ )

α
2+α

, with δ > 1 andδ⋆ > δ∗ one has that
∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ ρmax

(
G⊤

J∗GJ∗

)
τ̃N,s∗δ⋆ (log(M))

2+α
α ,

whereτ̃N,s∗ = max(Ã2
N,s∗ , B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα

√
logd∗(logN)1/α

√
N

and

B̃N,s∗ =
ρ̃2(Σ,Σnoise)ρ−1

min

(
G⊤

J∗GJ∗
)

√
N

+
(
‖ΨJ∗‖2+ρ−1

min

(
G⊤

J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗ ,

where d∗ = min(N,s∗) andρ̃(Σ,Σnoise) = 81/4
(
ρ4(Σ)+ρ4(Σnoise)

)1/4
.

First note that the above theorem gives a deviation in operator norm fromΣ̂Ĵ to the matrixΣJ∗

(24) which is not equal to the true covarianceΣ of X at the design points. Indeed, even if we
know the true sparsity setJ∗, the additive noise in the measurements in model (1) complicates the
estimation ofΣ in operator norm. However, althoughΣJ∗ 6=Σ, they can have the same eigenvectors
if the structure of the additive noise matrix term in (24) is not too complex. As anexample, consider
the case of an additive white noise, for whichΣnoise= σ2In whereσ is the level of noise and
In the n×n identity matrix. Under such an assumption, if we further suppose for simplicity that
(G⊤

J∗GJ∗)
−1 = Is∗ , thenΣJ∗ = Σ+ σ2GJ∗(G

⊤
J∗GJ∗)

−1G⊤
J∗ = Σ+ σ2In and clearlyΣJ∗ andΣ

have the same eigenvectors. Therefore, the eigenvectors ofΣ̂Ĵ can be used as estimators of the
eigenvectors ofΣ which is suitable for the sparse PCA application described in the next sectionon
numerical experiments.

Let us illustrate the implications of Theorem 11 on a simple example. IfX is Gaussian, the
random vectorY =

(
G⊤

J∗GJ∗
)−1

G⊤
J∗ (X+E) is also Gaussian and Proposition 5 can be used to

prove that

‖Z̃‖ψ2 ≤
√

8/3

√
tr
((

G⊤
J∗GJ∗

)−1
G⊤

J∗ (Σ+Σnoise)GJ∗
(
G⊤

J∗GJ∗
)−1
)

≤
√

8/3‖Σ+Σnoise‖1/2
2 ρ−1/2

min

(
G⊤

J∗GJ∗

)√
s∗.

Then Theorem 11 implies that with high probability
∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ ρmax

(
G⊤

J∗GJ∗

)
τ̃N,s∗,1δ(log(M))

2+α
α ,

3200



GROUPLASSOESTIMATION OF HIGH-DIMENSIONAL COVARIANCE MATRICES

whereτ̃N,s∗,1 = max(Ã2
N,s∗,1, B̃N,s∗,1), with

ÃN,s∗,1 =
√

8/3‖Σ+Σnoise‖1/2
2 ρ−1/2

min

(
G⊤

J∗GJ∗

)√
logd∗(logN)1/α

√
s∗
N

and

B̃N,s∗,1 =
ρ̃2(Σ,Σnoise)ρ−1

min

(
G⊤

J∗GJ∗
)

√
N

+
(
‖ΨJ∗‖2+ρ−1

min

(
G⊤

J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗,1.

Therefore, in the Gaussian case (but also under other assumptions forX such as those in Proposition

5) the above equations show that the operator norm
∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2

2
depends on the ratios∗N . Recall

that‖S−Σ‖2
2 depends on the rationN . Thus, usinĝΣĴ clearly yields significant improvements ifs∗

is small compared ton.
To summarize our results let us finally consider the case of an orthogonal design. Combining

Theorems 8, 10 and 11 one arrives at the following corrolary:

Corollary 12 Suppose that the observations are i.i.d random variables from model (19). Suppose
that M= n and thatG⊤G = In (orthogonal design) and that X0 satisfies Assumption 2. Letε > 0
and1≤ s∗ ≤ min(n,M). Consider the group Lasso estimatorΣ̂λ defined by (5) with the choices

γk = 2,k= 1, . . . ,n andλ = ‖Σnoise‖2

(
1+

√
n
N
+

√
2δ logM

N

)2

for some constantδ > 1.

Suppose thatmin
k∈J∗

∥∥Ψ∗
k

∥∥
ℓ2
> 2n1/2C̃1(σ,n,s∗,N,δ) , where

C̃1(σ,n,s,N,δ) =
4(1+ ε)√s∗

ε

√
C̃0(σ,n,s∗,N,δ)

and

C̃0(σ,n,s∗,N,δ)= (1+ε)


8

n

∥∥∥S−GΨ∗G⊤
∥∥∥

2

F
+C(ε)‖Σnoise‖2

2

(
1+

√
n
N
+

√
2δ logM

N

)4
s∗
n


 .

TakeĴ :=

{
k :
∥∥∥Ψ̂k

∥∥∥
ℓ2

> n1/2C̃1 (σ,n,s,N,δ)
}
. LetY =G⊤

J∗X̃ andZ̃ = ‖Y ‖ℓ2 . Then, with prob-

ability at least1−M1−δ −M−( δ⋆
δ∗ )

α
2+α

, with δ > 1 andδ⋆ > δ∗ one has that

∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ τ̃N,s∗δ⋆ (log(M))

2+α
α ,

where τ̃N,s∗ = max(Ã2
N,s∗ , B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα

√
logd∗(logN)1/α

√
N

and

B̃N,s∗ =
ρ̃2(Σ,Σnoise)√

N
+(‖ΨJ∗‖2+‖Σnoise‖2)

1/2 ÃN,s∗ .
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3.4 Comparison with the Standard Lasso

In this work, we chose a Group Lasso estimation procedure rather than a standard Lasso. As
a matter of fact, for covariance estimation in our setting, the group structure enables to impose a
constraint on the number of non zero columns of the matrixΨ and not on the single entries of the
matrix Ψ. This corresponds to the natural assumption of obtaining a sparse representation of the
processX(t) in the basis given by the functionsgm’s and replacing its dimension by its sparsity.
Alternatively, the standard Lasso in our setting would be the estimator definedby

Ψ̂L = argmin
Ψ∈SM

{∥∥∥S̃−GΨG⊤
∥∥∥

2

F
+2λ

M

∑
k=1

M

∑
m=1

γmk|Ψmk|
}
,

whereλ ≥ 0 is a regularization parameters and theγmk’s are positive weights. This procedure leads
to the following Lasso estimator of the covariance matrixΣ

Σ̂L =GΨ̂LG
⊤ ∈ R

n×n.

In the orthogonal case (that isM = n andG⊤G = In), this gives rise to the estimator̂ΨL obtained
by soft thresholding individually each entryYmk of the matrixY =G⊤S̃G with the thresholdsλγmk.
Proposition 13 (see below) allows a simple comparison of the statistical performances of the group
Lasso estimator̂Σλ with those of the standard Lasso estimatorΣ̂L in terms of upper bounds for the
Frobenius norm. To simplify the discussion, we only consider the orthogonal case and the simple
model

X̃(t j) = X0(t j)+E (t j) , j = 1, . . . ,n, (25)

where the processX0 is defined in (15). The statement of the result for the group Lasso is an
immediate consequence of Theorem 8, while the proof to obtain the upper bound for the standard
Lasso is an immediate adaptation of the arguments in the proof of Theorem 8.

Proposition 13 Assume that X satisfies model(25)and that the covariance matrixΣnoise=E(W1)
of the noise is positive-definite. Consider the group Lasso estimatorΣ̂λ and the standard Lasso
estimatorΣ̂L with the choices

γk = 2, γmk= 2, λ = ‖Σnoise‖2

(
2+

√
2δ logM

N

)2

for some constantδ > 1.

