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Abstract 
Given two sets of points P and Q, a group nearest neighbor 
(GNN) query retrieves the point(s) of P with the smallest 
sum of distances to all points in Q. Consider, for instance, 
three users at locations q1, q2 and q3 that want to find a 
meeting point (e.g., a restaurant); the corresponding query 
returns the data point p that minimizes the sum of Euclidean 
distances |pqi| for 1≤i≤3. Assuming that Q fits in memory 
and P is indexed by an R-tree, we propose several 
algorithms for finding the group nearest neighbors 
efficiently. As a second step, we extend our techniques for 
situations where Q cannot fit in memory, covering both 
indexed and non-indexed query points. An experimental 
evaluation identifies the best alternative based on the data 
and query properties.  

1. Introduction 
Nearest neighbor (NN) search is one of the oldest problems 
in computer science. Several algorithms and theoretical 
performance bounds have been devised for exact and 
approximate processing in main memory [S91, AMN+98]. 
Furthermore, the application of NN search to content-based 
and similarity retrieval has led to the development of 
numerous cost models [PM97, WSB98, BGRS99, B00] and 
indexing techniques [SYUK00, YOTJ01] for high-
dimensional versions of the problem. In spatial databases 
most of the work has focused on the point NN query that 
retrieves the k (≥1) objects from a dataset P that are closest 
(usually according to Euclidean distance) to a query point 
q. The existing algorithms (reviewed in Section 2) assume 
that P is indexed by a spatial access method and utilize 
some pruning bounds to restrict the search space. Shahabi 
et al. [SKS02] and Papadias et al. [PZMT03] deal with 
nearest neighbor queries in spatial network databases, 
where the distance between two points is defined as the 
length of the shortest path connecting them in the network. 
In addition to conventional (i.e., point) NN queries, recently 
there has been an increasing interest in alternative forms of 
spatial and spatio-temporal NN search. Ferhatosmanoglu et 
al. [FSAA01] discover the NN in a constrained area of the 
data space. Korn and Muthukrishnan [KM00] discuss 

reverse nearest neighbor queries, where the goal is to 
retrieve the data points whose nearest neighbor is a 
specified query point. Korn et al. [KMS02] study the same 
problem in the context of data streams. Given a query 
moving with steady velocity, [SR01, TP02] incrementally 
maintain the NN (as the query moves), while [BJKS02, 
TPS02] propose techniques for continuous NN processing, 
where the goal is to return all results up to a future time. 
Kollios et al. [KGT99] develop various schemes for 
answering NN queries on 1D moving objects. An overview 
of existing NN methods for spatial and spatio-temporal 
databases can be found in [TP03]. 
In this paper we discuss group nearest neighbor (GNN) 
queries, a novel form of NN search. The input of the 
problem consists of a set P={p1,…,pN} of static data points 
in multidimensional space and a group of query points 
Q={q1,…,qn}. The output contains the k (≥1) data point(s) 
with the smallest sum of distances to all points in Q. The 
distance between a data point p and Q is defined as 
dist(p,Q)=∑i=1~n|pqi|, where |pqi| is the Euclidean distance 
between p and query point qi. As an example consider a 
database that manages (static) facilities (i.e., dataset P). The 
query contains a set of user locations Q={q1,…,qn} and the 
result returns the facility that minimizes the total travel 
distance for all users. In addition to its relevance in 
geographic information systems and mobile computing 
applications, GNN search is important in several other 
domains. For instance, in clustering [JMF99] and outlier 
detection [AY01], the quality of a solution can be evaluated 
by the distances between the points and their nearest cluster 
centroid. Furthermore, the operability and speed of very 
large circuits depends on the relative distance between the 
various components in them. GNN can be applied to detect 
abnormalities and guide relocation of components [NO97].  
Assuming that Q fits in memory and P is indexed by an R-
tree, we first propose three algorithms for solving this 
problem. Then, we extend our techniques for cases that Q is 
too large to fit in memory, covering both indexed and non-
indexed query points. The rest of the paper is structured as 
follows. Section 2 outlines the related work on conventional 
nearest neighbor search and top-k queries. Section 3 



 

describes algorithms for the case that Q fits in memory and 
Section 4 for the case that Q resides on the disk. Section 5 
experimentally evaluates the algorithms and identifies the 
best one depending on the problem characteristics. Section 
6 concludes the paper with directions for future work. 

2. Related work 
Following most approaches in the relevant literature, we 
assume 2D data points indexed by an R-tree [G84]. The 
proposed techniques, however, are applicable to higher 
dimensions and other data-partition access methods such as 
A-trees [SYUK00] etc. Figure 2.1 shows an R-tree for point 
set P={p1,p2,…,p12} assuming a capacity of three entries 
per node. Points that are close in space (e.g., p1, p2, p3) are 
clustered in the same leaf node (N3). Nodes are then 
recursively grouped together with the same principle until 
the top level, which consists of a single root.  
Existing algorithms for point NN queries using R-trees 
follow the branch-and-bound paradigm, utilizing some 
metrics to prune the search space. The most common such 
metric is mindist(N,q), which corresponds to the closest 
possible distance between q and any point in the subtree of 
node N. Figure 2.1a shows the mindist between point q and 
nodes N1, N2. Similarly, mindist(N1,N2) is the minimum 
possible distance between any two points that reside in the 
sub-trees of nodes N1 and N2. 
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(a) Points and node extents (b) The corresponding R-tree 
Figure 2.1: Example of an R-tree and a point NN query 

