
Received May 14, 2020, accepted June 1, 2020, date of publication June 15, 2020, date of current version June 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002263

Group Processing of Multiple k-Farthest
Neighbor Queries in Road Networks

HYUNG-JU CHO 1 AND MUHAMMAD ATTIQUE 2
1Department of Software, Kyungpook National University, Sangju 37224, South Korea
2Department of Software, Sejong University, Seoul 05006, South Korea

Corresponding authors: Hyung-Ju Cho (hyungju@knu.ac.kr) and Muhammad Attique (attique@sejong.ac.kr)

The work of Hyung-Ju Cho was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government,
Ministry of Science and ICT (MSIT) under Grant NRF-2019R1H1A2080073. The work of Muhammad Attique was supported by the
Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education
under Grant 2020R1G1A1013221.

ABSTRACT Advances in mobile technologies and map-based applications enables users to utilize sophis-
ticated spatial queries, including k-nearest neighbor and shortest path queries. Often, location-based servers
are used to handle multiple simultaneous queries because of the popularity of map-based applications. This
study focuses on the efficient processing of multiple concurrent k-farthest neighbor (kFN) queries in road
networks. For a positive integer k , query point q, and set of data points P, a kFN query returns k data points
farthest from the query point q. For addressing multiple concurrent spatial queries, traditional location-based
servers based on one-query-at-a-time processing are unsuitable owing to high redundant computation costs.
Therefore, we propose a group processing of multiple kFN (GMP) algorithm to process multiple kFN
queries in road networks. The proposed GMP algorithm uses group computation to avoid the redundant
computation of network distances between the query and data points. The experiments using real-world
roadmaps demonstrate the proposed solution’s effectiveness and efficiency.

INDEX TERMS Spatial databases, group processing, multiple k-farthest neighbor query, road network.

I. INTRODUCTION

The proliferation of smartphones with GPS and Wi-Fi
functionality has enabled mobile users to exploit various
location-based services (LBS), such as mobile guides, intelli-
gent transport systems, location-based gaming, and assistive
technology to support people with health problems [17], [18],
[32], [33], [41], [51]. Because of the popularity of LBSs, LBS
servers often respond to multiple simultaneous user queries.
For multiple applications, traditional LBS servers based on
one-query-at-a-time processing are unsuitable because they
cannot guarantee an inexpensive and real-time response in
high-load conditions. Consequently, the group processing
of spatial queries has become an important LBS research
topic [7], [8], [27], [36], [37], [52], [53].

We focus on the group processing of multiple k-farthest
neighbor (MkFN) queries in road networks; MkFN queries
are the logical opposite of k-nearest neighbor (kNN) queries.
We considered road networks rather than a Euclidean
space because the road network constrains both people

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello .

and vehicles. The farthest neighbor search is used in as many
real-life applications as the nearest neighbor search, including
computational geometry, artificial intelligence, pattern recog-
nition, and information retrieval. In particular, the farthest
neighbor search can determine the minimum radius of a circle
centered at a query point q that includes all data points. For a
kFN query, let us consider a real-life scenario in which a team
of commandos is on a mission, and the leader commands all
teammembers to be less than 1 km away from him. Typically,
team members who are farther from the team leader require
more of the leader’s attention. Furthermore, the leader might
be interested in the farthest team members to monitor their
activities and advise them not to move further away from
him.

Aggregate kFN (AkFN) query in road networks [47] is
similar to the MkFN query. However, in AkFN queries, for a
set of query pointsQ and a set of data pointsP, anAkFNquery
reports k data points having the largest aggregate network
distance such as the largest sum of network distances from
all query points inQ. However, an MkFN query reports k data
points farthest from each query point q in Q. Thus, the exist-
ing solutions for AkFN queries cannot be directly used to

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 110959

https://orcid.org/0000-0001-7458-8888
https://orcid.org/0000-0002-7237-180X
https://orcid.org/0000-0003-4970-4554

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

FIGURE 1. Multiple kFN queries in a road network where a set of query
points Q = {q1, q2} and a set of data points P = {p1, p2, · · · , p6} are
provided.

evaluate MkFN queries. For example, as shown in Figure 1,
given a set of query points Q = {q1, q2} and a set of data
points P = {p1, p2, · · · , p6} for the MkFN query result,
data points p1 and p2 are the farthest neighbors of q1 and
q2 query points, respectively. However, for the AkFN query
result, data point p3 is the farthest neighbor with the largest
sum of network distances from query points q1 and q2.

A one-query-at-a-time approach that sequentially com-
putes the k farthest data points from each query point in Q
is a straightforward solution for MkFN queries. However,
this solution involves computing the network distance from
the query point q to each data point p in P with additional
O(|P|log|P|) time to determine a set of k data points farthest
from q, which is compute-intensive. Therefore, in road net-
works, we propose an innovative algorithm for the group pro-
cessing of multiple kFN (GMP) queries. The GMP algorithm
clusters adjacent query and data points into a query and data
group, respectively, and then optimizes shared computation
for the query group to eliminate redundant candidates by
computing the maximum and minimum distances between
query and data groups. Although the group computation of
spatial queries has received considerable attention [7], [8],
[27], [36], [37], [52], [53], group computation has not been
applied to MkFN queries in road networks our knowledge.
In this study, we utilized shared execution to efficiently evalu-
ateMkFN queries in road networks in which it is assumed that
query and data points arbitrarily move. The proposed solution
is batch processing for MkFN queries, and the straightfor-
ward one-query-at-a-time solution is sequential processing.
The GMP algorithm is orthogonal to the network distance
methods [3], [13], [22], [23], [38], [54] and easy to imple-
ment, thereby facilitating its integrationwith existing network
distance methods.

The primary contributions of this study are listed below:

• We propose the GMP algorithm, an efficient algorithm
for the group processing of multiple kFN queries in road
networks. To our knowledge, this attempt is the first to
study MkFN queries in road networks.

• We present shared computation techniques to avoid the
redundant computation of network distances from the
query to data points. Furthermore, we present effective

pruning techniques to utilize the maximum distance
from the query to data groups.

• We conducted extensive experiments using real-world
roadmaps to demonstrate the efficiency and scalability
of the proposed solution.

The remainder of this study is organized as follows.
In Section II, the related studies are reviewed. In Section III,
we introduce preliminaries and formally define the MkFN
query. In Section IV, we explain the grouping of adjacent
points into segments, and then describe the computation of
two different segments. In Section V, we present the GMP
algorithm for the efficient processing of MkFN queries in
road networks. In SectionVI, we compare theGMP algorithm
and its conventional solution with different setups. Finally,
in Section VII, the conclusions and suggestions for future
work are provided.

II. RELATED STUDIES

In this section, we describe the farthest neighbor search
and group processing algorithms in Sections II.A and II.B,
respectively.

A. FARTHEST NEIGHBOR SEARCH ALGORITHMS

Multiple studies have focused on the efficient processing of
sophisticated spatial queries based on the farthest neighbor
search [6], [10], [12], [24]–[26], [42], [45], [47], [49], [50].
Curtin et al. [10] reported an approximate farthest neighbor
search algorithm that selects a set of candidate data points
using data distributed in a Euclidean space. Furthermore,
to investigate the difficulty of the farthest neighbor search
problem, they developed an information-theoretic entropy
measure. Lu and Yiu [26] formulated a farthest-dominated
location query for spatial decision support applications. The
formulated query retrieves a location such that the distance
to its nearest dominating object is maximized. Gao et al. [12]
and Wang et al. [47] studied AkFN queries in a Euclidean
space and spatial networks, respectively. For a set of data
points P and a set of query points Q, an AkFN query returns
k data points in P that have the largest aggregate distances
to all query points in Q. Moreover, reverse farthest neighbor
queries have been studied, in the Euclidean space [24], [50]
and spatial networks [45], [49]. Yao et al. [50] proposed
progressive farthest cell and convex hull farthest cell algo-
rithms to support the reverse farthest neighbor queries using
an R-tree [4], [16]. Wang et al. [46] presented a solution to
support reverse kFN queries in the Euclidean space for the
arbitrary values of k. Tran et al. [45] studied reverse farthest
neighbor queries in spatial networks using network Voronoi
diagrams and pre-computed network distances. Xu et al. [49]
presented efficient algorithms based on landmarks and hier-
archical partitioning to process monochromatic and bichro-
matic reverse farthest neighbor queries in spatial networks.
However, the existing solutions in the Euclidean space
cannot be applied to our situation because it is difficult
to utilize R-trees and convex hulls in spatial networks.

110960 VOLUME 8, 2020

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

Furthermore, the efficient processing of MkFN queries in
road networks has not been extensively studied.