Then, there exist two positive constants C1,C2 not depending on n,N,s∗ such that with probability
at least1−M1−δ one has that

1
n

∥∥∥Σ̂λ −Σ
∥∥∥

2

F
≤ C1

n
‖S−Σ‖2

F +C2‖Σnoise‖2
2

(
2+

√
2δ logn

N

)4
s∗
n
,

and

1
n

∥∥∥Σ̂L −Σ
∥∥∥

2

F
≤ C1

n
‖S−Σ‖2

F +C2‖Σnoise‖2
2

(
2+

√
2δ logn

N

)4
s2
∗
n
.

3202



GROUPLASSOESTIMATION OF HIGH-DIMENSIONAL COVARIANCE MATRICES

Proposition 13 illustrates the advantages of the Group Lasso over the standard Lasso. Indeed, the
second term in the upper bound for the group Lasso is much smaller (of the order s∗

n ) than the

second term in the upper bound for the standard Lasso (of the orders2
∗
n ). This comes from the fact

that the sparsity prior of the Group Lasso is on the number of vanishing columns of the matrixΨ,
while the sparsity prior of the standard Lasso only controls the number of non-zero entries ofΨ.
However, to really demonstrate the benefits of our method when compared to the performances of
the standard Lasso, it is required to also derive lower bounds. This issue is a difficult task which has
been considered in few papers and that is beyond the scope of this paper. For recent work in this
direction, we refer to Huang and Zhang (2010) for regression models or Lounici et al. (2011) and
Lounici et al. (2009) for linear regression and multi-task learning.

However, the analysis in Huang and Zhang (2010); Lounici et al. (2011) of Group Lasso regular-
ization is carried out the setting of multiple regression models where the parameters to estimate are
vectors and with error terms that are centered. Therefore, the results inHuang and Zhang (2010);
Lounici et al. (2011) cannot be applied to the matrix regression model (4)since, in our setting, the
parameter to estimate is the matrixΣ and the error termsUi +Wi in (4) are not centered.

4. Numerical Experiments and an Application to Sparse PCA

In this section we present some simulated examples to illustrate the practical behaviour of the
covariance matrix estimator by group Lasso regularization proposed in this paper. In particular,
we show its performances with an application to sparse Principal ComponentsAnalysis (PCA).
In the numerical experiments, we use the explicit estimator described in Proposition 1 in the case
M = n and an orthogonal design matrixG, and also the estimator proposed in the more general
situation whenn < M. The programs for our simulations were implemented using the MATLAB
programming environment.

4.1 Description of the Estimating Procedure and the Data

We consider a noisy stochastic processesX̃ on T = [0,1] with values inR observed at fixed
location pointst1, ..., tn in [0,1], generated according to

X̃(t j) = X0(t j)+σε j , j = 1, . . . ,n, (26)

whereσ > 0 is the level of noise,ε1, . . . ,εn are i.i.d. standard Gaussian variables, andX0 is a random
process independent of theε j ’s. For the processX0 we consider two simple models. The first one is
given by

X0(t) = a f(t), (27)

wherea is a Gaussian random coefficient such thatEa = 0, Ea2 = γ2, and f : [0,1] → R is an
unknown function. The second model forX0 is

X0(t) = a1 f1(t)+a2 f2(t), (28)

wherea1 anda2 are independent Gaussian variables such thatEa1 = Ea2 = 0,Ea2
1 = γ2

1, Ea2
2 = γ2

2
(with γ1 > γ2), and f1, f2 : [0,1] → R are unknown functions. The simulated data consists in a
sample ofN independent observations of the processX̃ at the pointst1, ..., tn, which are generated
according to (26). Therefore, throughout the numerical experiments,one has that

Σnoise= σ2In.
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In model (27), the covariance matrixΣ of the processX0 at the locations points is given by
Σ= γ2FF⊤, where by definitionF = ( f (t1) , ..., f (t1))

⊤ ∈ Rn. Note that the largest eigenvalue of
Σ is γ2‖F ‖2

ℓ2
with corresponding eigenvectorF . We suppose that the signalf has some sparse rep-

resentation in a large dictionary of basis functions of sizeM, given by{gm, m= 1, . . . ,M}, meaning
that f (t) = ∑M

m=1 βmgm(t) , with J∗ = {m,βm 6= 0} of small cardinalitys∗. Then, the processX0 can
be written asX0(t) = ∑M

m=1aβmgm(t) , and thusΣ = γ2GΨJ∗G
⊤, whereΨJ∗ is anM×M matrix

with entries equal toβmβm′ for 1≤ m,m′ ≤ M.
Similarly, in model (28), the covariance matrixΣ of the processX0 at the locations points is

given byΣ= γ2
1F1F

⊤
1 + γ2

2F2F
⊤
2 , where by definition

F1 = ( f1(t1) , ..., f (t1))
⊤ ∈ R

n andF2 = ( f2(t1) , ..., f (t1))
⊤ ∈ R

n.

In the following simulations, the functionsf1 and f2 are chosen such thatF1 and F2 are or-
thogonal vectors inRn with ‖F1‖ℓ2 = 1 and‖F2‖ℓ2 = 1. Under such an assumption and since
γ1 > γ2, the largest eigenvalue ofΣ is γ2

1 with corresponding eigenvectorF1, and the second
largest eigenvalue ofΣ is γ2

2 with corresponding eigenvectorF2. We suppose that the signalsf1
and f2 have some sparse representations in a large dictionary of basis functionsof sizeM, given
by f1(t) = ∑M

m=1 β1
mgm(t) , and f2(t) = ∑M

m=1 β2
mgm(t). Then, the processX0 can be written as

X0(t) = ∑M
m=1(a1β1

m+a2β2
m)gm(t) and thusΣ = G(γ2

1Ψ
1+ γ2

2Ψ
2)G⊤, whereΨ1,Ψ2 areM ×M

matrix with entries equal toβ1
m(β1

m)
′ andβ2

m(β2
m)

′ for 1≤ m,m′ ≤ M respectively.
In models (27) and (28), we aim at estimating eitherF or F1,F2 by the eigenvectors corre-

sponding to the largest eigenvalues of the matrixΣ̂Ĵ defined in (23), in a high-dimensional setting
with n>N and by using different type of dictionaries. The idea behind this is thatΣ̂Ĵ is a consistent
estimator ofΣJ∗ (see its definition in 24) in operator norm. Although the matricesΣJ∗ andΣ may
have different eigenvectors (depending on the design points and chosen dictionary), the examples
below show the eigenvectors of̂ΣĴ can be used as estimators of the eigenvectors ofΣ.

The estimator̂ΣĴ of the covariance matrixΣ is computed as follows. Once the dictionary has
been chosen, we compute the covariance group Lasso (CGL) estimatorΣ̂λ̂ =GΨ̂λ̂G

⊤, whereΨ̂λ̂
is defined in (7). We use a completely data-driven choice for the regularizarion parameterλ, given

by λ̂ = ‖Σ̂noise‖2

(
1+
√ n

N +
√

2δ logM
N

)2

, where‖Σ̂noise‖2 = σ̂2 is the median absolute deviation

(MAD) estimator ofσ2 used in standard wavelet denoising (see for example Antoniadis et al., 2001)
andδ = 1.1. Hence, the method to computêΣλ̂ is fully data-driven. Furthermore, we will show in

the examples below that replacingλ by λ̂ into the penalized criterion yields a very good practical
performance of the covariance estimation procedure.

As a final step, one needs to compute the estimatorΣ̂Ĵ of Σ, as in (23). For this, we need to
have an idea of the true sparsitys∗, sinceĴ defined in (20) depends ons∗ and also on unknown
upper bounds on the level of noise in the matrix regression model (8) . A similar problem arises
in the selection of a sparse set of active variables when using regularization by a Lasso penalty in
the standard linear model. As an example, recall that in Lounici (2008), a second thresholding step
is aso used to estimate the true sparsity pattern. However, the suggested thresholding procedure in
Lounici (2008) also depends on a priori unknown quantities (such as the amplitude of the coeffi-
cients to estimate). To overcome this drawback in our case, we can define thefinal covariance group
Lasso (FCGL) estimator as the matrix

Σ̂Ĵ =GĴΨ̂ĴG
⊤
Ĵ , (29)
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with Ĵ = Ĵε =

{
k :
∥∥∥Ψ̂k

∥∥∥
ℓ2

> ε
}

, whereε is a positive constant. To select an appropriate value of

ε, one can plot the cardinality of̂Jε as a function ofε, and then use an L-curve criterion to only
keep inĴ the indices of the columns of̂Ψλ̂ with a significant value inℓ2-norm. This choice for̂J is
sufficient for numerical purposes.