The first NN algorithm for R-trees [RKV95] searches the 
tree in a depth-first (DF) manner. Specifically, starting from 
the root, it visits the node with the minimum mindist from q 
(e.g., N1 in Figure 2.1). The process is repeated recursively 
until the leaf level (node N4), where the first potential 
nearest neighbor is found (p5). During backtracking to the 
upper level (node N1), the algorithm only visits entries 
whose minimum distance is smaller than the distance of the 
nearest neighbor already retrieved. In the example of Figure 
2.1, after discovering p5, DF will backtrack to the root level 
(without visiting N3), and then follow the path N2,N6 where 
the actual NN p11 is found. 
The DF algorithm is sub-optimal, i.e., it accesses more 
nodes than necessary. In particular, as proven in [PM97], an 
optimal algorithm should visit only nodes intersecting the 
vicinity circle that centers at the query point q and has 
radius equal to the distance between q and its nearest 

neighbor. In Figure 2.1a, for instance, an optimal algorithm 
should visit only nodes R, N1, N2, and N6 (whereas DF also 
visits N4).  The best-first (BF) algorithm of [HS99] achieves 
the optimal I/O performance by maintaining a heap H with 
the entries visited so far, sorted by their mindist. As with 
DF, BF starts from the root, and inserts all the entries into 
H (together with their mindist), e.g., in Figure 2.1a, 
H={<N1, mindist(N1,q)>, <N2, mindist(N2,q)>}. Then, at 
each step, BF visits the node in H with the smallest mindist. 
Continuing the example, the algorithm retrieves the content 
of N1 and inserts all its entries in H, after which H={<N2, 
mindist(N2,q)>, <N4, mindist(N4,q)>, <N3, mindist(N3,q)>}. 
Similarly, the next two nodes accessed are N2 and N6 
(inserted in H after visiting N2), in which p11 is discovered 
as the current NN. At this time, the algorithm terminates 
(with p11 as the final result) since the next entry (N4) in H is 
farther (from q) than p11. Both DF and BF can be easily 
extended for the retrieval of k>1 nearest neighbors. In 
addition, BF is also incremental. Namely, it reports the 
nearest neighbors in ascending order of their distance to the 
query, so that k does not have to be known in advance 
(allowing different termination conditions to be used).  
The branch-and-bound framework also applies to closest 
pair queries that find the pair of objects from two datasets, 
such that their distance is the minimum among all pairs. 
[HS98, CMTV00] propose various algorithms based on the 
concepts of DF and BF traversal. The difference from NN 
is that the algorithms access two index structures (one for 
each data set) simultaneously. If the mindist of two 
intermediate nodes Ni and Nj (one from each R-tree) is 
already greater than the distance of the closest pair of 
objects found so far, the sub-trees of Ni and Nj cannot 
contain a closest pair (thus, the pair is pruned). 
As shown in the next section, a processing technique for 
GNN queries applies multiple conventional NN queries 
(one for each query point) and then combines their results. 
Some related work on this topic has appeared in the 
literature of top-k (or ranked) queries over multiple data 
repositories (see [FLN01, BCG02, F02] for representative 
papers). As an example, consider that a user wants to find 
the k images that are most similar to a query image, where 
similarity is defined according to n features, e.g., color 
histogram, object arrangement, texture, shape etc. The 
query is submitted to n retrieval engines that return the best 
matches for particular features together with their similarity 
scores, i.e., the first engine will output a set of matches 
according to color, the second according to arrangement 
and so on. The problem is to combine the multiple inputs in 
order to determine the top-k results in terms of their overall 
similarity.  
The main idea behind all techniques is to minimize the 
extent and cost of search performed on each retrieval 
engine in order to compute the final result. The threshold 
algorithm [FLN01] works as follows (assuming retrieval of 



 

the single best match): the first query is submitted to the 
first search engine, which returns the closest image p1 
according to the first feature. The similarity between p1 and 
the query image with respect to the other features is 
computed. Then, the second query is submitted to the 
second search engine, which returns p2 (best match 
according to the second feature). The overall similarity of 
p2 is also computed, and the best of p1 and p2 becomes the 
current result. The process is repeated in a round-robin 
fashion, i.e., after the last search engine is queried, the 
second match is retrieved with respect to the first feature 
and so on. The algorithm will terminate when the similarity 
of the current result is higher than the similarity that can be 
achieved by any subsequent solution.  In the next section 
we adapt this approach to GNN processing.  

3. Algorithms for memory-resident queries 
Assuming that the set Q of query points fits in memory and 
that the data points are indexed by an R-tree, we present 
three algorithms for processing GNN queries. For each 
algorithm we first illustrate retrieval of a single nearest 
neighbor, and then show the extension to k>1. Table 3.1 
contains the primary symbols used in our description (some 
have not appeared yet, but will be clarified shortly). 

Symbol Description 
Q set of query points 
Qi a group of queries that fits in memory 

n  (ni) number of queries in Q (Qi) 
M (Mi) MBR of Q (Qi) 

q centroid of Q 
dist(p,Q) sum of distances between  

point p and query points in Q 
mindist(N,q) minimum distance between 

 MBR of node N and centroid q 
mindist(p,M) minimum distance between 

 data point p and query MBR M 

( ),i in mindist N M⋅∑  weighted mindist of node N  
with respect to all query groups 

Table 3.1: Frequently used symbols 

3.1 Multiple query method 

The multiple query method (MQM) utilizes the main idea 
of the threshold algorithm, i.e., it performs incremental NN 
queries for each point in Q and combines their results. For 
instance, in Figure 3.1 (where Q ={q1,q2}), MQM retrieves 
the first NN of q1 (point p10 with |p10q1|=2) and computes 
the distance |p10q2| (=5). Similarly, it finds the first NN of q2 
(point p11 with |p11q2|=3) and computes |p11q1|(=3). The 
point (p11) with the minimum sum of distances 
(|p11q1|+|p11q2|=6) to all query points becomes the current 
GNN of Q.  
For each query point qi, MQM stores a threshold ti, which is 
the distance of the current NN, i.e., t1=|p10q1|=2 and 
t2=|p11q2|=3. The total threshold T is defined as the sum of 
all thresholds (=5). Continuing the example, since T < 

dist(p11,Q), it is possible that there exists a point in P whose 
distance to Q is smaller than dist(p11,Q). So MQM retrieves 
the second NN of q1 (p11, which has already been 
encountered by q2) and updates the threshold t1 to |p11q1| 
(=3). Since T (=6) now equals the summed distance 
between the best neighbor found so far and the points of Q, 
MQM terminates with p11 as the final result. In other words, 
every non-encountered point has distance greater or equal 
to T (=6), and therefore it cannot be closer to Q (in the 
global sense) than p11. 

