

Group Nearest Neighbor Queries

Dimitris Papadias† Qiongmao Shen† Yufei Tao§ Kyriakos Mouratidis†

†Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

{dimitris, qmshen, kyriakos}@cs.ust.hk

§
 Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

taoyf@cs.cityu.edu.hk

Abstract
Given two sets of points P and Q, a group nearest neighbor
(GNN) query retrieves the point(s) of P with the smallest
sum of distances to all points in Q. Consider, for instance,
three users at locations q1, q2 and q3 that want to find a
meeting point (e.g., a restaurant); the corresponding query
returns the data point p that minimizes the sum of Euclidean
distances |pqi| for 1≤i≤3. Assuming that Q fits in memory
and P is indexed by an R-tree, we propose several
algorithms for finding the group nearest neighbors
efficiently. As a second step, we extend our techniques for
situations where Q cannot fit in memory, covering both
indexed and non-indexed query points. An experimental
evaluation identifies the best alternative based on the data
and query properties.

1. Introduction
Nearest neighbor (NN) search is one of the oldest problems
in computer science. Several algorithms and theoretical
performance bounds have been devised for exact and
approximate processing in main memory [S91, AMN+98].
Furthermore, the application of NN search to content-based
and similarity retrieval has led to the development of
numerous cost models [PM97, WSB98, BGRS99, B00] and
indexing techniques [SYUK00, YOTJ01] for high-
dimensional versions of the problem. In spatial databases
most of the work has focused on the point NN query that
retrieves the k (≥1) objects from a dataset P that are closest
(usually according to Euclidean distance) to a query point
q. The existing algorithms (reviewed in Section 2) assume
that P is indexed by a spatial access method and utilize
some pruning bounds to restrict the search space. Shahabi
et al. [SKS02] and Papadias et al. [PZMT03] deal with
nearest neighbor queries in spatial network databases,
where the distance between two points is defined as the
length of the shortest path connecting them in the network.
In addition to conventional (i.e., point) NN queries, recently
there has been an increasing interest in alternative forms of
spatial and spatio-temporal NN search. Ferhatosmanoglu et
al. [FSAA01] discover the NN in a constrained area of the
data space. Korn and Muthukrishnan [KM00] discuss

reverse nearest neighbor queries, where the goal is to
retrieve the data points whose nearest neighbor is a
specified query point. Korn et al. [KMS02] study the same
problem in the context of data streams. Given a query
moving with steady velocity, [SR01, TP02] incrementally
maintain the NN (as the query moves), while [BJKS02,
TPS02] propose techniques for continuous NN processing,
where the goal is to return all results up to a future time.
Kollios et al. [KGT99] develop various schemes for
answering NN queries on 1D moving objects. An overview
of existing NN methods for spatial and spatio-temporal
databases can be found in [TP03].
In this paper we discuss group nearest neighbor (GNN)
queries, a novel form of NN search. The input of the
problem consists of a set P={p1,…,pN} of static data points
in multidimensional space and a group of query points
Q={q1,…,qn}. The output contains the k (≥1) data point(s)
with the smallest sum of distances to all points in Q. The
distance between a data point p and Q is defined as
dist(p,Q)=∑i=1~n|pqi|, where |pqi| is the Euclidean distance
between p and query point qi. As an example consider a
database that manages (static) facilities (i.e., dataset P). The
query contains a set of user locations Q={q1,…,qn} and the
result returns the facility that minimizes the total travel
distance for all users. In addition to its relevance in
geographic information systems and mobile computing
applications, GNN search is important in several other
domains. For instance, in clustering [JMF99] and outlier
detection [AY01], the quality of a solution can be evaluated
by the distances between the points and their nearest cluster
centroid. Furthermore, the operability and speed of very
large circuits depends on the relative distance between the
various components in them. GNN can be applied to detect
abnormalities and guide relocation of components [NO97].
Assuming that Q fits in memory and P is indexed by an R-
tree, we first propose three algorithms for solving this
problem. Then, we extend our techniques for cases that Q is
too large to fit in memory, covering both indexed and non-
indexed query points. The rest of the paper is structured as
follows. Section 2 outlines the related work on conventional
nearest neighbor search and top-k queries. Section 3

describes algorithms for the case that Q fits in memory and
Section 4 for the case that Q resides on the disk. Section 5
experimentally evaluates the algorithms and identifies the
best one depending on the problem characteristics. Section
6 concludes the paper with directions for future work.

2. Related work
Following most approaches in the relevant literature, we
assume 2D data points indexed by an R-tree [G84]. The
proposed techniques, however, are applicable to higher
dimensions and other data-partition access methods such as
A-trees [SYUK00] etc. Figure 2.1 shows an R-tree for point
set P={p1,p2,…,p12} assuming a capacity of three entries
per node. Points that are close in space (e.g., p1, p2, p3) are
clustered in the same leaf node (N3). Nodes are then
recursively grouped together with the same principle until
the top level, which consists of a single root.
Existing algorithms for point NN queries using R-trees
follow the branch-and-bound paradigm, utilizing some
metrics to prune the search space. The most common such
metric is mindist(N,q), which corresponds to the closest
possible distance between q and any point in the subtree of
node N. Figure 2.1a shows the mindist between point q and
nodes N1, N2. Similarly, mindist(N1,N2) is the minimum
possible distance between any two points that reside in the
sub-trees of nodes N1 and N2.

R

N3 N4

N6
N5

p1 p2 p3 p4 p5 p6

p7 p8 p9 p10 p11 p12

N3 N4 N5 N6

N1 N2

N1
N2

(a) Points and node extents (b) The corresponding R-tree
Figure 2.1: Example of an R-tree and a point NN query

The first NN algorithm for R-trees [RKV95] searches the
tree in a depth-first (DF) manner. Specifically, starting from
the root, it visits the node with the minimum mindist from q
(e.g., N1 in Figure 2.1). The process is repeated recursively
until the leaf level (node N4), where the first potential
nearest neighbor is found (p5). During backtracking to the
upper level (node N1), the algorithm only visits entries
whose minimum distance is smaller than the distance of the
nearest neighbor already retrieved. In the example of Figure
2.1, after discovering p5, DF will backtrack to the root level
(without visiting N3), and then follow the path N2,N6 where
the actual NN p11 is found.
The DF algorithm is sub-optimal, i.e., it accesses more
nodes than necessary. In particular, as proven in [PM97], an
optimal algorithm should visit only nodes intersecting the
vicinity circle that centers at the query point q and has
radius equal to the distance between q and its nearest

