
Group Recommendation: Semantics and Efficiency ∗

Sihem Amer-Yahia†, Senjuti Basu Roy‡, Ashish Chawla†‡, Gautam Das‡, Cong Yu†

†Yahoo! Labs, {sihem,achawla,congyu}@yahoo-inc.com,
‡Univ. of Texas at Arlington, senjuti.basuroy@mavs.uta.edu, {achawla,gdas}@uta.edu

ABSTRACT
We study the problem of group recommendation. Recom-
mendation is an important information exploration paradigm
that retrieves interesting items for users based on their pro-
files and past activities. Single user recommendation has
received significant attention in the past due to its extensive
use in Amazon and Netflix. How to recommend to a group
of users who may or may not share similar tastes, however,
is still an open problem. The need for group recommenda-
tion arises in many scenarios: a movie for friends to watch
together, a travel destination for a family to spend a holiday
break, and a good restaurant for colleagues to have a work-
ing lunch. Intuitively, items that are ideal for recommenda-
tion to a group may be quite different from those for indi-
vidual members. In this paper, we analyze the desiderata of
group recommendation and propose a formal semantics that
accounts for both item relevance to a group and disagree-
ments among group members. We design and implement al-
gorithms for efficiently computing group recommendations.
We evaluate our group recommendation method through a
comprehensive user study conducted on Amazon Mechani-
cal Turk and demonstrate that incorporating disagreements
is critical to the effectiveness of group recommendation. We
further evaluate the efficiency and scalability of our algo-
rithms on the MovieLens data set with 10M ratings.

1. INTRODUCTION
The social component of people’s activities on the Web

has seen unprecedented growth lately. In addition to social
networking sites like Facebook, content sites such as Ya-
hoo! Travel, which have traditionally focused on managing
content only, are beginning to encourage people to form so-
cial ties and share content. While there has been a recent

∗The work of Senjuti Basu Roy and Gautam Das was sup-
ported in part by the US National Science Foundation un-
der grants 0845644 and 0812601, unrestricted gifts from Mi-
crosoft Research and Nokia Research, and start-up funds
from the University of Texas at Arlington.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

trend in developing techniques for finding relevant content
on social content sites [3], very little has been done to help
socially acquainted individuals find content of interest to all
of them together. We refer to this as the group recommen-
dation problem and study how to effectively and efficiently
find such recommendations in this paper.

Defined simply as a set of users, a user group can be
formed on a recurring basis, e.g., friends who meet regularly
for dinner, or on an ephemeral basis, e.g., random users
getting together for a weekend climbing trip organized by
their sports club. Regardless how the group is formed, rec-
ommending to the group presents two major challenges in
comparison to individual user recommendations [9, 11].

The first challenge is how to define the semantics of group
recommendation. In individual user recommendation, the
usual goal is to retrieve items with the highest scores, also
referred to as relevance or user’s expected rating, computed
by a given recommendation strategy. For example, a system
such as Netflix recommends movies which are more likely
to be rented by a user by finding those with the highest
expected rating by that user. In group recommendation,
however, an item may have different relevances to different
group members and this disagreement among members must
be resolved. Indeed, despite being friends, people may not
share the same tastes for all movies. The same observa-
tion can be made for colleagues going to a working lunch or
family members traveling together.

Existing methods have focused mostly on aggregating in-
dividual group members’ relevances to produce recommen-
dations to a group [9]. In particular, those methods can be
classified into two approaches: preference aggregation, which
aggregates group members’ prior ratings into a single vir-
tual user profile and makes recommendations to that user;
score aggregation, which computes each member’s individual
recommendations and merges them to produce a single list
for the group, where the score of each item is aggregated
from individual recommendations. The score aggregation
approach typically offers better flexibility [9, 13] and more
opportunities for efficiency improvement and is therefore the
approach we take in this paper.

Two main score aggregation functions have been proposed
thus far: average and least misery. Strategies incorporating
the former aim to maximize the average of group members’
scores for an item, while strategies incorporating the lat-
ter aim at maximizing the lowest score among all group
members. However, neither models the resolution of dis-
agreement among users in a formal way. Intuitively, in the
movie domain, taking the average of expected ratings for a

movie may result in a high score for movies which are highly
liked by some group members and highly disliked by others.
Similarly, optimizing for the lowest projected rating would
miss a movie which is expected to be liked by every group
member except one.

In this paper, we formalize group disagreement by mak-
ing it an integral part of group recommendation semantics
and study the various ways it can be resolved. Specifically,
we introduce the notion of consensus function, which con-
sists of two components, relevance and disagreement, and,
for each candidate item, produce a single recommendation
score that is a weighted summation of the two component
scores. Relevance is modeled in a way which captures ex-
isting strategies, i.e., average or least misery. Disagreement
is modeled using two alternative ways: average of pairwise
disagreements or score variance. We formally introduce the
two disagreement models in Section 2.

The second challenge is how to efficiently compute group
recommendations given a consensus function, especially in
the presence of complex disagreement models.1 The weighted
summation nature of the consensus function is well sup-
ported by the family of threshold algorithms first proposed
in [6]. Furthermore, the relevance component of the con-
sensus function lends itself well to these algorithms since it
aggregates recommendation scores from individual relevance
lists (i.e., a list of items sorted by their score for each user)
in a monotonic fashion. Threshold-based pruning is hence
straightforward. This is not the case for the disagreement
component.

Since disagreements are derived from individual recom-
mendation scores, any disagreement score can be computed
on the fly based on the relevance scores.2 However, given
the sorted relevance lists of two users, the algorithm cannot
predict their disagreement over unseen items. Indeed, two
users may agree or disagree equally on movies they like or
dislike. The fact that their individual movie lists are avail-
able in sorted order does not provide insights on how their
disagreements over unseen movies may evolve. This is a key
observation that led us to introduce materialized pairwise
disagreement lists among group members. Such lists can
be sorted on increasing disagreement thereby lending them-
selves to threshold-style processing. We prove that the two
disagreement models we adopt in this paper can be decom-
posed into an aggregation of score disagreements between
pairs of group members, and that this aggregation satisfies
the monotonicity condition required by the threshold algo-
rithms. As a result, we adopt threshold algorithms for the
overall score computation with effective bounds for both rel-
evance and disagreement.