 
Figure 3.1: Example of a GNN query 

Figure 3.2 shows the pseudo code for MQM (1NN), where 
best_dist (initially ∞) is the distance of the best_NN found 
so far. In order to achieve locality of the node accesses for 
individual queries, we sort the points in Q according to their 
Hilbert value; thus, two subsequent queries are likely to 
correspond to nearby points and access similar R-tree 
nodes. The algorithm for computing nearest neighbors of 
query points should be incremental (e.g., best-first search 
discussed in Section 2) because the termination condition is 
not known in advance. The extension for the retrieval of k 
(>1) nearest neighbors is straightforward. The k neighbors 
with the minimum overall distances are inserted in a list of 
k pairs <p, dist(p,Q)> (sorted on dist(p,Q)) and best_dist 
equals the distance of the k-th NN. Then, MQM proceeds in 
the same way as in Figure 3.2, except that whenever a better 
neighbor is found, it is inserted in best_NN and the last 
element of the list is removed.    

MQM(Q: group of query points) 
/* T : threshold ; best_dist distance of the current NN*/ 
sort points in Q according to Hilbert value; 
for each query point: ti=0;     
T=0;  best_dist=∞; best_NN=null;  //Initialization 
while (T < best_dist) 
   get the next nearest neighbor pj of the next query point qi;  
   ti = |pjqi|; update T;    
   if dist(pj,Q)<best_dist 
                best_NN =pj;  //Update current GNN of Q     
 best_dist =  dist(pj,Q) ;                                    
 end of while; 
return best_NN; 

Figure 3.2: The MQM algorithm 



 

3.2 Single point method 

MQM may incur multiple accesses to the same node (and 
retrieve the same data point, e.g., p11) through different 
queries. To avoid this problem, the single point method 
(SPM) processes GNN queries by a single traversal. First, 
SPM computes the centroid q of Q, which is a point in 
space with a small value of dist(q,Q) (ideally, q is the point 
with the minimum dist(q,Q)). The intuition behind this 
approach is that the nearest neighbor is a point of P "near" 
q.  It remains to derive (i) the computation of q, and (ii) the 
range around q in which we should look for points of P, 
before we conclude that no better NN can be found. 
Towards the first goal, let (x,y) be the coordinates of 
centroid q and (xi,yi) be the coordinates of query point qi. 
The centroid q minimizes the distance function:            
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Since the partial derivatives of function dist(q,Q) with 
respect to its independent variables x and y are zero at the 
centroid q, we have the following equations:  
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Unfortunately, the above equations cannot be solved into 
closed form for n>2, or in other words, they must be 
evaluated numerically, which implies that the centroid is 
approximate. In our implementation, we use the gradient 
descent [HYC01] method to quickly obtain a good 
approximation. Specifically, starting with some arbitrary 
initial coordinates, e.g. x=(1/n)∑i=1~nxi and, y=(1/n)∑i=1~nyi, 
the method modifies the coordinates as follows:  

 ( , )
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where ŋ is a step size.  The process is repeated until the 
distance function dist(q,Q) converges to a minimum value. 
Although the resulting point q is only an approximation of 
the ideal centroid, it suffices for the purposes of SPM. Next 
we show how q can be used to prune the search space based 
on the following lemma.  
Lemma 1: Let Q={q1,…,qn} be a group of query points and 
q an arbitrary point in space. The following inequality holds 
for any point p: dist(p,Q) ≥ n⋅|p q| - dist(q,Q), where |pq| 
denotes the Euclidean distance between p and q.  
Proof: Due to the triangular inequality, for each query point 
qi we have that: |pqi|+|qiq|≥|pq|. By summing up the n 
inequalities:  

| | | | | | ( , ) | |- ( , )
i i

i i
q Q q Q

pq q q n pq dist p Q n pq dist q Q
∈ ∈

+ ≥ ⋅ ⇒ ≥ ⋅∑ ∑  

Lemma 1 provides a threshold for the termination of SPM. 

In particular, by applying an incremental point NN query at 
q, we stop when we find the first point p such that: n⋅|pq| − 
dist(q,Q) ≥ dist(best_NN,Q). By Lemma 1, dist(p,Q) ≥ 
n⋅|pq|−dist(q,Q) and, therefore, dist(p,Q) ≥ dist(best_NN,Q). 
The same idea can be used for pruning intermediate nodes, 
as summarized by the following heuristic.  
Heuristic 1: Let q be the centroid of Q and best_dist be the 
distance of the best GNN found so far. Node N can be 
pruned if: 

+ ( )
( , )

best_dist dist q,Q
mindist N q

n
≥  

where mindist(N,q) is the minimum distance between the 
MBR of N and the centroid q. An example of the heuristic 
is shown in Figure 3.3, where the best_dist = 5+4. Since, 
dist(q,Q)=1+2, the right part of the inequality equals 6, 
meaning that both nodes in the figure will be pruned.    

 
Figure 3.3: Pruning of nodes in SPM 

Based on the above observations, it is straightforward to 
implement SPM using the depth-first or best-first 
paradigms. Figure 3.4 shows the pseudo-code of DF SPM. 
Starting from the root of the R-tree (for P), entries are 
sorted in a list according to their mindist from the query 
centroid q and are visited (recursively) in this order. Once 
the first entry with mindist(Nj,q) ≥ (best_dist+dist(q,Q))/n 
has been found, the subsequent ones in the list are pruned. 
The extension to k (>1) GNN queries is the same as 
conventional (point) NN algorithms. 

SPM(Node: R-tree node, Q: group of query points) 
/* q: the centroid  of Q*/ 
if Node is an intermediate node 
 sort entries Nj in Node according to mindist(Nj,q) in list; 
 repeat  
    get_next entry Nj from list; 
    if mindist(Nj,q)< (best_dist+dist(q,Q))/n; /* Heuristic 1 

  SPM(Nj,Q);  /* recursion*/ 
 until mindist(Nj,q) ≥ (best_dist+dist(q,Q))/n or end of list; 
else if Node is a leaf node 
 sort points pj in Node according to mindist(pj,q) in list; 
 repeat  
    get_next entry pj from list; 
    if |pjq|<(best_dist+dist(q,Q))/n; /* Heuristic 1 for points 
                  if dist(pj,Q)< best_dist    
                         best_NN =pj;   //Update current GNN 
  best_dist =  dist(pj,Q) ;                                    
 until |pjq|≥ (best_dist+dist(q,Q))/n or end of list; 
return best_NN; 

Figure 3.4: The SPM algorithm 



 

