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Group-Lasso on Splines for Spectrum Cartography
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Georgios B. Giannakis, Fellow, IEEE

Abstract—The unceasing demand for continuous situational
awareness calls for innovative and large-scale signal processing
algorithms, complemented by collaborative and adaptive sensing
platforms to accomplish the objectives of layered sensing and con-
trol. Towards this goal, the present paper develops a spline-based
approach to field estimation, which relies on a basis expan-
sion model of the field of interest. The model entails known
bases, weighted by generic functions estimated from the field’s
noisy samples. A novel field estimator is developed based on a
regularized variational least-squares (LS) criterion that yields
finite-dimensional (function) estimates spanned by thin-plate
splines. Robustness considerations motivate well the adoption
of an overcomplete set of (possibly overlapping) basis functions,
while a sparsifying regularizer augmenting the LS cost endows
the estimator with the ability to select a few of these bases that
“better” explain the data. This parsimonious field representation
becomes possible, because the sparsity-aware spline-based method
of this paper induces a group-Lasso estimator for the coefficients
of the thin-plate spline expansions per basis. A distributed al-
gorithm is also developed to obtain the group-Lasso estimator
using a network of wireless sensors, or, using multiple processors
to balance the load of a single computational unit. The novel
spline-based approach is motivated by a spectrum cartography
application, in which a set of sensing cognitive radios collaborate
to estimate the distribution of RF power in space and frequency.
Computer simulations and tests on real data corroborate that
the estimated power spectrum density atlas yields the desired RF
state awareness, since the maps reveal spatial locations where idle
frequency bands can be reused for transmission, even when fading
and shadowing effects are pronounced.

Index Terms—Cognitive radio sensing, field estimation, (group-)
Lasso, optimization, sparsity, splines.

I. INTRODUCTION

W
ELL-APPRECIATED as a tool for field estimation,
thin-plate (smoothing) splines find application in areas

as diverse as climatology [41], image processing [12], and
neurophysiology [33]. Spline-based field estimation involves
approximating a deterministic map from a finite
number of its noisy data samples, by minimizing a variational
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least-squares (LS) criterion regularized with a smoothness-con-
trolling functional. In the dilemma of trusting a model versus
trusting the data, splines favor the latter since only a mild
regularity condition is imposed on the derivatives of , which is
otherwise treated as a generic function. While this generality is
inherent to the variational formulation, the smoothness penalty
renders the estimated map unique and finite dimensional [14,
p. 85], [40, p. 31]. With the variational problem solution
expressible by polynomials and specific kernels, the aforemen-
tioned map approximation task reduces to a parameter vector
estimation problem. Consequently, thin-plate splines operate as
a reproducing kernel Hilbert space (RKHS) learning machine
in a suitably defined (Sobolev) space [40, p. 34].

Although splines emerge as variational LS estimators of de-

terministic fields, they are also connected to classes of estima-
tors for random fields. The first class assumes that estimators
are linearly related to the measured samples, while the second
one assumes that fields are Gaussian distributed. The first corre-
sponds to the Kriging method while the second to the Gaussian
process model; but in both cases one deals with a best linear
unbiased estimator (BLUE) [37]. Typically, wide sense station-
arity is assumed for the field’s spatial correlation needed to form
the BLUE. The so-termed generalized covariance model adds
a parametric nonstationary term comprising known functions
specified a priori [26]. Inspection of the BLUE reveals that if
the nonstationary part is selected to comprise polynomials, and
the spatial correlation is chosen to be the splines kernel, then
the Kriging, Gaussian process, and spline-based estimators co-
incide [40, p. 35].

Bearing in mind this unifying treatment of deterministic and
random fields, the main subjects of this paper are spline-based
estimation, and the practically motivated sparse (and thus par-
simonious) description of the wanted field. Toward these goals,
the following basis expansion model (BEM) is adopted for the
target map

(1)

with , , and the -norms
normalized to unity.

The bases are preselected, and the functions
are to be estimated based on noisy samples of . This

way, the model-versus-data balance is calibrated by introducing
a priori knowledge on the dependence of the map with
respect to (w.r.t.) variable , or more generally a group of
variables, while trusting the data to dictate the functions
of the remaining variables .

Consider selecting basis functions using the basis pur-

suit approach [11], which entails an extensive set of bases
thus rendering overly large and the model overcomplete.
This motivates augmenting the variational LS problem with
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a suitable sparsity-encouraging penalty, which endows the
map estimator with the ability to discard factors
in (1), only keeping a few bases that “better” explain the data.
This attribute is inherited because the novel sparsity-aware
spline-based method of this paper induces a group-Lasso
estimator for the coefficients of the optimal finitely-parame-
terized . Group-Lasso estimators are known to set groups
of weak coefficients to zero (here the groups associated
with coefficients per ), and outperform the sparsity-agnostic
LS estimator by capitalizing on the sparsity present [34], [43].
An iterative group-Lasso algorithm is developed that yields
closed-form estimates per iteration. A distributed version of this
algorithm is also introduced for data collected by cooperating
sensors, or, for computational load-balancing of multipro-
cessor architectures. A related approach to model selection
in nonparametric regression is the component selection and
smoothing operator (COSSO) [22]. Different from the approach
followed here, COSSO is limited to smoothing-spline, anal-
ysis-of-variance models, where the target function is assumed
to be expressible by a superposition of orthogonal component
functions. Compared to the single group-Lasso estimate here,
COSSO entails an iterative algorithm, which alternates through
a sequence of smoothing spline [20, p. 151] and nonnegative
garrote [9] subproblems. Also related are the sparse additive
models (SPAMs) [36], which combine the merits of sparse
linear regression and nonparametric additive models [19], [20].
SPAMs have been shown to outperform their sparsity-agnostic
counterparts in high-dimensional data settings.

The motivation behind the BEM in (1) comes from our in-
terest in spectrum cartography for wireless cognitive radio (CR)
networks, a sensing application that serves as an illustrating
paradigm throughout the paper. CR technology holds great
promise to address fruitfully the perceived dilemma of band-
width under-utilization versus spectrum scarcity, which has
rendered fixed-access communication networks inefficient.
Sensing the ambient interference spectrum is of paramount
importance to the operation of CR networks, since it enables
spatial frequency reuse and allows for dynamic spectrum allo-
cation; see, e.g., [16], [30] and references therein. Collaboration
among CRs can markedly improve the sensing performance
[35], and is key to revealing opportunities for spatial frequency
reuse [32]. Pertinent existing approaches have mostly relied on
detecting spectrum occupancy per radio, and do not account
for spatial changes in the radio frequency (RF) ambiance,
especially at intended receiver(s) which may reside several
hops away from the sensed area.