Our final endeavor is to study optimizations which exploit
dependencies between disagreement and relevance. The first
optimization aims to reduce the number of disagreement
lists to maintain. Indeed, the number of pair-wise lists is
quadratic in the number of users, which makes full materi-
alization of all user pairs impractical. We further study the
problem of selecting a subset of the lists in order to achieve
the best runtime performance given a space budget. We in-
vestigate a second optimization which explores the use of
relevance values to compute tighter disagreement bounds in
the presence of (partially) materialized disagreement values.

1We assume individual recommendation scores for items
have been generated and can be fetched on a per user basis.
2This is the relevance-only approach.

In summary, we make the following contributions:

1. We formalize the problem of group recommendation
and define its semantics as a consensus function that
aims at maximizing item relevance and minimizing dis-
agreements between group members (Section 2).

2. We prove that the two important disagreement models
being proposed satisfy the conditions required by the
family of top-k threshold algorithms (Section 3).

3. We design efficient algorithms based on one represen-
tative threshold algorithm, TA, to perform top-k group
recommendation (Section 4).

4. We formalize two optimizations: the problem of which
disagreement lists to materialize given a space bud-
get (Section 4.2) and the refinement of score bounds
(Section 4.3).

5. We conduct a comprehensive experimental evaluation
(Section 5), including a user study on Amazon Me-
chanical Turk to demonstrate the benefits of incorpo-
rating disagreements into group recommendation, and
extensive experiments to demonstrate the efficiency of
our algorithms.

Finally, we describe the related work and conclude in Sec-
tions 6 and 7, respectively.

2. MODEL AND SEMANTICS
In this section, we formally define the problem of group

recommendation and introduce the consensus function for
estimating an item’s worthiness for a group based on its
relevance and disagreement among group members.

Let U denote the set of users and I denote the set of items
(e.g., movies, travel destinations, restaurants) in the system.
Each user u may have provided a rating for an item i in the
range of 0 to 5, which is denoted as rating(u, i). We further
generate relevance scores for each pair of user and item, de-
noted as relevance(u, i). This relevance score comes from
two sources. If the user has provided a rating for the item,
then it is simply the user provided rating. Otherwise, the
system generates the relevance score using a recommenda-
tion strategy as outlined next.

2.1 Individual Recommendation
The most well-known recommendation strategies rely on

finding items similar to the user’s previously highly rated
items (item-based), or on finding items liked by people who
share the user’s interests (collaborative filtering) [1].

In item-based strategies, the relevance of an item i ∈ I
by a current user u ∈ U is commonly estimated as follows:

relevance(u, i) = Σi′∈IItemSim(i, i
′) × rating(u, i′)

Here, ItemSim(i, i′) returns a measure of similarity be-
tween two items i and i′. Item-based strategies are very
effective when the given user has a long history of rating
activities.

The key of collaborative filtering is to find other users
connected to the given user. The relevance of an item i by
a user u is estimated as follows:

relevance(u, i) = Σu′∈UUserSim(u, u′) × rating(u′, i)

Here, UserSim(u, u′) returns a measure of similarity or
connectivity between two users u and u′ (it is 0 if u and u′

are not connected).

2.2 Group Recommendation
The goal of group recommendation is to compute a recom-

mendation score for each item that reflects the interests and
preferences of all group members. In general, group mem-
bers may not always have the same tastes and a consensus
score for each item needs to be carefully designed. Intu-
itively, there are two main aspects to the consensus score.
First, the score needs to reflect the degree to which the item is
preferred by the members. The more group members prefer
an item, the higher its score should be for the group. Sec-
ond, the score needs to reflect the level at which members
disagree with each other. All other conditions being equal,
an item that members agree more on should have a higher
score than an item with a lower overall group agreement. We
call the first aspect group relevance and the second aspect
group disagreement.

Definition 1 (Group Relevance). The relevance of
an item i to a group G, denoted rel(G, i), is an aggregation
over relevance(u, i) where u ∈ G. We consider two main
aggregation strategies:

1) Average: rel(G, i) = 1
|G|

∑
(relevance(u, i))

2) Least-Misery: rel(G, i) = Min(relevance(u, i))

Average and Least-Misery aggregation models are consid-
ered because they are the most prevalent mechanisms being
employed currently [9]. Least-Misery model captures cases
where some user has a strong preference (e.g., a vegetarian
who cannot go to a steakhouse) and that user’s preference
acts as a veto. Alternative aggregations (e.g., taking the
maximum over all individual relevances to comply with the
“most optimistic” user) are also possible.

Definition 2 (Group Disagreement). The disagree-
ment of a group G over an item i, denoted dis(G, i), reflects
the degree of consensus in the relevance scores for i among
group members. We consider the following two main dis-
agreement computation methods:

1) Average Pair-wise Disagreements:
dis(G, i) = 2

|G|(|G|−1)

∑
(|relevance(u, i)−relevance(v, i)|),

where u 6= v and u, v ∈ G;
2) Disagreement Variance:

dis(G, i) = 1
|G|

∑
u∈G (relevance(u, i)−mean)2, where mean

is the mean of all the individual relevances for the item.

The average pair-wise disagreement function computes
the average of pair-wise relevance differences for the item
among group members, while the variance disagreement func-
tion computes the mathematical variance of the relevances
for the item among group members. Intuitively, the closer
the relevance scores for i between users u and v, the lower
their disagreement for i. In Section 3, we characterize the
properties of both disagreement functions in detail.

Finally, we combine the group relevance and group dis-
agreement for an item in the consensus function.

Definition 3 (Consensus Function). The consensus
function, denoted F(G, i), combines the group relevance and
the group disagreement of i for G into a single group recom-
mendation score using the following formula:

F(G, i) = w1 × rel(G, i) + w2 × (1 − dis(G, i)), where
w1 + w2 = 1.0 and each specifies the relative importance of
relevance and disagreement in the overall recommendation
score.

While one could design more sophisticated consensus func-
tions, we adopt this general form of weighted summation of
group relevance and group disagreement for its simplicity
and the fact that the family of threshold algorithms can be
easily applied for the computation. We note here that the
commonly used Least-Misery model maps to the case where
w1 = 1.0 and group relevance is aggregated using the least-
misery function.

2.3 Problem Statement

PROBLEM (Top-k Group Recommendation). Given a
user group G and a consensus function F, identify a list IG

of items such that:
1. |IG | = k;

2. ∀i ∈ IG , u ∈ G, u has not rated i before;

3. IG is sorted on decreasing group recommendation score
as computed by the consensus function F , and @j ∈
I s.t. F(G, j) > F(G, i), j /∈ IG , i ∈ IG .