In the simulations, to measure the accuracy of the estimation procedure, we also use the empiri-
cal average of the Frobenius and operator norm of the estimatorsΣ̂λ̂ andΣ̂Ĵ with respect to the true

covariance matrixΣ defined byEAFN= 1
P

P
∑

p=1

∥∥∥Σ̂p

λ̂
−Σ

∥∥∥
F

andEAON= 1
P

P
∑

p=1

∥∥∥Σ̂p
Ĵ
−Σ

∥∥∥
2

respec-

tively, over a numberP of iterations, wherêΣp

λ̂
andΣ̂p

Ĵ
are the CGL and FCGL estimators ofΣ,

respectively, obtained at thep-th iteration. We also compute the empirical average of the operator

norm of the estimator̂ΣĴ with respect to the matrixΣJ∗ , defined byEAON∗ = 1
P

P
∑

p=1

∥∥∥Σ̂p
Ĵ
−ΣJ∗

∥∥∥
2
.

4.2 Model (27) - Case of an Orthonormal Design (Withn= M)

First, the size of the dictionaryM as well as the basis functions{gm,m= 1, ...,M} have to be
specified. In model (27), we will use for the test functionf the signals HeaviSine and Blocks (see
for example Antoniadis et al., 2001 for a definition), and the Symmlet 8 and Haar wavelet basis for
the HeaviSine and Blocks signals respectively, which are implemented in the Matlab’s open-source
library WaveLab (see for example Antoniadis et al., 2001 for further references on wavelet methods
in nonparametric statistics). Then, we tookn = M and the location pointst1, ..., tn are given by
the equidistant grid of pointst j =

j
M , j = 1, . . . ,M such that the design matrixG (using either the

Symmlet 8 or the Haar basis) is orthogonal.

In Figure 1 we display the results obtained for a particular simulated sample of size N = 25
according to (26), withn = M = 256, σ = 0.015, γ = 0.5 and with f being either the function
HeaviSine or the function Blocks. It can be observed in Figures 1(a) and 1(b) that, as expected
in this high dimensional setting (N < n), the empirical eigenvector of̃S associated to its largest
empirical eigenvalue does not lead to a consistent estimator ofF .

The CGL estimator̂Σλ̂ is computed directly from Proposition 1. In Figures 1(c) and 1(d), we

display the eigenvector associated to the largest eigenvalue ofΣ̂λ̂ as an estimator ofF . Note that
this estimator behaves poorly. The estimation considerably improves by taking the FCGL estimator
Σ̂Ĵ defined in (29). Figures 1(e) and 1(f) illustrate the very good performance of the eigenvector
associated to the largest eigenvalue of the matrixΣ̂Ĵ as an estimator ofF .

It is clear that the estimatorŝΣλ̂ and Σ̂Ĵ are random matrices that depend on the observed
sample. Tables 1 and 2 show the values ofEAFN, EAONandEAON∗ corresponding toP = 100
simulated samples of different sizesN and different values of the level of noiseσ. It can be observed
that for both signals the empirical averagesEAFN, EAONandEAON∗ behaves similarly, being the
values ofEAONsmaller than its corresponding values ofEAFN as expected. Observing each table
separately we can remark that, forN fixed, when the level of noiseσ increases then the values of
EAFN, EAONandEAON∗ also increase. By simple inspection of the values ofEAFN, EAONand
EAON∗ in the same position at Tables 1 and 2 we can check that, forσ fixed, when the number
of replicatesN increases then the values ofEAFN, EAON andEAON∗ decrease in all cases. We
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Figure 1: Orthonormal case - Model (27). Signal HeaviSine - (a) Eigenvector associated to the
largest eigenvalue of̃S, (c) Eigenvector associated to the largest eigenvalue ofΣ̂λ̂, (e)

Eigenvector associated to the largest eigenvalue ofΣ̂Ĵ. Signal Blocks - (b) Eigenvec-

tor associated to the largest eigenvalue ofS̃, (d) Eigenvector associated to the largest
eigenvalue of̂Σλ̂, (f) Eigenvector associated to the largest eigenvalue ofΣ̂Ĵ.
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Signal σ 0.005 0.01 0.05 0.1 0.5 1
HeaviSine EAFN 0.0634 0.0634 0.2199 0.2500 0.2500 0.2500
HeaviSine EAON 0.0619 0.0569 0.1932 0.2500 0.2500 0.2500
HeaviSine EAON∗ 0.0619 0.0569 0.1943 0.2600 0.5000 1.2500

Blocks EAFN 0.0553 0.0681 0.2247 0.2500 0.2500 0.2500
Blocks EAON 0.0531 0.0541 0.2083 0.2500 0.2500 0.2500
Blocks EAON∗ 0.0531 0.0541 0.2107 0.2600 0.5000 1.2500

Table 1: Values ofEAFN, EAONandEAON∗ corresponding to signals HeaviSine and Blocks for
M = n= 256,N = 25.

Signal σ 0.005 0.01 0.05 0.1 0.5 1
HeaviSine EAFN 0.0501 0.0524 0.1849 0.2499 0.2500 0.2500
HeaviSine EAON 0.0496 0.0480 0.1354 0.2496 0.2500 0.2500
HeaviSine EAON∗ 0.0496 0.0480 0.1366 0.2596 0.5000 1.2500

Blocks EAFN 0.0485 0.0494 0.2014 0.2500 0.2500 0.2500
Blocks EAON 0.0483 0.0429 0.1871 0.2500 0.2500 0.2500
Blocks EAON∗ 0.0483 0.0429 0.1893 0.2600 0.5000 1.2500

Table 2: Values ofEAFN, EAONandEAON∗ corresponding to signals HeaviSine and Blocks for
M = n= 256,N = 40.

can also observe how the difference betweenEAON and EAON∗ is bigger as the level of noise
increases.

4.3 Model (28) - The CaseM = 2n by Mixing Two Orthonormal Basis

Consider now the setting of model (28) withγ1 = 0.5, γ2 = 0.2, σ = 0.045, N = 25 and an
equidistant grid of design pointst1, ..., tn given byt j =

j
n, j = 1, . . . ,n with n= 128. For the signals

f1 and f2 we took the test functions displayed in Figure 2(a) and 2(b). Obviously, the signal f1
has a sparse representation in a Haar basis while the signalf2 has a sparse representation in a
Fourier basis. Thus, this suggests to construct a dictionary by mixing two orthonormal basis. More
precisely, we construct an×n orthogonal matrixG1 using the Haar basis and an×n orthogonal
matrixG2 using a Fourier basis (cosine and sine at various frequencies) at the design points. Then,
we form then×M design matrixG= [G1 G2] with M = 2n. The CGL estimator̂Σλ̂ is computed
by the minimization procedure (7) using the Matlab packageminConfof Schmidt et al. (2008).

In Figures 2(c) and 2(d), we display the eigenvector associated to the largest eigenvalue of̂Σλ̂
as an estimator ofF1, and the eigenvector associated to the second largest eigenvalue ofΣ̂λ̂ as an
estimator ofF2. Note that these estimators behaves poorly. The estimation considerably improves
by taking the FCGL estimator̂ΣĴ defined in (29). Figures 2(e) and 2(f) illustrate the very good
performance of the eigenvectors associated to the largest eigenvalue and second largest eigenvalue
of the matrixΣ̂Ĵ as estimators ofF1 andF2.
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Finally, to illustrate the benefits of mixing two orthonormal basis, we also display inFigure 3
and Figure 4 the estimation ofF1 andF2 when computing the matrix̂ΣĴ by using either only the
Haar basis (that isG=G1 andM = n) or only the Fourier basis (that isG=G1 andM = n). The
results are clearly much worse and not satisfactory.