neighbor. In Figure 2.1a, for instance, an optimal algorithm
should visit only nodes R, N1, N2, and N6 (whereas DF also
visits N4). The best-first (BF) algorithm of [HS99] achieves
the optimal I/O performance by maintaining a heap H with
the entries visited so far, sorted by their mindist. As with
DF, BF starts from the root, and inserts all the entries into
H (together with their mindist), e.g., in Figure 2.1a,
H={<N1, mindist(N1,q)>, <N2, mindist(N2,q)>}. Then, at
each step, BF visits the node in H with the smallest mindist.
Continuing the example, the algorithm retrieves the content
of N1 and inserts all its entries in H, after which H={<N2,
mindist(N2,q)>, <N4, mindist(N4,q)>, <N3, mindist(N3,q)>}.
Similarly, the next two nodes accessed are N2 and N6
(inserted in H after visiting N2), in which p11 is discovered
as the current NN. At this time, the algorithm terminates
(with p11 as the final result) since the next entry (N4) in H is
farther (from q) than p11. Both DF and BF can be easily
extended for the retrieval of k>1 nearest neighbors. In
addition, BF is also incremental. Namely, it reports the
nearest neighbors in ascending order of their distance to the
query, so that k does not have to be known in advance
(allowing different termination conditions to be used).
The branch-and-bound framework also applies to closest
pair queries that find the pair of objects from two datasets,
such that their distance is the minimum among all pairs.
[HS98, CMTV00] propose various algorithms based on the
concepts of DF and BF traversal. The difference from NN
is that the algorithms access two index structures (one for
each data set) simultaneously. If the mindist of two
intermediate nodes Ni and Nj (one from each R-tree) is
already greater than the distance of the closest pair of
objects found so far, the sub-trees of Ni and Nj cannot
contain a closest pair (thus, the pair is pruned).
As shown in the next section, a processing technique for
GNN queries applies multiple conventional NN queries
(one for each query point) and then combines their results.
Some related work on this topic has appeared in the
literature of top-k (or ranked) queries over multiple data
repositories (see [FLN01, BCG02, F02] for representative
papers). As an example, consider that a user wants to find
the k images that are most similar to a query image, where
similarity is defined according to n features, e.g., color
histogram, object arrangement, texture, shape etc. The
query is submitted to n retrieval engines that return the best
matches for particular features together with their similarity
scores, i.e., the first engine will output a set of matches
according to color, the second according to arrangement
and so on. The problem is to combine the multiple inputs in
order to determine the top-k results in terms of their overall
similarity.
The main idea behind all techniques is to minimize the
extent and cost of search performed on each retrieval
engine in order to compute the final result. The threshold
algorithm [FLN01] works as follows (assuming retrieval of

the single best match): the first query is submitted to the
first search engine, which returns the closest image p1
according to the first feature. The similarity between p1 and
the query image with respect to the other features is
computed. Then, the second query is submitted to the
second search engine, which returns p2 (best match
according to the second feature). The overall similarity of
p2 is also computed, and the best of p1 and p2 becomes the
current result. The process is repeated in a round-robin
fashion, i.e., after the last search engine is queried, the
second match is retrieved with respect to the first feature
and so on. The algorithm will terminate when the similarity
of the current result is higher than the similarity that can be
achieved by any subsequent solution. In the next section
we adapt this approach to GNN processing.

3. Algorithms for memory-resident queries
Assuming that the set Q of query points fits in memory and
that the data points are indexed by an R-tree, we present
three algorithms for processing GNN queries. For each
algorithm we first illustrate retrieval of a single nearest
neighbor, and then show the extension to k>1. Table 3.1
contains the primary symbols used in our description (some
have not appeared yet, but will be clarified shortly).

Symbol Description
Q set of query points
Qi a group of queries that fits in memory

n (ni) number of queries in Q (Qi)
M (Mi) MBR of Q (Qi)

q centroid of Q
dist(p,Q) sum of distances between

point p and query points in Q
mindist(N,q) minimum distance between

 MBR of node N and centroid q
mindist(p,M) minimum distance between

 data point p and query MBR M

(),i in mindist N M⋅∑ weighted mindist of node N
with respect to all query groups

Table 3.1: Frequently used symbols

3.1 Multiple query method

The multiple query method (MQM) utilizes the main idea
of the threshold algorithm, i.e., it performs incremental NN
queries for each point in Q and combines their results. For
instance, in Figure 3.1 (where Q ={q1,q2}), MQM retrieves
the first NN of q1 (point p10 with |p10q1|=2) and computes
the distance |p10q2| (=5). Similarly, it finds the first NN of q2
(point p11 with |p11q2|=3) and computes |p11q1|(=3). The
point (p11) with the minimum sum of distances
(|p11q1|+|p11q2|=6) to all query points becomes the current
GNN of Q.
For each query point qi, MQM stores a threshold ti, which is
the distance of the current NN, i.e., t1=|p10q1|=2 and
t2=|p11q2|=3. The total threshold T is defined as the sum of
all thresholds (=5). Continuing the example, since T <

dist(p11,Q), it is possible that there exists a point in P whose
distance to Q is smaller than dist(p11,Q). So MQM retrieves
the second NN of q1 (p11, which has already been
encountered by q2) and updates the threshold t1 to |p11q1|
(=3). Since T (=6) now equals the summed distance
between the best neighbor found so far and the points of Q,
MQM terminates with p11 as the final result. In other words,
every non-encountered point has distance greater or equal
to T (=6), and therefore it cannot be closer to Q (in the
global sense) than p11.

Figure 3.1: Example of a GNN query

Figure 3.2 shows the pseudo code for MQM (1NN), where
best_dist (initially ∞) is the distance of the best_NN found
so far. In order to achieve locality of the node accesses for
individual queries, we sort the points in Q according to their
Hilbert value; thus, two subsequent queries are likely to
correspond to nearby points and access similar R-tree
nodes. The algorithm for computing nearest neighbors of
query points should be incremental (e.g., best-first search
discussed in Section 2) because the termination condition is
not known in advance. The extension for the retrieval of k
(>1) nearest neighbors is straightforward. The k neighbors
with the minimum overall distances are inserted in a list of
k pairs <p, dist(p,Q)> (sorted on dist(p,Q)) and best_dist
equals the distance of the k-th NN. Then, MQM proceeds in
the same way as in Figure 3.2, except that whenever a better
neighbor is found, it is inserted in best_NN and the last
element of the list is removed.

MQM(Q: group of query points)
/* T : threshold ; best_dist distance of the current NN*/
sort points in Q according to Hilbert value;
for each query point: ti=0;
T=0; best_dist=∞; best_NN=null; //Initialization
while (T < best_dist)
 get the next nearest neighbor pj of the next query point qi;
 ti = |pjqi|; update T;
 if dist(pj,Q)<best_dist
 best_NN =pj; //Update current GNN of Q
 best_dist = dist(pj,Q) ;
 end of while;
return best_NN;

Figure 3.2: The MQM algorithm

3.2 Single point method

MQM may incur multiple accesses to the same node (and
retrieve the same data point, e.g., p11) through different
queries. To avoid this problem, the single point method
(SPM) processes GNN queries by a single traversal. First,
SPM computes the centroid q of Q, which is a point in
space with a small value of dist(q,Q) (ideally, q is the point
with the minimum dist(q,Q)). The intuition behind this
approach is that the nearest neighbor is a point of P "near"
q. It remains to derive (i) the computation of q, and (ii) the
range around q in which we should look for points of P,
before we conclude that no better NN can be found.
Towards the first goal, let (x,y) be the coordinates of
centroid q and (xi,yi) be the coordinates of query point qi.
The centroid q minimizes the distance function:

