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Abstract—This paper proposes a technique for motion
estimation of groups of targets based on evolving graph
networks. The main novelty over alternative group track-
ing techniques stems from learning the network structure
for the groups. Each node of the graph corresponds to
a target within the group. The uncertainty of the group
structure is estimated jointly with the group target states.
New group structure evolving models are proposed for
automatic graph structure initialisation, incorporation
of new nodes, unexisting nodes removal and the edge
update. Both the state and the graph structure are
updated based on range and bearing measurements. This
evolving graph model is propagated combined with a
sequential Monte Carlo framework able to cope with
measurement origin uncertainty. The effectiveness of the
proposed approach is illustrated over scenarios for group
motion estimation in urban environments. Results with
challenging scenarios with merging, splitting and crossing
of groups are presented with high estimation accuracy.
The performance of the algorithm is also evaluated and
shown on real ground moving target indicator (GMTI)
radar data and in the presence of data origin uncertainty.
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I. INTRODUCTION

During the last years group object tracking has been

investigated in various different applications includ-

ing road traffic systems, military surveillance and in

particular for ground moving target indicator (GMTI)

tracking [1] and robotics applications [2]–[5].

Groups of targets can be considered as formations

of entities whose number varies over time because

targets can enter a scene, or disappear at random times.

The groups can split, merge, to be relatively near to

each other or move largely independently on each

other. However, it is typical for group formations to

maintain some patterns of movement [6] and hence the

methods for group tracking differ from the methods of
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standard multiple-target tracking. Although individual

targets in the group can exhibit independent movement

at a certain level, overall the group will move as one

whole, synchronising the movement of the individual

entities and avoiding collisions. In most of the multi-

target tracking methods, as opposed to groups tracking

methods, tracking of individual objects is the common

approach. However, there are strong motivations to

model and to study the behaviour of groups. One

motivation is the ability to statistically infer which

tracks are moving in formation or are having common

movement. We may also want to detect events inside

groups (splitting) and between groups (merging). This

information fits well with a number of modern multi-

target tracking applications where one may want to

differentiate friendly objects from enemies or to predict

the intention, destination and future manoeuvres of

targets. Moreover, another strong motivation for group

tracking is in the possibility of using common informa-

tion about the group to improve the estimation of the

objects’ individual states. For instance, in case of low

detection probabilities and/or very noisy environments,

by modeling the targets’ interactions inside groups,

the detection of stealthy targets can be facilitated [7].

A further motivation is that a user may be unable

to assimilate information relating to large numbers of

individual objects. Group object estimation makes it

possible, for such a user, to detect events or focus on

particular groups with interesting behaviour. Finally, an

additional motivation is to consider common applica-

tions where objects have multiple parts, each of which

generates detections (e.g. when multiple radar scatters

exist in a single extended object). In many cases group

object tracking is the only applicable approach, for

instance when tracking thousands of targets that may

not be possible to be individually tracked [8]. Rescuing

people in earthquakes, floods and disaster events also

necessitate approaches where the whole group motion

is monitored instead of the motion of each individual

person.
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In [9] the benefit of group object tracking over indi-

vidual object tracking is demonstrated over simulated

and real data in terms of estimation accuracy. The

interactions between group members are modelled by

repulsive forces. In these classes of problems, group

modeling offers a natural solution.

Different models of groups of objects have been

proposed in the literature, such as particle models for

flocks of birds [10]–[12], and leader-follower models

[6]. However, estimating the dynamic evolution of the

group structure has not been widely studied in the

literature, although there are similarities with methods

used in evolving network models [13], [14].

Methods for group object tracking also vary widely:

from Kalman filtering approaches, Joint Probability

Data Association (JPDA) [15], [16] to Probability Hy-

pothesis Density (PHD) filtering [17]–[19], and others

[20]–[24]. The influence of the ‘negative’ informa-

tion on group object tracking is considered in [25]

and ground moving target indicator tracking based on

particle filtering in [1]. In [19] a coordinated group

tracking model is presented, comprising a continuous-

time motion of the group and a group structure tran-

sition model. A Markov chain Monte Carlo (MCMC)

particle filter algorithm is proposed to approximate the

posterior probability density function (PDF) of the high

dimensional state.

Mahler [6] outlines that careful group target motion

models should be able to describe target appearance

and disappearance, not just for the motion of individual

targets and the degree to which targets jointly move in

a coordinated manner.

Inspired by some ideas from [13], we consider

the groups of objects as evolving undirected random

graphs. The novelty of this paper is in the proposed

approach for estimating the group structure jointly with

the group target states using a graphical representation.

With this graphical representation, objects are not as-

signed to groups but are connected to one another. This

enables the cohesion of a group to be precisely mod-

eled. The main contributions for this work consist in:

i) the developed graphical representation of the group

structure, ii) a second graphical model is developed

for the groups which gives information about mutually

interacting groups and that is also used in the data

association algorithm, iii) finally, target state estimates

(from the designed Monte Carlo methods) within the

same group or within interacting groups are compared

in order to update the graph.

The remaining parts of this paper are organised as

follows. Section II presents the evolving network mod-

els. Section IV formulates the group object tracking

problem jointly with the proposed evolving network

model for the groups. Section VI presents results with

simulated data and from real GMTI radar measure-

ments, with measurement origin uncertainty. Finally,

conclusions are given in Section VII.

II. EVOLVING NETWORK MODELS

The evolution of complex network structures has

been studied in the light of different problems, such

as complex networks in communications, biology, so-

cial sciences, economics and Internet (see, e.g., the

surveys [13], [14]). Graph theory represents natural

ways of modeling these network structures. Within this

graphical family, random graphs introduced in the early

sixty by Erdos and Renyi [26] are the first approach

attempting to model these complex evolving networks.

A random graph of size n is simply obtained by

starting with a set of n vertices and by adding randomly

edges between them. In the first model proposed in

[26], every possible edge in the graph occurs with a

chosen common probability. After several studies and

generalisation on random graph network theory, recent

research in networks has been focussed on more sophis-

ticated evolving dynamic systems. The main difference

stems from the necessity to continuously change the

size of the graph (e.g., due to addition of new nodes or

removal of nodes). Another major difference is in the

probabilities associated to the creation of new edges.