3.3 Minimum bounding method 

Like SPM, the minimum bounding method (MBM) 
performs a single query, but uses the minimum bounding 
rectangle M of Q (instead of the centroid q) to prune the 
search space. Specifically, starting from the root of the R-
tree for dataset P, MBM visits only nodes that may contain 
candidate points. In the sequel, we discuss heuristics for 
identifying such qualifying nodes. 
Heuristic 2: Let M be the MBR of Q, and best_dist be the 
distance of the best GNN found so far. A node N cannot 
contain qualifying points, if: 

( , )
best_dist

mindist N M
n

≥  

where mindist(N,M) is the minimum distance between M 
and N, and n is the cardinality of Q. Figure 3.5 shows a 
group of query points Q={q1,q2} and the best_NN with 
best_dist=5. Since mindist(N1,M) = 3 > best_dist/2 = 2.5, 
N1 can be pruned without being visited. In other words, 
even if there is a data point p at the upper-right corner of N1 
and all the query points were at the lower right corner of Q, 
it would still be the case that dist(p,Q)> best_dist. The 
concept of heuristic 2 also applies to the leaf entries. When 
a point p is encountered, we first compute mindist(p,M) 
from p to the MBR of Q. If mindist(p,M) ≥ best_dist/n, p is 
discarded since it cannot be closer than the best_NN. In this 
way we avoid performing the distance computations 
between p and the points of Q. 

 
Figure 3.5: Example of heuristic 2 

The heuristic incurs minimum overhead, since for every 
node it requires a single distance computation. However, it 
is not very tight, i.e., it leads to unnecessary node accesses. 
For instance, node N2 (in Figure 3.5) passes heuristic 2 (and 
should be visited), although it cannot contain qualifying 
points. Heuristic 3 presents a tighter bound for avoiding 
such visits.   
Heuristic 3: Let best_dist be the distance of the best GNN 
found so far. A node N can be safely pruned if: 

( , )
i

i
q Q

mindist N q best_dist
∈

≥∑  

where mindist(N,qi) is the minimum distance between N and 
query point qi ∈  Q. In Figure 3.5, since mindist(N2, q1) + 
mindist(N2, q2) = 6 >  best_dist = 5, N2 is pruned. 
Because heuristic 3 requires multiple distance computations 
(one for each query point) it is applied only for nodes that 
pass heuristic 2. Note that (like heuristic 2) heuristic 3 does 

represent the tightest condition for successful node visits; 
i.e., it is possible for a node to satisfy the heuristic and still 
not contain qualifying points. Consider, for instance, Figure 
3.6, which includes 3 query points. The current best_dist is 
7, and node N3 passes heuristic 3, since mindist(N3,q1) + 
mindist(N3,q2) + mindist(N3,q3) = 5. Nevertheless, N3 
should not be visited, because the minimum distance that 
can be achieved by any point in N3 is greater than 7. The 
dotted lines in Figure 3.6 correspond to the distance 
between the best possible point p' (not necessarily a data 
point) in N3 and the three query points.     

 
 Figure 3.6: Example of a hypothetical optimal heuristic 

Assuming that we can identify the best point p' in the node, 
we can obtain a tight heuristic a follows: if the distance of 
p' is smaller than best_dist visit the node; otherwise, reject 
it. The combination of the best-first approach with this 
heuristic would lead to an I/O optimal method (such as the 
algorithm of [HS99] for conventional NN queries). Finding 
point p', however, is similar to the problem of locating the 
query centroid (but this time in a region constrained by the 
node MBR), which, as discussed in Section 3.2, can only be 
solved numerically (i.e., approximately). Although an 
approximation suffices for SPM, for the correctness of 
best_dist it is necessary to have the precise solution (in 
order to avoid false misses). As a result, this hypothetical 
heuristic cannot be applied for exact GNN retrieval.    
Heuristics 2 and 3 can be used with both the depth-first and 
best-first traversal paradigms. For simplicity, we discuss 
MBM based on depth-fist traversal using the example of 
Figure 3.7. The root of the R-tree is retrieved and its entries 
are sorted by their mindist to M. Then, the node (N1) with 
the minimum mindist is visited, inside which the entry of N4 
has the smallest mindist. Points p5, p6, p4 (in N4) are 
processed according to the value of mindist(pj,M) and p5 
becomes the current GNN of Q (best_dist=11). Points p6 
and p4 have larger distances and are discarded. When 
backtracking to N1, the subtree of N3 is pruned by heuristic 
2. Thus, MBM backtracks again to the root and visits nodes 
N2 and N6, inside which p10 has the smallest mindist to M 
and is processed first, replacing p5 as the GNN 
(best_dist=7). Then, p11 becomes the best NN 
(best_dist=6). Finally, N5 is pruned by heuristic 2, and the 
algorithm terminates with p11 as the final GNN. The 
extension to retrieval of kNN and the best-first 
implementation are straightforward.  



 

N1N3

N4

N5

N2

N6

p1

p2

p3
p4

p5

p6

p7

p8 p9

p10
p11

p12

q1
q2M

2 35
3

5
6

8

11

 
Figure 3.7: Query processing of MBM 

4. Algorithms for disk-resident queries  
We now discuss the situation that the query set does not fit 
in main memory. Section 4.1 considers that Q is indexed by 
an R-tree, and shows how to adapt the R-tree closest pair 
(CP) algorithm [HS98, CMTV00] for GNN queries with 
additional pruning rules. We argue, however, that the R-tree 
on Q offers limited benefits towards reducing the query 
time. Motivated by this, in Sections 4.2 and 4.3 we develop 
two alternative methods, based on MQM and MBM, which 
do not require any index on Q. Again, for simplicity, we 
describe the algorithms for single NN retrieval before 
discussing k>1.  