2 2

1

(,) (-) ()
n

i i
i

dist q Q x x y y
=

= + −∑

Since the partial derivatives of function dist(q,Q) with
respect to its independent variables x and y are zero at the
centroid q, we have the following equations:

2 2
1

2 2
1

 (,)
0

 () ()

 (,)
0

 () ()

n
i

i
i i

n
i

i i i

x xdist q Q

x x x y y

y ydist q Q

y x x y y

=

=

−∂ = = ∂ − + −
 −∂ = =
 ∂ − + −

∑

∑

Unfortunately, the above equations cannot be solved into
closed form for n>2, or in other words, they must be
evaluated numerically, which implies that the centroid is
approximate. In our implementation, we use the gradient
descent [HYC01] method to quickly obtain a good
approximation. Specifically, starting with some arbitrary
initial coordinates, e.g. x=(1/n)∑i=1~nxi and, y=(1/n)∑i=1~nyi,
the method modifies the coordinates as follows:

 (,)

dist q Q
x x

x
η ∂= −

∂
 and

 (,)

dist q Q
y y

y
η ∂= −

∂
,

where ŋ is a step size. The process is repeated until the
distance function dist(q,Q) converges to a minimum value.
Although the resulting point q is only an approximation of
the ideal centroid, it suffices for the purposes of SPM. Next
we show how q can be used to prune the search space based
on the following lemma.
Lemma 1: Let Q={q1,…,qn} be a group of query points and
q an arbitrary point in space. The following inequality holds
for any point p: dist(p,Q) ≥ n⋅|p q| - dist(q,Q), where |pq|
denotes the Euclidean distance between p and q.
Proof: Due to the triangular inequality, for each query point
qi we have that: |pqi|+|qiq|≥|pq|. By summing up the n
inequalities:

| | | | | | (,) | |- (,)
i i

i i
q Q q Q

pq q q n pq dist p Q n pq dist q Q
∈ ∈

+ ≥ ⋅ ⇒ ≥ ⋅∑ ∑

Lemma 1 provides a threshold for the termination of SPM.

In particular, by applying an incremental point NN query at
q, we stop when we find the first point p such that: n⋅|pq| −
dist(q,Q) ≥ dist(best_NN,Q). By Lemma 1, dist(p,Q) ≥
n⋅|pq|−dist(q,Q) and, therefore, dist(p,Q) ≥ dist(best_NN,Q).
The same idea can be used for pruning intermediate nodes,
as summarized by the following heuristic.
Heuristic 1: Let q be the centroid of Q and best_dist be the
distance of the best GNN found so far. Node N can be
pruned if:

+ ()
(,)

best_dist dist q,Q
mindist N q

n
≥

where mindist(N,q) is the minimum distance between the
MBR of N and the centroid q. An example of the heuristic
is shown in Figure 3.3, where the best_dist = 5+4. Since,
dist(q,Q)=1+2, the right part of the inequality equals 6,
meaning that both nodes in the figure will be pruned.

Figure 3.3: Pruning of nodes in SPM

Based on the above observations, it is straightforward to
implement SPM using the depth-first or best-first
paradigms. Figure 3.4 shows the pseudo-code of DF SPM.
Starting from the root of the R-tree (for P), entries are
sorted in a list according to their mindist from the query
centroid q and are visited (recursively) in this order. Once
the first entry with mindist(Nj,q) ≥ (best_dist+dist(q,Q))/n
has been found, the subsequent ones in the list are pruned.
The extension to k (>1) GNN queries is the same as
conventional (point) NN algorithms.

SPM(Node: R-tree node, Q: group of query points)
/* q: the centroid of Q*/
if Node is an intermediate node
 sort entries Nj in Node according to mindist(Nj,q) in list;
 repeat
 get_next entry Nj from list;
 if mindist(Nj,q)< (best_dist+dist(q,Q))/n; /* Heuristic 1

 SPM(Nj,Q); /* recursion*/
 until mindist(Nj,q) ≥ (best_dist+dist(q,Q))/n or end of list;
else if Node is a leaf node
 sort points pj in Node according to mindist(pj,q) in list;
 repeat
 get_next entry pj from list;
 if |pjq|<(best_dist+dist(q,Q))/n; /* Heuristic 1 for points
 if dist(pj,Q)< best_dist
 best_NN =pj; //Update current GNN
 best_dist = dist(pj,Q) ;
 until |pjq|≥ (best_dist+dist(q,Q))/n or end of list;
return best_NN;

Figure 3.4: The SPM algorithm

3.3 Minimum bounding method

Like SPM, the minimum bounding method (MBM)
performs a single query, but uses the minimum bounding
rectangle M of Q (instead of the centroid q) to prune the
search space. Specifically, starting from the root of the R-
tree for dataset P, MBM visits only nodes that may contain
candidate points. In the sequel, we discuss heuristics for
identifying such qualifying nodes.
Heuristic 2: Let M be the MBR of Q, and best_dist be the
distance of the best GNN found so far. A node N cannot
contain qualifying points, if:

(,)
best_dist

mindist N M
n

≥

where mindist(N,M) is the minimum distance between M
and N, and n is the cardinality of Q. Figure 3.5 shows a
group of query points Q={q1,q2} and the best_NN with
best_dist=5. Since mindist(N1,M) = 3 > best_dist/2 = 2.5,
N1 can be pruned without being visited. In other words,
even if there is a data point p at the upper-right corner of N1
and all the query points were at the lower right corner of Q,
it would still be the case that dist(p,Q)> best_dist. The
concept of heuristic 2 also applies to the leaf entries. When
a point p is encountered, we first compute mindist(p,M)
from p to the MBR of Q. If mindist(p,M) ≥ best_dist/n, p is
discarded since it cannot be closer than the best_NN. In this
way we avoid performing the distance computations
between p and the points of Q.

Figure 3.5: Example of heuristic 2

The heuristic incurs minimum overhead, since for every
node it requires a single distance computation. However, it
is not very tight, i.e., it leads to unnecessary node accesses.
For instance, node N2 (in Figure 3.5) passes heuristic 2 (and
should be visited), although it cannot contain qualifying
points. Heuristic 3 presents a tighter bound for avoiding
such visits.
Heuristic 3: Let best_dist be the distance of the best GNN
found so far. A node N can be safely pruned if:

(,)
i

i
q Q

mindist N q best_dist
∈

≥∑

where mindist(N,qi) is the minimum distance between N and
query point qi ∈ Q. In Figure 3.5, since mindist(N2, q1) +
mindist(N2, q2) = 6 > best_dist = 5, N2 is pruned.
Because heuristic 3 requires multiple distance computations
(one for each query point) it is applied only for nodes that
pass heuristic 2. Note that (like heuristic 2) heuristic 3 does

represent the tightest condition for successful node visits;
i.e., it is possible for a node to satisfy the heuristic and still
not contain qualifying points. Consider, for instance, Figure
3.6, which includes 3 query points. The current best_dist is
7, and node N3 passes heuristic 3, since mindist(N3,q1) +
mindist(N3,q2) + mindist(N3,q3) = 5. Nevertheless, N3
should not be visited, because the minimum distance that
can be achieved by any point in N3 is greater than 7. The
dotted lines in Figure 3.6 correspond to the distance
between the best possible point p' (not necessarily a data
point) in N3 and the three query points.