For instance, when adding a new node, instead of

using a random process with an equal probability for

the generation of new edges, a preferential creation

of edges can be computed. The preferential strategy

of adding edges is based on the assumption that a

node with a higher impact in the graph network has

a higher probability to be connected to new nodes

than a second node with less impact. For instance, for

a research community network, an article with many

citations has more chances to be cited than a paper

with few citations.

The flexible approach of evolving graphs fits well

to the problem of group object tracking. The closest

application to the group modelling task is the World-

Wide Web (WWW) network representing a large dy-

namic network where nodes and links are continuously

created and removed [13]. However, the network char-

acterising the group object evolution is obviously more

dynamic than the WWW network where the effects of

removed links between nodes are often negligible. A

significant novelty in the evolving group object network

that we develop is that the targets have dynamical

spatial constraints. The preferential approach is con-

sequently irrelevant for the group tracking problem

and more appropriate evolving models need to be

introduced.

In this paper we extend concepts of evolving network

models to group object network in Section III. A graph-

ical representation models the connections between

targets. At each time step new nodes are added, existing

nodes are removed and the set of edges is updated.

III. AN EVOLVING NETWORK MODEL FOR GROUP

MOTION ESTIMATION

One of the challenges in group object tracking is in

the necessity of updating the group structure and mod-
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eling the interactions between separate components.

For this purpose adding components to the groups,

removing others, splitting and merging groups are of

primary importance.

In our paper, Gt is chosen to be an evolving

undirected random graph representing both the targets

within the groups (nodes in the graph) and some rela-

tions between the group members, which is reflected by

the edges between the related graph nodes. Symmetric

criteria as distance and velocity are used to create an

edge. However, other criteria can be applied.

A. Graphical Representation for the Group Object

Structure

Consider N targets constituting the set of vertices

{v1, . . . ,vN}. Each vertex vi is associated with the

target state and with the target state’s corresponding

variance. The set of edges linking the set of vertices

is denoted by E. The graph structure can then be

denoted by G = ({v1, . . . ,vN}, E). One edge, in E,

between two nodes vi and vj is denoted by (vi,vj). In

order to characterise the presence or absence of a link

(edge) between two nodes, the distance between these

two considered nodes is calculated, e.g., by the Maha-

lanobis distance criterion. The Mahalanobis distance

is computed from the estimated positions and from

the velocities of the separate objects. This estimated

distance is thresholded and a decision is made about the

connections. In this representation a group corresponds

to a connected component of the graph structure. Note

that, two nodes are in the same connected component if

and only if a path between them exists. In the following

sections, the groups in Gt are denoted {g1, . . . , gnG
},

where the groups gi are the connected components of

G and nG is the number of groups in G.

In [19], Gt represents a set of group’s labels for each

target. For example, with five targets, Gt = [1 1 2 2 2]
means that targets 1 and 2 are in group 1 and tar-

gets 3, 4 and 5 are in group 2. With the graphical

representation, one similar group structure is: Gt =
({v1,v2,v3,v4,v5}, {(v1,v2), (v3,v4), (v3,v5)})
and the groups correspond to the connected compo-

nents of the graph Gt.

B. Motivations for the Group Object Structure Graph-

ical Representation

The approach proposed in this paper builds up a

dynamical evolution model instead of using transition

probabilities in the space of possible group structures

(e.g., see Figure 1).

Algorithms of adding components to the groups,

removing others, splitting and merging groups by

taking into account geometric distances and velocity

distances between the groups and between the targets

are proposed.

In [19] the approach with transition probabilities is

followed. In contrast with [19], an evolution model
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Fig. 1. Two approaches for modeling dynamical changes on the
graph structure. At left: transition probabilities π1,j , j = 1, . . . , 5
in the space of possible group structures (built, for this example,
from 3 existing targets with respective states: x1,x2 and x3). At
right: an evolution model for Gt according to the previous graph
structure Gt−1 and according to the current states x1,x2 and x3

of all targets. Bold (blue) ellipses denote the current group structure,
the others ellipses (light-green) denote new group structures that may
be reached in one time step.

is designed for the group structure by incorporating

the information about closeness between the groups

and about closeness between targets within a group,

in a graphical way. At each time instant, based on the

decision made about birth and death targets, nodes are

created or removed inside a group. For each removed

node, all its links to other nodes are deleted, and for

each new node, respective links to neighbour nodes

are added. Similarly, when an object passes from one

group to another, the respective links (edges) in the

considered graph disappear, and one or more links will

appear in the graph of the other group which the object

joins.

A strong motivation for such graphical representation

is illustrated in Figure 2. The graphical representation

allows an easy switch in the group structure space:

removing or adding only one edge can change the

group structure.

A further motivation is illustrated in Figure 3 which

shows two groups g1 and g2 with the same nodes

{v1, . . . ,v4}. These two groups are identical if con-

sidered as a set of indexes. When propagating these

two groups, using the graph representation, g2 is more

likely to split than g1. The graph representation, allows,

thus, to propagate more information than a vector of

group indexes for each target.

C. Evolving Graph Models

The aim is to determine an evolution model Gt =
f(Gt−1,Xt) for the group structure, for time t > 0
and an initialisation process G0 = f(X0) for t = 0.
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The vector Xt = (xt,1, . . . ,xt,n) comprises the state

vectors of all the targets and f denotes the desired

evolution model.