The impact of this paper’s novel field estimators to CR net-
works is a collaborative sensing scheme whereby receiving CRs
cooperate to estimate the distribution of power in space and
frequency , namely the power spectrum density (PSD) map

in (1), from local periodogram measurements. The es-
timator should be precise enough to identify spectrum holes,
which justifies adopting the known bases to capture the PSD
frequency dependence in (1). As far as the spatial dependence
is concerned, the model must account for path loss, fading, mo-
bility, and shadowing effects, all of which vary with the propaga-
tion medium. For this reason, it is prudent to let the data dictate
the spatial component of (1). Knowing the spectrum at any loca-
tion allows remote CRs to reuse dynamically idle bands. It also
enables CRs to adapt their transmit-power so as to minimally

Fig. 1. Expansion with overlapping raised cosine pulses.

interfere with licensed transmitters. The spline-based PSD map
here provides an alternative to [6], where known bases are used
both in space and frequency. Different from [3] and [6], the field
estimator here does not presume a spatial covariance model or
path-loss channel model. Moreover, it captures general propa-
gation characteristics including both shadowing and fading; see
also [13].

Notation: Bold uppercase letters will denote matrices,
whereas bold lowercase letters will stand for column vectors.
Operators , , , , , will denote
Kronecker product, transposition, matrix trace, rank, block
diagonal matrix and expectation, respectively; will be used
for the cardinality of a set, and the magnitude of a scalar. The

norm of function is ,

while the norm of vector is

for ; and is the matrix Frobenius
norm. Positive definite matrices will be denoted by .
The identity matrix will be represented by , while
will denote the vector of all zeros, and .
The th vector in the canonical basis for will be denoted by

, .

II. BEM FOR SPECTRUM CARTOGRAPHY

Consider a set of sources transmitting signals
using portions of the overall bandwidth . The objective of re-
vealing which of these portions (subbands) are available for new
systems to transmit, motivates modeling the transmit-PSD of
each as

(2)

where the basis is centered at frequency ,
. The example depicted in Fig. 1 involves (gen-

erally overlapping) raised cosine bases with support

, where is the symbol
period, and stands for the roll-off factor. Such bases can
model transmit-spectra of e.g., multicarrier systems. In other
situations, power spectral masks may dictate sharp transitions
between contiguous subbands, cases in which non-overlapping
rectangular bases may be more appropriate. All in all, the set of
bases should be selected to accommodate a priori knowledge
about the PSD.

The power transmitted by source will propagate to the loca-
tion according to a generally unknown spatial loss func-
tion . Specifically, takes the form

, where stands for the frequency response of
the channel from source to the receiver positioned at . The
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propagation model not only captures frequency-flat de-
terministic path-loss, but also stationary, block-fading and even
frequency-selective Rayleigh channel effects, since their statis-
tical moments do not depend on the frequency variable. In this
case, the following vanishing memory assumption is required
on the transmitted signals for the spatial receive-PSD
to be factorizable as ; see [6] for further details.

(as) Sources are stationary, mutually uncorre-

lated, independent of the channels, and have vanishing correla-

tion per coherence interval; i.e.,

, , where and represent the coherence

interval and delay spread of the channels, respectively.

Under (as), the contribution of source to the PSD at point

is ; and the PSD due to all sources received

at will be given by .
Note that is not time dependent, but takes into account
the randomness of the channels. Such spatial PSD model can be

simplified by defining the function .
With this definition and upon exchanging the order of sum-
mation, the spatial PSD model takes the form in (1), where
functions are to be estimated. They represent the
aggregate distribution of power across space corresponding to
the frequencies spanned by the bases . Observe that the
sources are not explicitly present in (1). Even if this model could
have been postulated directly for the cartography task at hand,
the previous discussion justifies the factorization of the
map per band in factors depending on each of the variables
and .

III. COOPERATIVE SPLINE-BASED PSD FIELD ESTIMATION

The sensing strategy will rely on the periodogram es-

timate at a set of receiving (sampling) locations
, frequencies , and

time-slots . In order to reduce the periodogram variance

and mitigate fading effects, is averaged across a window
of time-slots [6], to obtain

(3)

Hence, the envisioned setup consists of receiving CRs,
which collaborate to construct the PSD map based on PSD
observations . The bulk of processing is performed
centrally at a fusion center (FC), which is assumed to know
the position vectors of all CRs, and the sensed tones in .
The FC receives over a dedicated control channel, the vector of
samples taken by node for all

.
While a BEM could be introduced for the spatial loss func-

tion as well [6], the uncertainty on the source locations
and obstructions in the propagation medium may render such
a model imprecise. This will happen, e.g., when shadowing is
present. The alternative approach followed here relies on esti-
mating the functions based on the data . To capture
the smooth portions of , the criterion for selecting
will be regularized using a so termed thin-plate penalty [40, p.
30]. This penalty extends to the one-dimensional roughness

regularization used in smoothing spline models. Accordingly,
functions are estimated as

(4)

where denotes the Frobenius norm of the Hessian of
.
The optimization is over , the space of Sobolev functions,

for which the penalty is well defined [14, p. 85]. The param-
eter controls the degree of smoothing. Specifically, for

the estimates in (4) correspond to rough functions inter-
polating the data; while as the estimates yield linear
functions (cf. ). A smoothing parameter in
between these limiting values will be selected using a leave-
one-out cross-validation (CV) approach, as discussed later.

A. Thin-Plate Splines Solution

The optimization problem (4) is variational in nature, and in
principle requires searching over the infinite-dimensional func-
tional space . It turns out that (4) admits closed-form, finite
dimensional minimizers , as presented in the following
proposition.

Proposition 1: The estimates in (4) are thin-plate

splines expressible in closed form as

(5)

where , and is con-

strained to the linear subspace

for .

The proof of this proposition follows from [28, Theorem 5]
for vector-valued functions, applied to the Hilbert space
after identifying functions differing in an affine term, as de-
scribed in [14].