4.4 Model (27) - Case of Non-Equispaced Design Points such thatn< M

Let us now return to the setting of model (27). The test functionsf are either the signal Heavi-
Sine and or the signal Blocks. We also use the Symmlet 8 and Haar wavelet basis for the HeaviSine
and Blocks functions respectively. However, we now choose to take a setting where the number of
design pointsn is smaller than the sizeM of the dictionary. Takingn< M, the location points are
given by a subset{t1, ..., tn} ⊂ { k

M : k= 1, ...,M} of sizen, such that the design matrixG is ann×M
matrix (using either the Symmlet 8 and Haar basis). For a fixed value ofn, the subset{t1, ..., tn}
is chosen by taking the firstn points obtained from a random permutation of the elements of the
set{ 1

M , 2
M , ...,1}. In Figure 5 we present the results obtained for a particular simulated sampleof

sizeN = 25 according to (26), withn = 90, M = 128, σ = 0.02, γ = 0.5 and with f being either
the function HeaviSine or the function Blocks. It can be observed in Figures 5(a) and 5(c) that, as
expected in this high dimensional setting (N < n), the empirical eigenvector of̃S associated to its
largest empirical eigenvalue are noisy versions ofF . As explained previously, the CGL estimator
Σ̂λ̂ is computed by the minimization procedure (7) using the Matlab packageminConfof Schmidt
et al. (2008). In Figures 5(c) and 5(d) is shown the eigenvector associated to the largest eigenvalue
of Σ̂λ̂ as an estimator ofF . Note that this estimator is quite noisy. Again, the eigenvector associated

to the largest eigenvalue of the matrix̂ΣĴ defined in (29) is much a better estimator ofF . This is
illustrated in Figures 5(e) and 5(f). To compare the accuracy of the estimators for different simu-
lated samples, we compute the values ofEAFN, EAONandEAON∗ with fixed values ofσ = 0.05,
M = 128,N = 40,P= 50 for different values of the number of design pointsn. For all the values
of n considered, the design pointst1, ..., tn are selected as the firstn points obtained from the same
random permutation of the elements of the set{ 1

M , 2
M , ...,1}. The chosen subset{t1, ..., tn} is used

for all theP iterations needed in the computation of the empirical averages (fixed design over the
iterations). Figure 6 shows the values ofEAFN, EAONandEAON∗ obtained for each value ofn
for both signals HeaviSine and Blocks. It can be observed that the values of the empirical averages
EAONandEAON∗ are much smaller than its corresponding values ofEAFN as expected. We can
remark that, whenn increases, the values ofEAFN, EAONandEAON∗ first increase and then de-
crease, and the change of monotony occurs whenn>N. Note that the casen=M = 128 is included
in these results.
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Figure 2: CaseM = 2n (Haar + Fourier basis). (a) SignalF1, (c) SignalF1 and eigenvector associ-
ated to the largest eigenvalue ofΣ̂λ̂, (e) SignalF1 and eigenvector associated to the largest

eigenvalue of̂ΣĴ with G = [G1 G2]. (b) SignalF2, (d) SignalF2 and eigenvector asso-

ciated to the second largest eigenvalue ofΣ̂λ̂, (f) SignalF2 and eigenvector associated to

the second largest eigenvalue ofΣ̂Ĵ with G= [G1 G2].
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Figure 3: Orthonormal caseM = n (Haar). (a) SignalF1 and Eigenvector associated to the largest
eigenvalue of̂ΣĴ with G =G1, (b) SignalF2 and Eigenvector associated to the second

largest eigenvalue of̂ΣĴ with G=G1.
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Figure 4: Orthonormal caseM = n (Fourier). (a) SignalF1 and Eigenvector associated to the largest
eigenvalue of̂ΣĴ with G =G2, (b) SignalF2 and Eigenvector associated to the second

largest eigenvalue of̂ΣĴ with G=G2.
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Appendix A.

This appendix contains the proof of the main results of the paper.

A.1 Notations

First let us introduce some notations and properties that will be used throughout this Ap-
pendix. The vectorization of ap× q matrix A = (ai j )1≤i≤p,1≤ j≤q is the pq× 1 column vector
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Figure 5: Non equi-spaced points withn < M. Signal HeaviSine - (a) Eigenvector associated to
the largest eigenvalue of̃S, (c) Eigenvector associated to the largest eigenvalue ofΣ̂λ̂,

(e) Eigenvector associated to the largest eigenvalue ofΣ̂Ĵ. Signal Blocks - (b) Eigen-

vector associated to the largest eigenvalue ofS̃, (d) Eigenvector associated to the largest
eigenvalue of̂Σλ̂, (f) Eigenvector associated to the largest eigenvalue ofΣ̂Ĵ.
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Figure 6: (a) Values ofEAFN, EAON andEAON∗ for Signal HeaviSine as a function ofn, (b)
Values ofEAFN, EAONandEAON∗ for Signal Blocks as a function ofn.

denoted byvec(A), obtain by stacking the columns of the matrixA on top of one another. That
is vec(A) = [a11, ...,ap1,a12, ...,ap2, ...,a1q, ...,apq]

⊤. If A = (ai j )1≤i≤k,1≤ j≤n is ak×n matrix and
B = (bi j )1≤i≤p,1≤ j≤q is a p×q matrix, then the Kronecker product of the two matrices, denoted by
A⊗B, is thekp×nqblock matrix

A⊗B =




a11B . . . a1nB

. . .

. . .

. . .
ak1B . . . aknB



.

In what follows, we repeatedly use the fact that the Frobenius norm is invariant by thevecoperation
meaning that

‖A‖2
F = ‖vec(A)‖2

ℓ2
, (30)

and the properties that

vec(ABC) =
(
C⊤

⊗A
)

vec(B) , (31)

and
(A⊗B)(C⊗D) =AC⊗BD, (32)

provided the above matrix products are compatible.

A.2 Proof of Proposition 1

Lemma 14 Let Ψ̂= Ψ̂λ denotes the solution of(7). Then, for k= 1, . . . ,M

[
(G⊗G)⊤

(
vec(S̃)− (G⊗G)vec(Ψ̂)

)]k
= λγk

Ψ̂k

‖Ψ̂k‖ℓ2

if Ψk 6= 0

∥∥∥∥
[
(G⊗G)⊤

(
vec(S̃)− (G⊗G)vec(Ψ̂)

)]k
∥∥∥∥
ℓ2

≤ λγk if Ψ̂k = 0
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where Ψ̂k denotes the k-th column of the matrix̂Ψ and the notation[β]k denotes the vector
(βk,m)m=1,...,M in RM for a vectorβ = (βk,m)k,m=1,...,M ∈ RM2

.

Proof of Lemma 14ForΨ ∈ RM×M define

L(Ψ) =
∥∥∥S̃−GΨG⊤

∥∥∥
2

F
=
∥∥∥vec(S̃)− (G⊗G)vec(Ψ)

∥∥∥
2

ℓ2

,

and remark that̂Ψ is the solution of the convex optimization problem

Ψ̂= argmin
Ψ∈SM

{
L(Ψ)+2λ

M

∑
k=1

γk

√
M

∑
m=1

Ψ2
mk

}
.