3. APPLICABILITY OF TOP-K
THRESHOLD ALGORITHMS

Many of the best algorithms for computing top-k items
belong to the family of threshold algorithms [6]. Given an
overall scoring function that computes the score of an item
by aggregating scores from individual components, thresh-
old algorithms consume sorted item lists that correspond to
each component. Those input lists are scanned using se-
quential or random accesses, and the computation can be
terminated earlier using stopping conditions based on score
bounds (thresholds). Early stopping is possible when the
scoring function is monotone, i.e., if component c is the only
component in the scoring function and items i1 and i2 differ
in their scores, the overall score of i1 is no less than i2’s if
i1’s score on c is no less than i2’s score on c.

Recall from Definition 3 that our consensus function is a
weight summation of two components, group relevance and
group disagreement. It is clear that the consensus function
itself is monotone in the two individual components. In
other words, if two items have the same group disagreement,
the item with the higher group relevance will have at least
the same group recommendation score, and vice versa.

It is also clear that the two group relevance functions pro-
posed in Definition 1 are themselves monotone in the rele-
vances of individual members. If all group members, except
u, rate items i1 and i2 the same, i1 will have at least the
same group relevance score as i2 if u rates i1 no less than
i2. This holds for both the average and the least-misery
strategies.

It is, however, not clear whether the group disagreement
functions proposed in Definition 2 are monotone. In this
section, we prove that the two group disagreement functions
proposed can be transformed into aggregations of individual
pairwise disagreements and become monotone. This means
we can apply threshold algorithms to compute the overall
recommendation score with individual relevance lists and
pair-wise disagreement lists as inputs, and take advantage
of the pruning power that threshold algorithms give us.

3.1 Monotonicity of Group Disagreements
We use a simple example group of two users to show that

computing group disagreement based on relevances of indi-
vidual members is not monotonic. Figure 1(a) illustrates

Figure 1: Group Disagreement is not monotonic w.r.t.

relevance lists.

the two sorted relevance lists for the two users (u1 and u2).
It is clear that while i1 has a higher relevance for u1 than i2
(4 versus 3), the group disagreement score for i2 is in fact
higher (1 instead of 0). The same non-monotonicity can
be encountered when relevance lists are sorted in decreasing
order (as shown in the example in Figure 1(b)). Hence, re-
gardless of the problem of non-monotonicity of disagreement
in relebace lists persists regardless of the order in which rel-
evance lists are sorted.

To address this problem, we propose to maintain pair-
wise disagreement lists instead and prove their monotonic-
ity properties for the two group disagreement functions in
Definition 2.

3.2 Disagreement Lists for Monotonicity
A pair-wise disagreement list (or simply disagreement list)

for users u and v is a list of items which are sorted in
the increasing order of the difference between their rele-
vance scores for u and v. For an item i, we use ∆i

u,v =
|relevance(u, i) − relevance(v, i)| to denote this relevance
difference.

Lemma 1. The average pair-wise disagreement function
in Definition 2 is monotonic w.r.t. pair-wise disagreement
lists.

Proof: Let us assume a group G = {u1, u2, ..., up} with all
its p(p−1)/2 disagreement lists (one for each user pair). Also
assume that there are a total of t items, I = {i1, i2, ..., it}.
Note that we want to retrieve items with minimum disagree-
ments first. Consider two items ir and is within I.

The group disagreement for ir and is can be written as:
f × Σ∀j,k∈p(∆ir

uj,uk
) and f × Σ∀j,k∈p(∆

is
uj,uk

), respectively,

where f = 2
p(p−1)

(see Definition 2).

Without loss of generality, assume ir’s pairwise disagree-
ments are smaller than is’s in one particular list l = (ux, uy),
and the same for all other lists. We have ∆ir

ux,uy
< ∆is

ux,uy
,

and ∀j, k ∈ p, ∆ir
uj ,uk

= ∆is
uj ,uk

, where (j, k) 6= (x, y). It is

easy to see that f ×Σ∀j,k∈p(∆ir
uj,uk

) < f ×Σ∀j,k∈p(∆
is
uj ,uk

).

If the number of disagreement lists is restricted to m,3 the
monotonicity property can still be maintained by assuming
the minimum disagreement values (0) for any unavailable
user pairs during top-k computation. 2

In the disagreement variance model in Definition 2, dis-
agreement over an item is defined as the variance in rel-
evance scores among all group members. In other words,
the relevance score by each member is compared against the
mean relevance score of the group. We now show that this
disagreement function can in fact be monotonically aggre-
gated from pairwise disagreement lists.
3We discuss partial materialization of disagreements lists in
Section 4.2.

Lemma 2. The disagreement variance function in Defi-
nition 2 is monotonic w.r.t. pair-wise disagreement lists.

Proof: Let us consider the group G and set of items I in
Lemma 1. Consider two items ir and is.

The group disagreement of ir and is can be written as:

Σ∀j∈p[relevance(uj , ir) −
Σ∀i∈prelevance(ui,ir)

p
]2

p

and

Σ∀j∈p[relevance(uj , is) −
Σ∀i∈prelevance(ui,is)

p
]2

p

We can transform this disagreement variance formula for
ir into (ignoring p):

[∆ir
12 + ∆ir

13 + ... + ∆ir
1p]

2 + [∆ir
21 + ∆ir

23 + ... + ∆ir
2p]2 + ... +

[∆ir
p1 + ∆ir

p2 + ... + ∆ir

p(p−1)]
2

which can be further expressed as:

[∆ir
12]

2+...+[∆ir
1p]2+...+2×[∆ir

12][∆ir
13]+2×[∆ir

12][∆
ir
14]+...

It is clear that the above formula is a monotonic aggre-
gation of [∆jk]∀j, k ∈ p. Without loss of generality, assume
ir’s pairwise disagreements are smaller than is’s in one par-
ticular list l = (ux, uy), and the same for all other lists.
We have ∆ir

ux,uy
< ∆is

ux,uy
, and ∀j, k ∈ p,∆ir

uj ,uk
= ∆is

uj ,uk
,

where (j, k) 6= (x, y). It is easy to see based on the above
formula that the disagreement variance of ir is less than the
disagreement variance of is. Hence, we have proved that
using pair-wise disagreement lists is sufficient to compute
disagreement variance in a monotonic fashion. 2

Materializing all possible pair-wise disagreement lists may
not be practical since the number of such lists grows quadrat-
ically in the number of users. In Section 4.2, we discuss,
given a fixed space constraint, which pairs to materialize in
order to produce the best performance with threshold algo-
rithms.