Remark 1 (Overlapping Frequency Basis): If the basis
functions have finite supports which do not overlap,
then (4) decouples per , and thus the results in [14], [40]
can be applied directly. The novelty of Proposition 1 is that the
basis functions with spatial spline coefficients in (1) are allowed
to be overlapping. The implication of Proposition 1 is a finite
parametrization of the PSD map [cf. (5)]. This is particularly im-
portant for non-FDMA based CR networks. In the forthcoming
Section IV, an overcomplete set is adopted in (1), and over-
lapping bases naturally arise therein.

What is left to determine are the parameters
, and

in (5). To this end, define the vector

con-
taining the network-wide data obtained at all frequencies
in . Three matrices are also introduced collecting the re-
gression inputs: i) with th row
for and ; ii) with th
row for ; and
iii) with th entry
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for . Consider also the QR decompositions of

and .
Upon plugging (5) into (4), it is shown in Appendix A that

the optimal satisfy the following system of equations:

(6)

(7)

(8)

Matrix is positive definite, and
; see e.g., [29]. It thus follows that (6)–(7)

admit a unique solution if and only if and are invertible
(correspondingly, and have full column rank). These
conditions place practical constraints that should be taken into
account at the system design stage. Specifically, has full
column rank if and only if the points in , i.e., the CR locations,
are not aligned. Furthermore, will have linearly independent
columns provided the basis functions comprise a
linearly independent and complete set, i.e., . Note
that completeness precludes all frequencies from
falling outside the aggregate support of the basis set, hence
preventing undesired all-zero columns in .

Remark 2 (Practicality of Uniqueness Conditions): The
condition on does not introduce an actual limitation as it can
be easily satisfied in practice, especially when the CRs are ran-
domly deployed. Likewise, the basis set is part of the system de-
sign, and can be chosen to satisfy the conditions on . Nonethe-
less, these conditions will be bypassed in Section IV by allowing
for an overcomplete set of functions .

The combined results in this section can be summarized in
the following steps constituting the spline-based spectrum car-
tography algorithm, which amounts to estimating :

S1) Given , solve (6)–(8) for , after selecting as de-
tailed in Appendix C.

S2) Substitute and into (5) to obtain .

S3) Use in (1) to estimate .

B. PSD Tracker

The real-time requirements on the sensing radios and the con-
venience of an estimator that adapts to changes in the spec-
trum map are the motivating reasons behind the PSD tracker
introduced in this section. The spectrum map estimator will be
henceforth denoted by , to make its time dependence
explicit.

Define the vector of peri-
odogram samples taken at frequency by all CRs, and form

the supervector . Per

time-slot , the periodogram is averaged using
the following adaptive counterpart of (3):

(9)

which implements an exponentially weighted moving average
operation with forgetting factor . For every , the on-
line estimator is obtained by plugging in (1) the solu-

tion of (4), after replacing with [cf.
the entries of the vector in (9)]. In addition to mitigating fading
effects, this adaptive approach can track slowly time-varying

PSDs because the averaging in (9) exponentially discards past
data.

Suppose that per time-slot , the FC receives raw pe-

riodogram samples from the CRs in order to update
. The results of Section III apply for every ,

meaning that are given by (5), while the

optimum coefficients are found after solving
(6)–(8). Capitalizing on (9), straightforward manipulations of

(6)–(8) show that are recursively given for all
by

(10)

(11)

where the time-invariant matrices and are

Recursions (10)-(11) provide a means to update se-
quentially in time, by incorporating the newly acquired data

from the CRs in . There is no need to separately update
as in (9), yet the desired averaging takes place. Further-

more, matrices and need to be computed only once,
during the startup phase of the network.

Numerical experiments corroborating the effectiveness of the
proposed scheme in tracking changes on the RF ambiance due
to the departure of a transmitter, can be found in [24].

IV. GROUP-LASSO ON SPLINES

An improved spline-based PSD estimator is developed

in this section to fit the unknown spatial functions

in the model , with a large
, and a possibly overcomplete set of known basis

functions . These models are particularly attractive
when there is an inherent uncertainty on the transmitters’ pa-
rameters, such as central frequency and bandwidth of the pulse
shapers; or, e.g., the roll-off factor when raised-cosine pulses
are employed. In particular, adaptive communication schemes
rely on frequently adjusting these parameters [17, Ch. 9]. A
sizeable collection of bases to effectively accommodate most
of the possible cases provides the desirable robustness. Still,
prior knowledge available on the incumbent communication
technologies being sensed should be exploited to choose the
most descriptive classes of basis functions; e.g., a large set
of raised-cosine pulses. This knowledge justifies why known
bases are selected to describe frequency characteristics of the
PSD map, while a variational approach is preferred to capture
spatial dependencies.

In this context, the envisioned estimation method should pro-
vide the CRs with the capability of selecting a few bases that
“better explain” the actual transmitted signals. As a result, most
functions are expected to be identically zero; hence, there is
an inherent form of sparsity present that can be exploited to im-
prove estimation. The rationale behind the proposed approach
can be rooted in the basis pursuit principle, a term coined in
[11] for finding the most parsimonious sparse signal expansion
using an overcomplete basis set. A major differentiating aspect
however, is that while the sparse coefficients in the basis expan-
sions treated in [11] are scalars, model (1) here entails bases
weighted by functions .
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The proposed approach to sparsity-aware spline-based field
estimation from the space-frequency power spectrum measure-

ments [cf. (3)], is to obtain as

(12)

Relative to (4), the cost here is augmented with an additional
regularization term weighted by a tuning parameter .
Clearly, if then (12) boils down to (4). To appreciate
the role of the new penalty term, note that the minimization
of intuitively shrinks all pointwise
functional values to zero for suffi-
ciently large . Interestingly, it will be shown in the ensuing
section that this is enough to guarantee that , for

large enough.

A. Estimation Using the Group-Lasso

Consider the classical problem of linear regression; see, e.g.,
[20, p. 11], where a vector of observations is available,
along with a matrix of inputs. The group Lasso

estimate for the vector of features
[5], [43], is defined as the solution to

(13)

This criterion achieves model selection by retaining relevant

factors in which the features are grouped. In other
words, group-Lasso encourages sparsity at the factor level, ei-
ther by shrinking to zero all variables within a factor, or by re-
taining them altogether depending on the value of the tuning
parameter . As is increased, more subvector estimates

become zero, and the corresponding factors drop out of the
model. It can be shown from the Karush–Kuhn–Tucker opti-
mality conditions that only for it
holds that , so that the values of interest

are [4].
The connection between (13) and the spline-based field esti-

mator (12) builds on Proposition 1, which still holds in this con-
text. That is, even though criteria (4) and (12) purposely differ,
their respective solutions have the same form in (5). The
essential difference manifested by this penalty is revealed when
estimating the parameters and in (5), as presented in the
following proposition.