B. GROUP PROCESSING ALGORITHMS

Multi-query optimization was originally investigated with
reference to relational database systems [40]. For a set of
currently running queries, computational costs are reduced
by executing shared expressions once, materializing them
temporarily, and then reusing them to solve the remain-
ing queries. Thus, common subexpressions are evalu-
ated once. This approach was subsequently extended to
include query result caches, materialized/cached views,
intermediate query results, and query rewriting, which
have been extensively studied for relational database
systems [11], [14], [15], [28]–[31], [34], [35] and streaming
processing systems [19]–[21]. Group processing algorithms
have proven to be effective in multiple applications involv-
ing high-load conditions [7], [8], [15], [19]–[21], [27]–[31],
[34]–[37], [52], [53].
The shared execution strategy has attracted consid-

erable attention in spatial databases because of its
low processing cost. A series of batch shortest-path
algorithms [27], [36], [43], [44], [52], [53] have been devel-
oped to evaluate group shortest-path queries in road networks
efficiently. Zhang et al. [52] studied the batch processing of
shortest-path queries in dynamic road networks in which
road segments weights (e.g., travel times) frequently change.
Recently, Cho developed shared execution techniques to
evaluate ε-distance join queries effectively [7] and kNN join
queries [8] in road networks. Owing to the inherent differ-
ence between farthest neighbor search and nearest neighbor
search, applying these algorithms for the studies in [7], [8]
to evaluate MkFN queries is difficult. Ali et al. [2] pro-
posed group query processing techniques using the move-
ment patterns of continuous queries on 3D object databases.
Boinski and Zakrzewicz [5] presented a new method for the
concurrent processing of multiple spatial collocation pattern
discovery queries. However, the existing algorithms cannot
be applied to evaluate MkFN queries in road networks. The
farthest neighbor search algorithms in Section II.A focused
on improving the efficiency of evaluating a single farthest
neighbor query. They did not consider the use of shared
computation among multiple queries. When multiple kFN
queries arrive simultaneously, query scalability becomes an
issue. Our proposed solution differs from existing studies
in several aspects. First, it represents the first attempt to
evaluate MkFN queries in road networks efficiently. Second,
it uses a shared execution strategy to filter candidates while
processing MkFN queries rapidly. Finally, it can be easily
implemented using popular network distance algorithms [3],
[23], [54] in road networks, which is highly desirable.

III. PRELIMINARIES

Definition 1 (kFN Query): For a positive integer k , a query
point q, and a set of data points P, the kFN query retrieves a
set Pk (q) of k data points in P that are farthest from the query

TABLE 1. Definitions of symbols.

point q, i.e., dist
(

q, p+
)

≥ dist(q, p−) for ∀p+ ∈ Pk (q) and
∀p− ∈ P− Pk (q).
Definition 2 (MkFN Query): For a set of query points Q,

the MkFN query retrieves a set Pk (q) of k data points farthest
from each query point q in Q. For simplicity, we assume that
each query point q requires the same number k of data points
farthest from q. However, it is not difficult to consider the
distinct number kq of data points farthest from each query
point q, which will be discussed in Section V.
Definition 3 (Road network):We represent a road network

as an undirected weighted graph G = 〈V ,E,W 〉, where V ,
E , and W indicate the vertex set, edge set, and edge distance
matrix, respectively. Each edge vivj has a non-negative weight
representing the network distance, such as the travel time.
Definition 4 (Intersection, Intermediate, and Terminal Ver-

tices):We divide vertices into three categories based on their
degree. (1) If the degree is greater than or equal to three, then
the vertex is referred to as an intersection vertex. (2) If the
degree is two, then the vertex is an intermediate vertex. (3) If
the degree is one, then the vertex is a terminal vertex.
Definition 5 (Vertex Sequence and Segment): A vertex

sequence vlvl+1 . . . vm denotes a path between two vertices
vl and vm such that vl (vm) is either an intersection ver-
tex or a terminal vertex, and then the other vertices in the
path, vl+1, . . . , vm−1 are intermediate vertices. The length of
a vertex sequence is the total weight of the edges in the vertex
sequence. One part of a vertex sequence is referred to as a
segment. By definition, a vertex sequence is a segment.
Table 1 summarizes the typical symbols and notations

used in this study. To simplify the presentation, we denote

VOLUME 8, 2020 110961

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

FIGURE 2. Difference between dist (r , s) and len (r , s).

qiqi+1. . . qj (plpl+1. . . pm) as qiqj (plpm), where query
points qi, qi+1, . . . , qj or data points pl, pl+1, · · · , pm are
located in the same vertex sequence. Figure 2 shows the dif-
ference between the network distance and the segment length
between two points, r and s in a road network, where the num-
bers at the edges indicate the distance between two adjacent
points (e.g., dist (v1, v2) = 6), as shown in Figure 2(a). The
shortest path from r to s is r → v2 → v3 → s, where
the network distance between them is dist (r, s) = 9. The
segment connecting r and s in a vertex sequence v2v5v6v3
becomes rv5v6s with a length equal to len (r, s) = 10.
Furthermore, len (r, s) is defined only when both points r and
s are in the same vertex sequence. Figure 2(b) shows how to
disassemble a road network into four vertex sequences v1v2,
v2v3, v3v4, and v2v5v6v3, where v1 and v4 are the terminal
vertices, v2 and v3 are the intersection vertices, and v5 and v6
are the intermediate vertices, respectively.

IV. GROUP PROCESSING OF MULTIPLE K-FARTHEST

NEIGHBOR QUERIES IN ROAD NETWORKS

A. GROUPING QUERY AND DATA POINTS

In this section, we consider anMkFN query in a road network,
which is shown in Figure 3. For k = 2, Q = {q1, q2, q3, q4},
and P = {p1, p2, p3, p4, p5}, we consider a kFN query that
retrieves two data points that are farthest from each query
point q in Q.
Figure 3 shows the population of query and data points at

timestamps ti and tj. Here, we assume that both the query and
data points arbitrarily move along the road network. In this
section, as shown in Figure 3(a), we focus on evaluating
MkFN queries at timestamp ti.

Figure 4 shows a sample grouping of adjacent query and
data points. As shown in Figure 4(a), two query points q1
and q2 in a vertex sequence v1v4v5v3 are grouped into a
query segment q1q2, whereas the other two query points q3

FIGURE 3. Population of query and data points at ti and tj .

FIGURE 4. Grouping of adjacent query and data points.

and q4 in a vertex sequence v1v3 are grouped into another
query segment q3q4. Therefore, a set of query points Q =
{q1, q2, q3, q4} can be transformed into a set of query seg-
ments Q = {q1q2, q3q4}. Similarly, as shown in Figure 4(b).
a set of data points P = {p1, p2, p3, p4, p5} can be trans-
formed into a set of data segments P = {p1p2p3, p4p5}.

B. COMPUTATION OF DISTANCE BETWEEN QUERY AND

DATA SEGMENTS

In this section, we describe the method to compute
the minimum and maximum distances between a query
segment qiqj and a data segment plpm denoted by
mindist

(

qiqj, plpm
)

and maxdist
(

qiqj, plpm
)

, respectively.
Note that mindist

(

qiqj, plpm
)

and maxdist
(

qiqj, plpm
)

are
formally defined as mindist

(

qiqj, plpm
)

= min{dist(q, p)|
q∈qiqj, p∈plpm} and maxdist

(

qiqj, plpm
)

= max{dist(q, p)|
q∈qiqj, p∈plpm}.

110962 VOLUME 8, 2020

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

FIGURE 5. Determination of distance from q to p, where q∈qi qj .

Corollary 1: mindist
(

qiqj, plpm
)

and maxdist
(

qiqj, plpm
)

are the lower and upper bounds on the distance between
a query point q and a data point p, respectively, where
∀q∈qiqj and ∀p ∈ plpm. Therefore, mindist

(

qiqj, plpm
)

≤

dist(q, p) ≤ maxdist
(

qiqj, plpm
)

. �

We describe the method to compute mindist
(

qiqj, plpm
)

and maxdist
(

qiqj, plpm
)

. If qiqj and plpm overlap (i.e.,
qiqj∩plpm 6=∅), the minimum distance between qiqj and
plpm is mindist

(

qiqj, plpm
)

= 0; otherwise, the min-
imum distance between them is mindist

(

qiqj, plpm
)

=

min
{

dist (qi, pl) , dist (qi, pm) , dist
(

qj, pl
)

, dist
(

qj, pm
)〉

.