The system
{

t = 0, G0 = fI(X0),
t > 0, Gt = fNS ◦ fNI ◦ fEU (Gt−1,Xt),

(1)

shows the decomposition of the evolution model f
according to the time t and according to three distinc-

tive steps: edge update, node incorporation and node

removal where ◦ denotes the composition operation; fI
is an Initialisation model that will be defined in Section

III-D; fEU is the graph Edge Updating model that will

be defined in Section III-E; fNI is the graph Nodes

g1
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g1,2

g2

g3

g2,3

(a) Splitting group

(b) Merging group
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v3

v1
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v3

v3

v2

v2

v1
v1

Fig. 2. One strong motivation of using a graphical representation.
In this example, with 3 nodes, in (a) a simple removal of one edge
can model a splitting group g1 into 2 groups g1,1 and g1,2. In (b),
in contrast with (a), one new edge can model merging of two groups
g2 and g3 in one new group g2,3.

g1 v2

v1

v3

v1

v4

v2

v4

v3 g2
Fig. 3. Motivation of using a graphical representation. In this
example, with 4 nodes, 2 graphs represent 2 groups. These two
groups are identical if considered as a set of indexes. At left, the
graph representing g1 contains more edges than the one, at right,
representing g2: g2 is more likely to split than g1.

Incorporation model that will be defined in Section

III-F; fNS is the graph Nodes Suppression model that

will be defined in Section III-G.

D. Graph Initialisation- Model fI

In this Section, we assume that, at time t = 0, the

number of targets and their respective states are known,

given by one of the detection techniques from [16]. Let

us consider N targets constituting the set of vertices

{v1, . . . ,vN}. Each vertex vi is associated with the

target state x0,i at time t = 0, as well as the target

state’s corresponding variance matrix P 0,i. Model 1,

given below describes the proposed edge initialisation

method where E0 is the set of edges linking the set

of vertices {v1, . . . ,vN}. Initially E0 is the empty set

{∅}. The Mahalanobis distance di,k between vertices

vi and vk is calculated and we evaluate whether it ex-

ceeds a chosen decision threshold ε. The edge between

nodes vi and vk is denoted by (i, k). Using Model 1,

Model 1.fI -The Edge Creation Process.

E0 = {∅}
FOR i = 1, . . . , N − 1

FOR k = i+ 1, . . . , N
CALCULATE di,k
IF di,k < ε, E0 = E0 ∪ {(i, k)}
END

END
END

the initial graph structure G0 = ({v1, . . . ,vN}, E0) is

then obtained.

E. Edge Updating- Model fEU

The evolving graph of group of targets is more dy-

namic than those studied in the literature [13]. Existing

edges should be updated at each time instant since

the graph structure is related with the dynamic spatial

configuration. In a straightforward way, Model 1 can

recalculate the distance between any pair of nodes.

However, the computational complexity can be reduced

when some information about group centres (means,

covariances and the distances between them) is used.

For each group g we define its centre Og = 1
ng

∑

vkϵg

x
g
k

and its corresponding average covariance matrix P g =
1
ng

∑

vkϵg

P
g
k where ng is defined as the number of

targets in g. The centre and covariance matrix of each

group can be characterised differently, e.g., based on a

mixture of Gaussian components.

Using the Mahalanobis distance criterion, an ap-

propriate threshold ε′ >> ε, and based on Model

1, a second graph G′ = ({v′

1, . . . ,v
′

nG
}, E′) can be

introduced with nodes v′

i being characterised by their

position Ogi . A couple of connected nodes in the set

E′ can be interpreted as two groups that can possi-

bly have interactions (exchange of targets). Model 2

summarises the edge updating process between neigh-

bouring groups. The graph G′ will also be used in the

node incorporation process.
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Model 2. fEU -Edges Updating Process.

FOR i = 1, . . . , nG − 1
APPLY Model 1
to the set of nodes in gi and update E
FOR k = i+ 1, . . . , nG

IF edge (i, k) ∈ E′

FOR each node in group gi,
CALCULATE the distance

to each node in group gk

COMPARE with ε and update E
END

END
END
i = nG APPLY Model 1
to the set of nodes in gi and update E

Model 2 can be illustrated using the example from

Figure 4. The considered graph contains 3 groups of

12 nodes. In Figure 4 (a), by introducing the centre

of each group, the graph G′ is represented: it contains

3 nodes, corresponding to the centre of each group,

and one edge between g1 and g2. Figure 4 (b) and (c)
illustrates the update of Model 2.
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2gO

3gO G
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Description of 
Model  2 (fEU)

(a)

(b)

(c)

Fig. 4. Model 2: (a) use a second graph structure G′ and, for the
edge updating process, (b) calculate distances between nodes in the
same group and (c) calculate distances between nodes in groups that
are connected through G′.

In each group, distances between any couple of

nodes are calculated as shown in Figure 4 (b). Further-

more, in Figure 4 (c), for any couple of groups (gi, gj)

connected in graph G′ (in this example, only g1 and

g2 are connected). The distances between any couple

of nodes (vi, vj), chosen respectively in groups gi and

gj , are calculated. The use of Model 2, in this example,

avoids calculations of distances between nodes in g3

and nodes in g1 and g2, respectively.

F. New Node Incorporation-Model fNI

Classical approaches rely on either random or pref-

erential approaches (the mixture of the two also exists)

in order to assign edges to the new nodes. Additionally,

in classical graph techniques, the number of new edges

assigned to each new node is fixed. The approach

proposed in this paper differs from the above mentioned

techniques. For the purposes of group tracking, the

Model 3. fNI - Incorporation of new nodes.

Consider group i = 1
NodeNearGroup = false
DO

CALCULATE dnew,i

IF dnew,i < ε′′

NodeNearGroup = true
FOR each node in gi,

CALCULATE the distance
between vnew and each node in gi

COMPARE with ε and update E
END
FOR k = i+ 1 . . . nG

IF edge (i, k) ∈ E′

CALCULATE the distance
between vnew and each node in gk

COMPARE with ε and update E
END

END
i = i+ 1

WHILE(i = nG + 1 or NodeNearGroup = true)

distance calculated based on the interaction criterion

should be used to create edges with the existing nodes

and the number of edges is then determined by the

nodes’ spatial configuration. Consider a new node (ver-

tex) denoted as vnew and its state xnew. Depending on

the state xnew and in comparison with the existing nG

nodes, new edges have to be created. A simple way is to

evaluate the criterion for the interaction between every

pair (vnew,vi). In order to optimise the computational

time, the graph G′ defined in Section III-E can be used.