Proposition 2: The spline-based field estimator (12) is equiv-

alent to group-Lasso (13), under the identities

(14)

with their respective solutions related by

(15)

(16)

where and .

The factors in (13) are in one-to-one correspon-

dence with the vectors through the linear map-
ping (16). This implies that whenever a factor is dropped
from the linear regression model obtained after solving (13),
then , and the term corresponding to does not
contribute to (1). Hence, by appropriately selecting the value of

, criterion (12) has the potential of retaining only the most sig-

nificant terms in , and thus yields
parsimonious PSD map estimates. All in all, the motivation be-
hind the variational problem (12) is now unravelled. The addi-
tional penalty term not present in (4) renders (12) equivalent to
a group-Lasso problem. This enforces sparsity in the parame-
ters of the splines expansion for at a factor level, which
is exactly what is needed to potentially null the less descriptive
functions .

Remark 3 (Comparison With the PSD Map Estimator in
Section III): The sparsity-agnostic LS problem (4) will not give
rise to identically zero vectors , for any . Even when

is not large, a sparsity-aware estimator will perform better if
the underlying PSD is generated by a few basis functions. This is
expected since the out-of-band residual error will increase when
all basis functions enter the model (1); see also [6] for a related
assessment and the numerical tests in Section VI-C, where

. What is more, when the number of bases is sufficiently large
) matrix is fat, and the approach in Section III is

not applicable. On the other hand, it is admittedly more complex
computationally to solve (13) than the system of linear (6)–(8).
Because (12) is not a linear smoother, a leave-one-out (bi-) CV
approach to select the tuning parameters and does not enjoy
the computational savings detailed in Appendix C. -fold CV
can be utilized instead, with typical choices of 5 or 10, as
suggested in [20, p. 242].

The group-Lassoed splines-based approach to spectrum car-
tography developed in this section can be summarized in the
following steps to estimate the global PSD map :

S1) Given and utilizing any group Lasso solver, obtain

by solving (13).

S2) Form the estimates using the change of vari-

ables for
.

S3) Substitute and into (15) to obtain .

S4) Use in (1) to estimate .
Implementing S1)–S4) presumes that CRs communicate their

local PSD estimates to a fusion center, which uses their aggrega-
tion in to estimate the field. But what if an FC is not available
for centrally running S1)–S4)? In certain cases, forgoing with an
FC is reasonable when the designer wishes to avoid an isolated
point of failure, or, aims at a network topology which scales
well with an increasing number of CRs based on power con-
siderations (CRs located far away from the FC will drain their
batteries more to reach the FC). These reasons motivate well a
fully distributed counterpart of S1)–S4), which is pursued next.
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V. DISTRIBUTED GROUP-LASSO FOR IN-NETWORK

SPECTRUM CARTOGRAPHY

Consider networked CRs that are capable of sensing the
ambient RF spectrum, performing some local computations, as
well as exchanging messages among neighbors via dedicated
control channels. In lieu of a fusion center, the CR network is
naturally modeled as an undirected graph , where the
vertex set corresponds to the sensing radios,
and the edges in represent pairs of CRs that can communicate.
Radio communicates with its single-hop neighbors in

, and the size of the neighborhood is denoted by . The lo-

cations of the sensing radios are assumed known
to the CR network. To ensure that the measured data from an
arbitrary CR can eventually percolate throughout the entire net-
work, it is assumed that the graph is connected; i.e., there ex-
ists a (possibly) multi-hop communication path connecting any
two CRs.

For the purpose of estimating an unknown vector

, each radio has avail-
able a local vector of observations as well as its own
matrix of inputs . Radios collaborate to form the
wanted group-Lasso estimator (13) in a distributed fashion,
using

(17)

where with ,

and . The motivation be-
hind developing a distributed solver of (17) is to tackle (12)
based on in-network processing of the local observations

available per radio [cf. (3)]. Indeed,
it readily follows that (17) can be used instead of (13) in
Proposition 2 when

corresponding to the identifications ,
. Note that because the locations are assumed known

to the entire network, CR can form matrices , , and thus,
the local regression matrix .

A. Consensus-Based Reformulation of the Group-Lasso

To distribute the cost in (17), replace the global variable
which couples the per-agent summands with local variables

representing candidate estimates of per sensing
radio. It is now possible to reformulate (17) as a convex con-

strained minimization problem

(18)

The equality constraints directly effect local agreement across
each CR’s neighborhood. Since the communication graph is
assumed connected, these constraints also ensure global con-
sensus a fortiori, meaning that , . Indeed,
let denote a path on that joins
an arbitrary pair of CRs . Because contiguous radios in
the path are neighbors by definition, the corresponding chain of
equalities dictated by
the constraints in (18) imply , as desired. Thus, the
constraints can be eliminated by replacing all the with a
common , in which case the cost in (18) reduces to the one in
(17). This argument establishes the following result.

Lemma 1: If is a connected graph, (17) and (18)

are equivalent optimization problems, in the sense that

.
Problem (18) will be modified further for the purpose of re-

ducing the computational complexity of the resulting algorithm.
To this end, for a given consider the problem

(19)

and notice that it is separable in the subproblems

(20)

Interestingly, each of these subproblems admits a closed-form
solution as given in the following lemma.

Lemma 2: The minimizer of (20) is obtained via the

vector soft-thresholding operator defined by

(21)

where .
Problem (19) is an instance of the group-Lasso (13) when

, and . As such, result (21) was also ob-
tained in [23], and can be viewed as a particular case of the op-
erators in [34] and [42]. However it is worth to prove Lemma 2
directly, since in this case the special form of (20) renders the
proof neat in its simplicity.

Proof: It will be argued that the solver of (20) takes the
form for some scalar . This is because among
all with the same -norm, the Cauchy–Schwarz inequality
implies that the maximizer of is colinear with (and in the
same direction of) . Substituting into (20) renders

the problem scalar in , with solution ,

which completes the proof.
In order to take advantage of Lemma 2, auxiliary variables

are introduced as copies of . Upon in-
troducing appropriate constraints that guarantee the
equivalence of the formulations along the lines of Lemma 1,
problem (18) can be recast as

(22)
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The dummy variables are inserted for technical reasons that
will become apparent in the ensuing section, and will be even-
tually eliminated.