4.1 Group closest pairs method 

Assume an incremental CP algorithm that outputs closest 
pairs <pi,qj> (pi∈ P, qj∈ Q) in ascending order of their 
distance. Consider that we keep the count(pi) of pairs in 
which pi has appeared, as well as, the accumulated distance 
(curr_dist(pi)) of pi in all these pairs. When the count of pi 
equals the cardinality n of Q, the global distance of pi, with 
respect to all query points, has been computed. If this 
distance is smaller than the best global distance (best_dist) 
found so far, pi becomes the current NN. 
Two questions remain to be answered: (i) which are the 
qualifying data points that can lead to a better solution? (ii) 
when can the algorithm terminate? Regarding the first 
question, clearly all points encountered before the first 
complete NN is found, are qualifying. Every such point pi is 
kept in a list < pi, count(pi), curr_dist(pi)>. On the other 
hand, if we already have a complete NN, every data point 
that is encountered for the first time can be discarded since 
it cannot lead to a better solution. In general, the list of 
qualifying points keeps increasing until a complete NN is 
found. Then, non-qualifying points can be gradually 
removed from the list based on the following heuristic:    
Heuristic 4: Assume that the current output of the CP 
algorithm is <pi,qj>. We can immediately discard all points 
p such that:  

(n-counter(p))⋅ dist(pi,qj) + curr_dist(p) ≥ best_dist 
In other words, p cannot yield a global distance smaller 
than best_dist, even if all its un-computed distances are 

equal to dist(pi,qj). Heuristic 4 is applied in two cases: (i) 
for each output pair <pi,qj>, on the data point pi and (ii) 
when the global NN changes, on all qualifying points. 
Every point p that fails the heuristic is deleted from the 
qualifying list. If p is encountered again in a subsequent 
pair, it will be considered as a new point and pruned. Figure 
4.1a shows an example where the closest pairs are found 
incrementally according to their distance i.e., (<p1,q1>, 2), 
(< p1,q2>, 2), (< p2,q1>, 3), (< p2,q3>, 3), (< p3,q3>, 4), 
(<p2,q2>, 5). After pair <p2,q2> is output, we have a 
complete NN, p2 with global distance 11. Heuristic 4 is 
applied to all qualifying points and p3 is discarded; even if 
its (non yet discovered) distances to q1 and q2 equal 5, its 
global distance will be 14 (i.e., greater than best_dist).     

  
(a) Discovery of 1st NN (b) Termination 

Figure 4.1: Example of GCP 

For each remaining qualifying point pi, we compute a 
threshold ti as: ti=(best_dist-curr_dist(pi)) / (n-counter(pi)). 
In the general case, that multiple qualifying points exist, the 
global threshold T is the maximum of individual thresholds 
ti, i.e., T is the largest distance of the output closest pair that 
can lead to a better solution than the existing one. In Figure 
4.1a, for instance, T=t1=7, meaning that when the output 
pair has distance ≥ 7, the algorithm can terminate. Every 
application of heuristic 4 also modifies the corresponding 
thresholds, so that the value of T is always up to date. Based 
on these observations we are now ready to establish the 
termination condition, i.e., GCP terminates when (i) at least 
a GNN has been found (best_dist<∞) and (ii) the qualifying 
list is empty, or the distance of the current pair becomes 
larger than the global threshold T. Figure 4.1b continues the 
example of Figure 4.1a. In this case the algorithm 
terminates after the pair (< p1,q3>, 6.3) is found, which 
establishes p1 as the best NN (and the list becomes empty).   
The pseudo-code of the GCP is shown in Figure 4.2. We 
store the qualifying list as an in-memory hash table on point 
ids to facilitate the retrieval of information (i.e., counter(pi), 
curr_dist(pi)) about particular points (pi). If the size of the 
list exceeds the available memory, part of the table is stored 
to the disk1. In case of kNN queries, best_dist equals the 
global distance of the k-th complete neighbor found so far 
(i.e., pruning in the qualifying list can occur only after k 
complete neighbors are retrieved). 

                                                                 
1 In the worst case, the list may contain an entry for each point of 

P. 



 

GCP 
best_NN = NULL; best_dist = ∞; /* initialization 
repeat 
 output next closest pair <pi,qj>  and dist(pi,qj) 
   if pi is not in list  
      if  best_dist <  ∞  continue; /* discard pi and process next pair 
      else add < pi, 1, dist(pi,qj)> in list;    
  else  /* pi has been encountered before and still resides in list 
       counter(pi)++; curr_dist(pi)= curr_dist(pi)+ dist(pi,qj); 
       if  counter(pi)= n 
           if curr_dist(pi)< best_dist            
               best_NN = pi;   //Update current GNN  
 best_dist =  curr_dist(pi);   T=0;                            
                for each candidate point p in list  
                   if (n-counter(p))⋅ dist(pi,qj)+curr_dist(p) ≥ best_dist    
                          remove p from list; /* pruned by heuristic 6    
                   else  /* p  not  pruned by heuristic 6 
                         t= (best_dist-curr_dist(p)) / (n-counter(p)); 
                         if t > T  then T = t; /* update threshold 
           else remove pi from list; 
        else /* counter(pi)< n 
          if  best_dist <  ∞  /* a NN has been found already  
             if (n-counter(pi))⋅ dist(pi,qj)+curr_dist(pi) ≥ best_dist 
                  remove pi from list; /* pruned by heuristic 6 
             else  /*not  pruned by heuristic 6 
                 ti= (best_dist-curr_dist(pi)) / (n-counter(pi)); 
                 if ti > T  then T = ti; /* update threshold 
until (best_dist <  ∞) and (dist(pi,qj) ≥ T or list is empty); 
return best_NN; 

Figure 4.2: The GCP algorithm 

When the workspace (i.e., MBR) of Q is small and 
contained in the workspace of P, GCP can terminate after 
outputting a small percentage of the total number of closest 
pairs. Consider, for instance, Figure 4.3a, where there exist 
some points of P (e.g., p2) that are near all query points. 
The number of closest pairs that must be considered 
depends only on the distance between p2 and its farthest 
neighbor (q5) in Q. Data point p3, for example, will not 
participate in any output closest pair since its nearest 
distance to any query point is larger than |p2q5|. 
On the other hand, if the MBR of Q is large or partially 
overlaps (or is disjoint) with the workspace of P, GCP must 
output many closest-pairs before it terminates.  Figure 4.3b, 
shows such an example, where the distance between the 
best_NN (p2) and its farthest query point (q2) is high. In 
addition to the computational overhead of GCP in this case, 
another disadvantage is its large heap requirements. Recall 
that GCP applies an incremental CP algorithm that must 
keep all closest pairs in the heap until the first NN is found. 
The number of such pairs in the worst case equals the 
cardinality of the Cartesian product of the datasets2. To 
                                                                 
2 This may happen if there is a data point (on the corner of the 

workspace) such that (i) its distance to most query points is very 
small (so that the point cannot be pruned) and (ii) its distance to 
a query point (located on the opposite corner of the workspace) 
is the largest possible.     