Unlike the computation of mindist
(

qiqj, plpm
)

, computing
maxdist

(

qiqj, plpm
)

is not trivial. We first describe the
method to compute the maximum distance between a query
segment qiqj and a data point p in plpm. We investigate the
distance dist (q, p) from a query point q in qiqj to a data
point p.
In Figure 5, assume that point qi corresponds to the ori-

gin of the XY coordinate system. Subsequently, the Y-axis
represents dist (q, p) and the X-axis represents len (qi, q),
where q∈qiqj. As shown in Figure 5(a), if a path q →

qi → p exists, then the distance from q to p is evaluated

by dist (q, p) = len (q, qi)+ dist (qi, p). Similarly, as shown
in Figure 5(b), if a path q → qj → p exists, then dist (q, p)
is evaluated by dist (q, p) = len

(

q, qj
)

+ dist
(

qj, p
)

. If the
data point p is located in qiqj, then dist (q, p) is evaluated
by dist (q, p) = len (q, p), as shown in Figure 5(c). Because
dist (q, p) is the length of the shortest path among multiple
paths from q to p, it is computed as follows: If p /∈ qiqj,
then dist (q, p) = min{len (q, qi) + dist (qi, p) , len

(

q, qj
)

+

dist
(

qj, p
)

}; otherwise, dist (q, p) = min{len (q, qi) +

dist (qi, p) , len
(

q, qj
)

+ dist
(

qj, p
)

, len (q, p)}.
For a data segment plpm and a query point q, let

ω (q, plpm) = q∗ be the farthest point q∗ of the query
point q to all points in plpm. This indicates that a point q∗

exists in plpm such that maxdist (q, plpm) = dist (q, q∗).
Thus, we can easily locate q∗ in plpm using the lin-
ear equation maxdist (q, plpm) = dist (q, q∗). Based on
Figure 6, we compute the farthest point q∗ from each query
point q ∈ {q1, q2, q3} such that maxdist (q, p1p2) =
dist (q, q∗) for ∃q∗ ∈ p1p2. Because dist (q1, p1) = 8,
dist (q1, p2) = 2, len (p1, p2) = 6, and dist (q1, p1) =

dist (q1, p2) + len (p2, p1), we have maxdist (q1, p1p2) = 8
and ω (q1, p1p2) = p1, as shown in Figure 6(b). Similarly,
because dist (q2, p1) = 3, dist (q2, p2) = 9, len (p1, p2) = 6,
and dist (q2, p2) = dist (q2, p1) + len (p1, p2), we have
maxdist (q2, p1p2) = 9 and ω (q2, p1p2) = p2, as shown
in Figure 6(c). Because dist (q3, p1) = 5, dist (q3, p2) = 7,
and len (p1, p2) = 6, as shown in Figure 6(d), the max-
imum distance between q3 and p1p2 is evaluated as
maxdist (p1p2, q3) = 9, and the farthest point of q3 is marked
as q∗3. The dash-dotted lines in Figure 6 shows the lengths of
redundant paths are not the shortest path.

Figure 7 shows the process of computing maxdist
(

qiqj, plpm
)

. This process operates in two phases, which
correspond to Figures 7(a) and 7(b). In the first phase,
we obtain the farthest point q∗i (q∗j) of qi (qj) such that
maxdist (qi, plpm) = dist

(

qi, q
∗
i

)

(maxdist
(

qj, plpm
)

=

dist
(

qj, q
∗
j

)

), i.e., ω (qi, plpm) = q∗i (ω
(

qj, plpm
)

= q∗j),
as shown in Figure 7(a). In the second phase, we com-
pute maxdist

(

qiqj, q
∗
i

)

and maxdist
(

qiqj, q
∗
j

)

, as shown
in Figure 7(b), where points q∗∗i (q∗∗j) indicate the farthest
point of q∗i (q∗j) such that maxdist

(

qiqj, q
∗
i

)

= dist(q∗∗i , q∗i)

(maxdist
(

qiqj, q
∗
j

)

= dist(q∗∗j , q∗j)), i.e., ω
(

qiqj, q
∗
i

)

= q∗∗i

(ω
(

qiqj, q
∗
j

)

= q∗∗j), as shown in Figure 7(b). Note that q∗i
and q∗j belong to a data segment plpm, whereas q∗∗i and q∗∗j
belong to a query segment qiqj.

Lemma 1 proves that maxdist
(

qiqj, plpm
)

= max { dist
(

q∗i , q
∗∗
i

)

, dist
(

q∗j , q
∗∗
j

)

}, where q∗i = ω (qi, plpm), q∗∗i =

ω
(

q∗i , qiqj
)

, q∗j = ω
(

qj, plpm
)

, and q∗∗j = ω

(

q∗j , qiqj

)

,
as shown in Figure 7.
Lemma 1: maxdist

(

qiqj, plpm
)

= max{dist
(

q∗i , q
∗∗
i

)

,

dist
(

q∗j , q
∗∗
j

)

}, where q∗i = ω (qi, plpm), q∗∗i = ω
(

q∗i , qiqj
)

,

q∗j = ω
(

qj, plpm
)

, and q∗∗j = ω

(

q∗j , qiqj

)

.

VOLUME 8, 2020 110963

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

FIGURE 6. Evaluation of maxdist
(

q1, p1p2
)

, maxdist
(

q2, p1p2
)

, and
maxdist

(

q3, p1p2
)

.

FIGURE 7. maxdist
(

qi qj , pl pm

)

= max{dist
(

q∗
i
, q∗∗

i

)

, dist(q∗
j
, q∗∗

j
)}.

FIGURE 8. dist
(

q, pf
)

= min{dist
(

pf , qi
)

+ len
(

qi , q
)

, dist
(

pf , qj

)

+

len
(

qj , q
)

}.

Proof: We prove this lemma by contradiction. The
maximum distance between two segments qiqj and
plpm can be represented by maxdist

(

qiqj, plpm
)

=

max
{

maxdist
(

qiqj, p
) ∣

∣maxdist
(

qiqj, p
)

p ∈ plpm
〉

p∈plpm
〉

.

We assume that the farthest point pf in plpm exists
such that maxdist

(

qiqj, pf
)

> max{maxdist
(

qiqj, q
∗
i

)

,

maxdist
(

qiqj, q
∗
j

)

} .

Generally,maxdist
(

qiqj, pf
)

= max{dist
(

q, pf
)

|q∈qiqj},
maxdist

(

qiqj, q
∗
i

)

= max{dist
(

q, q∗i
)

|q∈qiqj}, and

maxdist
(

qiqj, q
∗
j

)

= max{dist
(

q, q∗j

)

|q∈qiqj}, As shown
in Figure 8, the shortest path from pf to q∈qiqj is either
pf → qi → q or pf → qj → q, and the distance from
pf to q is represented by dist

(

q, pf
)

= min{dist
(

pf , qi
)

+

len (qi, q) , dist
(

pf , qj
)

+ len
(

qj, q
)

}.
Based on the assumption that maxdist

(

qiqj, pf
)

>

max
{

maxdist
(

qiqj, q
∗
i

)

,maxdist
(

qiqj, q
∗
j

)}

, a point

qx∈qiqj exists such that maxdist
(

qiqj, pf
)

= dist(qx , pf)

and dist
(

qx , pf
)

> max
{

dist
(

qx , q
∗
i

)

, dist
(

qx , q
∗
j

)}

.
If the shortest path from pf to qx is pf→qi→qx , then
dist

(

qx , pf
)

> dist
(

qx , q
∗
i

)

, indicating dist
(

qi, pf
)

>

dist
(

qi, q
∗
i

)

, this contradicts the given condition that

110964 VOLUME 8, 2020

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

q∗i = ω (qi, plpm). Similarly, if the shortest path from pf

to qx is pf→qj→qx , then dist
(

qx , pf
)

> dist
(

qx , q
∗
j

)

,

indicating dist
(

qj, pf
)

> dist
(

qj, q
∗
j

)

, this contradicts

the given condition that q∗j = ω
(

qj, plpm
)

. Therefore,
no farthest point pf exists such that maxdist

(

qiqj, pf
)

>

max{maxdist
(

qiqj, q
∗
i

)

,maxdist
(

qiqj, q
∗
j

)

} . Consequently,

maxdist
(

qiqj, plpm
)

=max
{

dist
(

q∗i , q
∗∗
i

)

, dist
(

q∗j , q
∗∗
j

)}

,

where q∗i = ω (qi, plpm), q∗∗i = ω
(

q∗i , qiqj
)

, q∗j =

ω
(

qj, plpm
)

, and q∗∗j = ω

(

q∗j , qiqj

)

. �

Returning to the example in Figure 4, we compute
the maximum distance between a query segment qiqj
and a data segment plpm, where qiqj∈ {q1q2, q3q4} and
plpm∈{p1p2p3, p4p5}. Specifically, we evaluate
maxdist (q1q2, p1p2p3) , maxdist (q1q2, p4p5) , maxdist