B. Distributed Group-Lasso Algorithm

The distributed group-Lasso algorithm is constructed by op-
timizing (22) using the alternating direction method of multi-
pliers (AD-MoM) [8]. In this direction, associate Lagrange mul-
tipliers , and with the constraints ,

and , respectively, and consider the augmented La-
grangian with parameter

(23)

where for notational convenience we group the vari-
ables , and multipliers

.

Application of the AD-MoM to the problem at hand consists
of a cycle of minimizations in a block-coordinate fashion
w.r.t. firstly, and secondly, together with an update of the
multipliers per iteration . Deferring the details
to Appendix D, the four main properties of this procedure that
are instrumental to the resulting algorithm can be highlighted as
follows.

i) Thanks to the introduction of the local copies and the

dummy variables , the minimizations of w.r.t. both
and decouple per CR , thus enabling distribu-

tion of the algorithm. Moreover, the constraints in (22)
involve variables of neighboring CRs only, which allows
the required communications to be local within each CR’s
neighborhood.

ii) Introduction of the variables separates the quadratic

cost from the group-Lasso penalty

. As a result, minimization of (23) w.r.t.
takes the form of (19), which admits a closed-form

solution via the vector soft-thresholding operator
in Lemma 2.

iii) Minimization of (23) w.r.t. consists of an unconstrained
quadratic problem, which can also be solved in closed
form. In particular, the optimal at iteration takes

the value , and thus can be elim-
inated.

iv) It turns out that it is not necessary to carry out updates
of the Lagrange multipliers separately,
but only of their sums which are henceforth denoted by

. Hence, there is one price
per CR , which can be updated locally.

Building on these four features, it is established in
Appendix D that the proposed AD-MoM scheme boils down to
four parallel recursions run locally per CR (see (24)–(27) at the
bottom of the page).

Recursions (24)–(27) comprise the novel DGLasso algo-
rithm, tabulated as Algorithm 1.

Algorithm 1: DGLasso

All radios initialize to
zero, and locally run:

for do

Transmit to neighbors in .

Update .

Update .

Update using (26).

Update using (27).

end for

The algorithm entails the following steps. During iteration
, CR receives the local estimates from

the neighboring CRs and plugs them into (24) to evaluate the
dual price vector . The new multiplier is then ob-
tained using the locally available vectors . Sub-
sequently, vectors are jointly used along with

to obtain via parallel vector soft-
thresholding operations as in (21). Finally, the updated

is obtained from (27), and requires the previously up-
dated quantities along with the vector of local observations
and regression matrix . The st iteration is concluded
after CR broadcasts to its neighbors. Even if an arbi-
trary initialization is allowed, the sparse nature of the estimator
sought suggests the all-zero vectors as a natural choice. Three
additional remarks are now in order.

(24)

(25)

(26)

(27)
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Remark 4 (Distributed Lasso Algorithm as a Special

Case): When and there are as many groups as entries

of , then the sum becomes the -norm of , and
group-Lasso reduces to Lasso. In this case, DGLasso offers a
distributed algorithm to solve Lasso that coincides with the one
in [25].

Remark 5 (Centralized Group-Lasso Algorithm as a Spe-

cial Case): For , the network consists of a single CR.
In this case, DGLasso yields an AD-MoM-based algorithm for
the centralized group-Lasso estimator (17), which is specified
as Algorithm 2. Notice that the thresholding operator in
GLasso sets the entire subvector to zero whenever

does not exceed , in par with the group-
sparsifying property of group-Lasso. An alternative algorithm
based on Nesterov’s proximal method [31] and operator , was
developed in [23]. An attractive feature of proximal algorithms
relative to GLasso, is that they come with convergence rate guar-
antees. Different from [43], GLasso can handle a general (not
orthonormal) regression matrix . Compared to the block-co-
ordinate algorithm of [34], GLasso does not require an inner
Newton–Raphson recursion per iteration; see also [38] and [27]
for related block-coordinate descent algorithms devoid of inner
cycles. If in addition , then GLasso yields the Lasso es-
timator; see also [7], [15], [18].

Algorithm 2: GLasso

Initialize to zero, and run:

for do

Update .

Update .

Update .

end for

Remark 6 (Computational Load Balancing): Update
(27) involves inversion of the matrix ,
that may be computationally demanding for sufficiently
large . Fortunately, this operation can be carried out of-
fline before running the algorithm. More importantly,
the matrix inversion lemma can be invoked to obtain

.
In this new form, the dimensionality of the matrix to invert
becomes , where is the number of locally acquired
data. For highly underdetermined cases , (D)GLasso
enjoys considerable computational savings through the afore-
mentioned matrix inversion identity. One also recognizes that
the distributed operation parallelizes the numerical compu-
tation across CRs: if GLasso is run at a central unit with all
network-wide data available centrally, then the matrix to invert
has dimension , which increases linearly with
the network size . Beyond a networked scenario, DGLasso
provides an alternative for computational load balancing in
contemporary multi-processor architectures.

To close this section, it is useful to mention that convergence
of Algorithm 1, and thus of Algorithm 2 as well, is ensured by
the convergence of the AD-MoM [8]. This result is formally
stated next.

Proposition 3: Let be a connected graph, and consider re-

cursions (24)–(27) that comprise the DGLasso algorithm. Then,

for any value of the step-size , the iterates converge

to the group-Lasso solution [cf. (17)] as , i.e.,

(28)

In words, all local estimates achieve consensus asymp-
totically, converging to a common vector that coincides with the

desired estimator . Formally, if the number of parameters
exceeds the number of data , then a unique solution of (13)

is not guaranteed for a general design matrix . Proposition 3
remains valid however, if the right-hand side of (28) is replaced
by the set of minima; that is,

VI. NUMERICAL TESTS

Three numerical tests are performed in this section, starting
from a simulated spectrum cartography example where five fre-
quency bases are identified from an overcomplete set of
90 candidates. The signal propagation is affected by path-loss
and Rayleigh fading. This setup is also considered to exemplify
the use of cross-validation in selecting the parameters and
in (12). The second example introduces shadowing effects using
the model of [2], and transmit signal parameters adhering to the
IEEE 802.11 standard [1]. A third numerical test is run on real
RF power measurements taken at different locations in an in-
door area, and frequencies in the 2.4 GHz unlicensed band [21].