 Figure 3.6: Example of a hypothetical optimal heuristic

Assuming that we can identify the best point p' in the node,
we can obtain a tight heuristic a follows: if the distance of
p' is smaller than best_dist visit the node; otherwise, reject
it. The combination of the best-first approach with this
heuristic would lead to an I/O optimal method (such as the
algorithm of [HS99] for conventional NN queries). Finding
point p', however, is similar to the problem of locating the
query centroid (but this time in a region constrained by the
node MBR), which, as discussed in Section 3.2, can only be
solved numerically (i.e., approximately). Although an
approximation suffices for SPM, for the correctness of
best_dist it is necessary to have the precise solution (in
order to avoid false misses). As a result, this hypothetical
heuristic cannot be applied for exact GNN retrieval.
Heuristics 2 and 3 can be used with both the depth-first and
best-first traversal paradigms. For simplicity, we discuss
MBM based on depth-fist traversal using the example of
Figure 3.7. The root of the R-tree is retrieved and its entries
are sorted by their mindist to M. Then, the node (N1) with
the minimum mindist is visited, inside which the entry of N4
has the smallest mindist. Points p5, p6, p4 (in N4) are
processed according to the value of mindist(pj,M) and p5
becomes the current GNN of Q (best_dist=11). Points p6
and p4 have larger distances and are discarded. When
backtracking to N1, the subtree of N3 is pruned by heuristic
2. Thus, MBM backtracks again to the root and visits nodes
N2 and N6, inside which p10 has the smallest mindist to M
and is processed first, replacing p5 as the GNN
(best_dist=7). Then, p11 becomes the best NN
(best_dist=6). Finally, N5 is pruned by heuristic 2, and the
algorithm terminates with p11 as the final GNN. The
extension to retrieval of kNN and the best-first
implementation are straightforward.

N1N3

N4

N5

N2

N6

p1

p2

p3
p4

p5

p6

p7

p8 p9

p10
p11

p12

q1
q2M

2 35
3

5
6

8

11

Figure 3.7: Query processing of MBM

4. Algorithms for disk-resident queries
We now discuss the situation that the query set does not fit
in main memory. Section 4.1 considers that Q is indexed by
an R-tree, and shows how to adapt the R-tree closest pair
(CP) algorithm [HS98, CMTV00] for GNN queries with
additional pruning rules. We argue, however, that the R-tree
on Q offers limited benefits towards reducing the query
time. Motivated by this, in Sections 4.2 and 4.3 we develop
two alternative methods, based on MQM and MBM, which
do not require any index on Q. Again, for simplicity, we
describe the algorithms for single NN retrieval before
discussing k>1.

4.1 Group closest pairs method

Assume an incremental CP algorithm that outputs closest
pairs <pi,qj> (pi∈ P, qj∈ Q) in ascending order of their
distance. Consider that we keep the count(pi) of pairs in
which pi has appeared, as well as, the accumulated distance
(curr_dist(pi)) of pi in all these pairs. When the count of pi
equals the cardinality n of Q, the global distance of pi, with
respect to all query points, has been computed. If this
distance is smaller than the best global distance (best_dist)
found so far, pi becomes the current NN.
Two questions remain to be answered: (i) which are the
qualifying data points that can lead to a better solution? (ii)
when can the algorithm terminate? Regarding the first
question, clearly all points encountered before the first
complete NN is found, are qualifying. Every such point pi is
kept in a list < pi, count(pi), curr_dist(pi)>. On the other
hand, if we already have a complete NN, every data point
that is encountered for the first time can be discarded since
it cannot lead to a better solution. In general, the list of
qualifying points keeps increasing until a complete NN is
found. Then, non-qualifying points can be gradually
removed from the list based on the following heuristic:
Heuristic 4: Assume that the current output of the CP
algorithm is <pi,qj>. We can immediately discard all points
p such that:

(n-counter(p))⋅ dist(pi,qj) + curr_dist(p) ≥ best_dist
In other words, p cannot yield a global distance smaller
than best_dist, even if all its un-computed distances are

equal to dist(pi,qj). Heuristic 4 is applied in two cases: (i)
for each output pair <pi,qj>, on the data point pi and (ii)
when the global NN changes, on all qualifying points.
Every point p that fails the heuristic is deleted from the
qualifying list. If p is encountered again in a subsequent
pair, it will be considered as a new point and pruned. Figure
4.1a shows an example where the closest pairs are found
incrementally according to their distance i.e., (<p1,q1>, 2),
(< p1,q2>, 2), (< p2,q1>, 3), (< p2,q3>, 3), (< p3,q3>, 4),
(<p2,q2>, 5). After pair <p2,q2> is output, we have a
complete NN, p2 with global distance 11. Heuristic 4 is
applied to all qualifying points and p3 is discarded; even if
its (non yet discovered) distances to q1 and q2 equal 5, its
global distance will be 14 (i.e., greater than best_dist).

(a) Discovery of 1st NN (b) Termination

Figure 4.1: Example of GCP

For each remaining qualifying point pi, we compute a
threshold ti as: ti=(best_dist-curr_dist(pi)) / (n-counter(pi)).
In the general case, that multiple qualifying points exist, the
global threshold T is the maximum of individual thresholds
ti, i.e., T is the largest distance of the output closest pair that
can lead to a better solution than the existing one. In Figure
4.1a, for instance, T=t1=7, meaning that when the output
pair has distance ≥ 7, the algorithm can terminate. Every
application of heuristic 4 also modifies the corresponding
thresholds, so that the value of T is always up to date. Based
on these observations we are now ready to establish the
termination condition, i.e., GCP terminates when (i) at least
a GNN has been found (best_dist<∞) and (ii) the qualifying
list is empty, or the distance of the current pair becomes
larger than the global threshold T. Figure 4.1b continues the
example of Figure 4.1a. In this case the algorithm
terminates after the pair (< p1,q3>, 6.3) is found, which
establishes p1 as the best NN (and the list becomes empty).
The pseudo-code of the GCP is shown in Figure 4.2. We
store the qualifying list as an in-memory hash table on point
ids to facilitate the retrieval of information (i.e., counter(pi),
curr_dist(pi)) about particular points (pi). If the size of the
list exceeds the available memory, part of the table is stored
to the disk1. In case of kNN queries, best_dist equals the
global distance of the k-th complete neighbor found so far
(i.e., pruning in the qualifying list can occur only after k
complete neighbors are retrieved).

1 In the worst case, the list may contain an entry for each point of

P.