alleviate the problem, Hjaltason and Samet [HS99] 
proposed a heap management technique (included in our 
implementation), according to which, part of the heap 
migrates to the disk when its size exceeds the available 
memory space. Nevertheless, as shown in Section 5, the 
cost of GCP is often very high, which motivates the 
subsequent algorithms.   
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Figure 4.3: Observations about the performance of GCP 

4.2 F-MQM 

MQM can be applied directly for disk-resident, non-
indexed Q, with however, very high cost due to the large 
number of individual queries that must be performed (as 
shown in Section 5, its cost increases fast with the 
cardinality of Q). In order to overcome this problem, we 
propose F-MQM (file-multiple query method), which splits 
Q into blocks {Q1, .., Qm} that fit in memory. For each 
block, it computes the GNN using one of the main memory 
algorithms (we apply MBM due to its superior performance 
- see Section 5), and finally it combines their results using 
MQM. The complication is that once a NN of a group has 
been retrieved, we cannot effectively compute its global 
distance (i.e., with respect to all data points) immediately. 
Instead, we follow a lazy approach: first we find the GNN 
p1 of the first group Q1; then, we load in memory the second 
group Q2 and retrieve its NN p2. At the same time, we also 
compute the distance between p1 and Q2, whose current 
distance becomes curr_dist(p1) = dist(p1,Q1) + dist(p1,Q2). 
Similarly, when we load Q3, we update the current distances 
of p1 and p2 taking into account the objects of the third 
group. After the end of the first round, we only have one 
data point (p1), whose global distance with respect to all 
query points has been computed. This point becomes the 
current NN.  
The process is repeated in a round robin fashion and at each 
step a new global distance is derived. For instance, when 
we read again the first group (to retrieve its second NN), 
the distance of p2 (first NN of Q2) is completed with respect 
to all groups. Between p1 and p2, the point with the 
minimum global distance becomes the current NN. As in 
the case of MQM, the threshold tj for each group Qj equals 
dist(pj,Qj), where pj is the last retrieved neighbor of Qj. The 
global threshold T is the sum of all thresholds. F-MQM 
terminates when T becomes equal or larger than the global 
distance of the best NN found so far.  



 

The algorithm is illustrated in Figure 4.4. In order to 
achieve locality, we first sort (externally) the points of Q 
according to their Hilbert value. Then, each group is 
obtained by taking a number of consecutive pages that fit in 
memory. The extension for the retrieval of k (>1) GNNs is 
similar to main-memory MQM. In particular, best_NN is 
now a list of k pairs <p, dist(p,Q)> (sorted by the global 
dist(p,Q)) and best_dist equals the distance of the k-th NN. 
Then, it proceeds in the same way as in Figure 4.4.  

F-MQM(Q: group of query points) 
best_NN = NULL; best_dist = ∞; T=0;  /* initialization  
sort points of Q according to Hilbert value and split them into 
groups  {Q1, .., Qm} so  that each group fits in memory; 
while (T < best_dist) 
    read next group Qj; 
    get the next nearest neighbor pj of group Qj ; 
    curr_dist(pj)= dist(pj,Qj) ; 

tj = dist(pj,Qj); update T;  
if it is the first pass of the algorithm   

        for each cur. neighbor pi
 of Qi (1≤i<j) /*update other NN 

                curr_dist(pi)= curr_dist(pi) + dist(pi,Qj) ;  
else /*local NN have been computed for all m groups 
    for each cur. neighbor pi

 of Qi (1≤i≤m,i≠j) /*update other NN 
                curr_dist(pi)= curr_dist(pi) + dist(pi,Qj) ; 
        next=(j+1) modulo m; /*group whose global dist. is complete 
        if curr_dist(pnext)<best_dist 
                best_NN =pnext;  /*update current GNN of Q     
 best_dist =  curr_dist(pnext) ;                                   
    next=(j+1) modulo m; /*next group to process       
end while; 
return best_NN; 

Figure 4.4: The F-MQM algorithm 

F-MQM is expected to perform well if the number of query 
groups is relatively small, minimizing the number of 
applications of the main memory algorithm. On the other 
hand, if there are numerous groups, the combination of the 
individual results may be expensive. Furthermore, as in the 
case of (main-memory) MQM, the algorithm may perform 
redundant computations, if it encounters the same data 
point as a nearest neighbor of different query groups. A 
possible optimization is to keep each NN in memory, 
together with its distances to all groups, so that we avoid 
these computations if the same point is encountered later 
through another group. This however, may not be possible 
if the main memory size is limited.  

4.3 F-MBM 

We can extend both SPM and MBM for the case that Q 
does not fit in memory. Since, as shown in the experiments, 
MBM is more efficient, here we describe F-MBM, an 
adaptation of the minimum bounding method. First, the 
points of Q are sorted by their Hilbert value and are 
inserted in pages according to this order. A page Qi 
contains ni points (it is possible that the number of points 

differs, e.g., the last page may be half-full). For each group 
Qi, we keep in memory its MBR Mi and ni (but not its 
contents). F-MBM descends the R-tree of P (in DF or BF 
traversal), only following nodes that may contain qualifying 
points.  Given that we have the values of Mi and ni for each 
query group in memory, we can quickly identify qualifying 
nodes as follows.  
Heuristic 5: Let best_dist be the distance of the best GNN 
found so far and Mi be the MBR of group Qi. A node N can 
be safely pruned if: 

( , )
i

i i
Q Q

n mindist N M best_dist
∈

⋅ ≥∑  

We refer to the left part of the inequality as the weighted 
mindist of N.  Figure 4.5 shows an example, where 5 query 
points are split into two groups with MBRs M1, M2 and 
best_dist = 20. According to heuristic 5, N can be pruned 
because its weighted mindist (2⋅mindist(N,M1) + 
3⋅mindist(N,M2)) is 20, and it cannot contain a better NN.  

 
Figure 4.5: Example of heuristic 5 

When a leaf node N is reached, we have to compute the 
global distance of its data points with all groups. Initially 
the current distance curr_dist(pj) of each point pj ∈  N is set 
to 0. Then, for each new group Qi (1≤i≤m) that is loaded in 
memory, curr_dist(pj) is updated as curr_dist(pj)+ 
dist(pj,Qi). We can reduce the CPU-overhead of the 
distance computations based on the following heuristic. 
Heuristic 6: Let curr_dist(pj) be the accumulated distance 
of data point pj with respect to groups Q1,.., Qi-1. Then, pj 
can be safely excluded from further consideration if: 

_ ( )+ ( , )
n

j l j l
l=i

curr dist p n mindist p M best_dist⋅ ≥∑  

Figure 4.6 shows an example of heuristic 6, where the first 
group Q1 has been processed and curr_dist(pj) =  dist(pj,Q1) 
= 5+3. Point pj is not compared with the query points of Q2, 
since 8+3⋅mindist(pj,M2)=20 is already equal to best_dist. 
Thus, pj will not be considered for further computations 
(i.e., when subsequent groups are loaded in memory). 