4. EFFICIENT COMPUTATION OF
GROUP RECOMMENDATION

In this section, we provide a brief description of efficient
group recommendation algorithms and discuss two sube-
quent optimizations: the effective materialization of dis-
agreement lists in the presence of space constraints (Sec-
tion 4.2); and exploiting dependencies between relevance
and disagreement values to refine thresholds and enable early
stopping in top-k processing (Section 4.3).

4.1 Group Recommendation Algorithms
Given a group G, the goal, stated in Section 2.3, is to

return the k best items according to a consensus function F

(see Definition 3). We describe several algorithms for this
problem; with each algorithm being a variant of the well-
known TA [7] for top-k query processing.

We start by describing Algorithm 1, which admits rele-
vance lists IL of each user in the input group G and dis-
agreement lists DL for every pair of users in G. ILs are
sorted in decreasing order of relevance and DLs are sorted

in increasing order of disagreement. We refer to Algorithm 1
as FM for Fully Materialized disagreement lists.

Each IL is obtained using an individual recommendation
strategy (as described in Section 2.1). Each DL is generated
for a user pair and records the difference in scores for all
items in their respective ILs.

We showed in Section 3 that pairwise disagreement lists
guarantee monotonicity for both pairwise and variance dis-
agreements thereby allowing FM to rely on a threshold for
early stopping. Our algorithm makes sequential access (SA)
on each input lists (relevance and disagreement) in a round-
robin fashion (getNext calls in lines 3 and 12). The al-
gorithm uses two routines, ComputeExactScore which com-
putes the score of the current item, and ComputeMaxScore

which produces a new threshold value at each round.
ComputeExactScore performs a random access (RA) on all

other relevance lists to compute the score of an item using
the input consensus function F. The main difference be-
tween FM and TA is that while SAs are done on ILs and
DLs interchangeably, RAs are only done on ILs (since dis-
agreement can be computed from relevances). In fact, DLs
are not necessary to compute the final result. They are only
there to compute the threshold (using ComputeMaxScore)
and hopefully, enable early termination.
ComputeMaxScore produces a new threshold value at each

round. Its basic purpose is to provide an upper bound the
score of any item that has not yet been seen by the algo-
rithm. Thus, if ru is the last relevance value read on list
ILu for all u ∈ G, and ∆u,v the last pairwise disagreement
value read on disagreement list DLu,v for all u, v ∈ G, then
the upper bound for the threshold (assuming the average
pairwise disagreement model) is computed as follows:

F(G, i) ≤ w1 ×
1

|G|

∑

u∈G

ru +w2 × (1−
2

|G|(|G| − 1)

∑

u,v∈G

∆u,v)

Algorithm 1 Group Recommendation Algorithm with
Fully Materialized Disagreement Lists (FM)

Require: Group G, consensus function F;
1: Retrieve relevance lists ILu for each user u in group G;
2: Retrieve disagreement lists DL(u,v) for each user pair (u, v)

in group G;
3: Cursor cur = getNext() moves across each relevance and dis-

agreement lists;
4: while (cur <> NULL) do

5: Get entry e = (i, r) at cur;
6: if not(inHeap(topKHeap, e)) then

7: if (ComputeMaxScore(e.i, e.r, F) ≥ topKHeap.kthscore)
then

8: ComputeExactScore; Probe ILs to compute exact
score score of e using F;

9: topKHeap.addToHeap(e.i, score);
10: end if
11: end if

12: cur = getNext();
13: end while

14: return topKList(topKHeap);

We next describe another variation of the algorithm, called
RO, for Relevance lists Only, which applies when only the
relevance lists are present and none of the DLs are avail-
able. RO has the obvious benefit of consuming less space.
As discussed above, the lack of disagreement lists does not
have any impact on ComputeExactScore. However, it has
an impact on how the ComputeMaxScore has to be modified

to produce a (somewhat less tight) threshold value. More
precisely, since disagreement lists are not available, we as-
sume that the pairwise disagreement between each pair of
users for any unseen item is 0. Thus the upper bound for the
threshold value only comes from the last values read from
each relevance list:

F(G, i) ≤ w1 ×
1

|G|

∑

u∈G

ru

Finally, the most general variant is the case where only
some disagreement lists are materialized, referred to as PM
for Partial Materialization. As with relevance only, partial
materialization also has the obvious benefit of consuming
less space then FM. In terms of processing, it differs from
the others in how the threshold is computed. Let M be the
set of all pairs of users for which disagreement lists have
been materialized. Then the threshold may be computed as
follows:

F(G, i) ≤ w1×
1

|G|

∑

u∈G

ru+w2×(1−
2

|G|(|G| − 1)

∑

(u,v)∈M

∆u,v)

Intuitively, one may think that the more DLs are mate-
rialized, the tighter the score bound and hence, the faster
the algorithm terminates. It turns out that it is not always
the case. The basic intuition is that overall performance is
a balance between the total number of distinct items which
need to be processed before finding the best k items, referred
to as DIP, and the number of sequential accesses, SAs, that
result from the proliferation of disagreement lists. Consider
the case of a 3-member group. The question we ask our-
selves is when does using two materialized lists, DL1 and
DL2, perform worse than when only one materialized list,
say DL1, is used? If none of top items in DL2 is in the final
output, each SA on DL2 is pure overhead. This is exacer-
bated if the the top items in DL1 and DL2, i.e., the ones
with the least disagreement, are distinct. In both cases, if
DL2 does not provide an opportunity to tighten the thresh-
old, the number of SAs using DL1 and DL2 will be much
higher than the number of SAs where only DL1 is used.

The PM variant raises an interesting question - which pair-
wise disagreement lists should be materialized as a prepro-
cessing step? This partial list materialization problem is
discussed in the next subsection. Then in Section 4.3, we dis-
cuss interesting and novel techniques by which the threshold
bounds (i.e., the ComputeMaxScore function) can be sharp-
ened even further. The experiments section (Section 5.2)
delves into the details of the algorithm’s performance for
different cases of disagreement lists materialization.

4.2 Partial Materialization
Given a set of n users, materializing all possible n(n−1)/2

pairwise disagreement lists may be prohibitive in applica-
tions where n is large or in applications where the number
of groups is large. In such cases, it is more practical to
materialize only a small but effective subset of the disagree-
ment lists in a pre-processing step. The central problem that
we consider in this subsection is thus: given a fixed space
constraint m (i.e., only m out of n(n − 1)/2 lists can be
materialized), to determine which lists to materialize that
will be of “maximum benefit” during query processing. In-
tuitively, a disagreement list should be materialized if (a)
the corresponding users together are very likely to be a part
of user groups seeking item recommendations, and (b) ma-

terializing the list significantly improves the running time of
top-k recommendation algorithms. We make this problem
definition more precise below.