(q3q4, p1p2p3) , and maxdist (q3q4, p4p5) in this order.
Figure 9 shows the method to compute maxdist

(q1q2, p1p2p3). In the first phase, Figures 9(a) and (b),
we determine the farthest point q∗1 (q∗2) of a query point
q1 (q2) among p1p2p3, i.e., q∗1 = ω (q1, p1p2p3) (q∗2 =
ω (q2, p1p2p3)). In the second phase, as show in Figures 9(c)
and (d), we compute maxdist(q∗1, q1q2) (maxdist(q

∗
2, q1q2))

and then compute maxdist (q1q2, p1p2p3) = max

{maxdist
(

q∗1, q1q2
)

,maxdist(q∗2, q1q2)}.
As shown in Figure 9(a), because query point q1 is

not located in the data segment p1p2p3 and the length of
the shortest path from q1 to p1 (p3) is dist (q1, p1) =

13 (dist (q1, p3) = 9), the maximum distance between
query point q1 and data segment p1p2p3 is evaluated as
maxdist (q1, p1p2p3) = 15. As shown in Figure 9(b), because
query point q2 is not located in the data segment p1p2p3
and the length of the shortest path from q2 to p1 (p3) is
dist (q2, p1) = 7 (dist (q2, p3) = 15), the maximum distance
between query point q2 and data segment p1p2p3 is evalu-
ated as maxdist (q2, p1p2p3) = 15. Consequently, the far-
thest point of q1 among p1p2p3 is q∗1 = ω (q1, p1p2p3) = v2,
and the farthest point of q2 among p1p2p3 is q∗2 =

ω (q2, p1p2p3) = p3.
As shown in Figure 9(c), because the point q∗1 is not

located in the query segment q1q2 and the length of the
shortest path from q∗1 to q1 (q2) is dist

(

q∗1, q1
)

= 15
(dist

(

q∗1, q2
)

= 9), the maximum distance between query
segment q1q2 and a point q∗1 that matches a vertex v2 is eval-
uated as maxdist

(

q∗1, q1q2
)

= 16. As shown in Figure 9(d),
because the point q∗2 is not located in the query seg-
ment q1q2 and the length of the shortest path from q∗2
to q1 (q2) is dist

(

q∗2, q1
)

= 9 (dist
(

q∗2, q2
)

= 15),
the maximum distance between query segment q1q2 and
a point q∗2 that matches a data point p3 is evaluated as
maxdist

(

q∗2, q1q2
)

= 16. Consequently, the maximum dis-
tance between q1q2 and p1p2p3 is maxdist (q1q2, p1p2p3) =
max

{

maxdist
(

q∗1, q1q2
)

,maxdist
(

q∗2, q1q2
)}

= {16, 16} =
16. Furthermore, as shown in Figure 9, we com-
pute maxdist (q1q2, p4p5) , maxdist (q3q4, p1p2p3) , and

TABLE 2. Computation of minimum and maximum distances between
qi qj and pl pm.

maxdist (q3q4, p4p5). Table 2 summarizes the minimum and
maximum distances between qiqj and plpm, where qiqj ∈
{q1q2, q3q4} and plpm ∈ {p1p2p3, p4p5}.

C. SORTING DATA SEGMENTS BY THE MAXIMUM

DISTANCE

Figure 10 shows the sorting of p1p2p3 and p4p5 in P for
each query segment qiqj. Specifically, the two data seg-
ments were sorted and plotted in the decreasing order of
the maximum distance to a query segment. If data seg-
ments with the same maximum distance are discovered,
they are re-sorted in the decreasing order of their min-
imum distance. As shown in Figure 10(a), p1p2p3 and
p4p5 are sorted in the decreasing order, as represented by
〈p1p2p3, p4p5〉, and then sequentially processed for q1q2.
This is because the maximum distance of p1p2p3 to q1q2
(i.e., maxdist (q1q2, p1p2p3) = 16) is larger than the maxi-
mum distance of p4p5 (i.e., maxdist (q1q2, p4p5) = 12).
Similarly, as shown in Figure 10(b), p4p5 and p1p2p3
are sorted in the decreasing order, as represented by
〈p1p2p3, p4p5〉, and then sequentially processed for q3q4.
This is because the maximum distance of p4p5 to q3q4
(i.e., maxdist (q3q4, p4p5) = 12) is larger than the maximum
distance of p1p2p3 (i.e., maxdist (q3q4, p1p2p3) = 10).

V. GMP ALGORITHM

Algorithm 1 describes the GMP algorithm for MkFN search
in road networks. The result set �(Q) is initialized to
an empty set (line 1). In the first step (lines 2−4), adja-
cent query points qi, qi+1, · · · , qj and adjacent data points
pl, pl+1, · · · , pm in a vertex sequence are grouped into a
query segment qiqj and data segment plpm, respectively.
Therefore, as explained in Section IV, a set of query points Q
and a set of data points P are converted to a set of query seg-
mentsQ and a set of data segmentsP, respectively. TheMkFN
search for a query segment qiqj is performed to identify the
k farthest data points of each query point in qiqj (line 7). The
result �(qiqj) of the MkFN search for qiqj is added to the
query result, where �(qiqj) ={ 〈q,Pk (q)〉 |q ∈ qiqj} (line 8).
Then, the query result�(Q) is returned after theMkFN search
for all query segments is performed (line 9).

Algorithm 2 describes the MkFN search algorithm for
obtaining the k farthest data points of each query point
in qiqj. The MkFN search algorithm sequentially traverses
each of the sorted data segments in P. Furthermore, all data
segments in P are sorted in the decreasing order of their

VOLUME 8, 2020 110965

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

FIGURE 9. maxdist
(

q1q2, p1p2p3
)

= 16. (a) maxdist
(

q1, p1p2p3
)

= 15 and q∗
1

= v2 (b) maxdist
(

q2, p1p2p3
)

= 15 and q∗
2

= p3

(c) maxdist
(

q∗
1
, q1q2

)

= 16 (d) maxdist
(

q∗
2
, q1q2

)

= 16.

Algorithm 1 GMP (Q,P)
Input: Q: set of query points, P: set of data points
Output: �(Q): set of ordered pairs of each query point q in Q and its query result, i.e., �(Q) ={ 〈q,Pk (q)〉 |q ∈ Q}.
1: �(Q)← ∅ // the result set �(Q) is initialized to the empty set.
2: // adjacent points in a vertex sequence are grouped into a segment, which is explained in Section IV.A.
3: Q← group_points(Q) // adjacent query points qi, qi+1, · · · , qj in a vertex sequence are grouped into qiqj.
4: P← group_points(P) // adjacent data points pl, pl+1, · · · , pm in a vertex sequence are grouped into plpm.
5: // farthest data points from each query point in qiqj are retrieved, which is detailed in Algorithm 2.
6: for each query segment qiqj∈Q do

7: �(qiqj)← MkFN_search(qiqj, P) // �(qiqj) ={ 〈q,Pk (q)〉 |q ∈ qiqj}
8: �(Q)← �(Q) ∪�(qiqj) // the result for each query point in qiqj is added to �(Q)
9: return �(Q) // �(Q) is returned after the MkFN search for all query segments in Q is executed.

FIGURE 10. Sorting data segments in decreasing order of their maximum
distance to each query segment.

maximum distance to qiqj. First, the result set �
(

qiqj
)

is
initialized to an empty set. Three general cases are then

formally considered depending on the number of query points
in qiqj, i.e.,

∣

∣qiqj
∣

∣ = 1,
∣

∣qiqj
∣

∣ = 2, and
∣

∣qiqj
∣

∣ ≥ 3,
where

∣

∣qiqj
∣

∣ returns the number of query points in qiqj. Thus,
∣

∣qiqj
∣

∣ = 1 denotes qiqj contains only a single query point
qi,

∣

∣qiqj
∣

∣ = 2 denotes qiqj contains only two query points qi
and qj, and

∣

∣qiqj
∣

∣ ≥ 3 denotes qiqj contains more than three
query points qi, qi+1, . . . , qj. If

∣

∣qiqj
∣

∣ = 1. Subsequently,
the kFN query from qi is evaluated, which is detailed in
Algorithm 3. The query result Pk (qi) for qi is obtained and
returned (lines 6−9). Similarly, if

∣

∣qiqj
∣

∣ = 2, then two
kFN queries from qi and qj are evaluated. The query results
Pk (qi) and Pk (qj) are obtained for qi and qj, respectively,
and their union, �

(

qiqj
)

= { 〈qi,Pk (qi)〉} ∪ {
〈

qj,Pk
(

qj
)〉

})
is returned (lines 10−14). Finally, if

∣

∣qiqj
∣

∣ ≥ 3, then two
kFN queries from qi and qj are evaluated and their results
are saved to Pk (qi) and Pk (qj), respectively. Note that the
third argument of the kFN_search function in lines 19 and
20 is set to the length len(qi, qj) of the query segment rather
than 0 as in lines 8, 12, and 13. The k farthest data points of
each query point q in qiqj is retrieved from candidate data
points in Pkmax (qi) ∪ Pkmax (qj) (lines 15−25), as explained
in Algorithm 4.