GCP
best_NN = NULL; best_dist = ∞; /* initialization
repeat
 output next closest pair <pi,qj> and dist(pi,qj)
 if pi is not in list
 if best_dist < ∞ continue; /* discard pi and process next pair
 else add < pi, 1, dist(pi,qj)> in list;
 else /* pi has been encountered before and still resides in list
 counter(pi)++; curr_dist(pi)= curr_dist(pi)+ dist(pi,qj);
 if counter(pi)= n
 if curr_dist(pi)< best_dist
 best_NN = pi; //Update current GNN
 best_dist = curr_dist(pi); T=0;
 for each candidate point p in list
 if (n-counter(p))⋅ dist(pi,qj)+curr_dist(p) ≥ best_dist
 remove p from list; /* pruned by heuristic 6
 else /* p not pruned by heuristic 6
 t= (best_dist-curr_dist(p)) / (n-counter(p));
 if t > T then T = t; /* update threshold
 else remove pi from list;
 else /* counter(pi)< n
 if best_dist < ∞ /* a NN has been found already
 if (n-counter(pi))⋅ dist(pi,qj)+curr_dist(pi) ≥ best_dist
 remove pi from list; /* pruned by heuristic 6
 else /*not pruned by heuristic 6
 ti= (best_dist-curr_dist(pi)) / (n-counter(pi));
 if ti > T then T = ti; /* update threshold
until (best_dist < ∞) and (dist(pi,qj) ≥ T or list is empty);
return best_NN;

Figure 4.2: The GCP algorithm

When the workspace (i.e., MBR) of Q is small and
contained in the workspace of P, GCP can terminate after
outputting a small percentage of the total number of closest
pairs. Consider, for instance, Figure 4.3a, where there exist
some points of P (e.g., p2) that are near all query points.
The number of closest pairs that must be considered
depends only on the distance between p2 and its farthest
neighbor (q5) in Q. Data point p3, for example, will not
participate in any output closest pair since its nearest
distance to any query point is larger than |p2q5|.
On the other hand, if the MBR of Q is large or partially
overlaps (or is disjoint) with the workspace of P, GCP must
output many closest-pairs before it terminates. Figure 4.3b,
shows such an example, where the distance between the
best_NN (p2) and its farthest query point (q2) is high. In
addition to the computational overhead of GCP in this case,
another disadvantage is its large heap requirements. Recall
that GCP applies an incremental CP algorithm that must
keep all closest pairs in the heap until the first NN is found.
The number of such pairs in the worst case equals the
cardinality of the Cartesian product of the datasets2. To

2 This may happen if there is a data point (on the corner of the

workspace) such that (i) its distance to most query points is very
small (so that the point cannot be pruned) and (ii) its distance to
a query point (located on the opposite corner of the workspace)
is the largest possible.

alleviate the problem, Hjaltason and Samet [HS99]
proposed a heap management technique (included in our
implementation), according to which, part of the heap
migrates to the disk when its size exceeds the available
memory space. Nevertheless, as shown in Section 5, the
cost of GCP is often very high, which motivates the
subsequent algorithms.

workspace of Q

p
2

workspace of P

q
1 q

2

q
3

q
4

q
5

p
1

p
3

(a) High pruning (b) Low pruning
Figure 4.3: Observations about the performance of GCP

4.2 F-MQM

MQM can be applied directly for disk-resident, non-
indexed Q, with however, very high cost due to the large
number of individual queries that must be performed (as
shown in Section 5, its cost increases fast with the
cardinality of Q). In order to overcome this problem, we
propose F-MQM (file-multiple query method), which splits
Q into blocks {Q1, .., Qm} that fit in memory. For each
block, it computes the GNN using one of the main memory
algorithms (we apply MBM due to its superior performance
- see Section 5), and finally it combines their results using
MQM. The complication is that once a NN of a group has
been retrieved, we cannot effectively compute its global
distance (i.e., with respect to all data points) immediately.
Instead, we follow a lazy approach: first we find the GNN
p1 of the first group Q1; then, we load in memory the second
group Q2 and retrieve its NN p2. At the same time, we also
compute the distance between p1 and Q2, whose current
distance becomes curr_dist(p1) = dist(p1,Q1) + dist(p1,Q2).
Similarly, when we load Q3, we update the current distances
of p1 and p2 taking into account the objects of the third
group. After the end of the first round, we only have one
data point (p1), whose global distance with respect to all
query points has been computed. This point becomes the
current NN.
The process is repeated in a round robin fashion and at each
step a new global distance is derived. For instance, when
we read again the first group (to retrieve its second NN),
the distance of p2 (first NN of Q2) is completed with respect
to all groups. Between p1 and p2, the point with the
minimum global distance becomes the current NN. As in
the case of MQM, the threshold tj for each group Qj equals
dist(pj,Qj), where pj is the last retrieved neighbor of Qj. The
global threshold T is the sum of all thresholds. F-MQM
terminates when T becomes equal or larger than the global
distance of the best NN found so far.

The algorithm is illustrated in Figure 4.4. In order to
achieve locality, we first sort (externally) the points of Q
according to their Hilbert value. Then, each group is
obtained by taking a number of consecutive pages that fit in
memory. The extension for the retrieval of k (>1) GNNs is
similar to main-memory MQM. In particular, best_NN is
now a list of k pairs <p, dist(p,Q)> (sorted by the global
dist(p,Q)) and best_dist equals the distance of the k-th NN.
Then, it proceeds in the same way as in Figure 4.4.

F-MQM(Q: group of query points)
best_NN = NULL; best_dist = ∞; T=0; /* initialization
sort points of Q according to Hilbert value and split them into
groups {Q1, .., Qm} so that each group fits in memory;
while (T < best_dist)
 read next group Qj;
 get the next nearest neighbor pj of group Qj ;
 curr_dist(pj)= dist(pj,Qj) ;

tj = dist(pj,Qj); update T;
if it is the first pass of the algorithm

 for each cur. neighbor pi
 of Qi (1≤i<j) /*update other NN

 curr_dist(pi)= curr_dist(pi) + dist(pi,Qj) ;
else /*local NN have been computed for all m groups
 for each cur. neighbor pi

 of Qi (1≤i≤m,i≠j) /*update other NN
 curr_dist(pi)= curr_dist(pi) + dist(pi,Qj) ;
 next=(j+1) modulo m; /*group whose global dist. is complete
 if curr_dist(pnext)<best_dist
 best_NN =pnext; /*update current GNN of Q
 best_dist = curr_dist(pnext) ;
 next=(j+1) modulo m; /*next group to process
end while;
return best_NN;

Figure 4.4: The F-MQM algorithm

F-MQM is expected to perform well if the number of query
groups is relatively small, minimizing the number of
applications of the main memory algorithm. On the other
hand, if there are numerous groups, the combination of the
individual results may be expensive. Furthermore, as in the
case of (main-memory) MQM, the algorithm may perform
redundant computations, if it encounters the same data
point as a nearest neighbor of different query groups. A
possible optimization is to keep each NN in memory,
together with its distances to all groups, so that we avoid
these computations if the same point is encountered later
through another group. This however, may not be possible
if the main memory size is limited.