 
Figure 4.6: Example of heuristic 6 



 

The final clarification regards the order according to which 
qualifying nodes and query groups are accessed. For nodes 
we use the weighted mindist, based on the intuition that 
nodes with small values are likely to lead to neighbors with 
small global distance, so that subsequent visits can be 
pruned by heuristic 5. When a leaf node N has been 
reached, each group Qi is read in memory in descending 
order of mindist(N,Mi). The motivation is that groups that 
are far from the node are likely to prune numerous data 
points (thus, saving the distance computations for these 
points with respect to other groups). Figure 4.7 shows the 
pseudo-code of F-MBM based on DF traversal (the BF 
implementation is similar).  

F-MBM(Node: R-tree node, Q: group of query points) 
/* Q consists of {Q1, .., Qm} that fit in memory 
if Node is an intermediate node 
 sort entries Nj in Node (according to weighted mindist) in list; 
 repeat  
    get_next entry Nj from list; 
     if weighted mindist(Nj)< best_dist  /*N passes heuristic 5   
         F-MBM(Nj, Q) ; /* Recursion 
 until weighted mindist(Nj)≥ best_dist  or end of list; 
else if Node is a leaf node 
 sort points pj in Node (according to weighted mindist) in list; 
 for each point pj in list : curr_dist(pj)=0; /* initialization 
 sort groups Qi in descending order of mindist(Node, Mi) ; 
  repeat 
    read next group Qi (1≤i≤m) ; 
    for each point pj in list     
         if _ ( )+ ( , )

n

j l j l
l=i

curr dist p n mindist p M best_dist⋅ ≥∑
 

            remove pj from list; /* pj fails heuristic 6            
        else  /* pj passes heuristic 6 
           curr_dist(pj)= curr_dist(pj)+dist(pj,Qi) ; 
  until weighted mindist(pj)≥best_dist or end list or end of groups; 
  for each point p that remains in list  /*after termination of loops 
    if  curr_dist(p)< best_dist            
               best_NN =p;   //Update current GNN  
 best_dist =  curr_dist(p) ;                                    
return best_NN; 

Figure 4.7: The F-MBM algorithm 

Starting from the root of the R-tree of P, entries are sorted 
by their weighted mindist, and visited (recursively) in this 
order. Once the first node that fails heuristic 5 is found, all 
subsequent nodes in the sorted list can also be pruned. For 
leaf nodes, if a point violates heuristic 6, it is removed from 
the list and is not compared with subsequent groups. The 
extension to k NN is straightforward. 

5. Experiments 
In this section we evaluate the efficiency of the proposed 
algorithms, using two real datasets: (i) PP [Web1] with 
24493 populated places in North America, and (ii) TS 
[Web2], which contains the centroids of 194971 MBRs 
representing streams (poly-lines) of Iowa, Kansas, Missouri 

and Nebraska. For all experiments we use a Pentium 
2.4GHz CPU with 1GByte memory. The page size of the 
R*-trees [BKSS00] is set to 1KByte, resulting in a capacity 
of 50 entries per node. All implementations are based on 
the best-first traversal. Both versions of MQM and GCP 
require BF due to their incremental behavior. SPM and 
MBM (or F-MBM) could also be used with DF. 

5.1 Comparison of algorithms for memory-resident 
queries 

We first compare the methods of Section 3 (MQM, SPM 
and MBM) for main-memory queries. For this purpose, we 
use workloads of 100 queries. Each query has a number n 
of points, distributed uniformly in a MBR of area M, which 
is randomly generated in the workspace of P. The values of 
n and M are identical for all queries in the same workload 
(i.e., the only change between two queries in the same 
workload is the position of the query MBR). First we study 
the effect of the cardinality of Q, by fixing M to 8% of the 
workspace of P and the number k of retrieved group nearest 
neighbors to 8. Figure 5.1 shows the average number of 
node accesses (NA) and CPU cost as functions of n for 
datasets PP and TS.  
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(c) NA vs. n (TS dataset) (d) CPU vs. n (TS dataset) 
Figure 5.1: Cost vs. cardinality n of Q (M=8%, k=8) 

MQM is, in general, the worst method and its cost increases 
fast with the query cardinality, because this leads to 
multiple queries, some of which access the same nodes and 
retrieve the same points. These redundant computations, 
affect both the node accesses and the CPU cost significantly 
(all diagrams are in logarithmic scale). Although most 
queries access similar paths in the R-tree of P (and, 
therefore, MQM benefits from the existence of an LRU 
buffer), its total cost is still prohibitive for large n due to the 



 

high CPU overhead. On the other hand, the cardinality of Q 
has little effect on the node accesses of SPM and MBM 
because it does not play an important role in the pruning 
power of heuristic 1 (for SPM) and heuristics 2, 3 (for 
MBM). It affects, however, the CPU time, because the 
distance computations for qualifying data points increase 
with the number of query points. MBM is better than SPM 
due to the high pruning power of heuristic 3, as opposed to 
heuristic 13. 
In order to measure the effect of the MBR size of Q, we set 
n=64, k=8 and vary M from 2% to 32% of the workspace of 
P. As shown in Figure 5.2, the cost (average NA and CPU 
time) of all algorithms increases with the query MBR. For 
MQM, the termination condition is that the total threshold T 
(i.e., sum of thresholds for each query point) should exceed 
best_dist, which, however, increases with the MBR size. 
Therefore, MQM retrieves more NNs for each query point. 
For SPM (MBM), the reason is the degradation of pruning 
power of heuristic 1 (heuristic 2 and 3) with the MBR size 
of Q.  
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Figure 5.2: Cost vs. size of MBR of Q (n=64, k=8) 