Algorithm 3 then describes the kFN search algorithm for
finding candidate data points farthest from q. If the third input

110966 VOLUME 8, 2020

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

Algorithm 2 MkFN_search (qiqj, P)

Input: qiqj: query segment, P: set of data segments
Output: �

(

qiqj
)

: set of ordered pairs of each query point q in qiqj and its query result, i.e., �(qiqj) ={ 〈q,Pk (q)〉 |q ∈ qiqj}.
1: // the maximum and minimum distances from qiqj to each data segment in P are computed as explained in Section IV.B.
2: for each data segment plpm ∈ P do

3: compute maxdist
(

qiqj, plpm
)

and mindist
(

qiqj, plpm
)

4: // the data segments in P are sorted in a decreasing order of their maximum distance to qiqj as explained in Section IV.C.
5: P← sort_by_dec_order(P) // P contains a set of the sorted data segments for qiqj.
6: if

∣

∣qiqj
∣

∣ = 1 then

7: //
∣

∣qiqj
∣

∣ = 1 denotes that qiqj consists of a query point qi, i.e., qi = qj.
8: Pki (qi)← kFN_search(qi, ki, 0,P) // kFN search from qi is performed and its result is saved to Pki (qi).
9: return {

〈

qi,Pki (qi)
〉

} // query result Pki (qi) is returned for qi.
10: else if

∣

∣qiqj
∣

∣ = 2 then
11: //

∣

∣qiqj
∣

∣ = 2 denotes that qiqj consists of two query points qi and qj.
12: Pki (qi)← kFN_search(qi, ki, 0,P) // kFN search from qi is performed and its result is saved to Pki (qi).
13: Pkj (qj)← kFN_search(qj, kj, 0,P) // kFN search from qj is performed and its result is saved to Pkj (qj).
14: return {

〈

qi,Pki (qi)
〉

} ∪ {
〈

qj,Pkj
(

qj
)〉

} // the union of query results, Pki (qi) ∪ Pkj
(

qj
)

, is returned for qi and qj.
15: else if

∣

∣qiqj
∣

∣ ≥ 3 then

16: //
∣

∣qiqj
∣

∣ ≥ 3 denotes that qiqj consists of more than three query points.
17: �(qiqj)← ∅ // the result set �(qiqj) is initialized to the empty set..
18: kmax ← max{ki, ki+1, · · · , kj} // assume that qn requests kn farthest data points for i ≤ n ≤ j.
19: Pkmax (qi)← kFN_search(qi, kmax , len(qi, qj),P) // kFN search is performed for qi with kmax .
20: Pkmax (qj)← kFN_search(qj, kmax , len(qi, qj),P) // kFN search is performed for qj with kmax .
21: // k FNs of query points qi, qi+1, · · · ,qj are retrieved from Pk (qi) ∪ Pk (qi).
22: for each query point q∈qiqj do
23: Pk (q)← choose_kFN(q, k,Pkmax (qi) ∪ Pkmax (qj)) // choose_kFN is explained in Algorithm 4.
24: �

(

qiqj
)

← �
(

qiqj
)

∪{ 〈q,Pk (q)〉} // each query result for q ∈ qiqj − {qi, qj} is added to �
(

qiqj
)

.
25: return �

(

qiqj
)

// the union of query results is returned for qi, qi+1, · · · , qj.

argument l = 0, then the kFN search function produces a set
of k farthest data points for a query point q only. Otherwise
(i.e., l> 0), the search function produces a set of candidate
data points for all query points in qiqj. Data segments are
traversed in descending order based on maximum distance
to q. Therefore, the data segments are explored in descending
order based on the maximum distance to q. Furthermore,
prundist is initialized to 0 and holds the difference between
the distance from q to the current kth FN candidate and
the segment length, i.e., prundist = dist (q, pkth) − l. Note
that prundist is used as the sentinel to determine whether
the algorithm should be terminated (line 6). If the value of
prundist is larger than the maximum distance of the current
data segment plpm to be analyzed, the algorithm terminates
with the candidate set Pk (q); otherwise, it analyzes whether
each data point p in plpm is a candidate for either the query
point q when the segment length l = 0 or the query segment
qiqj when l > 0. If dist (q, p) ≥ prundist , then the data point
p is included in the candidate setPk (q) and the prundist value
is accordingly updated, as shown in line 12. Furthermore,
if |Pk (q)|<k , prundist = 0. If maxdist

(

qiqj, plpm
)

is less
than prundist (lines 5−6) the data segments in P are inves-
tigated (lines 4−11), the algorithm returns the candidate set
Pk (q) that includes k data points farthest from q and then ter-
minates. In Corollary 2, if maxdist

(

qiqj, plpm
)

< prundist ,

then the remaining unexplored data segments can be safely
neglected for a query segment qiqj.
Corollary 2: If maxdist

(

qiqj, plpm
)

< prundist , no data
point p in plpm belongs to a set Pk of the kFNs of q because
maxdist (q, plpm) ≤ maxdist

(

qiqj, plpm
)

holds. Note that,
as shown in line 12, prundist is determined by prundist =
dist (q, pkth)− l. Therefore, data points in the remaining data
segments can be safely disregarded because the maximum
distance of these data segments is less than the distance to
the kth FN candidate. �

Algorithm 4 describes the process to determine the k far-
thest data points of q among the candidate data points in 6q

that correspond to 6q = Pkmax (qi) ∪ Pkmax (qj). The set of
kFNs of query point q, Pk (q) is initialized to an empty set.
The distance from q to a candidate data point p is computed
as per the condition of p (lines 3−5). If p /∈ qiqj, then
the distance from q to p is dist (q, p) = min{len (q, qi) +

dist (qi, p) , len
(

q, qj
)

+ dist
(

qj, p
)

}. Otherwise (i.e., p ∈
qiqj), the distance is dist (q, p) = min{len (q, qi) +

dist (qi, p) , len
(

q, qj
)

+ dist
(

qj, p
)

, len (q, p)}. After com-
puting dist(q, p), we can determine whether p will be added
to the result set Pk (q). If |Pk (q)|<k , then p is added to
Pk (q) (lines 7−8). If |Pk (q)| = k and dist (q, p) >

dist(q, pkth), then p is added to Pk (q) and pkth is removed
from Pk (q). Here, pkth denotes the current kth FN from q,

VOLUME 8, 2020 110967

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

Algorithm 3 kFN_search (q, k, l,P)

Input: q: query point, k: number of requested FNs, l: segment length, P: set of sorted data segments
Output: Pk (q): set of farthest data points from q with consideration of the number k of requested FNs and offset distance l
1: // it explores sorted data segments sequentially to find data points farthest from q as early as possible.
2: Pk (q)←∅ // Pk (q) keeps a set of candidate data points farthest from q.
3: prundist←0 // prundist is used to determine whether to explore the other data segments.
4: for each data segment plpm∈P do

5: // assume that qiqj is the query segment containing the query point q.
6: if maxdist

(

qiqj, plpm
)

< prundist then

7: go to line 14 // the other data segments can be safely ignored according to Corollary 2.
8: else

9: for each data point p ∈ plpm do

10: if dist (q, p) ≥ prundist then

11: Pk (q)←Pk (q) ∪ {p} // if dist (q, p) ≥ prundist , a data point p is included in Pk (q).
12: prundist ← dist (q, pkth)− l // pkth is the current kth FN among the candidates in Pk (q).
13: // it removes redundant data points p from Pk (q) because they cannot be included in Pk (q) for all query points in qiqj.
14: for each data point p∈Pk (q) do
15: // p is removed from Pk (q) if dist (q, p) < prundist .
16: if dist (q, p) <prundist then

17: Pk (q)←Pk (q)− {p} // p cannot be a candidate for any query points in qiqj.
18: return Pk (q)

Algorithm 4 choose_kFN(q, k, 6q)

Input: q: query point in qiqj, k: number of farthest data points retrieved for q, 6q: set of candidate data points for q
Output: Pk (q): set of k data points farthest from q

1: Pk (q)← ∅ // Pk (q) is initialized to the empty set.
2: for each data point p ∈ 6q do

3: // step 1: dist(q, p) is computed according to the condition of p.
4: if p /∈ qiqj then

5: dist(q, p)← min{len (q, qi)+ dist (qi, p) , len
(

q, qj
)

+ dist
(

qj, p
)

} // see Figure 5.
6: else

7: dist(q, p)← min{len (q, qi)+ dist (qi, p) , len
(

q, qj
)

+ dist
(

qj, p
)

, len (q, p)} // see Figure 5.
8: // step 2: p is added to Pk (q) if it satisfies either of the two conditions below.
9: if |Pk (q)| < k then

10: Pk (q)← Pk (q) ∪ {p}
11: else if |Pk (q)| = k and dist (q, p) > dist(q, pkth) then
12: Pk (q)← Pk (q) ∪ {p} − {pkth} // assume that pkth is the current k-th farthest data point from q.
13: return Pk (q)

i.e., Pk (q)← Pk (q) ∪ {p} − {pkth} (lines 9−10). The query
result Pk (q) of the query point q is then returned after
the candidate data points in 6q have been explored
(line 13).