Let the set of users be U = u1, . . . , un. Recall that ILu is
the relevant list for user u, and DL(u,v) is the disagreement
list of user pair u and v. Let the set of all possible user pairs
be S = {(u, v)|u, v ∈ U}. Let M ⊂ S be the (unknown)
subset of user pairs whose corresponding disagreement lists
we wish to materialize (i.e., |M | = m). Let G ⊆ U be any
user group. Let p(G) be the probability (or likelihood) that G
will be the next “query”, i.e., the next group that will seek
item recommendations. Let tM (G) be the execution time
of the top-k algorithm on user group G when run using the
relevance lists ILu (for all u ∈ G) as well as the disagreement
lists DL(u,v) (for all u, v ∈ G) that have been materialized in
M . (Note that therefore tφ(G) denotes the execution time
of the top-k algorithm on user group G when run using only
the relevance lists ILu (for all u ∈ G), i.e., without any
disagreement lists.)

Our objective is to minimize the expected cost of execut-
ing the top-k algorithm on any user group query, using the
relevance lists as well the disagreement lists. Let the ex-
pected cost be denoted as tM . The partial materialization
of disagreements list problem may now be formally defined
as follows.

PROBLEM (Partial Materialization). Determine the sub-
set of pairs M ⊆ S s.t. |M | = m and tM =

∑
G⊆U p(G)tM(G)

is minimized.

Although clearly very important and practical, the par-
tial materialization problem is unfortunately quite hard to
solve optimally. There are several reasons for this. First,
it is very difficult to get reliable and accurate estimates for
the distribution p(G), i.e., the probability that a given user
group G will be queried next. Moreover, the set of possible
user groups is exponential in n, so it is not clear how such
information can be compactly represented, even if it were
reliably available. Next, due to the complex dependencies
involved, it is very hard to estimate the impact of a mate-
rialized disagreement list in improving the running time of
a top-k algorithm, without actually materializing candidate
disagreement lists and running the top-k algorithms with
and without the lists to determine their benefit. Finally, an
important parameter of a top-k algorithm is the value of k,
which is usually unknown at pre-processing time.

In spite of these challenges, we have carefully investigated
this problem, and proposed several principled and practical
solutions. We discuss these next.

4.2.1 A Simplifying Assumption, and a Simple Lists
Materialization Algorithm

In order to make the problem more tractable, we make the
following simplifying assumption. We assume that each fu-
ture user group query G will only contain exactly two users,
and moreover, p(G) is reliably known for all pairs of users G.
This assumption is of course patently false, but we empha-
size here that we use it only for simplifying the computation
of M . Once M has been computed and the correspond-
ing disagreement lists materialized, we shall later show that
they can be used at query time for answering any user group
G, even groups containing more than two users.

This assumption considerably simplifies the computation
of M , which can now proceed as follows. Recall that S

is the set of all n(n − 1)/2 pairs of users. For every pair
of users u and v, we temporarily materialize the disagree-
ment list DL(u,v), and compute tDL(u,v)

({u, v}) as well as

tφ((u, v)) by running the top-k algorithm twice, once with
the disagreement list, and once without the disagreement
list, respectively.4

We can then eliminate from S those pairs {u, v} where
tDL(u,v)

({u, v}) ≥ tφ((u, v))
Although situations where the additional use of a dis-

agreement list actually hurts the top-k execution may ap-
pear counter-intuitive, they can occur. For example, con-
sider two users that are very similar to each other (e.g., they
agree on most items) or are very dissimilar to each other
(e.g., they disagree on most items). In both cases, their
disagreement list contains very similar disagreement values
(mostly 0’s, or mostly 1’s, respectively), and consequently
is of no help in forcing early termination of the top-k algo-
rithm, and in fact hurts the execution because of the extra
sequential list accesses incurred. A disagreement list is use-
ful for forcing early termination only if there is significant
skew in its disagreement scores, i..e, at the top of the list
the users agree on most items, whereas their disagreement
is more pronounced as we go deeper into the list.

Let the remaining set of pairs be S′. Then, we should se-
lect M from S′ such that following expression is minimized:

∑
(u,v)∈M p({u, v}) · (tφ({u, v}) − t{u,v}({u, v})

Algorithm 2 Disagreement Lists Materialization Algo-
rithm
Require: User pairs in S′;
1: For each pair (u, v) ∈ S′, compute p({u, v}) · (tφ({u, v}) −

t{u,v}({u, v}));

2: Return the m pairs with the largest values.

Algorithm 2 shows a very simple approach to compute
M . The algorithm requires O(n2) executions of the top-
k algorithm. Even though this is a pre-processing step, it
may nevertheless be very time consuming. We discuss in
Section 4.2.2 additional techniques by which this can be
reduced. We also note that the space requirement of this
algorithm is only m times the size of a single pairwise dis-
agreement list, because while examining all user pairs, we
can maintain the disagreement lists of only the current top-
m most promising user pairs.

The disagreement lists materialization procedure discussed
above assumed that the user groups are restricted to two
members only. However, once the m lists have been mate-
rialized, they can be used at query processing time for user
groups of any size in a straightforward manner. Consider
any arbitrary user group G. In executing the top-k recom-
mendation algorithm for this group, we use the relevance
lists ILu (for all u ∈ G) as well as all disagreement lists
DL(u,v) (for all u, v ∈ G) that have been materialized in M .

4.2.2 Avoiding Examining all User Pairs
In a large user base, it is very likely that many user pairs

are almost never going to occur in query groups. In order
to save on pre-processing costs, it is critical that we identify

4Performance numbers are obtained for a fixed k, specifically
set for each application. E.g., in a movie recommendation,
10 movies is typical

only those user pairs that have significant likelihood of oc-
curring together, and only consider such pairs in the above
algorithm.

If we have a rich query log (or workload) of past user
groups, then it is possible to analyze the query log in de-
termining this information. For example, let G1, . . . ,Gr be
a query log of r user groups. Then for any user pair (u, v),
we can compute

p({u, v}) =
|{Gi|u, v ∈ Gi}|

r

This computation can be carefully done to ensure that
we only compute the probabilities for those user pairs that
occur in the query log, thus avoiding having to examine a
vast majority of the user pairs that never occur together.
Moreover, even for user pairs that occur together in the
query log, we can eliminate those that have extremely low
probabilities.