A. Spectrum Cartography

Consider a set of CRs uniformly distributed
in an area of 1 , cooperating to estimate the PSD map
generated by licensed users (sources) located as in
Fig. 2 (top). The five transmitted signals are raised cosine
pulses with roll-off factors or , and bandwidths

MHz. They share the frequency band
MHz with spectra centered at frequencies

105, 140, 185, 215, and 240 MHz, respectively. Fig. 2 (bottom)
depicts the PSD generated by the active transmitters.

The PSD generated by source experiences fading and
shadowing effects in its propagation from to any loca-
tion , where it can be measured in the presence of white
Gaussian noise with variance . A 6-tap Rayleigh model is
adopted for the multipath channel between and

[17], whose expected gain adheres to the path-loss law

, with 800 m. A

deterministic shadowing effect is generated by a 18-m-high and
500-m-wide wall represented by the black segment in Fig. 2
(top). It produces a knife-edge effect on the power emitted by
the antennas at a height of 20 m. The simulated tests presented
here account for the shadowing at ground level.

When designing the basis functions in (1), it is known a priori

that the transmitted signals are indeed normalized raised cosine
pulses with roll-off factors , and bandwidths

MHz. However, the actual combination of band-
widths and roll-off factors used can be unknown, which justifies
why an overcomplete set of bases becomes handy. Transmitted
signals with bandwidth 10 MHz are searched over a grid
of 16 evenly spaced center frequencies in . Likewise, for
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Fig. 2. (Top) Position of sources and obstructing wall; (bottom) PSD generated
by the active transmitters.

20 and 30 MHz, 15 and 14 center frequencies are consid-
ered, respectively. This amounts to pos-
sible combinations for , , and ; thus, raised-co-
sine bases are adopted with corresponding values of , and

to match the aforementioned signal specifications; see also
Fig. 2 (bottom).

Each CR computes periodogram samples at
frequencies MHz,
with

5 dB

Then, these periodogram samples are averaged across
time-slots to form as in (3). These net-
work-wide observations at are collected in , and fol-
lowing steps S1)–S4) at the end of Section IV, the spline-based
estimator (12), and thus the PSD map is formed. This
map is summed across frequencies, and the result is shown in
Fig. 3 (top) which depicts the positions of transmitting CRs, as
well as the radially-decaying spectra of four of them (those not
affected by the obstacle). It also identifies the effect of the wall
by “flattening” the spectrum emitted by the fifth source at the
top-left corner. Inspection of the estimate across fre-
quency confirms that group-Lasso succeeds in selecting the can-

didate bases. Fig. 4 (top) shows points representing ,

, where is the subvector in the solution of the group-
Lasso estimator (13) associated with and . They

Fig. 3. (top) Aggregate map estimate in dB; (bottom) group-Lasso path of so-
lutions ���� � as � varies.

peak at indexes 1, 28, 46, 51, and 70 (circled in red), which
correspond to the “ground-truth” model, since bases , ,

, , and match the spectra of the transmitted signals.
Even though approximately 75% of the variables drop out of the
model, some spurious coefficients are retained and their norms
are markedly smaller than those of the “ground-truth” bases.
Nevertheless, the effectiveness of group-Lasso in revealing the
transmitted bases is apparent when compared to other regu-
larization alternatives. Fig. 4 (bottom) depicts the counterpart
of Fig. 4 (top) when using a sparsity-agnostic ridge regression
scheme instead of (13). In this case, no basis selection takes
place, and the spurious factors are magnified up to a level com-
parable to three of the “true” basis function .

In summary, this test case demonstrates that the spline-based
estimator can reveal which frequency bands are (un)occupied
at each point in space, thus allowing for spatial reuse of the
idle bands. For instance, transmitter at the top-right corner
is associated with the basis function , the only one of
the transmitted five that occupies the 230–260 MHz subband.
Therefore, this subband can be reused at locations away from
the transmission range of , which is revealed in Fig. 3 (top).

B. Tuning Parameters Via Cross-Validation

Results in Figs. 3 (top) and 4 (top) depend on the judicious
selection of parameters and in (12). Parameter affects
smoothness, which translates to congruence among PSD
samples, allowing the CRs to recover the radial aspect of the
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Fig. 4. (top) Frequency bases selected by the group-Lassoed spline-based es-
timator; (bottom) and by ridge regression.

transmit-power. Parameter controls the sparsity in the solu-
tion, which dictates the number of bases, and thus transmission
schemes that the estimator considers active.

To select and jointly so that both smoothness and spar-
sity are properly accounted for, one could consider a two-di-
mensional grid of candidate pairs, and minimize the CV error
over this grid. However, this is computationally demanding, es-
pecially because the nondifferentiable cost in (13) renders the
shortcuts in Appendix C not applicable (see also Remark 3). A
three-step alternative is followed here. First, estimator (12) is
obtained using an arbitrarily small value of , and
selecting , where is given in Section IV-A.
In the second step, only the surviving bases are kept, and the
sparsifying penalty is no longer considered, thus reducing the
estimator to that of Section III. If the reduced matrix , built
from the surviving bases, is full rank (otherwise repeat the first
step with a larger value of ), the procedure in Appendix C is
followed to adjust the value of via leave-one-out CV. The re-
sult of this step is illustrated in Fig. 5 (top), where the minimizer

of the OCV cost is selected. The final
step consists of reconsidering the sparsity enforcing penalty in
(12), and selecting using 5-fold CV. The minimizer of the
CV error corresponding to this step is de-
picted in Fig. 5 (bottom). Using the and so obtained,
the PSD map plotted in Fig. 3 (top) was constructed. The ratio-
nale behind this approach is that it corresponds to a single step

Fig. 5. (Top) Minimization of the CV error over �; (bottom) and over �.

of a coordinate descent algorithm for minimizing the CV error
. Function is typically unimodal, with much

higher sensitivity on than on , a geometric feature leading the
first coordinate descent update to be close to the optimum.

The importance of an appropriate value becomes evident
when inspecting how many bases are retained by the estimator
as decreases from to . The lines in

Fig. 3 (bottom) link points representing , as takes on
20 evenly spaced values on a logarithmic scale, comprising the
so-termed group-Lasso path of solutions. When is

selected, by definition the estimator forces all to zero, thus
discarding all bases. As tends to zero all bases become rele-
vant and eventually enter the model, which confirms the premise
that LS estimators suffer from overfitting when the underlying
model is overcomplete. The cross-validated value is indi-
cated with a dashed vertical line that crosses the path of solu-

tions at the values of . At this point, five subvectors cor-
responding to the factors 1, 28, 46, 51, and 70 are consid-
erably far away from zero hence showing strong effects, in par
with the results depicted in Fig. 4 (top).