It follows from standard arguments in convex analysis (see for example Boyd and Vandenberghe,
2004), thatΨ̂ is a solution of the above minimization problem if and only if

−∇L(Ψ̂) ∈ 2λ∂

(
M

∑
k=1

γk

√
M

∑
m=1

Ψ̂2
mk

)

where∇L(Ψ̂) denotes the gradient ofL at Ψ̂ and∂ denotes the subdifferential given by

∂

(
M

∑
k=1

γk

√
M

∑
m=1

Ψ2
mk

)
=

{
Θ ∈ R

M×M : Θk = γk
Ψk

‖Ψk‖ℓ2

if Ψk 6= 0,‖Θk‖ℓ2
≤ γk if Ψk = 0

}

whereΘk denotes thek-th column ofΘ ∈ RM×M which completes the proof. �

Now, letΨ ∈ SM with M = n and suppose thatG⊤G = In. LetY = (Ymk)1≤m,k≤M =G⊤S̃G
and remark thatvec(Y ) = (G⊗G)⊤ vec(S̃). Then, by using Lemma 14 and the fact thatG⊤G=
In implies that(G⊗G)⊤ (G⊗G) = In2, it follows that Ψ̂ = Ψ̂λ satisfies fork = 1, . . . ,M the
following equations

Ψ̂k


1+

λγk√
∑M

m=1 Ψ̂2
mk


= Yk for all Ψ̂k 6= 0,

and √
M

∑
m=1

Y 2
mk≤ λγk for all Ψ̂k = 0.

whereΨ̂k = (Ψ̂mk)1≤m≤M ∈ RM andYk = (Ymk)1≤m≤M ∈ RM, which implies that the solution is
given by

Ψ̂mk=





0 if
√

∑M
m=1Y

2
mk≤ λγk

Ymk

(
1− λγk√

∑M
j=1Y

2
jk

)
if

√
∑M

m=1Y
2

mk> λγk

which completes the proof of Proposition 1. �
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A.3 Proof of Proposition 5

First suppose thatX is Gaussian. Then, remark that forZ = ‖X‖ℓ2, one has that‖Z‖ψ2 < +∞
which implies that‖Z‖ψ2 = ‖Z2‖1/2

ψ1 . SinceZ2 = ∑n
i=1 |X(ti)|2 it follows that

‖Z2‖ψ1 ≤
n

∑
i=1

‖Z2
i ‖ψ1 =

n

∑
i=1

‖Zi‖2
ψ2

=
n

∑
i=1

Σii‖Σ−1/2
ii Zi‖2

ψ2
,

whereZi =X(ti), i = 1, . . . ,n andΣii denotes theith diagonal element ofΣ. Then, the result follows
by noticing that‖Y‖ψ2 ≤

√
8/3 if Y ∼ N(0,1). The proof for the case whereX is such that‖Z‖ψ2 <

+∞ and there exists a constantC1 such that‖Σ−1/2
ii Zi‖ψ2 ≤C1 for all i = 1, . . . ,n follows from the

same arguments.
Now, consider the case whereX is a bounded process. Since there exists a constantR> 0 such

that for all t ∈ T, |X(t)| ≤ R, it follows that forZ = ‖X‖ℓ2 thenZ ≤ √
nR which implies that for

anyα ≥ 1, ‖Z‖ψα ≤√
nR(log2)−1/α, (by definition of the norm‖Z‖ψα) which completes the proof

of Proposition 5. �

A.4 Proof of Proposition 7

Under the assumption thatX = X0, it follows thatΣ = GΨ∗G⊤ with Ψ∗ = E
(
aa⊤), where

a is the random vector ofRM with am = am for m∈ J∗ andam = 0 for m /∈ J∗. Then, define
the random vectoraJ∗ ∈ RJ∗ whose coordinates are the random coefficientsam for m∈ J∗. Let
ΨJ∗ =E

(
aJ∗a

⊤
J∗
)
. Note thatΣ=GJ∗ΨJ∗G

⊤
J∗ andS =GJ∗Ψ̂J∗G

⊤
J∗ , with Ψ̂J∗ =

1
N ∑N

i=1a
i
J∗(a

i
J∗)

⊤,
whereai

J∗ ∈ RJ∗ denotes the random vector whose coordinates are the random coefficientsai
m for

m∈ J∗ such thatXi(t) = ∑m∈J∗ ai
mgm(t), t ∈ T.

Therefore,Ψ̂J∗ is a sample covariance matrix of sizes∗× s∗ and we can control its deviation
in operator norm fromΨ̂J∗ by using Proposition 6. For this we simply have to verify conditions
similar to (A1) and(A2) in Assumption 2 for the random vectoraJ∗ = (G⊤

J∗GJ∗)
−1G⊤

J∗X ∈ Rs∗ .

First, let β ∈ Rs∗ with ‖β‖ℓ2 = 1. Then, remark thata⊤
J∗β = X⊤β̃ with β̃ = GJ∗

(
G⊤

J∗GJ∗
)−1 β.

Since‖β̃‖ℓ2 ≤
(
ρmin

(
G⊤

J∗GJ∗
))−1/2

and using thatX satisfies Assumption 2 it follows that

(
E|a⊤

J∗β|4
)1/4

≤ ρ(Σ)ρ−1/2
min

(
G⊤

J∗GJ∗

)
. (33)

Now let Z̃ = ‖aJ∗‖ℓ2 ≤ ρ−1/2
min

(
G⊤

J∗GJ∗
)
‖X‖ℓ2. Given our assumptions onX it follows that there

existsα ≥ 1 such that

‖Z̃‖ψα ≤ ρ−1/2
min

(
G⊤

J∗GJ∗

)
‖Z‖ψα <+∞, (34)

whereZ = ‖X‖ℓ2. Hence, using the relations (33) and (34), and Proposition 6 (withaJ∗ instead of
X), it follows that there exists a universal constantδ∗ > 0 such that for allx> 0,

P

(∥∥∥Ψ̂J∗ −ΨJ∗

∥∥∥
2
> τ̃d∗,N,s∗,1x

)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
,

where τ̃d∗,N,s∗,1 = max(Ã2
d∗,N,s∗,1, B̃d∗,N,s∗,1), with Ãd∗,N,s∗,1 = ‖Z̃‖ψα

√
logd∗(logN)1/α

√
N

, B̃d∗,N,s∗,1 =

ρ2(Σ)ρ−1
min(G⊤

J∗GJ∗)√
N

+‖ΨJ∗‖1/2
2 Ãd∗,N,s∗,1 andd∗ = min(N,s∗). Then, using the inequality‖S−Σ‖2 ≤
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ρmax
(
G⊤

J∗GJ∗
)
‖Ψ̂J∗ −ΨJ∗‖2, it follows that

P

(
‖S−Σ‖2 ≥ ρmax

(
G⊤

J∗GJ∗

)
τ̃d∗,N,s∗,1x

)

≤ P

(
ρmax

(
G⊤

J∗GJ∗

)∥∥∥Ψ̂J∗ −ΨJ∗

∥∥∥
2
> ρmax

(
G⊤

J∗GJ∗

)
τ̃d∗,N,s∗,1x

)

= P

(∥∥∥Ψ̂J∗ −ΨJ∗

∥∥∥
2
> τ̃d∗,N,s∗,1x

)

6 exp
(
−(δ−1

∗ x)
α

2+α

)
.

Hence, the result follows with

τ̃N,s∗ = ρmax

(
G⊤

J∗GJ∗

)
τ̃d∗,N,s∗,1

= max(ρmax

(
G⊤

J∗GJ∗

)
Ã2

d∗,N,s∗,1,ρmax

(
G⊤

J∗GJ∗

)
B̃d∗,N,s∗,1)

= max(Ã2
d∗,N,s∗ , B̃d∗,N,s∗),

whereÃd∗,N,s∗ = ρ1/2
max
(
G⊤

J∗GJ∗
)
‖Z̃‖ψα

√
logd∗(logN)1/α

√
N

and, using the inequality

‖ΨJ∗‖2 =

∥∥∥∥
(
G⊤

J∗GJ∗

)−1
G⊤

J∗ΣGJ∗

(
G⊤

J∗GJ∗

)−1
∥∥∥∥

2
≤ ρ−1

min

(
G⊤

J∗GJ∗

)
‖Σ‖2 ,

B̃d∗,N,s∗ =

(
ρmax(G⊤

J∗GJ∗)
ρmin(G⊤

J∗GJ∗)

)
ρ2(Σ)√

N
+

(
ρmax(G⊤

J∗GJ∗)
ρmin(G⊤

J∗GJ∗)

)1/2

‖Σ‖1/2
2 Ãd∗,N,s∗ .

A.5 Proof of Theorem 8

Let us first prove the following lemmas.

Lemma 15 LetE1, ...,EN be independent copies of a second order Gaussian processE with zero

mean. LetW = 1
N

N
∑

i=1
Wi with

Wi = EiE
⊤
i ∈ R

n×n andEi = (Ei (t1) , ...,Ei (tn))
⊤ , i = 1, . . . ,N.

Suppose thatΣnoise= E(W1) is positive-definite. For1≤ k ≤ M, let ηk be the k-th column of the
matrixG⊤WG. Then, for any x> 0,

P


‖ηk‖ℓ2 ≥ ‖Gk‖ℓ2

√
ρmax(GG⊤)‖Σnoise‖2

(
1+

√
n
N
+

√
2x
N

)2

≤ exp(−x).