4.3 F-MBM

We can extend both SPM and MBM for the case that Q
does not fit in memory. Since, as shown in the experiments,
MBM is more efficient, here we describe F-MBM, an
adaptation of the minimum bounding method. First, the
points of Q are sorted by their Hilbert value and are
inserted in pages according to this order. A page Qi
contains ni points (it is possible that the number of points

differs, e.g., the last page may be half-full). For each group
Qi, we keep in memory its MBR Mi and ni (but not its
contents). F-MBM descends the R-tree of P (in DF or BF
traversal), only following nodes that may contain qualifying
points. Given that we have the values of Mi and ni for each
query group in memory, we can quickly identify qualifying
nodes as follows.
Heuristic 5: Let best_dist be the distance of the best GNN
found so far and Mi be the MBR of group Qi. A node N can
be safely pruned if:

(,)
i

i i
Q Q

n mindist N M best_dist
∈

⋅ ≥∑

We refer to the left part of the inequality as the weighted
mindist of N. Figure 4.5 shows an example, where 5 query
points are split into two groups with MBRs M1, M2 and
best_dist = 20. According to heuristic 5, N can be pruned
because its weighted mindist (2⋅mindist(N,M1) +
3⋅mindist(N,M2)) is 20, and it cannot contain a better NN.

Figure 4.5: Example of heuristic 5

When a leaf node N is reached, we have to compute the
global distance of its data points with all groups. Initially
the current distance curr_dist(pj) of each point pj ∈ N is set
to 0. Then, for each new group Qi (1≤i≤m) that is loaded in
memory, curr_dist(pj) is updated as curr_dist(pj)+
dist(pj,Qi). We can reduce the CPU-overhead of the
distance computations based on the following heuristic.
Heuristic 6: Let curr_dist(pj) be the accumulated distance
of data point pj with respect to groups Q1,.., Qi-1. Then, pj
can be safely excluded from further consideration if:

_ ()+ (,)
n

j l j l
l=i

curr dist p n mindist p M best_dist⋅ ≥∑

Figure 4.6 shows an example of heuristic 6, where the first
group Q1 has been processed and curr_dist(pj) = dist(pj,Q1)
= 5+3. Point pj is not compared with the query points of Q2,
since 8+3⋅mindist(pj,M2)=20 is already equal to best_dist.
Thus, pj will not be considered for further computations
(i.e., when subsequent groups are loaded in memory).

Figure 4.6: Example of heuristic 6

The final clarification regards the order according to which
qualifying nodes and query groups are accessed. For nodes
we use the weighted mindist, based on the intuition that
nodes with small values are likely to lead to neighbors with
small global distance, so that subsequent visits can be
pruned by heuristic 5. When a leaf node N has been
reached, each group Qi is read in memory in descending
order of mindist(N,Mi). The motivation is that groups that
are far from the node are likely to prune numerous data
points (thus, saving the distance computations for these
points with respect to other groups). Figure 4.7 shows the
pseudo-code of F-MBM based on DF traversal (the BF
implementation is similar).

F-MBM(Node: R-tree node, Q: group of query points)
/* Q consists of {Q1, .., Qm} that fit in memory
if Node is an intermediate node
 sort entries Nj in Node (according to weighted mindist) in list;
 repeat
 get_next entry Nj from list;
 if weighted mindist(Nj)< best_dist /*N passes heuristic 5
 F-MBM(Nj, Q) ; /* Recursion
 until weighted mindist(Nj)≥ best_dist or end of list;
else if Node is a leaf node
 sort points pj in Node (according to weighted mindist) in list;
 for each point pj in list : curr_dist(pj)=0; /* initialization
 sort groups Qi in descending order of mindist(Node, Mi) ;
 repeat
 read next group Qi (1≤i≤m) ;
 for each point pj in list
 if _ ()+ (,)

n

j l j l
l=i

curr dist p n mindist p M best_dist⋅ ≥∑

 remove pj from list; /* pj fails heuristic 6
 else /* pj passes heuristic 6
 curr_dist(pj)= curr_dist(pj)+dist(pj,Qi) ;
 until weighted mindist(pj)≥best_dist or end list or end of groups;
 for each point p that remains in list /*after termination of loops
 if curr_dist(p)< best_dist
 best_NN =p; //Update current GNN
 best_dist = curr_dist(p) ;
return best_NN;

Figure 4.7: The F-MBM algorithm

Starting from the root of the R-tree of P, entries are sorted
by their weighted mindist, and visited (recursively) in this
order. Once the first node that fails heuristic 5 is found, all
subsequent nodes in the sorted list can also be pruned. For
leaf nodes, if a point violates heuristic 6, it is removed from
the list and is not compared with subsequent groups. The
extension to k NN is straightforward.

5. Experiments
In this section we evaluate the efficiency of the proposed
algorithms, using two real datasets: (i) PP [Web1] with
24493 populated places in North America, and (ii) TS
[Web2], which contains the centroids of 194971 MBRs
representing streams (poly-lines) of Iowa, Kansas, Missouri

and Nebraska. For all experiments we use a Pentium
2.4GHz CPU with 1GByte memory. The page size of the
R*-trees [BKSS00] is set to 1KByte, resulting in a capacity
of 50 entries per node. All implementations are based on
the best-first traversal. Both versions of MQM and GCP
require BF due to their incremental behavior. SPM and
MBM (or F-MBM) could also be used with DF.

5.1 Comparison of algorithms for memory-resident
queries

We first compare the methods of Section 3 (MQM, SPM
and MBM) for main-memory queries. For this purpose, we
use workloads of 100 queries. Each query has a number n
of points, distributed uniformly in a MBR of area M, which
is randomly generated in the workspace of P. The values of
n and M are identical for all queries in the same workload
(i.e., the only change between two queries in the same
workload is the position of the query MBR). First we study
the effect of the cardinality of Q, by fixing M to 8% of the
workspace of P and the number k of retrieved group nearest
neighbors to 8. Figure 5.1 shows the average number of
node accesses (NA) and CPU cost as functions of n for
datasets PP and TS.

 MQM SPM MBM

1

10

100

1E+3

1E+4

4 16 64 256 1024
n

number of node accesses

0.001

0.01

0.1

1

4 16 64 256 1024
n

CPU cost (sec)

(a) NA vs. n (PP dataset) (b) CPU vs. n (PP dataset)

1

10

100

1E+3

1E+4

1E+5

4 16 64 256 1024
n

number of node accesses

0.001

0.01

0.1

1

10

4 16 64 256 1024
n

CPU cost (sec)

(c) NA vs. n (TS dataset) (d) CPU vs. n (TS dataset)
Figure 5.1: Cost vs. cardinality n of Q (M=8%, k=8)

MQM is, in general, the worst method and its cost increases
fast with the query cardinality, because this leads to
multiple queries, some of which access the same nodes and
retrieve the same points. These redundant computations,
affect both the node accesses and the CPU cost significantly
(all diagrams are in logarithmic scale). Although most
queries access similar paths in the R-tree of P (and,
therefore, MQM benefits from the existence of an LRU
buffer), its total cost is still prohibitive for large n due to the

high CPU overhead. On the other hand, the cardinality of Q
has little effect on the node accesses of SPM and MBM
because it does not play an important role in the pruning
power of heuristic 1 (for SPM) and heuristics 2, 3 (for
MBM). It affects, however, the CPU time, because the
distance computations for qualifying data points increase
with the number of query points. MBM is better than SPM
due to the high pruning power of heuristic 3, as opposed to
heuristic 13.
In order to measure the effect of the MBR size of Q, we set
n=64, k=8 and vary M from 2% to 32% of the workspace of
P. As shown in Figure 5.2, the cost (average NA and CPU
time) of all algorithms increases with the query MBR. For
MQM, the termination condition is that the total threshold T
(i.e., sum of thresholds for each query point) should exceed
best_dist, which, however, increases with the MBR size.
Therefore, MQM retrieves more NNs for each query point.
For SPM (MBM), the reason is the degradation of pruning
power of heuristic 1 (heuristic 2 and 3) with the MBR size
of Q.