Remark 7 (Bias reduction and Improved Support Selec-

tion): The penalty term in (13) introduces bias in the estimator.
As decreases the bias decreases, reducing the prediction
error. There is a tradeoff however, as increasing gives rise
to fewer nonzero entries approaching the true support, thus
reducing the prediction error as well. The aforementioned CV
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Fig. 6. (Top) Power distribution across space � ��� in the band of 2437 MHz;
(top-left) actual distribution; (top-right) estimated map. (bottom) Power distri-
bution across space � ��� in the band of 2462 MHz; (bottom-left) actual dis-
tribution; (bottom-right) estimated map.

technique yields an intermediate value of balancing these
two effects, and thus it tends to overestimate the support. These
insights suggest that reducing bias of the estimator improves
subset selection and prediction error. Different approaches are
available for reducing the bias of (group-) Lasso estimators,
using e.g., weighted -norm penalties [10], [44], [45]. Larger
weights are given to terms that are most likely to be zero, while
smaller weights are assigned to those that are most likely to be
nonzero. Another simpler approach is to retain only the support
in the minimizer of (13), and re-estimate the amplitudes via,
e.g., LS [15].

C. IEEE 802.11 Signal Parameters and Shadowing Effects

The overlapping frequency bands (channels) speci-
fied in the IEEE 802.11 wireless LAN standard [1, p. 566], are
considered for this second simulated scenario. The frequency
bases adopted correspond to Hann-windowed Nyquist pulses as
described in [1, p. 710], and the center frequencies are

MHz for and 2484 MHz.
The PSD map to be estimated is generated by two sources lo-
cated at coordinates m and m.
They transmit through channels and , at car-
rier frequencies 2437 MHz and 2462 MHz, respectively. Thus,
the “ground truth” PSD is generated by bases and .
These bases are to be identified by a set of CRs ran-
domly deployed in an area of m . A 6-tap Rayleigh
model is used to generate the multipath channel , whose
expected gain adheres to the path-loss law

, with 60 m. Shadowing effects are

simulated using the model in [12] with 5 dB and 25 m.
Figs. 6 (top-left) and (bottom-left) depict the “true” PSD maps
generated due to the transmissions of the active sources and

, respectively. Periodogram samples are acquired per CR at

Fig. 7. (Top) Bases supported in the estimate generated by GLasso; (bottom)
evolution of the duality gap for GLasso.

20 dB, on frequencies uniformly spaced be-
tween 2400 MHz and 2496 MHz, and during time-
slots to average out fast-fading effects.

Estimator (12) applied to the simulated data is successful in
identifying the actual transmission bands, as can be deduced
from Fig. 7 (top). In the surviving bands and ,
the power is distributed across space as given by and

, respectively. Fig. 6 represents these functions and com-
pare the “ground truth” distributions with the estimated
and As in the previous example, these figures reveal
small zones of no coverage, represented in blue, where bands

and could be reused without affecting the ex-
isting communication system.

Fig. 7 (bottom) corroborates the convergence of GLasso by
showing the evolution of the duality gap

(29)

with , and the iterates
are generated as in Algorithm 2.
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Fig. 8. GLasso estimator on the dataset [21]; (left) Original data with colored
pixels indicating the position of the radios; (center) estimated maps over the
surveyed area; (right) extrapolated maps. The� � �� rows correspond to the
frequency bands spanned by each of the bases.

D. Real Data Test Case

The dataset in [21] is formatted into triplets of po-
sitions, carrier frequencies, and aggregate RF power levels of
the signals transmitted over carrier frequency and measured
at position . These measurements are acquired by
sensing radios located in an indoor area of 14 34 m, which
is represented by the rectangles in Fig. 8. These radios are de-
ployed on a regular grid over the subarea depicted by colored
sectors in the first column of the same figure; see also [21] for a
detailed floor plan schematic of , , and the radio locations.
The carrier frequencies are the 14 ones proposed in [1, p. 566],
which have been used in the preceding example.

A set of nonoverlapping rectangular bases centered
at these frequencies are adopted, and the nonparametric esti-
mator (12) is run again to obtain the distribution of power across

. Parameters and are selected via two-fold cross valida-
tion, searching over a grid of 30 candidate pairs. A minimum
normalized error of 0.0541 is attained for
and , as shown in Fig. 9. Results are further pre-
sented in the third column in Fig. 8, representing the estimated

Fig. 9. Normalized mean-square prediction error on the dataset [21] estimated
via two-fold cross validation.

power maps to . The second column in the same
figure—included for visual comparison—corresponds to the re-
sults in the third column masked to the subarea , where the
data were acquired.

The proposed estimator is capable of recovering the center
frequencies that are being utilized for transmission, eliminating
the noise affecting the thirteenth basis. It also recovers the power
levels in the surveyed area , with a smooth extrapolation to
zones were there are no measurements, and suggests possible
locations for the transmitters.

VII. CONCLUDING SUMMARY

A basis expansion approach was introduced in this paper
to estimate a multi-dimensional field, whose dependence on
a subset of its variables is modeled through preselected (and
generally overlapping) basis functions weighted by unknown
coefficient-functions of the remaining variables. The unknown
coefficient functions can be estimated from the field’s noisy
samples, by solving a variational thin-plate smoothing spline
cost regularized by a term that performs basis selection. The
result yields a parsimonious description of the field by retaining
those few members of the basis set that “better” explain the
data. This attribute is achieved because the added penalty
induces a group-Lasso estimator on the parameters of the radial
kernels and polynomials. Notwithstanding, group-Lasso, here
is introduced to effect sparsity in the space of smooth functions.

Another contribution is in the context of wireless CR network
sensing (the overarching practical motivation here), where the
estimated field enables cartographing the space-frequency
distribution of power generated by active RF sources. Using
periodogram samples collected by spatially distributed CRs,
the sparsity-aware spline-based estimator yields an atlas of
PSD maps (one map per frequency). A provably convergent
distributed algorithm was developed using AD-MoM iterations,
to obtain the required group-Lasso estimator using the network
of CRs. As corroborated by simulations and tests on real data,
the atlas enables localizing the sources and discerning their
transmission parameters, even in the presence of frequency-se-
lective Rayleigh fading and pronounced shadowing effects.
Simulated tests also confirmed that the sparsity-promoting
regularization is effective in selecting those basis functions that
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strongly influence the field, when the tuning parameters are
cross-validated properly.