Proof of Lemma 15: by definition one has that‖ηk‖2
ℓ2
=G⊤

k WGG⊤WGk whereGk denotes the
k-th column ofG. Hence

‖ηk‖2
ℓ2
≤ ‖Gk‖2

ℓ2
ρmax(GG⊤)‖W ‖2

2. (35)
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Using the assumption thatΣnoise is positive-definite define the random vectorsZi = Σ
−1/2
noiseEi , i =

1, . . . ,n. Note that theZi ’s are i.i.d. Gaussian vectors inRn with zero mean and covariance matrix
the identity. Then, define theN×n matrix

Γ =
1√
N




Z⊤
1
...

Z⊤
N


 .

SinceΓ is a matrix with i.i.d. entries following a Gaussian distribution with zero mean and variance
1/N, it follows from the arguments in the proof of Theorem II.13 in Davidson and Szarek (2001)
that for anyx> 0

P


‖Γ⊤Γ‖2 ≥

(
1+

√
n
N
+

√
2x
N

)2

≤ exp(−x). (36)

Now, sinceW = Σ
1/2
noiseΓ⊤ΓΣ1/2

noise it follows that ‖W ‖2 ≤ ‖Σnoise‖2‖Γ⊤Γ‖2. Hence, inequality
(36) implies that for anyx> 0

P


‖W ‖2 ≥ ‖Σnoise‖2

(
1+

√
n
N
+

√
2x
N

)2

≤ exp(−x),

and the result finally follows from inequality (35). �

Lemma 16 Let 1 ≤ s≤ min(n,M) and suppose that Assumption 1 holds for some c0 > 0. Let
J ⊂ {1, . . . ,M} be a subset of indices of cardinality|J| ≤ s. Let∆ ∈ SM and suppose that

∑
k∈Jc

‖∆k‖ℓ2 ≤ c0 ∑
k∈J

‖∆k‖ℓ2,

where∆k denotes the k-th column of∆. Let

κs,c0 =
(

ρmin(s)
2−c0θ(G)ρmax(G

⊤G)s
)1/2

.

Then, ∥∥∥G∆G⊤
∥∥∥

2

F
≥ κ2

s,c0
‖∆J‖2

F ,

where∆J denotes the M×M matrix obtained by setting to zero the rows and columns of∆ whose
indices are not in J.

Proof of Lemma 16: first let us introduce some notations. For∆ ∈ SM andJ ⊂ {1, . . . ,M}, then
∆Jc denotes theM×M matrix obtained by setting to zero the rows and columns of∆ whose indices
are not in the complementaryJc of J. Now, remark that

∥∥∥G∆G⊤
∥∥∥

2

F
=

∥∥∥G∆JG
⊤
∥∥∥

2

F
+
∥∥∥G∆JcG⊤

∥∥∥
2

F
+2tr

(
G∆JG

⊤G∆JcG⊤
)

≥
∥∥∥G∆JG

⊤
∥∥∥

2

F
+2tr

(
G∆JG

⊤G∆JcG⊤
)
. (37)
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LetA=G∆JG
⊤ andB =G∆JcG⊤. Using thattr

(
A⊤B

)
= vec(A)⊤vec(B) and the properties

(30) and (32) it follows that

tr
(
G∆JG

⊤G∆JcG⊤
)
= vec(∆J)

⊤
(
G⊤G⊗G⊤G

)
vec(∆Jc). (38)

Let C =G⊤G⊗G⊤G and note thatC is aM2×M2 matrix whose elements can be written in the
form of M×M block matrices given by

Ci j = (G⊤G)i jG
⊤G, for 1≤ i, j ≤ M.

Now, write theM2×1 vectorsvec(∆J) andvec(∆Jc) in the form of block vectors asvec(∆J) =
[(∆J)

⊤
i ]

⊤
1≤i≤M andvec(∆Jc) = [(∆Jc)⊤j ]

⊤
1≤ j≤M, where(∆J)i ∈ RM (∆Jc) j ∈ RM for 1≤ i, j ≤ M.

Using (38) it follows that

tr
(
G∆JG

⊤G∆JcG⊤
)

= ∑
1≤i, j≤M

(∆J)
⊤
i Ci j (∆Jc) j

= ∑
i∈J

∑
j∈Jc

(G⊤G)i j (∆J)
⊤
i G

⊤G(∆Jc) j .

Now, using that
∣∣(G⊤G)i j

∣∣≤ θ(G) for i 6= j and that
∣∣∣(∆J)

⊤
i G

⊤G(∆Jc) j

∣∣∣≤ ‖G(∆J)i‖ℓ2‖G(∆Jc) j‖ℓ2 ≤ ρmax(G
⊤G)‖(∆J)i‖ℓ2‖(∆Jc) j‖ℓ2,

it follows that

tr
(
G∆JG

⊤G∆JcG⊤
)
≥−θ(G)ρmax(G

⊤G)

(

∑
i∈J

‖(∆J)i‖ℓ2

)(

∑
j∈Jc

‖(∆Jc) j‖ℓ2

)
.

Now, using the assumption that∑k∈Jc ‖∆k‖ℓ2 ≤ c0 ∑k∈J ‖∆k‖ℓ2 it follows that

tr
(
G∆JG

⊤G∆JcG⊤
)

≥ −c0θ(G)ρmax(G
⊤G)

(

∑
i∈J

‖(∆J)i‖ℓ2

)2

≥ −c0θ(G)ρmax(G
⊤G)s‖∆J‖2

F , (39)

where, for the inequality, we have used the properties that for the positive realsci = ‖(∆J)i‖ℓ2, i ∈ J
then(∑i∈J ci)

2 ≤ |J|∑i∈J c2
i ≤ s∑i∈J c2

i and that∑i∈J‖(∆J)i‖2
ℓ2
= ‖∆J‖2

F .

Using the properties (30) and (31) remark that
∥∥∥G∆JG

⊤
∥∥∥

2

F
= ‖GJ ⊗GJ vec(∆̃J)‖2

ℓ2

≥ ρmin (GJ ⊗GJ)‖vec(∆̃J)‖2
ℓ2

≥ ρmin(s)
2‖∆J‖2

F , (40)

wherevec(∆̃J) = [(∆J)
⊤
i ]

⊤
i∈J. Therefore, combining inequalities (37), (39) and (40) it follows that

∥∥∥G∆G⊤
∥∥∥

2

F
≥
(

ρmin(s)
2−c0θ(G)ρmax(G

⊤G)s
)
‖∆J‖2

F ,
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which completes the proof of Lemma 16. �

Let us now proceed to the proof of Theorem 8. Part of the proof is inspired by results in Bickel
et al. (2009). Lets≤ min(n,M) andΨ ∈ SM with M (Ψ) ≤ s. Let J = {k ;Ψk 6= 0}. To simplify
the notations, writêΨ= Ψ̂λ. By definition ofΣ̂λ =GΨ̂G⊤ one has that

∥∥∥S̃−GΨ̂G⊤
∥∥∥

2

F
+2λ

M

∑
k=1

γk‖Ψ̂k‖ℓ2 ≤
∥∥∥S̃−GΨG⊤

∥∥∥
2

F
+2λ

M

∑
k=1

γk‖Ψk‖ℓ2. (41)

Using the scalar product associated to the Frobenius norm〈A,B〉F = tr
(
A⊤B

)
then

∥∥∥S̃−GΨ̂G⊤
∥∥∥

2

F
=

∥∥∥S+W −GΨ̂G⊤
∥∥∥

2

F

= ‖W ‖2
F +

∥∥∥S−GΨ̂G⊤
∥∥∥

2

F
+2
〈
W ,S−GΨ̂G⊤

〉
F
. (42)

Putting (42) in (41) we get

∥∥∥S−GΨ̂G⊤
∥∥∥

2

F
+2λ

M

∑
k=1

γk‖Ψ̂k‖ℓ2 ≤
∥∥∥S−GΨG⊤

∥∥∥
2

F
+2
〈
W ,G

(
Ψ̂−Ψ

)
G⊤
〉

F

+2λ
M

∑
k=1

γk‖Ψk‖ℓ2.