Model 3 shows the edge updating process when

incorporating a new node, where dnew,i is the Ma-

halanobis distance between vnew and Ogi (dnew,i =

Mahalanobis-distance ((xnew,P new), (
1

ngi

∑

vkϵgi

x
gi

k ,

1
ngi

∑

vkϵgi

P
gi

k )); the fixed threshold ε′′ > ε introduced

in order to see whether the new node vnew is interact-

ing with a node in a group g.

Let us illustrate Model 3 using the example from

Figure 5. The considered graph contains 4 groups of

14 nodes. In Figure 5 (a), by introducing the centre of

each group, the graph G′ is represented: it contains 4
nodes, corresponding to the centre of each group, and

two edges between, respectively, g1 and g2 and g3 and

g4. Distances dnew,i between the new node vnew and

centres of groups Oi are computed. The principle of

Model 3 is to calculate distances dnew,i until finding

one neighbour group of node vnew according to a

threshold ε′′ or until reaching the last index i (i = nG).

Note that ε′′ is chosen such that ε′′ << ε′ so that a

new node close to one group g according the threshold

ε′′ is far from any group that is not connected with g

according to the threshold ε′.
For the example presented on Figure 5, g1 and g2

are not neighbours of vnew according to the distance

criterion. In contrast, g3 satisfies the distance criterion.

Then, the calculated distances of Model 3, used to

update graph G, are illustrated. Distances between
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Fig. 5. Model 3: (a) use graph structure G′ by calculating the
distance from the new node vnew to the centres of all groups.
Once one group gi satisfies the distance threshold, (b) calculate
the distances between vnew and any node in gi in addition to the
distance between vnew and any node in a group connected to gi
through G′.

vnew and any node in g3 are calculated as shown in

Figure 5 (b). Furthermore, since g4 is connected to

group g3, in graph G′, distances between vnew and

any node in g4 are also calculated.

The use of Model 3, in this example, avoids the

calculation of distances between vnew and nodes in

g1 and g2, respectively.

G. Old Node Suppression-Model fNS

This is the simplest graphical evolution modeling

part and consists of removing death targets by remov-

ing corresponding nodes and their related edges. A

target in the graph will be removed if the measurements

do not contain any information about it after a certain

period of time.

IV. PROBLEM FORMULATION

Consider the problem of tracking the motion of

groups of targets. Each target i is characterised by its

state vector xt,i = (xt,i, ẋt,i, yt,i, ẏt,i)
′ (comprising the

positions xt,i, yt,i and velocities ẋt,i, ẏt,i in x and y
directions respectively); ′ denotes the transpose oper-

ation. Targets which are close to one another tend to

form a group. The Mahalanobis distance di,k is chosen

as a criterion of closeness between the targets within a

group. At each time instant t, the set of objects tracked

in a group g can be modeled by a Random Finite Set

(RFS, see [6]) that incorporates the state vectors of the

group members, X
g
t =

{
xg

t,1,x
g
t,2, . . . ,x

g
t,ng

}
(ng

is the random size of group g). Knowing the group

structure Gt = {g1, . . . , gnG
} (nG is the number of

groups), the joint state for the all the targets in the nG

groups has the expression Xt = {X
g1
t , . . . ,X

gnG

t }.

At time t a measurement vector zt is received which

can be described as a function of the state Xt =
{X

g1
t , . . . ,X

gnG

t }. Assuming that the measurement

likelihood function p(zt|Xt) can be calculated, the

purpose is to compute sequentially the state PDF for

each group of objects. The changes of the groups such

as merging and splitting are taken into account during

the graph update process. Additionally, the groups’

movements are assumed independent.

Under the Markovian assumption for the state tran-

sition, the Bayesian prediction and filtering steps can

be written as follows:

p(Xt,Gt|Z1:t−1) = p(Gt|Xt,Z1:t−1)× p(Xt|Z1:t−1)

=
∫
p(Gt|Xt,Gt−1)×

p(Xt|Xt−1,Gt−1)p(Xt−1,Gt−1|Z1:t−1)dXt−1dGt−1, (2)

p(Xt,Gt|Z1:t) =
p(zt|Xt,Gt)× p(Xt,Gt|Z1:t−1)

p(zt|Z1:t−1)
, (3)

where Z1:t is the set of measurements up to time t and

zt is the current vector of measurements.

The transition PDF p(Gt|Xt,Gt−1) of the group

structure can be calculated knowing the prediction

of the target state and group structure in the pre-

vious time instant, and using the graph evolution

model introduced in Section III-C. The transition PDF

p(Xt|Xt−1,Gt−1) of the state of all targets is cal-

culated knowing the previous time target states and

group structure PDF p(Xt−1,Gt−1|Z1:t−1). With the

assumption of independence between group motions,

the PDF p(Xt|Xt−1,Gt−1) can be decomposed in the

following supplementary equation

p(Xt|Xt−1,Gt−1) =
∏

gi∈Gt−1

p(X
gi

t |X
gi

t−1), (4)

where p(X
gi

t |X
gi

t−1) is the transition density of the set

of targets from the group gi.

In order to perform the correction step, the likelihood

function p(zt|Xt,Gt) of the whole state has to be

evaluated by means of a data association approach. In

this paper, the JPDA algorithm [16] is used to resolve

the measurement origin uncertainty.

In addition, in the gating process in the JPDA

algorithm is enhanced by using other information

about the graph structure, such as the distance between

groups. Figure 5 shows an example where groups g3

and g4 can be considered separately from groups g1

and g2. Note that the graph G′

t estimated at each

time instant is applied in the edge updating process

and in the nodes incorporation steps which leads

to reduction of the data association computations.

At each time step, the graph G′

t can also be used

in the gating process. Indeed groups of the same

graph G′

t’s connected component can be gathered in

separate data association process: the graph G′

t offers

a straightforward method of clustering the targets for

the data association process.

Denote by {g′

1, . . . , g
′

nG′
}, the set of nG′ connected

components in graph G′. Any connected component

g′

i can model a set of groups that are close enough
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to be treated in the same data association algorithm.