In the case where such a query log is unavailable, we can
utilize other sources of information to determine the like-
lihood that a pair of users are likely to occur together in
a group. In related work [2, 14], it has been shown how
similarity between a pair of users can be computed based
on the tagging behavior of other users (e.g., friends, social
acquaintances) in a social network. If we assume that two
users are likely to be in the same group if they are very simi-
lar, we can can only restrict our attention to pairs of similar
users, and set their probability to be proportional to their
similarity value.

4.3 Sharpening Thresholds
In this subsection we examine the different variants of

the TA algorithm that we have developed thus far - FM,
RO and PM - and suggest techniques by which their per-
formance can be further improved, mainly by modifying the
ComputeMaxScore function to compute sharper thresholds
that enable earlier termination.5

Our approach is best illustrated by the following simple
example. Consider a group consisting of two users G =
{u, v}. Recall that ILu (resp. ILu) is the relevant list for
user u (resp. v), and DL(u,v) is the disagreement list of user
pair u and v. Assume that the disagreement list has been
materialized.

Consider a snapshot of the FM algorithm after a certain
number of iterations. Let ru = 0.5, rv = 0.5 and ∆u,v = 0.2
be the last relevance and disagreement values read from each
list respectively. The task of the ComputeMaxScore function
is to provide an upper bound on the maximum possible value
of the consensus function F(G, i) for any item i that has not
yet been seen in any of the lists. Let the unseen item i’s
unknown relevance values be iu and iv for user u and v
respectively. The consensus function is defined as:

F(G, i) = (iu + iv)/2 + (1 − |iuiv |/1)

Since each list is sorted in decreasing order of relevance
(increasing order of disagreement), it should be clear that

5While these techniques appear very promising, we note that
they are the subject of our ongoing investigations - we dis-
cuss them in this version of the paper primarily to illustrate
their potential.

the following inequalities hold:

0 ≤ iu ≤ 0.5

0 ≤ iv ≤ 0.5

0.2 ≤ |iu − iv | ≤ 1

As described in Section 4.1, our current approach provides
a simple upper bound for F(G, i) by substituting the upper
bounds for iu and iv (and the lower bound for |iu− iv|) from
the above inequalities, to arrive at the following threshold:

F(G, i) ≤ (0.5 + 0.5)/2 + (1 − 0.2/1) = 0.5 + 0.8 = 1.3

However, a more careful examination of the inequalities
reveals that this bound is not tight. Notice that iu and iv
should be at least 0.2 units apart, thus both cannot be at
0.5. Since the upper bound of iu is 0.5, iv can be at most 0.3.
Thus we can derive a sharper bound for F(G, i) as follows:

F(G, i) ≤ (0.5 + 0.3)/2 + (1 − 0.2/1) = 0.4 + 0.8 = 1.2

This example illustrates that due to the dependencies be-
tween the disagreement lists and the relevance lists, there are
opportunities for deriving sharper thresholds for early termi-
nation after each iteration of the algorithm. More generally,
after every iteration, we are faced with a formal optimization
problem where we seek to maximize the consensus function
over |G| real-valued variables, subject to various constraints
on their values arising from the cursor positions on the rele-
vance and disagreement lists. These optimization problems
have seemingly complex formulations, because the consensus
function as well the inequalities arising from disagreement
lists are non-linear, involving absolute terms (e.g., of the
form |iu − iv|) in the case of average pair-wise disagreement,
as well as quadratic terms (e.g., of the form (iu − mean)2)
in the case of variance based disagreement. However, at
the same time the sizes of the problems themselves are very
small, consisting of only a few variables and constraints (as-
suming user group sizes are small), and thus are likely to be
solvable by general purpose non-linear solvers with practi-
cally no overhead per iteration. Section 5.2.5 contains a pre-
liminary experiment showing the benefit of threshold tight-
ening.

5. EXPERIMENTS
We evaluate our group recommendation system from two

major angles. First, from the quality perspective, we con-
duct an extensive user study through Amazon Mechanical
Turk6 to demonstrate that group recommendations with the
consideration of disagreements are superior to those rely-
ing on aggregating individual relevance scores alone (Sec-
tion 5.1). Second, from the performance perspective, we
conduct a comprehensive set of experiments to show that
our materialization algorithms can achieve better pruning
than alternative algorithms (Section 5.2).

We implemented our prototype system using JDK 5.0.
All performance experiments were conducted on an Intel
machine with dual-core 3.2GHz CPUs, 4GB Memory, and
500GB HDD, running Windows XP. The Java Virtual Mem-
ory size is set to 256MB. All numbers are obtained as the
average of three runs.

Data Set: We use the MovieLens [8] 10M ratings data
set for evaluation purposes. The statistics of this data set is
shown in Table 1.
6https://www.mturk.com/

users # movies # ratings
71,567 10,681 10,000,054

Table 1: Statistics about the MovieLens Data Set.

Individual Recommendation: We adopt collaborative
filtering [1] for generating individual recommendations. For
a given user u, this method leverages other users who share
similar interests (i.e., movies) with u to compute the scores
of movies unknown to u. The basic formula being used is:

relevance(u, i) = 1
Σsim(u,u′)

Σsim(u, u′) × rating(u′, i)

where sim(u, u′) computes the similarity between two users
using the following formula:

sim(u, u′) =
|{i|i∈Iu ∧ i∈Iu′ ∧ |rating(u,i)−rating(u,i)|≤2}|

|{i|i∈Iu ∨ i∈Iu′}|

where Iu denotes the set of items u has rated, and we con-
sider a movie to be shared between two users if they both
rated it within 2 of each other on the scale of 0 to 5.

5.1 User Study
We conduct an extensive user study through Amazon Me-

chanical Turk to compare our proposed group recommen-
dation consensus functions, which incorporate both group
relevance and group disagreement, with prior group recom-
mendation mechanisms, which rely solely on relevance ag-
gregations. In particular, we compare four group recommen-
dation mechanisms:

Average Relevance Only (AR), which computes an
item score as its average relevance among group members.
The disagreement weight is set to zero.

Least-Misery Relevance Only (MO), which computes
an item score as its minimum relevance among all group
members. The disagreement weight is set to zero.

Consensus with Pair-wise Disagreement (RP), which
computes an item score as a weighted summation of its av-
erage relevance and its average pair-wise disagreements be-
tween all group members.

Consensus with Disagreement Variance (RV), which
computes an item score as a weighted summation of its av-
erage relevance and the variance of its relevance between all
group members.