 MQM SPM MBM

1

10

100

1E+3

1E+4

2% 4% 8% 16% 32%
MBR size of Q

number of node accesses

0.001

0.01

0.1

1

2% 4% 8% 16% 32%

CPU cost (sec)

MBR size of Q
(a) NA vs. M size (PP) (b)CPU vs. M size (PP)

1

10

100

1E+3

1E+4

1E+5

2% 4% 8% 16% 32%

number of node accesses

MBR size of Q

0.001

0.01

0.1

1

10

2% 4% 8% 16% 32%

CPU cost (sec)

MBR size of Q
(c) NA vs. M size (TS) (d)CPU vs. M size (TS)
Figure 5.2: Cost vs. size of MBR of Q (n=64, k=8)

Finally, in Figure 5.3, we set n= 64, M=8% and vary the
number k of retrieved neighbors from 1 to 32. The value of
k does not influence the cost of any method significantly,
because in most cases a large number of neighbors are
found in the same node with a few extra computations. The
relative performance of the algorithms is similar to the

3 We implemented a version of MBM with only heuristic 2 and

we found it inferior to SPM. Nevertheless, heuristic 2 is useful
(in conjunction with heuristic 3) because it reduces the CPU
time requirements of the algorithm.

previous diagrams: MBM is clearly the most efficient
method, followed by SPM.

 MQM SPM MBM

1

10

100

1E+3

1 2 8 16 32
k

number of node accesses

0.001

0.01

0.1

1 2 8 16 32
k

CPU cost (sec)

(a) NA vs. k (PP dataset) (b) CPU vs. k (PP dataset)

1

10

100

1E+3

1E+4

1 2 8 16 32
k

number of node accesses

0.001

0.01

0.1

1

1 2 8 16 32
k

CPU cost (sec)

(c) NA vs. k (TS dataset) (d) CPU vs. k (TS dataset)
Figure 5.3: Cost vs. num. of retrieved NNs (n=64, M=8%)

5.2 Comparison of algorithms for disk-resident queries

For this set of experiments we use both datasets (PP, TS)
alternatively as query and data points. For GCP we assume
that both datasets are indexed by R-trees, whereas for F-
MQM and F-MBM, the dataset that plays the role of Q is
sorted (according to Hilbert values) and split into blocks of
10000 points, that fit in memory. The cost of sorting and
building the R-trees is not taken into account. Since now the
query cardinality n is fixed to that of the corresponding
dataset, we perform experiments by varying the relative
workspaces of the two datasets.
First, we assume that the workspaces of P and Q have the
same centroid, but the area M (of the MBR of Q) varies
between 2% and 32% of the workspace of P (similar to the
experiments of Figure 5.2). Figure 5.4 shows NA and CPU
time assuming that PP is the query dataset and k=8. GCP
has the worst performance and its cost increases fast with M
for the reasons discussed in Section 4.1. When M exceeds
8% percent of the workspace of P, GCP does not terminate
at all due to the huge heap requirements. The other two
algorithms are more than an order of magnitude faster. F-
MQM outperforms F-MBM, except for NA in case of large
(> 4%) query workspaces. The good performance of F-
MQM (compared to the main-memory results) is due to the
fact that the query set (PP) contains 24493 data points and,
therefore, it generates only 3 query groups. Each query
group is processed in memory (by MBM) and their results
are combined with relatively small overhead.

 GCP F-MQM F-MBM

1E+3

1E+4

1E+5

1E+6

1E+7

2% 4% 8% 16% 32%
MBR area of Q

number of node accesses

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

2% 4% 8% 16% 32%
MBR area of Q

CPU time (sec)

(a) NA vs. M size (b) CPU vs. M size

Figure 5.4: Cost vs. size of MBR of Q (k=8, P=TS, Q=PP)

Figure 5.5 illustrates a similar experiment, where PP plays
the role of the dataset and TS the role of the query set
(recall that the cardinality of TS is almost an order of
magnitude higher than that of PP). In this case F-MBM is
clearly better, due to the large number (20) of query groups
whose results must be combined by F-MQM. Comparing
Figure 5.5 with 5.4, we observe that the performance of F-
MBM is similar, while F-MQM is significantly worse. This
is consistent with the main-memory behavior of MQM
(Figure 5.1) where the cost increases fast with the
cardinality of the query set. GCP is omitted from the
diagrams because it incurs excessively high cost.

 F-MQM F-MBM

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

2% 4% 8% 16% 32%
MBR area of Q

number of node accesses

1E+0

1E+1

1E+2

1E+3

2% 4% 8% 16% 32%
MBR area of Q

CPU time (sec)

(a) NA vs. M size (b) CPU vs. M size

Figure 5.5: Cost vs. size of MBR of Q (k=8, P=PP, Q=TS)

In order to further investigate the effect of the relative
workspace positions, for the next set of experiments we
assume that both datasets lie in workspaces of the same
size, and vary the overlap area between the workspaces
from 0% (i.e., P and Q are totally disjoint) to 100% (i.e. on
top of each other). Intermediate values are obtained by
starting from the 100% case and shifting the query dataset
on both axes. Figure 5.6 shows the cost of the algorithms
assuming that Q=PP. The cost of all algorithms grows fast
with the overlap area because it: (i) increases the number of
potential candidates within the threshold of F-MQM (ii)
reduces the pruning power of F-MBM heuristics and (iii)
increases the number of closest pairs that must be output
before the termination of GCP. F-MQM clearly
outperforms F-MBM for up to 50% overlap. In order to

explain this, let us consider the 0% overlap case assuming
that the query workspace starts at the upper-right corner of
the data workspace. The nearest neighbors of all query
groups must lie near this upper-right corner, since such
points minimize the total distance. Therefore, F-MQM can
find the best NN relatively fast, and terminate when all the
points in or near the corner have been considered. On the
other hand, because each query group has a large MBR
(recall that it contains 10000 points), numerous nodes
satisfy the pruning heuristic of F-MBM and are visited.

 GCP F-MQM F-MBM

1E+3

1E+4

1E+5

1E+6

1E+7

0% 25% 50% 75% 100%
overlap area

number of node accesses

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

0% 25% 50% 75% 100%

CPU time (sec)

overlap area
(a) NA vs. overlap area (b) CPU vs. overlap area

Figure 5.6: Cost vs. overlap area (k=8, P=TS, Q=PP)

Figure 5.7 repeats the experiment by setting Q=TS. The
clear winner is F-MBM, again due to the numerous queries
that must be performed by F-MQM. We also performed
experiments by varying the number of neighbors retrieved,
while keeping the other parameters fixed. As in the case of
main-memory queries, k does not have a significant effect
on performance (and the diagrams are omitted).