Under the independence assumption between the g′

i,

the following equation (5) can be written

p(zt|Xt,Gt) = p(zt|Xt,Gt,G
′

t)

=
∏

i=1,...,nG′
p(z

g′

i

t |X
g′

i

t−1), (5)

where X
g′

i

t−1 is the set of targets’ states belonging to

the groups in g′

i. The vector z
gi

t comprises the subset

of measurements related with the group in g′

i. For

example, z
gi

t can be chosen by gating measurements

using the set of targets state X
g′

i

t−1.

A. Model of Individual Targets

The nearly constant velocity model [27], [28] is used

for the update of each node of the graph, i.e., for

modelling the motion of each target within a group.

In two dimensions, the state of the ith target is given

by:

xt,i = Axt−1,i + Γηt−1, (6)

where A = diag(A1,A1), A1 =

(
1 T
0 1

)
, Γ =

(
T/2 1 0 0
0 0 T/2 1

)′

, T is the sampling interval

and ηt−1 is the system dynamics noise. In order to

cover a wide range of motions, the velocity should be

approximately constant over straight line trajectories

and the velocity change should be abrupt at each turn

(especially for the direction of the velocity). Then, the

system dynamics noise ηt−1 is represented as a sum

of two Gaussian components

p(ηt−1) = αN (0,Q1) + (1− α)N (0,Q2), (7)

Q1=diag(σ2, σ2
1), Q2=diag(σ2, σ2

2); σ is a standard

deviation assumed common and constant for x and y;

σ1 ≪ σ2 are standard deviations allowing to model

respectively smooth and abrupt changes in the velocity.

The fixed coefficient α has values in the interval [0, 1].

In addition, to model the interaction between objects

in each group, the average velocity of group objects

is used in (6) instead of the velocity of each group

component. For each group g, in the group structure G

and for each xg
t,i ∈ X

g
t =

{
xg

t,1,x
g
t,2, . . . ,x

g
t,ng

}

we have the following equation

x
g
t,i = x

g
t−1,i +

ng∑
j=1

(Bx
g
t−1,j) + Γηt−1, (8)

where and B = diag(B1,B1) with B1 =(
0 T

ng

0 0

)
. More sophisticated models can be con-

sidered to model targets’ interactions in each group

such as the developed in [19].

B. Observation Model

Range and bearing observations from a network

of low cost sensors positioned along the road are

considered as measurements. The measurement vector

zt,i for the ith target contains the range rt,i to each

target and the bearing βt,i. The measurement equation

is of the form:

zt,i = h(xt,i) +wt,i, (9)

where h is the nonlinear function

h(xt,i) =

(√
x2
t,i + y2t,i, tan

−1 yt,i
xt,i

)
(10)

and the measurement noise wt,i is supposed to be

Gaussian, with a known covariance matrix R.

C. Particle Filtering Algorithms for Group Motion

Estimation

In this paper, two approaches are proposed. The

impact of incorporating or not the group structure in

the state is studied, also from the point of view of its

computational complexity. One way of considering the

group structure is to propagate, at each time step, a

deterministic group structure using the previous group

structure Gt−1 and the current estimate of all the

target states denoted by X̂t, i.e., Gt = f(Gt−1, X̂t).
Although the complexity of such an approach is re-

duced, it does not provide information about the group

structure uncertainty. This group structure evolution

model has been introduced in [29].

In contrast, by considering an augmented state (in-

stead of Xt, the state is now (Xt,Gt)), the group

structure uncertainty can be accounted for in a better

way. This group structure evolution model with an aug-

mented state has been studied in [30]. In the next two

subsections, particle filtering algorithms are presented

combined with these two approaches.

1) Deterministic Update of the Graph Structure:

We denote by Np the number of particles and L is the

current index of a particle. Having in mind equations

(2)-(5), the implemented algorithm is described as

Algorithm 1, where the proposal PDF is of the form:

qgi(X
gi

t |X
gi,(L)
0:t−1 , z0:t−1) = p(X

gi

t |X
gi,(L)
t−1 ) (where

p(X
gi

t |X
gi,(L)
t−1 ) is the transition PDF, for the target’s

state in the group gi, under the assumption that the

interaction between targets is with respect to the

group structure Gt−1). In order to sample from this

transition PDF, a nearly constant velocity model (6)

is used for each component X
gi,(L)
t−1 of the particle

X
(L)
t−1 to obtain X

gi,(L)
t .

JPDA Combined with the Estimated Group Structure

In step 2 of Algorithm 1, the data association problem

is resolved by the JPDA algorithm [16]. The graph

structure is used in the first step of the JPDA algorithm.

Information contained in the graph structure is used to
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Algorithm 1. The particle filter with deterministic update of

the group structure

1. Prediction step (Eq. (4))
FOR all gi ∈ Gt−1

FOR L = 1 . . . Np,
DRAW samples from the proposal
PDF

X
gi,(L)
t ∼ qgi (X

gi
t |X

gi,(L)
0:t−1 ,z0:t−1)

END
END

CALCULATE the average predicted state vector X̂t|t−1

ESTIMATE Gt using Gt = f(Gt−1, X̂t|t−1)

2. Updating step (Eq. (3))
FOR L = 1 . . . Np

CALCULATE the likelihood function according to:
equation (5) and using a JPDA algorithm [16]

END
UPDATE and NORMALISE the weights

CALCULATE the estimate X̂t of the current state
vector Xt

UPDATE Gt using Gt = f(Gt−1, X̂t)

3. Resampling

Perform the resampling step if N̂eff < Nthr

cluster the data association problem into distinct sub-

problems (Eq. (5)). This clustering stage helps reducing

the computation time during the gating process (this

gating process, in turn, is important for reducing the

number of data associations hypotheses). The weight

update is then performed by multiplying the likelihood

by the previous time weights (Eq. (3))

Finally, in step 3 for each target we estimate the

corresponding efficient components in the particles

X
(L)
t and resample if the number of efficient particles

N̂eff is less than a threshold Nthr: N̂eff < Nthr [31].