The user study is conducted in two phases: User Col-
lection Phase and Group Judgment Phase. At each phase,
a series of HITs (Human Intelligence Tasks) are generated
and posted on Mechanical Turk, Amazon users are invited
to complete those tasks.

5.1.1 User Collection Phase
The goal of the User Collection Phase is to recruit users

and obtain their movie preferences. Those users will later
form groups and perform judgments on group recommenda-
tions.

Preferences Collection: Asking a user to go through all
ten thousand movies in our system and give ratings as they
go is clearly not practical. Therefore, we selected a subset
of the movies for users to provide their preferences. We
considered two factors in selecting those movies: familiarity
and diversity. On one hand, we want to present users with
a set of movies that they do know about and therefore can
provide ratings. On the other hand, we want to maximize

Small Group Large Group
Similar Group 0.89 0.90

Dissimilar Group 0.29 0.27
Random Group 0.69 0.73

Table 2: Similarities of User Study Groups.

our chances of capturing the different tastes among movie-
goers. Towards these two goals, we select two set of movies.
The first set is called the popular set, which contains the
top-40 movies in MovieLens in terms of popularity (i.e., the
number of users who rated a movie in the set). The second
set is called the diversity set, which contains the 20 movies
in MovieLens that have the highest variance among their
user ratings and that are ranked in the top-200 in terms
of popularity. We created two HITs with 40 movies each.
The Similar HIT consisted entirely of the movies within
the popular set and the Dissimilar HIT consisted of the
top-20 movies from the popular set and the 20 movies from
the diversity set. Fifty users were recruited to participate in
each HIT. Users are instructed to provide a rating between
0 and 5 (5 being the best) for at least 30 of the 40 movies
listed (in random order) according to their preferences. In
addition to their ratings, we also record their Mechanical
Turk IDs for future reference.

Group Formation: We consider two main factors in
forming user groups: group size and group cohesiveness. We
hypothesize that varying group sizes will impact the difficul-
ties in reaching consensus among the members and therefore
affect to which degree members are satisfied with the group
recommendation. We chose two group sizes, 3 and 8, rep-
resenting small and large groups, respectively. Similarly, we
hypothesize that group cohesiveness (i.e., how similar are
group members in their movie tastes) is also a significant
factor in the satisfaction with group recommendation. As
a result, we chose to form three kinds of groups: similar,
dissimilar, random. A similar group is formed by selecting
users who: 1) have completed the Similar HIT described
above; 2) combined with having the maximum summation
of pair-wise similarities (between group members) among all
groups of the same size. A dissimilar group is formed by se-
lecting users who: 1) have completed the Dissimilar HIT
described above; 2) combined with having the minimum
summation of pair-wise similarities (between group mem-
bers - based on the provided ratings) among all groups of the
same size. Finally, a random group is formed by randomly
selecting users from all the pool of available users. Table 2
illustrates the average similarity between group members of
the six groups formed.

5.1.2 Group Judgment Phase
The goal of the Group Judgment Phase is to obtain ground

truth judgments on movies by users in a group setting.
Those judgments can then be used to compare group recom-
mendation generated by the four different mechanisms AR,
MO, RP and RV.

Individual Recommendation: For each user in one of
the six groups in table 2, we generated and materialized a
list of individual recommendations against the MovieLens
database using collaborative filtering.

Group Recommendation Candidates: For each group,
we generated group recommendations using all of our four
strategies. The resulting recommendation lists were com-

bined into a single set of distinct movies, called group can-
didate set. This ensures that we obtain ground truth judg-
ments on all the movies we will encounter using any of the
four strategies.

For each group, a Group HIT was generated and con-
tained the following group context: for each movie in the
group candidate set, the individual recommendation score
of each member. The users are then instructed to decide
whether a movie in the group candidate set is suitable for rec-
ommendation given its group context. Users from the previ-
ous phase were invited back (with a higher payout) to partic-
ipate in the HITs which correspond to a group to which they
belong. Additional users were also recruited to participate
in the HITs to complement the set of prior users, and they
were instructed to pretend themselves to be one of the group
members in the HIT. At the conclusion of the user study, on
average 5 users participated in the three small-group HITs
and 10 users participated in the three large-group HITs, for
a total of 45 users.

5.1.3 Result Interpretation
Given a Mechanical Turk user’s ground truth evaluation of

the candidate movies, we adopt the Discounted Cumulative
Gain (DCG) [10] measure to evaluate each of the following
six group recommendation strategies:

AR, MO: these two are group recommendation lists gen-
erated based on average relevance and least-misery, respec-
tively.

RP20, RP80: these two are group recommendation lists
generated by combining group relevance (average relevance)
and pair-wise disagreements. RP20 sets w2 in Definition 3
to 0.2, while RP80 sets it to 0.8.

RV20, RV80: these two are group recommendation lists
generated by combining group relevance (average relevance)
and disagreement variance. RV20 sets w2 in Definition 3 to
0.2, while RV80 sets it to 0.8.

We do not consider MP (least-misery relevance model
combined with pair-wise disagreement), MV (least-misery
relevance model combined with variance) strategies because
the least-misery model is by definition about the rating of
one group member.

Each strategy generates a 10-movie recommendation list
and for a given list, its DCG value is calculated as follows:

DCG10 = rel1 +
∑10

i=2
reli

log2(i)

where reli is the ground truth (provided by the Mechanical
Turk user) of the movie at position i, and is either 1 (the
user considers this movie suitable for the group setting) or
0 (otherwise). We further normalize the DCG value into a
range between 0 and 1 by dividing it by the DCG value of
the ideal list to produce the nDCG value. (The ideal list is
obtained by re-sorting the movies in the list in the order of
their relevances.)

For each group with a given size and cohesiveness, the
nDCG values of each recommendation list are computed as
the average of all the users who participated in the group
HIT. The results are shown in Figure 2.

The top-left chart in Figure 2 reports the nDCG for small
and large groups of similar users. In a real world setting,
a group of friends can be thought of as such a group. Ac-
cording to this chart, MO results in the best performance
for both small and large groups. This can be explained as

a group activity of similar users, where the objective is to
agree with the person who has the harshest opinion. MO
is most practical for this setting since agreeing upon the
worst opinion results in the least disagreement from a user’s
personal opinion. It is also interesting to notice, that for
large groups, MO performs very well. The next best strat-
egy is AR, which is intuitively true for any set of similar
users - people with very high similarity have no difference in
their opinion. RV80 and RP80 perform worst since there
is hardly any scope of difference in opinion in a group of
similar users.