VI. PERFORMANCE STUDY

In this section, we report the results from an empirical anal-
ysis of the GMP algorithm. We describe the experimental
settings in Section VI.A and present the experimental results
in Section VI.B.

A. EXPERIMENTAL SETTINGS

In the experiments, we used three real-world roadmaps [55],
which are described in Table 3. These real-world roadmaps
have different sizes and are part of the road network in the

United States. For convenience, each dimension of the data
universe was independently normalized to a unit length [0, 1].
The query and data points exhibited either centroid or uniform
distributions. The centroid-based dataset was generated to
resemble the real-world data. First, a centroid was randomly
selected for the query points, and five centroids were ran-
domly selected for the data points. The points around each
centroid exhibited a normal distribution, where the mean was
set to the centroid, and the standard deviation was set to 1%
of the side length of the data universe. Table 4 shows the
experimental parameter settings. In each experiment, we var-
ied a single parameter within the range shown in Table 4
and maintained the other parameters at the bolded default
values. Unless otherwise stated, both the query and data
points exhibited a centroid distribution.

110968 VOLUME 8, 2020

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

TABLE 3. Real-world roadmaps [55].

TABLE 4. Experimental parameter settings.

As a benchmark for evaluating the GMP method, we used
a one-query-at-a-time approach called the baseline method,
which sequentially computes the k farthest data points for
each query point in Q. The GMP method processes query
points in batches, whereas the benchmark method processes
query points sequentially. In this study, the query and data
points move freely within the road networks. Therefore,
using pre-computation techniques such as presented in [39],
is not applicable because the movement of query and data
pointsmight frequently invalidate the pre-computed distances
between the query and data points in road networks. All
methods were implemented using C++ in the Microsoft
Visual Studio 2019 development environment. Note that
C++ and the development environment use common subrou-
tines for similar tasks. We then performed the experiments on
a desktop computer running Windows 10 operating system
with 32 GB RAM and a quad-core processor (i7-7700K)
at 4.2 GHz. We believe that the indexing structures of all
techniques reside in memory to ensure responsive query pro-
cessing, which is assumed in many recent studies [1], [48]
and is crucial for commercial LBSs and online map services.
We performed the experiments using multiple queries for
each method and determined the average processing time
required to answer the queries. Finally, we used the TNR
method [3] to rapidly compute the network distance between
the query and data points because the TNR method was easy
to implement and demonstrated performances comparable to
those of other network distancemethods [13], [23], [38], [54].
As stated previously, our solution is orthogonal to network
distance methods, and existing network distance methods can
be easily integrated with the GMP method to process MkFN
queries.

B. EXPERIMENTAL RESULTS

Figure 11 shows the result of a comparison of query process-
ing times using the baseline and GMP methods when eval-
uating MkFN queries in the NA roadmap. Here, each chart
shows the effect of changing one of the parameters in Table 4.
The two values in parentheses in Figures 11–14 show the
number of query segments generated from the query points
and the number of kFN queries evaluated using the GMP

FIGURE 11. Comparison of baseline and GMP methods for NA.

method. Because the baseline method sequentially evaluated
a kFN query for each query point, the number of kFN queries

VOLUME 8, 2020 110969

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

FIGURE 12. Comparison of baseline and GMP methods for SJ.

evaluated using the baseline method to compute the MkFN
query was equal to the number of query points. Note that
these values are omitted for simplicity. Figure 11(a) shows
the query processing times of the baseline and GMP methods
with the number of query points ranging from 64 to 2048,
i.e., 64 ≤ |Q| ≤ 2048. The GMP method is less sensitive to
|Q| than the baseline method due to the shared execution of
the GMP method. The processing times of queries using the
GMP method were up to 40.6 times shorter than those using
the baseline method in all cases. Note that the performance
difference between the baseline and GMP methods signif-
icantly increased as the number of query points increased.
Figure 11(b) shows the query processing times of the baseline
and GMP methods with the number of data points ranging
from 1000 to 10000, i.e., 103 ≤ |P| ≤ 104. The query

FIGURE 13. Comparison of baseline and GMP methods for SF.

processing times using the GMP method at |P| = 7000 are
up to 63.5 times shorter than those using the baseline method
in all cases. Figure 11(c) shows the query processing times
of the baseline and GMP methods with the number of data
points farthest from a query point ranging from 1 to 128,
i.e., 1 ≤ k ≤ 128. The query processing times using the GMP
method are up to 33.2 times shorter than those using the
baseline method in all cases even if the query processing
times of both methods are steady regardless of the k values.
Figure 11(d) shows the query processing time for various dis-
tributions of both query and data points, where each ordered
pair (i.e., 〈C,C〉, 〈C,U〉, 〈U,C〉, and 〈U,U〉) denotes a combi-
nation of the distributions of query and data points. The GMP
method is significantly superior to the baseline method for a
centroid distribution of query points (i.e., 〈C,C〉 and 〈C,U〉).

110970 VOLUME 8, 2020

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

FIGURE 14. Scalability test using NA for various
∣

∣Q
∣

∣ and
∣

∣P
∣

∣.

However, the performance of the GMP method is similar
to that of the baseline method for a uniformly distributed
query points (i.e., 〈U,C〉 and 〈U,U〉). This is because the
query points are widely scattered, and a query segment is
typically generated with only a few query points, which
limits the group processing of theGMPmethod. Furthermore,
the processing times are extremely long for both the baseline
and GMP methods, particularly when the data points are
uniformly distributed (i.e., 〈C,U〉 and 〈U,U〉).

Figure 12 compares the query processing times using the
baseline andGMPmethodswhen evaluatingMkFN queries in
the SJ roadmap. Figure 12(a) shows the query processing time
as a function of |Q|. The query processing times using the
GMP method are up to 9.5 times shorter than those using the
baseline method in all cases. The baseline method evaluates
|Q| kFN queries to answer MkFN queries, whereas the GMP
method evaluates a maximum of 2×|Q| kFN queries because
of group processing. Furthermore,

∣

∣Q
∣

∣ ≪ |Q| for a centroid
distribution of query points, whereas

∣

∣Q
∣

∣ ∼= |Q| for a uniform
distribution of query points. In our experimental settings, for
|Q| = 2048, the number of kFN queries evaluated using the
GMP method is up to 4.9 times less than the number of kFN
queries evaluated using the baseline method. Figure 12(b)
shows the query processing time as a function of |P|. The
GMP method is superior to the baseline method in all cases
because it utilizes group processing of adjacent query points
and requests a smaller number of kFN queries than the base-
line method. The GMP methods utilize the shared execution
processing of adjacent query points and request a smaller
number of kFN queries than the baseline method irrespective
of |P|. Figure 12(c) shows the query processing time as a
function of k . The processing times using the GMP method
are up to 7.2 times less than those using the baseline method
in all cases. Note that the processing times of the baseline
and GMP methods are stable irrespective of the k values.
Figure 12(d) shows the query processing time for various
distributions of both query and data points. For a centroid

distribution of the query points (i.e., 〈C,C〉, and 〈C,U〉),
the query processing time of the GMP method is up to
12.3 times less than that of the baseline method. However, for
uniformly distributed query points (i.e., 〈U,C〉, and 〈U,U〉),
the performance of the GMP method is similar to that of
the baseline method because the query points are widely
scattered, which limits the shared execution processing.