2) Augmented State for a Graph Structure Uncer-

tainty Estimation: In this Section we present a particle

filtering technique with a Metropolis-Hastings (MH)

step for group object motion estimation. Due to the

augmented state with the graph structure, each particle

contains the targets state and the group structure. In

general, the MH steps are known to allow using less

number of particles than the classical particle filter. We

are, then introducing these MH steps in order to reduce

the size of the particle cloud.

Having in mind (2)-(5), the implemented evolving

group model is described as Algorithm 2, where the

samples X
gi,(L)
t are drawn from the proposal PDF

q
(L)
gi (X

gi,(L)
t |X

gi,(L)
0:t−1 , z0:t−1) = p(X

gi,(L)
t |X

gi,(L)
t−1 ).

The samples G
(L)
t for the graph structure are drawn

from the PDF Q(Gt|X0:t,Gt−1) = p(Gt|Xt,Gt−1).

To sample from the proposal PDF qgi , a nearly con-

stant velocity model (6)-(7) is used for each component

X
gi,(L)
t−1 of a particle X

(L)
t−1 to obtain X

gi,(L)
t .

The interactions within each group are modeled

based on the mean velocity of group components (from

the constant velocity model instead of the velocity of

each group component).

To sample from the proposal PDF Q, the group struc-

Algorithm 2. Particle filtering with a state augmented by the

group structure

1. Prediction step
FOR L = 1 . . . Np

FOR all g
(L)
i ∈ G

(L)
t−1

DRAW a sample X
gi,(L)
t from the proposal

PDF q
(L)
gi :

X
gi,(L)
t ∼ q

(L)
gi (X

gi,(L)
t |X

gi,(L)
0:t−1 ,z0:t−1)

END

DRAW a sample G
(L)
t from a proposal

PDF Q

G
(L)
t ∼ Q(Gt|X

(L)
0:t ,G

(L)
t−1)

END

2. Updating step

FOR L = 1 . . . Np

CALCULATE the likelihood function according to:
equation (5) and using a JPDA algorithm [16]

END
Run the Metropolis-Hastings algorithm
with m steps (see Algorithm 3)
UPDATE and NORMALISE the weights

CALCULATE the estimate X̂t of the current state vector Xt

3. Resampling

Perform the resampling step if N̂eff < Nthr

ture evolution model Gt = f(Gt−1,Xt) introduced in

Section III-C, is used. In step 2 of Algorithm 2, the

likelihood is calculated by assuming independence be-

tween clusters of measurements corresponding to each

group. The MH step is described in Algorithm 3 and

is iterated m time steps (m being chosen beforehand).

The MH algorithm is introduced to sample from the

joint PDF p(Xt,Gt|Z1:t).
In step 2 the likelihood and the weight update is

performed, similarly to Algorithm 1, using the JPDA

algorithm.

Finally, in step 3, for each target we estimate the

corresponding efficient components in the particles

X
(L)
t and resample if the effective number of samples

N̂eff is less than a threshold Nthr [31].

Algorithm 3. Metropolis-Hastings step with the group structure

FOR L = 1 . . . Np

FOR all g
(L)
i ∈ G

(L)
t−1

DRAW a new sample X
gi(prop)
t using the proposal

PDF q
(L)
gi , X

gi,(L)
0:t−1 and z0:t−1(see Algorithm 2):

X
gi(prop)
t ∼ q

(L)
gi (X

gi,(L)
t |X

gi,(L)
0:t−1 ,z0:t−1)

END

DRAW a new sample G
prop
t using a the proposal

PDF Q, X
(prop)
t and G

(L)
t−1(see Algorithm 2):

G
prop
t ∼ Q(Gt|X

(prop)
t ,G

(L)
t−1)

CALCULATE the likelihood for X
(prop)
t

CALCULATE the acceptance ratio

ρ = min(1,
p(zt|X

(prop)
t )

p(zt|X
(L)
t )

)

UPDATE (X
(L)
t ,G

(L)
t ) and its likelihood

END

Note that, the particle filter presented in subsection

IV-C1 can be implemented with a MH step, and

respectively, the particle filter proposed in subsection

IV-C2 can be implemented without the MH move step.
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Hence, we have four different types of algorithms. For

conciseness, only two filters are presented in this paper.

The next section contains simulation results and a

comparison is made between the two presented particle

filters.

V. SIMULATION RESULTS

A. Scenario and Models
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Fig. 6. Actual trajectory of group 1

The proposed techniques have been tested over a sce-

nario in urban environment for ground moving object

tracking. The movement of four groups (see Figures

6-9), each of them comprising two ground targets, is

simulated over a period of 280s. All simulations and

calculations have been done using a 4GHz Processor

and Matlab software. The two filters provide outputs

in every time second.

The scenario is the following: at the beginning,

groups 1 and 2 form the same entity and split later

in two groups during their motion. In contrast, groups

3 and 4 are two different entities at the beginning but

merge into one group during the motion. In addition,

group 1, during the time evolution, passes near groups

3 and 4. Figure 10 shows this evolution of the group
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Fig. 7. Actual trajectory of group 2
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Fig. 8. Actual trajectory of group 3
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Fig. 9. Actual trajectory of group 4
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Fig. 10. Evolution of the group structure in time. From 0s to
20s, three groups are evolving: (1 + 2), 3 and 4. Then from
time instant 20s to 40s, four groups are evolving: 1, 2, 3 and
4. Finally, from time instant 40s to the end, three groups are
evolving: 1, 2 and (3 + 4).
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structure with two changes due to, respectively, split-

ting and merging of groups.

The scenario is challenging since the filter should be

able to deal with splitting and merging of groups and

also should be able to avoid interactions with crossing

groups coming from the opposite direction.