For k = 1, . . . ,M define theM ×M matrix Ak with all columns equal to zero except thek-th
which is equal tôΨk−Ψk. Then, remark that

〈
W ,G

(
Ψ̂−Ψ

)
G⊤
〉

F
=

M

∑
k=1

〈
W ,GAkG

⊤
〉

F
=

M

∑
k=1

〈
G⊤WG,Ak

〉
F
=

M

∑
k=1

η⊤
k (Ψ̂k−Ψk)

≤
M

∑
k=1

‖ηk‖ℓ2‖Ψ̂k−Ψk‖ℓ2,

whereηk is thek-th column of the matrixG⊤WG. Define the event

A =
M⋂

k=1

{2‖ηk‖ℓ2 ≤ λγk} . (43)

Then, the choices

γk = 2‖Gk‖ℓ2

√
ρmax(GG⊤), λ = ‖Σnoise‖2

(
1+

√
n
N
+

√
2δ logM

N

)2

,

and Lemma 15 imply that the probability of the complementary eventAc satisfies

P(Ac)≤
M

∑
k=1

P(2‖ηk‖ℓ2 > λγk)≤ M1−δ.
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Then, on the eventA one has that

∥∥∥S−GΨ̂G⊤
∥∥∥

2

F
≤

∥∥∥S−GΨG⊤
∥∥∥

2

F
+λ

M

∑
k=1

γk‖Ψ̂k−Ψk‖ℓ2

+2λ
M

∑
k=1

γk

(
‖Ψk‖ℓ2 −‖Ψ̂k‖ℓ2

)
.

Adding the termλ∑M
k=1 γk‖Ψ̂k−Ψk‖ℓ2 to both sides of the above inequality yields on the eventA

∥∥∥S−GΨ̂G⊤
∥∥∥

2

F
+λ

M

∑
k=1

γk‖Ψ̂k−Ψk‖ℓ2 ≤
∥∥∥S−GΨG⊤

∥∥∥
2

F

+2λ
M

∑
k=1

γk

(
‖Ψ̂k−Ψk‖ℓ2 +‖Ψk‖ℓ2 −‖Ψ̂k‖ℓ2

)
.

Now, remark that for allk /∈ J, then‖Ψ̂k−Ψk‖ℓ2 +‖Ψk‖ℓ2 −‖Ψ̂k‖ℓ2 = 0, which implies that on the
eventA

∥∥∥S−GΨ̂G⊤
∥∥∥

2

F
+λ

M

∑
k=1

γk‖Ψ̂k−Ψk‖ℓ2 ≤
∥∥∥S−GΨG⊤

∥∥∥
2

F
(44)

+4λ ∑
k∈J

γk‖Ψ̂k−Ψk‖ℓ2

≤
∥∥∥S−GΨG⊤

∥∥∥
2

F
(45)

+4λ
√
M (Ψ)

√
∑
k∈J

γ2
k‖Ψ̂k−Ψk‖2

ℓ2
.

where for the last inequality we have used the property that for the positive realsck = γk‖Ψ̂k −
Ψk‖ℓ2, k∈ J then(∑k∈J ck)

2 ≤M (Ψ)∑k∈J c2
k.

Let ε > 0 and define the event

A1 =

{
4λ ∑

k∈J

γk‖Ψ̂k−Ψk‖ℓ2 > ε
∥∥∥S−GΨG⊤

∥∥∥
2

F

}
. (46)

Note that on the eventA ∩Ac
1 then the result of the theorem trivially follows from inequality (44).

Now consider the eventA ∩A1 (all the following inequalities hold on this event). Using (44) one
has that

λ
M

∑
k=1

γk‖Ψ̂k−Ψk‖ℓ2 ≤ 4(1+1/ε)λ ∑
k∈J

γk‖Ψ̂k−Ψk‖ℓ2. (47)

Therefore, onA ∩A1

∑
k/∈J

γk‖Ψ̂k−Ψk‖ℓ2 ≤ (3+4/ε)∑
k∈J

γk‖Ψ̂k−Ψk‖ℓ2.

Let ∆ be theM ×M symmetric matrix with columns equal to∆k = γk

(
Ψ̂k−Ψk

)
,k = 1, . . . ,M,

andc0 = 3+4/ε. Then, the above inequality means that∑k∈Jc ‖∆k‖ℓ2 ≤ c0 ∑k∈J ‖∆k‖ℓ2 and thus
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Assumption 1 and Lemma 16 imply that

κ2
s,c0 ∑

k∈J

γ2
k‖Ψ̂k−Ψk‖2

ℓ2
≤
∥∥∥G∆G⊤

∥∥∥
2

F
≤ 4G2

maxρmax(G
⊤G)

∥∥∥G(Ψ̂−Ψ)G⊤
∥∥∥

2

F
. (48)

Let γ2
max= 4G2

maxρmax(G
⊤G). Combining the above inequality with (45) yields

∥∥∥S−GΨ̂G⊤
∥∥∥

2

F
≤

∥∥∥S−GΨG⊤
∥∥∥

2

F
+4λκ−1

s,c0
γmax

√
M (Ψ)

∥∥∥G(Ψ̂−Ψ)G⊤
∥∥∥

F

≤
∥∥∥S−GΨG⊤

∥∥∥
2

F
+4λκ−1

s,c0
γmax

√
M (Ψ)

(∥∥∥GΨ̂G⊤−S
∥∥∥

F

+
∥∥∥GΨG⊤−S

∥∥∥
F

)

Now, arguing as in Bickel et al. (2009), a decoupling argument using theinequality 2xy≤ bx2+

b−1y2 with b> 1, x= 2λκ−1
s,c0

γmax

√
M (Ψ) andy being either

∥∥∥GΨ̂G⊤−S
∥∥∥

F
or
∥∥GΨG⊤−S

∥∥
F

yields the inequality

∥∥∥S−GΨ̂G⊤
∥∥∥

2

F
≤
(

b+1
b−1

)∥∥∥S−GΨG⊤
∥∥∥

2

F
+

8b2γ2
max

(b−1)κ2
s,c0

λ2M (Ψ).

Then, taking b = 1 + 2/ε and using the inequalities
∥∥∥Σ−GΨ̂G⊤

∥∥∥
2

F
≤

2‖S−Σ‖2
F + 2

∥∥∥S−GΨ̂G⊤
∥∥∥

2

F
and

∥∥S−GΨG⊤∥∥2
F ≤ 2‖S−Σ‖2

F + 2
∥∥Σ−GΨG⊤∥∥2

F com-

pletes the proof of Theorem 8. �

A.6 Proof of Theorem 10

Part of the proof is inspired by the approach followed in Lounici (2008)and Lounici et al.
(2009). Note first that

max
1≤k≤M

γk

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

≤
M

∑
k=1

γk

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

.

SinceΨ∗ ∈ {Ψ ∈ SM : M (Ψ)≤ s∗}, we can use some results from the proof of Theorem (8). On
the eventA ∩A1, with A defined by (43) andA1 defined by (46), inequality (47) implies that

M

∑
k=1

γk

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

≤ 4

(
1+

1
ε

)
∑

k∈J∗
γk

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

≤ 4

(
1+

1
ε

)√
s∗

√
∑

k∈J∗
γ2

k

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
2

ℓ2

.

Let ∆∗ be theM×M symmetric matrix with columns equal to∆∗
k = γk

(
Ψ̂k−Ψ∗

k

)
, k= 1, . . . ,M,

let γmax= 2Gmax

√
ρmax(G⊤G) andc0 = 3+4/ε. Then, the above inequality and (48) imply that

on the eventA ∩A1
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M

∑
k=1

γk

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

≤ 4
(
1+ 1

ε
)√

s∗
κs∗,c0

∥∥∥G∆∗G⊤
∥∥∥

F
≤ 4

(
1+ 1

ε
)√

s∗
κs∗,c0

γmax

∥∥∥G
(
Ψ̂−Ψ∗

)
G⊤
∥∥∥

F

=
4(1+ ε)√s∗

εκs∗,c0

γmax

∥∥∥Σ̂λ −Σ
∥∥∥

F

≤ 4(1+ ε)√s∗
εκs∗,c0

γmax
√

n
√

C0 (n,M,N,s∗,S,Ψ∗,G,Σnoise),

Then, using (44) one has that on the eventA ∩Ac
1

M

∑
k=1

γk

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

≤ 1+ ε
λ

∥∥∥S−GΨ∗G⊤
∥∥∥

2

F
.