Figure 13 shows a comparison of the query processing
times of the baseline and GMP methods when evaluating
MkFN queries in the SF roadmap. Figure 13(a) shows the
query processing time as a function of |Q|. The GMP method
outperformed the baseline method in all cases. The difference
in the number of kFN queries evaluated by the baseline and
GMP methods increased with |Q|. In particular, the GMP
method evaluated 72%, 62%, 52%, 51%, 52%, and 37%more
kFN queries than the baseline method when |Q| = 64, 128,
256, 512, 1024, and 2048, respectively. Figure 13(b) shows
the query processing time as a function of |P|. The GMP
method significantly outperformed the baseline method in
all cases because it utilized the group processing of adjacent
query points and requested a smaller number of kFN queries.
Figure 13(c) shows the query processing time as a function
of k . The GMP method outperformed the baseline method in
all cases because the baseline and GMP methods evaluated
512 and 266 kFN queries, respectively. The query processing
times of the baseline and GMPmethods were steady irrespec-
tive of the value of k . Figure 13(d) shows the query processing
time for various distributions of query and data points. The
GMP method outperformed the baseline method when the
query points exhibited a centroid distribution, i.e., 〈C,C〉 and
〈C,U〉. However, the two methods showed similar perfor-
mances when the query points exhibited a uniform distribu-
tion, i.e., 〈U,C〉 and 〈U,U〉.

We then analyzed the scalability of the GMP method by
varying the number of query points |Q| and the number of data
points |P|. Figure 14 shows the query processing times for the
baseline and GMPmethods for various numbers of query and
data points in the NA roadmap, i.e., 64≤ |Q| ≤16, 384 and
1, 000≤ |P| ≤80, 000. As shown in Figure 14(a), the GMP
method outperformed the baseline method for all cases in |Q|,
and the performance difference between them increased as
|Q| increases. As shown in Figure 14(b), the GMP method
outperformed the baseline method for all cases in |P|. The
empirical results indicated that the GMP method scaled well
with both |Q| and |P|.

VII. CONCLUSION

In this study, we investigated methods to evaluate concurrent
MkFN queries in road networks efficiently. Existing solutions
for spatial queries using Euclidean distances are un suitable
for answering MkFN queries in road networks. We proposed
a group processing solution called the GMP method to pro-
cess MkFN queries in road networks efficiently. The GMP
method can be easily implemented using popular network
distance algorithms [3], [23], [54], which is highly desirable.
Extensive experimental studies demonstrated the efficiency

VOLUME 8, 2020 110971

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

and effectiveness of the GMP method compared with the
baseline method based on one-query-at-a-time processing.
In particular, the GMP method was up to 74.1 times faster
than the baseline method. Furthermore, the GMP method
scaled based on the number of query points, particularly
when the query points exhibited a non-uniform distribution.
However, the performance of the GMPmethod was similar to
that of the baseline method when the query points exhibited
a uniform distribution. For future studies, we plan to extend
the group processing approach used in this study to problems
on the processing of sophisticated spatial queries in road
networks such as multi-way distance join queries [9] and
AkFN queries [47]. These problems have not been adequately
addressed in road networks despite their importance.

REFERENCES

[1] T. Abeywickrama, M. A. Cheema, and D. Taniar, ‘‘K-nearest neighbors on
road networks: A journey in experimentation and in-memory implementa-
tion,’’ PVLDB, vol. 9, no. 6, 492–503, 2016.

[2] M. E. Ali, E. Tanin, R. Zhang, and L. Kulik, ‘‘Amotion-aware approach for
efficient evaluation of continuous queries on 3D object databases,’’ VLDB
J., vol. 19, no. 5, pp. 603–632, Oct. 2010.

[3] H. Bast, S. Funke, and D. Matijevic, ‘‘Ultrafast shortest-path queries via
transit nodes,’’ in Proc. DIMACS Workshop Shortest Path Problem, 2006,
pp. 175–192.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, ‘‘The R-tree:
An efficient and robust access method for points and rectangles,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 1990, pp. 322–331.

[5] P. Boinski and M. Zakrzewicz, ‘‘Concurrent execution of data mining
queries for spatial collocation pattern discovery,’’ in Proc. Int. Conf. Data
Warehousing Knowl. Discovery, 2013, pp. 184–195.

[6] Z. Chen and J. Van Ness, ‘‘Characterizations of nearest and farthest neigh-
bor algorithms by clustering admissibility conditions,’’ Pattern Recognit.,
vol. 31, no. 10, pp. 1573–1578, Oct. 1998.

[7] H.-J. Cho, ‘‘Shared execution approach to ε-distance join queries in
dynamic road networks,’’ ISPRS Int. J. Geo-Inf., vol. 7, no. 7, p. 270,
Jul. 2018.

[8] H.-J. Cho, ‘‘Efficient shared execution processing of K-nearest neigh-
bor joins in road networks,’’ Mobile Inf. Syst., vol. 2018, Apr. 2018,
Art. no. 1243289.

[9] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos,
‘‘Multi-way distance join queries in spatial databases,’’ GeoInformatica,
vol. 8, no. 4, pp. 373–402, 2004.

[10] R. R. Curtin, J. Echauz, and A. B. Gardner, ‘‘Exploiting the structure of
furthest neighbor search for fast approximate results,’’ Inf. Syst., vol. 80,
pp. 124–135, Feb. 2019.

[11] M. Eslami, Y. Tu, H. Charkhgard, Z. Xu, and J. Liu, ‘‘PsiDB: A framework
for batched query processing and optimization,’’ in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2019, pp. 6046–6048.

[12] Y. Gao, L. Shou, K. Chen, and G. Chen, ‘‘Aggregate farthest-neighbor
queries over spatial data,’’ in Proc. Int. Conf. Database Syst. Adv. Appl.,
vol. 2, 2011, pp. 149–163.

[13] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, ‘‘Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,’’ in
Proc. Int. Workshop Experim. Algorithms, 2008, pp. 319–333.

[14] G. Giannikis, G. Alonso, and D. Kossmann, ‘‘SharedDB: Killing one
thousand queries with one stone,’’ Proc. VLDB Endowment, vol. 5, no. 6,
pp. 526–537, Feb. 2012.

[15] G. Giannikis, D. Makreshanski, G. Alonso, and D. Kossmann, ‘‘Shared
workload optimization,’’ Proc. VLDB Endowment, vol. 7, no. 6,
pp. 429–440, Feb. 2014.

[16] A. Guttman, ‘‘R-trees: A dynamic index structure for spatial searching,’’
in Proc. Int. Conf. Manage. Data, 1984, pp. 47–57.

[17] X. Huang, C. S. Jensen, H. Lu, and S. Šaltenis, ‘‘S-GRID: A versatile
approach to efficient query processing in spatial networks,’’ in Proc. Int.
Symp. Adv. Spatial Temporal Databases, 2007, pp. 93–111.

[18] C. S. Jensen, J. Kolárvr, T. B. Pedersen, and I. Timko, ‘‘Nearest neighbor
queries in road networks,’’ in Proc. Int. Symp. Adv. Geographic Inf. Syst.,
2003, pp. 1–8.

[19] A. Jonathan, A. Chandra, and J. Weissman, ‘‘Multi-query optimization
in wide-area streaming analytics,’’ in Proc. ACM Symp. Cloud Comput.,
Oct. 2018, pp. 412–425.

[20] J. Karimov, T. Rabl, and V. Markl, ‘‘AStream: Ad-hoc shared stream
processing,’’ in Proc. Int. Conf. Manage. Data SIGMOD, 2019,
pp. 607–622.

[21] J. Karimov, T. Rabl, and V. Markl, ‘‘AJoin: Ad-hoc stream joins at scale,’’
Proc. VLDB Endowment, vol. 13, no. 4, pp. 435–448, Dec. 2019.

[22] K. C. K. Lee, W.-C. Lee, B. Zheng, and Y. Tian, ‘‘ROAD: A new spatial
object search framework for road networks,’’ IEEE Trans. Knowl. Data

Eng., vol. 24, no. 3, pp. 547–560, Mar. 2012.
[23] Z. Li, L. Chen, and Y. Wang, ‘‘G-tree: An efficient spatial index on road

networks,’’ in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE), Apr. 2019,
pp. 268–279.

[24] J. Liu, H. Chen, K. Furuse, and H. Kitagawa, ‘‘An efficient algorithm for
arbitrary reverse furthest neighbor queries,’’ in Proc. Asia–Pacific Web

Conf. Web Technol. Appl., 2012, pp. 60–72.
[25] W. Liu andY. Yuan, ‘‘New ideas for FN/RFN queries based nearest voronoi

diagram,’’ in Proc. Int. Conf. Bio-Inspired Comput., Theories Appl., 2013,
pp. 917–927.

[26] H. Lu and M. L. Yiu, ‘‘On computing farthest dominated locations,’’ IEEE
Trans. Knowl. Data Eng., vol. 23, no. 6, pp. 928–941, Jun. 2011.

[27] H. Mahmud, A. M. Amin, M. E. Ali, T. Hashem, and S. Nutanong,
‘‘A group based approach for path queries in road networks,’’ in Proc. Int.
Symp. Adv. Spatial Temporal Databases, 2013, pp. 367–385.