 F-MQM F-MBM

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

0% 25% 50% 75% 100%

number of node accesses

overlap area

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

0% 25% 50% 75% 100%

CPU time (sec)

overlap area
(a) NA vs. overlap area (b) CPU vs. overlap area

Figure 5.7: Cost vs. overlap area (k=8, P=PP, Q=TS)

In summary, the best algorithm for disk-resident queries
depends on the number of query groups. F-MQM is usually
preferable when the query dataset is partitioned in a small
number of groups; otherwise, F-MBM is better. GCP has
very poor performance in all cases. We also experimented
with an alternative version of MBM that uses an R-tree on
Q (instead of Hilbert sorting). The technique, however, did
not provide performance benefits because for each
qualifying point of P we have to compute its accumulated
distance to all query points anyway.

6. Conclusion
Given a dataset P and a group of query points Q, a group
nearest neighbor query retrieves the point of P that
minimizes the sum of distances to all points in Q. In this
paper we describe several algorithms for processing such
queries, including main-memory and disk-resident Q, and
experimentally evaluate their performance under a variety
of settings. Since the problem is by definition expensive,
the performance of different algorithms normally varies up
to orders of magnitude, which motivates efficient
processing methods.
In the future we intend to explore the application of related
techniques to variations of group nearest neighbor search.
Consider, for instance, that Q represents a set of facilities
and the goal is to assign each object of P to a single facility
so that the sum of distances (of each object to its nearest
facility) is minimized. Additional constraints (e.g., a facility
may serve at most k users) may further complicate the
solutions. Similar problems have been studied in the
context of clustering and recourse allocation, but the
proposed methods are different from the ones presented in
this paper. Furthermore, it would be interesting to study
other distance metrics (e.g., network distance) that
necessitate alternative pruning heuristics and algorithms.

Acknowledgements
This work was supported by grant HKUST 6180/03E from
Hong Kong RGC.

References
[AMN+98] Arya, S., Mount, D., Netanyahu, N., Silverman, R.,

Wu, A. An Optimal Algorithm for Approximate
Nearest Neighbor Searching, Journal of the ACM,
45(6): 891-923, 1998.

[AY01] Aggrawal, C., Yu, P. Outlier Detection for High
Dimensional Data. SIGMOD, 2001.

[B00] Bohm, C. A Cost Model for Query Processing in High
Dimensional Data Spaces. TODS, Vol. 25(2): 129-
178, 2000.

[BCG02] Bruno, N., Chaudhuri, S., Gravano, L. Top-k
Selection Queries over Relational Databases:
Mapping Strategies and Performance Evaluation.
TODS 27(2): 153-187, 2002.

[BGRS99] Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.
When Is Nearest Neighbor Meaningful? ICDT, 1999.

[BJKS02] Benetis, R., Jensen, C., Karciauskas, G., Saltenis, S.
Nearest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. IDEAS, 2002.

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger,
B. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. SIGMOD, 1990.

[CMTV00] Corral, A., Manolopoulos, Y., Theodoridis, Y.,
Vassilakopoulos, M. Closest Pair Queries in Spatial
Databases. SIGMOD, 2000.

[F02] Fagin, R. Combining Fuzzy Information: an
Overview. SIGMOD Record, 31 (2): 109-118, 2002.

[FLN01] Fagin, R., Lotem, A., Naor, M. Optimal Aggregation

Algorithms for Middleware. PODS, 2001.
[FSAA01] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi,

A. Constrained Nearest Neighbor Queries. SSTD,
2001.

[G84] Guttman, A. R-trees: A Dynamic Index Structure for
Spatial Searching. SIGMOD, 1984.

[JMF99] Jain, A., Murthy, M., Flynn, P., Data Clustering: A
Review. ACM Comp. Surveys, 31(3): 264-323, 1999.

[HS98] Hjaltason, G., Samet, H. Incremental Distance Join
Algorithms for Spatial Databases. SIGMOD, 1998.

[HS99] Hjaltason, G., Samet, H. Distance Browsing in Spatial
Databases. TODS, 24(2), 265-318, 1999.

[HYC01] Hochreiter, S., Younger, A.S., Conwell, P. Learning
to Learn Using Gradient Descent. ICANN, 2001.

[KGT99] Kollios, G., Gunopulos, D., Tsotras, V. Nearest
Neighbor Queries in Mobile Environment. STDBM,
1999.

[KM00] Korn, F., Muthukrishnan, S. Influence Sets Based on
Reverse Nearest Neighbor Queries. SIGMOD, 2000.

[KMS02] Korn, F., Muthukrishnan, S. Srivastava, D. Reverse
Nearest Neighbor Aggregates Over Data Streams.
VLDB, 2002.

[NO97] Nakano, K., Olariu, S. An Optimal Algorithm for the
Angle-Restricted All Nearest Neighbor Problem on
the Reconfigurable Mesh, with Applications. IEEE
Trans. on Parallel and Distributed Systems 8(9): 983-
990, 1997.

[PM97] Papadopoulos, A., Manolopoulos, Y. Performance of
Nearest Neighbor Queries in R-trees. ICDT, 1997.

[PZMT03] Papadias, D., Zhang, J., Mamoulis, N., Tao, Y. Query
Processing in Spatial Network Databases. VLDB,
2003.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F. Nearest
Neighbor Queries. SIGMOD, 1995.

[S91] Sproull, R. Refinements to Nearest Neighbor
Searching in K-Dimensional Trees. Algorithmica,
6(4): 579-589, 1991.

[SKS02] Shahabi, C., Kolahdouzan, M., Sharifzadeh, M. A
Road Network Embedding Technique for K-Nearest
Neighbor Search in Moving Object Databases. ACM
GIS, 2002.

[SR01] Song, Z., Roussopoulos, N. K-Nearest Neighbor
Search for Moving Query Point. SSTD, 2001.

[SYUK00] Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.
The A-tree: An Index Structure for High-Dimensional
Spaces Using Relative Approximation. VLDB, 2000.

[TP02] Tao, Y., Papadias, D. Time Parameterized Queries in
Spatio-Temporal Databases. SIGMOD, 2002.

[TP03] Tao, Y., Papadias, D. Spatial Queries in Dynamic
Environments. ACM TODS, 28(2): 101-139, 2003.

[TPS02] Tao, Y., Papadias, D., Shen, Q. Continuous Nearest
Neighbor Search. VLDB, 2002.

[Web1] www.maproom.psu.edu/dcw/
[Web2] dke.cti.gr/People/ytheod/research/datasets/
[WSB98] Weber, R., Schek, H.J., Blott, S. A Quantitative

Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces. VLDB, 1998.

[YOTJ01] Yu, C., Ooi, B, Tan, K., Jagadish, H. Indexing the
Distance: An Efficient Method to KNN Processing.
VLDB, 2001.