B. Results

1) Deterministic Group Structure Update: The par-

ticle filter (PF) with sequential importance re-sampling

(SIR) steps, described as Algorithm 1 in section IV-C1,

has been applied to the previous scenario. Figures 11-

13 show the performance of the filter for all the 8

targets, 3000 particles and Nthr = 300. The coefficient

α for the Gaussian sum in the constant velocity model

has been chosen to be equal to 0.7 and the sampling

interval is T = 1s. The Mahalanobis distance threshold

for determining whether two targets are in the same

group or not, has been chosen equal to respectively

55m for the position and 15m/s for the velocity. These

threshold values are very sensitive to the elements

of the estimated covariance matrix for each target. A

suitable choice of these parameters is necessary to

avoid gatherings of two targets, with big difference

in their speed or position, in the same group. The

Mahalanobis distance threshold for the group centre

has been chosen 4 times bigger than the previous

thresholds.
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Fig. 11. Estimated trajectories for the 8 targets from a single
run. The circles represent the sensor places.

groups structures

1 g1 = {1, 2, 7, 8}; g2 = {3, 4}; g3 = {5, 6}
2 g1 = {1, 2}; g2 = {3, 4, 5, 6};g3 = {7, 8}
3 g1 = {1, 2}; g2 = {3, 4};g3 = {5, 6}; g4 = {7, 8}

TABLE I
LISTING OF THREE GROUP STRUCTURES CORRESPONDING

TO THE ACTUAL SIMULATED GROUP STRUCTURE

EVOLUTION.

Figures 12 and 13 show the position mean errors

from 50 Monte Carlo runs. The developed approach
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Fig. 12. Position estimation error for eight targets.
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Fig. 13. Velocity estimation error for eight targets.

provides accurate estimates of the positions of the

separate vehicles nevertheless a very simple first degree

evolution model (constant velocity model) is used.

Consequently, abrupt changes of velocity during the

time evolution correspond to the spikes appearing on

the Figures 16 and 17.

Figure 14 shows a comparison between the group

structure evolution estimated using the PF and the

group structure evolution estimated using the simulated

trajectory. One can conclude that the group structure is

well captured by the introduced graph evolution model.

In addition, it is evident that the changes of the group

structure are not detected at the same time instant due

to the errors. The group structure estimated using the

PF is also changing and incorporates five supplemen-

tary groups structures (4 to 8) different to the three

ones presented in Table I. These supplementary group

structures occur essentially when, due to estimation

errors and during a short time, one group is abnormally

split. Furthermore, the group crossing simulated in this

scenario did not change the estimated group structure.

2) Augmented State with Group Structure: The SIR

PF with the MH step has been applied to this scenario.

Figures 15-17 show the performance of the filter for

all the 8 targets. In this experiment 1000 particles have
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Fig. 14. Comparison between the group structure evolution
estimated using the simulated trajectory (at the top) and using
the PF (at the bottom)

been used with m = 10 iteration of the MH algorithm.

The coefficient α for the Gaussian sum in the constant

velocity model has been chosen to be equal to 0.7.
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Fig. 15. Estimated trajectories for the 8 targets. the circles
represent the sensor places.

Figures 16 and 17 show the position and velocity

mean errors for 50 Monte Carlo runs. The developed

approach provides accurate estimates of the positions of

the separate vehicles. Additionally, Figure 18 presents

the group structures estimated by the PF and the actual

group structures of the simulated trajectories. The nine

more relevant groups are labeled from 1 to 9 and a

probability is calculated for each group at each time.

The group structures estimated by the PF give

weights to five supplementary group structures (4 to 9).

These supplementary group structures occur essentially

when, due to estimation errors and during a short time,

one group is abnormally split (especially when one

edge is removed). Groups 4 to 6 differ from group 3,

slightly, with one less edge and groups 7 to 9 differ
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Fig. 16. Position estimation error for eight targets.
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Fig. 17. Velocity estimation error for eight targets.

from group 2, slightly, with one less edge. One can

conclude that the group structure is well captured by

the introduced graph evolution model.

3) Comparison Between the Two Approaches: As

expected, the PF with a state augmented by the group

structure and incorporating an MH move step has

shown slightly better accuracy that the PF with de-

terministic graph update. However, the computational

complexity is increased substantially (approximately 3

times more) compared with the PF without the MH step

and with deterministic update of the graph structure.

The computational time for on time step (1s) are in av-

erage, respectively, 220ms for the deterministic update

and 500ms for the second approach. Both approaches

satisfy the real time constraint for these simulations

with Matlab.

The approach with the augmented state can model

well the group structure uncertainty and hence, gives

more robust performance.
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Fig. 18. Group structure evolution in the simulated trajectory
(bottom) and estimated by the PF (top). The nine more
relevant groups are labeled from 1 to 9 and a probability is
calculated, for each group and at each time step, for the PF.

Nevertheless, that the application we consider is for

groups of ground targets, the proposed techniques are

quite general and can be applied to other systems, such

as aircrafts or robots. In the next section, due to its ro-

bust performances and the possibility to provide group

structure uncertainty, only the approach described on

this section is applied to a real GMTI data set.

VI. RESULTS ON REAL DATA
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Fig. 19. Measured bearing and measured range, resp. for two groups.

This section presents results for the approach pro-

posed in section V-B2. The validation is performed over

real GMTI radar data shown in Figure VI provided to

us by QinetiQ, UK. Two groups of targets are moving

on the ground by crossing their paths which constitutes

an additional ambiguity for the group tracking algo-

rithm. The GMTI measurements are obtained by an

embedded radar on a moving airborn platform. There

is a measurement origin uncertainty which requires the

solution of the data association problem.

As seen from Figure VI, there is clutter noise in the

measured bearing angles and measured distances to the

targets.