Given the existing connections between splines and classical
estimators for both random and deterministic field models, the
spline-based methods developed in this paper provide a uni-
fying framework suitable for both paradigms. The model and
the resultant (parsimonious) estimates can thus be used in more
general statistical inference and localization problems, when-
ever the data admit a basis expansion over a proper subset of
its dimensions. Furthermore, results in this paper extend to ker-
nels other than radial basis functions, whenever the smoothing
penalty is replaced by a norm induced from an RKHS. Also of
interest is to quantify the number of CRs required to attain a pre-
scribed approximation error, in light of the existing connections
between spline-based reconstruction and Shannon’s sampling
theory [39].

APPENDIX

A. Proof of (6)–(8):

Upon substituting (5) into (4), it will shown next that the op-

timal coefficients specifying are obtained as
solutions to the following constrained, regularized LS problem

(30)

Observe first that the constraints in Proposition 1 can
be expressed as for each , or jointly
as . For the optimization objective in (30),
note from (5) that , where and are
the th rows of and , respectively. The first term in the cost
of (4) can be expressed (up to a factor ) as

Consider next the penalty term in the cost of (4). Substituting

into (5), it follows that [40, p.
33]. It thus holds that

from which (30) follows readily.
Now that the equivalence between (4) and (30) has been es-

tablished, the latter must be solved for and . Even though
(hence ) is not positive definite, it is still possible to show
that for any such that
[40, p. 85], implying that (30) is convex. Proceeding along the
lines of [40, p. 33], note first that the constraint

implies the existence of a vector satisfying
(8). After this change of variables, (30) is transformed into an
unconstrained quadratic program, which can be solved in closed
form for . Hence, setting both gradients w.r.t. and to
zero yields (6) and (7).

B. Proof of Proposition 2

After substituting (15) into (12), one finds the optimal

specifying in (15), as solutions to the following
constrained, regularized LS problem

(31)

With reference to (31), consider grouping and reordering
the variables in the vector , where

. As argued in Section III-A, the constraints
can be eliminated through the change of variables

for ; or compactly as
. The next step is to express the

three summands in the cost of (31) in terms of the new vector
optimization variable . Noting that ,
and mimicking the steps in Appendix A, the first summand is

(32)

The second summand due to the thin-plate penalty can be ex-
pressed as

(33)

while the last term is

. Combining
(32) with (33) by completing the squares, problem (31) is
equivalent to

(34)

and becomes (13) under the identities (14), and after the change

of variables . By
definition of , , and , the original variables can be recovered
through the transformation in (16).
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C. Selection of the Smoothing Parameter in (4)

The method to be developed builds on the so-termed leave-
one-out CV, which proceeds as follows; see e.g., [40, Ch. 4].
Consider removing a single data point from the collection
of measurements available to the sensing radios. For a

given , let denote the leave-one-out estimated
PSD map, obtained by solving (4) following steps S1)–S3) in
Section III-A, using the remaining data points. The
aforementioned estimation procedure is repeated times by
leaving out each of the data points , and

, one at a time. The leave-one-out or ordinary CV
(OCV) [20, p. 242], [40, p. 47], for the problem at hand is given
by

(35)

while the optimum is selected as the minimizer of ,
over a grid of values . Function (35) constitutes
an average of the squared prediction errors over all data points;
hence, its minimization offers a natural criterion. The method
is quite computationally demanding though, since the system of
linear equations (6)–(8) has to be solved times for each
value of on the grid. Fortunately, this computational burden
can be significantly reduced for the spline-based PSD map esti-
mator considered here.

Recall the vector collecting all data points measured at lo-
cations and frequencies . Define next a similar vector
containing the respective predicted values at the given locations
and frequencies, which is obtained after solving (4) with all the
data in and a given value of . The following lemma estab-
lishes that the PSD map estimator is a linear smoother, which
means that the predicted values are linearly related to the mea-
surements, i.e., for a -dependent matrix to be
determined. Common examples of linear smoothers are ridge
regressors and smoothing splines; further details are in [20, p.
153]. For linear smoothers, by virtue of the leave-one-out lemma
[40, p. 50] it is possible to rewrite (35) as

(36)

where stands for the estimated PSD map when all data
in are utilized in (4). The beauty of the leave-one-out lemma
stems from the fact that given and the main diagonal of ma-
trix , the right-hand side of (36) indicates that fitting a single
model (rather than of them) suffices to evaluate .
The promised lemma stated next specifies the value of nec-
essary to evaluate (36).

Lemma 3: The PSD map estimator in (4) is a linear smoother,
with smoothing matrix given by

(37)

Proof: Reproduce the structure of in Section III-A

to form the supervector , by

stacking each vector
corresponding to the spatial PSD predictions at fre-
quency . From (5), it follows that

, where , and are the th
and th rows of , and , respectively. By stacking the PSD

map estimates, it follows that ,
which readily yields

(38)

Because the estimates are linearly related to the mea-
surements [cf. (6)–(8)], so is as per (38), establishing that
the PSD map estimator in (4) is indeed a linear smoother. Next,

solve explicitly for in (6)–(8) and substitute the results
in (38), to unveil the structure of the smoothing matrix such
that . Simple algebraic manipulations lead to the ex-
pression (37).

The effectiveness of the leave-one-out CV approach is cor-
roborated via simulations in Section VI.

D. Proof of (24)–(27)

Recall the augmented Lagrangian function in (23), and let
for notational brevity. When used to solve (22),

the three steps in the AD-MoM are given by
[S1] Local estimate updates:

(39)

[S2] Auxiliary variable updates:

(40)

[S3] Multiplier updates:

(41)

(42)

(43)

Focusing first on [S2], observe that (23) is separable across
the collection of variables and that comprise . The
minimization w.r.t. the latter group reduces to

(44)

The result in (44) assumes that . A
simple inductive argument over (42), (43) and (44) shows that
this is indeed true if the multipliers are initialized such that

.
The remaining minimization in (40) with respect to de-

couples into quadratic subproblems [cf. (23)], that is

which admit the closed-form solutions in (27).



4662 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011

In order to obtain the update (24) for the prices , consider
their definition together with (42), (43) and (44) to obtain

which coincides with (24).
Towards obtaining the updates for the local variables in , the

optimization (39) in [S1] can be also split into subproblems,
namely

(45)

Upon dividing by each subproblem becomes iden-
tical to problem (19), and thus by Proposition 2 takes the form
of (26).
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