[28] D. Makreshanski, G. Giannikis, G. Alonso, and D. Kossmann, ‘‘MQJoin:
Efficient shared execution of main-memory joins,’’ Proc. VLDB Endow-

ment, vol. 9, no. 6, pp. 480–491, Jan. 2016.
[29] D. Makreshanski, G. Giannikis, G. Alonso, and D. Kossmann, ‘‘Many-

query join: Efficient shared execution of relational joins on modern hard-
ware,’’ VLDB J., vol. 27, no. 5, pp. 669–692, Oct. 2018.

[30] R. Marroquín, I. Müller, D. Makreshanski, and G. Alonso, ‘‘Pay one, get
hundreds for free: Reducing cloud costs through shared query execution,’’
in Proc. ACM Symp. Cloud Comput., Oct. 2018, pp. 439–450.

[31] P. Michiardi, D. Carra, and S. Migliorini, ‘‘In-memory caching for multi-
query optimization of data-intensive scalable computing workloads,’’ in
Proc. Workshops EDBT/ICDT Joint Conf., 2019, pp. 1–8.

[32] S. Nutanong and H. Samet, ‘‘Memory-efficient algorithms for spatial net-
work queries,’’ in Proc. IEEE 29th Int. Conf. Data Eng. (ICDE), Apr. 2013,
pp. 649–660.

[33] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, ‘‘Query processing in
spatial network databases,’’ in Proc. Int. Conf. Very Large Data Bases,
2003, pp. 802–813.

[34] I. Psaroudakis, M. Athanassoulis, and A. Ailamaki, ‘‘Sharing data and
work across concurrent analytical queries,’’ Proc. VLDB Endowment,
vol. 6, no. 9, pp. 637–648, Jul. 2013.

[35] R. Rehrmann, C. Binnig, A. Böhm, K. Kim, W. Lehner, and A. Rizk,
‘‘OLTPshare: The case for sharing in OLTP workloads,’’ Proc. VLDB
Endowment, vol. 11, no. 12, pp. 1769–1780, Aug. 2018.

[36] R. M. Reza, M. E. Ali, and T. Hashem, ‘‘Group processing of simultaneous
shortest path queries in road networks,’’ in Proc. 16th IEEE Int. Conf.

Mobile Data Manage., Jun. 2015, pp. 128–133.
[37] R. M. Reza, M. E. Ali, and M. A. Cheema, ‘‘The optimal route and stops

for a group of users in a road network,’’ in Proc. 25th ACM SIGSPATIAL

Int. Conf. Adv. Geographic Inf. Syst., Nov. 2017, pp. 1–10.
[38] H. Samet, J. Sankaranarayanan, and H. Alborzi, ‘‘Scalable network dis-

tance browsing in spatial databases,’’ in Proc. ACM SIGMOD Int. Conf.

Manage. Data, 2008, pp. 43–54.
[39] J. Sankaranarayanan, H. Alborzi, and H. Samet, ‘‘Distance join queries on

spatial networks,’’ in Proc. 14th Annu. ACM Int. Symp. Adv. Geographic

Inf. Syst. (GIS), 2006, pp. 211–218.
[40] T. K. Sellis, ‘‘Multiple-query optimization,’’ ACM Trans. Database Syst.,

vol. 13, no. 1, pp. 23–52, 1988.
[41] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh, ‘‘A road network

embedding technique for K-nearest neighbor search in moving object
databases,’’ Geoinformatica, vol. 7, no. 3, pp. 255–273, 2015.

[42] S. Suri, ‘‘Computing geodesic furthest neighbors in simple polygons,’’
J. Comput. Syst. Sci., vol. 39, no. 2, pp. 220–235, Oct. 1989.

[43] J. R. Thomsen, M. L. Yiu, and C. S. Jensen, ‘‘Effective caching of shortest
paths for location-based services,’’ in Proc. Int. Conf. Manage. Data

SIGMOD, 2012, pp. 313–324.
[44] J. R. Thomsen, M. L. Yiu, and C. S. Jensen, ‘‘Concise caching of driving

instructions,’’ in Proc. 22nd ACM SIGSPATIAL Int. Conf. Adv. Geographic

Inf. Syst., 2014, pp. 23–32.

110972 VOLUME 8, 2020

H.-J. Cho, M. Attique: Group Processing of MkFN Queries in Road Networks

[45] Q. T. Tran, D. Taniar, and M. Safar, ‘‘Reverse k nearest neighbor and
reverse farthest neighbor search on spatial networks,’’ in Transactions on
Large-Scale Data- and Knowledge-Centered Systems I (Lecture Notes in
Computer Science), vol. 5740, A. Hameurlain, J. Küng, and R. Wagner,
Eds. Berlin, Germany: Springer-Verlag, 2009, doi: 10.1007/978-3-642-
03722-1_14.

[46] S. Wang, M. A. Cheema, X. Lin, Y. Zhang, and D. Liu, ‘‘Efficiently
computing reverse k furthest neighbors,’’ in Proc. IEEE 32nd Int. Conf.

Data Eng. (ICDE), May 2016, pp. 1110–1121.
[47] H. Wang, K. Zheng, H. Su, J. Wang, S. W. Sadiq, and X. Zhou, ‘‘Efficient

aggregate farthest neighbour query processing on road networks,’’ in Proc.
Australas. Database Conf. Databases Theory Appl., 2014, pp. 13–25.

[48] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou, ‘‘Shortest
path and distance queries on road networks: An experimental evaluation,’’
Proc. VLDB Endowment, vol. 5, no. 5, pp. 406–417, Jan. 2012.

[49] X.-J. Xu, J.-S. Bao, B. Yao, J.-Y. Zhou, F.-L. Tang, M.-Y. Guo, and
J.-Q. Xu, ‘‘Reverse furthest neighbors query in road networks,’’ J. Comput.
Sci. Technol., vol. 32, no. 1, pp. 155–167, Jan. 2017.

[50] B. Yao, F. Li, and P. Kumar, ‘‘Reverse furthest neighbors in spa-
tial databases,’’ in Proc. IEEE 25th Int. Conf. Data Eng., Mar. 2009,
pp. 664–675.

[51] D. Zhang, C.-Y. Chow, Q. Li, X. Zhang, and Y. Xu, ‘‘SMashQ: Spatial
mashup framework for k-NN queries in time-dependent road networks,’’
Distrib. Parallel Databases, vol. 31, no. 2, pp. 259–287, Jun. 2013.

[52] M. Zhang, L. Li, W. Hua, and X. Zhou, ‘‘Efficient batch processing of
shortest path queries in road networks,’’ in Proc. 20th IEEE Int. Conf.

Mobile Data Manage. (MDM), Jun. 2019, pp. 100–105.
[53] M. Zhang, L. Li, W. Hua, and X. Zhou, ‘‘Batch processing of shortest path

queries in road networks,’’ in Proc. Australas. Database Conf. Databases
Theory Appl., 2019, pp. 3–16.

[54] R. Zhong, G. Li, K.-L. Tan, L. Zhou, and Z. Gong, ‘‘G-tree: An efficient
and scalable index for spatial search on road networks,’’ IEEE Trans.

Knowl. Data Eng., vol. 27, no. 8, pp. 2175–2189, Aug. 2015.
[55] Real Datasets for Spatial Databases. Accessed: Jun. 13, 2020. [Online].

Available: https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

HYUNG-JU CHO is currently an Associate
Professor with the Department of Software,
Kyungpook National University, South Korea.
His current research interests include moving
object databases and query processing in mobile
peer-to-peer networks.

MUHAMMAD ATTIQUE is currently an Assis-
tant Professor with the Department of Software,
Sejong University, South Korea. His research
interests include spatial computing, location-based
services, big spatial data, and spatial query pro-
cessing in mobile networks.

VOLUME 8, 2020 110973

http://dx.doi.org/10.1007/978-3-642-03722-1_14
http://dx.doi.org/10.1007/978-3-642-03722-1_14

	INTRODUCTION
	RELATED STUDIES
	FARTHEST NEIGHBOR SEARCH ALGORITHMS
	GROUP PROCESSING ALGORITHMS

	PRELIMINARIES
	GROUP PROCESSING OF MULTIPLE K-FARTHEST NEIGHBOR QUERIES IN ROAD NETWORKS
	GROUPING QUERY AND DATA POINTS
	COMPUTATION OF DISTANCE BETWEEN QUERY AND DATA SEGMENTS
	SORTING DATA SEGMENTS BY THE MAXIMUM DISTANCE

	GMP ALGORITHM
	PERFORMANCE STUDY
	EXPERIMENTAL SETTINGS
	EXPERIMENTAL RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	HYUNG-JU CHO
	MUHAMMAD ATTIQUE