Therefore, by definition ofC1, the previous inequalities imply that on the eventA (of probability
1−M1−δ )

M

∑
k=1

‖Gk‖ℓ2√
nGmax

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

≤C1(n,M,N,s∗,S,Ψ
∗,G,Σnoise) . (49)

Hence max
1≤k≤M

δk√
n

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

≤ C1(σ,n,M,N,s∗,G,Σnoise) with probability at least 1− M1−δ,

which proves the first assertion of Theorem 10.

Then, to prove that̂J = J∗ we use thatδk√
n

∣∣∣∣
∥∥∥Ψ̂k

∥∥∥
ℓ2

−
∥∥Ψ∗

k

∥∥
ℓ2

∣∣∣∣ ≤
δk√

n

∥∥∥Ψ̂k−Ψ∗
k

∥∥∥
ℓ2

for all k =

1, . . . ,M. Then, by (49)
∣∣∣∣

δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

− δk√
n
‖Ψ∗

k‖ℓ2

∣∣∣∣≤C1(n,M,N,s∗,S,Ψ
∗,G,Σnoise) ,

which is equivalent to

−C1(n,M,N,s∗,S,Ψ
∗,G,Σnoise)≤

δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

− δk√
n
‖Ψ∗

k‖ℓ2
≤C1(n,M,N,s∗,S,Ψ

∗,G,Σnoise) .

(50)

If k ∈ Ĵ then δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

>C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise). Inequality δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

− δk√
n

∥∥Ψ∗
k

∥∥
ℓ2
≤

C1(n,M,N,s∗,S,Ψ∗,G,Σnoise) from (50) imply that δk√
n

∥∥Ψ∗
k

∥∥
ℓ2

≥
δk√

n

∥∥∥Ψ̂k

∥∥∥
ℓ2

−C1(n,M,N,s∗,S,Ψ∗,G,Σnoise) > 0, where the last inequality is obtained using that

k ∈ Ĵ. Hence
∥∥Ψ∗

k

∥∥
ℓ2

> 0 and thereforek ∈ J∗. If k ∈ J∗ then
∥∥Ψ∗

k

∥∥
ℓ2

6= 0. Inequality

−C1(n,M,N,s∗,S,Ψ∗,G,Σnoise) ≤ δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

− δk√
n

∥∥Ψ∗
k

∥∥
ℓ2

from (50) imply that δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

+

C1(n,M,N,s∗,S,Ψ∗,G,Σnoise) ≥ δk√
n

∥∥Ψ∗
k

∥∥
ℓ2
> 2C1(n,M,N,s∗,S,Ψ∗,G,Σnoise), where the last

inequality is obtained using Assumption (22) onδk√
n

∥∥Ψ∗
k

∥∥
ℓ2

. Hence δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

>

2C1(n,M,N,s∗,S,Ψ∗,G,Σnoise) − C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) =
C1(n,M,N,s∗,S,Ψ∗,G,Σnoise) and thereforek ∈ Ĵ. This completes the proof of Theorem 10.
�
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A.7 Proof of Theorem 11

Under the assumptions of Theorem 11, we have shown in the proof of Theorem 10 thatĴ = J∗

on the eventA defined by (43). Therefore, under the assumptions of Theorem 11 it can be checked
that on the eventA (of probability 1−M1−δ)

Σ̂Ĵ = Σ̂J∗ =GJ∗Ψ̂J∗G
⊤
J∗ ,

with

Ψ̂J∗ =
(
G⊤

J∗GJ∗

)−1
G⊤

J∗S̃GJ∗

(
G⊤

J∗GJ∗

)−1
.

Now, from the definition (24) ofΣJ∗ it follows that on the eventA
∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ ρmax

(
G⊤

J∗GJ∗

)∥∥∥Ψ̂J∗ −ΛJ∗

∥∥∥
2

(51)

whereΛJ∗ =ΨJ∗ +(G⊤
J∗GJ∗)

−1G⊤
J∗ΣnoiseGJ∗

(
G⊤

J∗GJ∗
)−1

. Let Yi =
(
G⊤

J∗GJ∗
)−1

G⊤
J∗X̃i for i =

1, . . . ,N and remark that

Ψ̂J∗ =
1
N

N

∑
i=1

YiY
⊤

i with EΨ̂J∗ = ΛJ∗ .

Therefore,Ψ̂J∗ is a sample covariance matrix of sizes∗ × s∗ and we can control its deviation in
operator norm fromΛJ∗ by using Proposition 6. For this we simply have to verify conditions similar
to (A1) and (A2) in Assumption 2 for the random vectorY =

(
G⊤

J∗GJ∗
)−1

G⊤
J∗X̃ ∈ Rs∗ . First,

let β ∈ Rs∗ with ‖β‖ℓ2 = 1. Then, remark thatY ⊤β = X̃⊤β̃ with β̃ = GJ∗
(
G⊤

J∗GJ∗
)−1 β. Since

‖β̃‖ℓ2 ≤
(
ρmin

(
G⊤

J∗GJ∗
))−1/2

it follows that

(
E|Y ⊤β|4

)1/4
≤ ρ̃(Σ,Σnoise)ρ

−1/2
min

(
G⊤

J∗GJ∗

)
, (52)

whereρ̃(Σ,Σnoise) = 81/4
(
ρ4(Σ)+ρ4(Σnoise)

)1/4
. Now let

Z̃ = ‖Y ‖ℓ2 ≤ ρ−1/2
min

(
G⊤

J∗GJ∗

)
‖X̃‖ℓ2.

Given our assumptions on the processX̃ = X+E it follows that there existsα ≥ 1 such that

‖Z̃‖ψα ≤ ρ−1/2
min

(
G⊤

J∗GJ∗

)(
‖Z‖ψα +‖W‖ψα

)
<+∞, (53)

whereZ = ‖X‖ℓ2 andW = ‖E‖ℓ2, with X = (X (t1) , ...,X (tn))
⊤ andE = (E (t1) , ...,E (tn))

⊤.
Finally, remark that

‖ΛJ∗‖2 ≤ ‖ΨJ∗‖2+ρ−1
min

(
G⊤

J∗GJ∗

)
‖Σnoise‖2 . (54)

Hence, using the relations (52) and (53), the bound (54) and Proposition 6 (withY instead ofX),
it follows that there exists a universal constantδ∗ > 0 such that for allx> 0,

P

(∥∥∥Ψ̂J∗ −ΛJ∗

∥∥∥
2
> τ̃N,s∗x

)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
, (55)
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whereτ̃N,s∗ = max(Ã2
N,s∗ , B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα

√
logd∗(logN)1/α

√
N

and

B̃N,s∗ =
ρ̃2(Σ,Σnoise)ρ−1

min

(
G⊤

J∗GJ∗
)

√
N

+
(
‖ΨJ∗‖2+ρ−1

min

(
G⊤

J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗ ,

with d∗ = min(N,s∗). Then, define the event

B =
∥∥∥Ψ̂J∗ −ΛJ∗

∥∥∥
2
6 τ̃N,s∗δ⋆ (log(M))

2+α
α ,

and note that, forx= δ⋆ (log(M))
2+α

α with δ⋆> δ∗, inequality (55) implies thatP(B)≥ 1−M−( δ⋆
δ∗ )

α
2+α

.

Therefore, on the eventA ∩B (of probability at least 1−M1−δ −M−( δ⋆
δ∗ )

α
2+α

), using inequality (51)
and the fact that̂J = J∗ one obtains

∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ ρmax

(
G⊤

J∗GJ∗

)
τ̃N,s∗δ⋆ (log(M))

2+α
α ,

which completes the proof of Theorem 11. �
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