Finally, in Figure 5.3, we set n= 64, M=8% and vary the 
number k of retrieved neighbors from 1 to 32. The value of 
k does not influence the cost of any method significantly, 
because in most cases a large number of neighbors are 
found in the same node with a few extra computations. The 
relative performance of the algorithms is similar to the 

                                                                 
3 We implemented a version of MBM with only heuristic 2 and 

we found it inferior to SPM. Nevertheless, heuristic 2 is useful 
(in conjunction with heuristic 3) because it reduces the CPU 
time requirements of the algorithm.  

previous diagrams: MBM is clearly the most efficient 
method, followed by SPM.  
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(c) NA vs. k (TS dataset)  (d) CPU vs. k (TS dataset) 
Figure 5.3: Cost vs. num. of retrieved NNs (n=64, M=8%) 

5.2 Comparison of algorithms for disk-resident queries 

For this set of experiments we use both datasets (PP, TS) 
alternatively as query and data points. For GCP we assume 
that both datasets are indexed by R-trees, whereas for F-
MQM and F-MBM, the dataset that plays the role of Q is 
sorted (according to Hilbert values) and split into blocks of 
10000 points, that fit in memory. The cost of sorting and 
building the R-trees is not taken into account. Since now the 
query cardinality n is fixed to that of the corresponding 
dataset, we perform experiments by varying the relative 
workspaces of the two datasets.  
First, we assume that the workspaces of P and Q have the 
same centroid, but the area M (of the MBR of Q) varies 
between 2% and 32% of the workspace of P (similar to the 
experiments of Figure 5.2). Figure 5.4 shows NA and CPU 
time assuming that PP is the query dataset and k=8. GCP 
has the worst performance and its cost increases fast with M 
for the reasons discussed in Section 4.1. When M exceeds 
8% percent of the workspace of P, GCP does not terminate 
at all due to the huge heap requirements. The other two 
algorithms are more than an order of magnitude faster. F-
MQM outperforms F-MBM, except for NA in case of large 
(> 4%) query workspaces. The good performance of F-
MQM (compared to the main-memory results) is due to the 
fact that the query set (PP) contains 24493 data points and, 
therefore, it generates only 3 query groups. Each query 
group is processed in memory (by MBM) and their results 
are combined with relatively small overhead.  
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Figure 5.4: Cost vs. size of MBR of Q (k=8, P=TS, Q=PP) 

Figure 5.5 illustrates a similar experiment, where PP plays 
the role of the dataset and TS the role of the query set 
(recall that the cardinality of TS is almost an order of 
magnitude higher than that of PP). In this case F-MBM is 
clearly better, due to the large number (20) of query groups 
whose results must be combined by F-MQM. Comparing 
Figure 5.5 with 5.4, we observe that the performance of F-
MBM is similar, while F-MQM is significantly worse. This 
is consistent with the main-memory behavior of MQM 
(Figure 5.1) where the cost increases fast with the 
cardinality of the query set. GCP is omitted from the 
diagrams because it incurs excessively high cost.    
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Figure 5.5: Cost vs. size of MBR of Q (k=8, P=PP, Q=TS) 

In order to further investigate the effect of the relative 
workspace positions, for the next set of experiments we 
assume that both datasets lie in workspaces of the same 
size, and vary the overlap area between the workspaces 
from 0% (i.e., P and Q are totally disjoint) to 100% (i.e. on 
top of each other). Intermediate values are obtained by 
starting from the 100% case and shifting the query dataset 
on both axes. Figure 5.6 shows the cost of the algorithms 
assuming that Q=PP. The cost of all algorithms grows fast 
with the overlap area because it: (i) increases the number of 
potential candidates within the threshold of F-MQM (ii) 
reduces the pruning power of F-MBM heuristics and (iii) 
increases the number of closest pairs that must be output 
before the termination of GCP. F-MQM clearly 
outperforms F-MBM for up to 50% overlap. In order to 

explain this, let us consider the 0% overlap case assuming 
that the query workspace starts at the upper-right corner of 
the data workspace. The nearest neighbors of all query 
groups must lie near this upper-right corner, since such 
points minimize the total distance. Therefore, F-MQM can 
find the best NN relatively fast, and terminate when all the 
points in or near the corner have been considered. On the 
other hand, because each query group has a large MBR 
(recall that it contains 10000 points), numerous nodes 
satisfy the pruning heuristic of F-MBM and are visited. 
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Figure 5.6: Cost vs. overlap area  (k=8, P=TS, Q=PP) 

Figure 5.7 repeats the experiment by setting Q=TS. The 
clear winner is F-MBM, again due to the numerous queries 
that must be performed by F-MQM. We also performed 
experiments by varying the number of neighbors retrieved, 
while keeping the other parameters fixed. As in the case of 
main-memory queries, k does not have a significant effect 
on performance (and the diagrams are omitted). 
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Figure 5.7: Cost vs. overlap area  (k=8, P=PP, Q=TS) 

In summary, the best algorithm for disk-resident queries 
depends on the number of query groups. F-MQM is usually 
preferable when the query dataset is partitioned in a small 
number of groups; otherwise, F-MBM is better. GCP has 
very poor performance in all cases. We also experimented 
with an alternative version of MBM that uses an R-tree on 
Q (instead of Hilbert sorting). The technique, however, did 
not provide performance benefits because for each 
qualifying point of P we have to compute its accumulated 
distance to all query points anyway.   



 

6. Conclusion 
Given a dataset P and a group of query points Q, a group 
nearest neighbor query retrieves the point of P that 
minimizes the sum of distances to all points in Q. In this 
paper we describe several algorithms for processing such 
queries, including main-memory and disk-resident Q, and 
experimentally evaluate their performance under a variety 
of settings. Since the problem is by definition expensive, 
the performance of different algorithms normally varies up 
to orders of magnitude, which motivates efficient 
processing methods.   
In the future we intend to explore the application of related 
techniques to variations of group nearest neighbor search. 
Consider, for instance, that Q represents a set of facilities 
and the goal is to assign each object of P to a single facility 
so that the sum of distances (of each object to its nearest 
facility) is minimized. Additional constraints (e.g., a facility 
may serve at most k users) may further complicate the 
solutions. Similar problems have been studied in the 
context of clustering and recourse allocation, but the 
proposed methods are different from the ones presented in 
this paper. Furthermore, it would be interesting to study 
other distance metrics (e.g., network distance) that 
necessitate alternative pruning heuristics and algorithms.   
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