The developed approach provides good estimation

accuracy of each vehicle trajectory positions (see Fig-

ure 20). Figure 21 shows additionally that the estimated

x coordinates of the groups are close to x coordinates

calculated from the measurements. The proposed algo-

rithm is able to cope with the crossed trajectories of

the groups.
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Fig. 20. Estimated trajectories for the 2 groups. The arrows show
the directions of the movement
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Fig. 21. This Figure shows the estimated x coordinates for the
2 groups jointly with the x coordinates are calculated from the
measurements (converted from range and bearing).
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Figure 22 presents the group structures estimated

by the particle filter. In the real scenario vehicles 1
and 2 are forming group 1 and vehicles 3 and 4 are

forming the second group. To plot the Figure 22, only

four relevant group structures appearing during the

estimation process are labeled from 1 to 4 (respectively

G1 : {g1 = (1, 2), g2 = (3, 4)}, (11)

G2 : {g1 = (1), g2 = (2), g3 = (3, 4)}, (12)

G3 : {g1 = (1, 2), g2 = (3), g3 = (4)}, (13)

G4 : {g1 = (1), g2 = (2), g3 = (3), g4 = (4)} (14)

and a probability is calculated for each group at each

time. From Figure 22 one can conclude that the group

structure is well estimated by the introduced graph

evolution model. In addition, we can deduce precious

information about the group structures uncertainty dur-

ing the time evolution.

Time (s)

 

 

10 20 30 40 50 60

1

2

3

4 15%

30%

45%

60%

75%

90%

Fig. 22. Group structure evolution estimated by the PF. The 4 more
relevant group structures are labeled from 1 to 4 (see (11)-(14)) and
a probability is calculated, for each group and at each time step.

VII. CONCLUSIONS

This paper presents Monte Carlo techniques

for group object structure and state estimation.

Evolutionary graph network-type models for the group

structure are proposed. The graph structure can be

deterministically estimated or in a probabilistic way

with a graph jointly updated with the samples of the

particle filter. The core idea is to maintain the structure

of a graph in which connected components correspond

to groups of targets. The effectiveness of the proposed

techniques is investigated and validated over a

challenging urban environment scenario with splitting,

merging and crossing of groups. The performance of

the approach is also validated over real ground moving

target indicator data sets. The proposed approaches

successfully estimate the targets states and the group

structure graph with reliable performance and accurate

tracking.
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[10] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
“Novel type of phase transition in a system of self-driven
particles,” Phys. Rev. Lett., vol. 75, no. 6, pp. 1226–1229, Aug
1995.

[11] D. Helbing, “Traffic and related self-driven many-particle sys-
tems,” Review of Modern Physics, vol. 73, pp. 1067–1141,
2002.

[12] M. J. Waxman and O. E. Drummond, “A bibliography of cluster
(group) tracking,” in Proceedings of the SPIE Signal and Data

Processing of Small Targets, O. E. Drummond, Ed., vol. 5428,
Aug. 2004, pp. 551–560.

[13] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of net-
works,” Advances in Physics, vol. 51, pp. 1079–1187, 2002.

[14] R. Albert and A.-L. Barabsi, “Statistical mechanics of complex
networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–
97, 2002.

[15] Y. Bar-Shalom and W. Blair, Multitarget-Multisensor Tracking:

Applications and Advances. Boston: Artech House, 2000, vol.
III.

[16] S. Blackman and R. Popoli, Design and Analysis of Modern

Tracking Systems. Artech House Radar Library, 1999.

[17] D. Clark and S. Godsill, “Group target tracking with the
Gaussian mixture probability density filter,” in Proc. of the 3rd

International Conf. on Intelligent Sensors, Sensor Networks and

Information Processing, 2007.

[18] D. Clark, B. Vo, B.-N. Vo, and S. Godsill, “Nonlinear im-
plementations of Gaussian mixture probability density filters,”
IEEE Transactions on Signal Processing, submitted, 2007.



14 IEEE TRANSACTIONS ON SIGNAL PROCESSING, REGULAR PAPER, VOL. A, NO. SEPTEMBER, 2010

[19] S. K. Pang, J. Li, and S. Godsill, “Models and Algorithms
for Detection and Tracking of Coordinated Groups,” IEEE

Aerospace Conf., March 2008.
[20] W. Koch and R. Saul, “A Bayesian approach to extended object

tracking and tracking of loosely structured target groups,” in
Proc. of the 8th International Conf. on Inform. Fusion. ISIF,
2005.

[21] D. Salmond and N. Gordon, “Group and extended object track-
ing,” in Proc. IEE Colloquium on Target Tracking: Algorithms

and Applications, 1999, pp. 16/1 – 16/4.
[22] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond, “Poisson

models for extended target and group tracking,” in Proceedings

of SPIE 5913, 2005.
[23] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman

Filter: Particle Filters for Tracking Applications. Boston,
London: Artech House, 2004.

[24] W. Koch and M. Feldmann, “Cluster tracking under kinematical
constraints using random matrices,” Robotics and Autonomous

Systems, vol. 57, no. 3, pp. 296 – 309, 2009.
[25] W. Koch, “On exploiting ‘negative’ sensor evidence for target

tracking and sensor data fusion,” Inf. Fusion, vol. 8, no. 1, pp.
28–39, 2007.

[26] P. Erdös and A. Renyi, “On the evolution of random graphs,”
Publ. Math. Inst. Hung. Acad. Sci., vol. 5, pp. 17–61.

[27] X. R. Li and V. Jilkov, “A survey of maneuveuvering target
tracking. Part I: Dynamic models,” IEEE Trans. on Aerosp.

and Electr. Systems, vol. 39, no. 4, pp. 1333–1364, 2003.
[28] Y. Bar-Shalom and X. Li, Estimation and Tracking: Principles,

Techniques and Software. Artech House, 1993.
[29] A. Gning, L. Mihaylova, S. Maskell, S. K. Pang, and S. Godsill,

“Evolving networks for group object motion estimation,” in
Proc. of IET Seminar on Target Tracking and Data Fusion:

Algorithms and Applications, Birmingham, UK, 2008, pp. 99–
106.

[30] A. Gning, L. Mihaylova, S. Maskell, S. Pang, and S. God-
sill, “Ground target group structure and state estimation with
particle filtering,” in Proc. of the 11th International Conf. on

Information Fusion, Cologne, Germany, 2008, pp. 1176 – 1183.
[31] A. Doucet, N. Freitas, and E. N. Gordon, Sequential Monte

Carlo Methods in Practice. New York: Springer-Verlag, 2001.