The top-right chart in Figure 2 reports the nDCG for
small and large groups of dissimilar users. In a practical
setting, a group of family members, whose tastes typically
differ is a good example here. For dissimilar users, differ-
ences in opinion is conspicuous hence needs to be captured
carefully. Indeed, we can see that, our disagreement based
models RV80, RP80 start performing better than other
two models. Specifically, for large groups, RV80 results in
the best value of nDCG while the relevance based models are
useless. This observation corroborates our initial claim that
formalizing disagreement as a component of the consensus
function is important for group recommendation.

The bottom-left chart in Figure 2 reports the nDCG for
small and large groups of random users. A random group
can consist of both similar and dissimilar users. For small
groups, MO works best, whereas, for large groups, there is
no significant difference between all four strategies.

The bottom-right chart in Figure 2 reports the differences
in our disagreement models (notice the different weights) for
dissimilar user groups. It is interesting to notice that, for
small groups, all four disagreement models perform equally
well in general. However, for large groups, disagreement
becomes a conspicuous part in decision making. Conse-
quently, the disagreement strategies RV80, RP80 outweigh
the other two models RV20, RP20.

To summarize, we can say that user similarity in a group
as well as group size should be accounted in modeling dis-
agreement in the consensus function. One of our planned
experiment is to involve users more actively in the final judg-
ment by letting group members consult with each other and
reach consensus in an iterative manner as described in [9].
Such feedback would help draw a stronger connection be-
tween group size and overall group dynamics in group rec-
ommendation.

5.2 Performance Evaluation
In this section, we analyze the performance of the three

group recommendation algorithms described in Section 4:
Dynamic Computation with Relevance List Only (RO), Full
Materialization (FM), and Partial Materialization with a given
budget on number of lists (PM). At the core of all three algo-
rithms is the top-k TA algorithm [6], which scans down the
input lists and stops processing when score bounds indicate
that no more items qualify. The cost of TA is determined by
two factors: the number of sequential accesses, which corre-
sponds to the number of next() calls made during the scan
of each list, and the number of random accesses, which cor-
responds to the number of calls made to each list for score
retrieval given an item. During the processing, when the
buffer is bounded and only the top-k items are kept, the
number of random accesses is proportional to the number
of sequential accesses. When the buffer is unbounded, the

Figure 2: Comparison of User Relevances among Different Group Recommendation Lists.

number of random accesses is proportional to the number
of distinct items processed. We adopt the bounded buffer
version of TA and therefore mostly measure the number of
sequential accesses to compare the performance between var-
ious algorithms.

Group Formation: Groups are formed by selecting users
from the MovieLens database. The key factor we consider
is group cohesiveness (or similarity). We defined four group
similarity levels: 0.3, 0.5, 0.7, 0.9, with a margin of ±0.05.
To form a group of 3 with similarity 0.3, we select three
users u1, u2, u3 from the database, such that ∀i, j, 0.25 <
sim(ui, uj) < 0.35, where 1 ≤ i, j ≤ 3, i 6= j. The other
factors we consider are number of recommendations being
produced (small = 5, medium = 10, large = 30) and the size
of groups (small = 3, medium = 5, large = 8).

Summary of Results: Our first observation is that
group similarity has a direct impact on the number of se-
quential accesses (SAs). This is not surprising: the relevance
lists of similar users tend to contain similar items at similar
positions, including those with high relevances. Our second
observation is that some Disagreement Lists (DLs) almost
always guarantee earlier stopping. Hence, RO wins in very
few cases. However, the presence of DLs is not always ben-
eficial and can sometimes become redundant. In fact, the
results show that for different user groups, different strate-
gies (RO, FM or PM) will win. In particular, a higher number
of DLs does not guarantee earlier stopping. The prolifera-
tion of lists may increase the number of SAs and also the
number of distinct items seen unnecessarily, thereby hurt-
ing the performance in the end. Our final experiment shows
that thereshold tightening, described in Section 4.3, always
benefits TA’s performance, and is worth further exploration.

5.2.1 Varying Group Similarity
Figure 3(a)(b) illustrate the performance of RO, FM and

PM with different group similarities in terms of both SAs and

DIP. The group size is fixed at 5 and the number of recom-
mended items is 10. For PM, the number of materialized lists
is 3. As the group similarity increases, the effectiveness of
our materialization algorithms gradually decrease. This is
not surprising since the more similar the members are with
each other, the more likely their agreements on the top items
are close to the upper bounds that are estimated in the RO
algorithms. As a result, RO can reach stopping conditions as
early as PM and FM do. This observation is also corroborated
by the similar numbers of DIP between RO and the other
two algorithms for high similarity values. Furthermore, FM
forces the system to scan unnecessarily large number of lists
and results in poor performances instead. In fact, it can be
easily observed from Figure 3(a)(b), for very high similar-
ity, RO results in the best performances, whereas, for very
low similarity, FM is the winner in most of the cases. The
performance of PM can be observed to be in between. An
interesting observation in this case is, for average similar-
ity, PM results in the best performances for both SAs and
DIP. This corroborates the fact that in certain cases partial
materialization can be the best option.

5.2.2 Varying K
Figure 3(c) illustrates the performance comparison of RO,

FM and PM with different numbers of items recommended.
The group size is fixed at 5 and the group similarity is fixed
at 0.5. Algorithm PM uses three materialized lists for k =
5, 10 and five lists for k = 30. As expected, the number of
SAs increases with the increasing number of recommended
items. For all three cases, algorithm PM out-performs both
RO and FM significantly.

5.2.3 Varying Group Size
We examine the effect of different group sizes in Fig-

ure 3(d). The group similarity is fixed at 0.5 and the number
of recommended items is 10. For PM, the number of mate-

Varying Similarity

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.3 0.5 0.7 0.9
Similarity

(a)

#
S

A
s

FM

RO

PM
Varying Similarity

0

200

400

600

800

1000

1200

0.3 0.5 0.7 0.9

Similarity

(b)

#
D

IP
s

FM

RO

PM

Varying no of items

0

100

200

300

400

500

600

700

800

900

1000

5 10 30

No of items

(c)

#
S

A
s

FM

RO

PM

Varying group size

0

500

1000

1500

2000

2500

3000

3 5 8

Group Size

(d)

#
S

A
s

FM

RO

PM

Figure 3: Performance Comparison among Algorithms RO, FM, PM.

rialized lists is 3. As expected, the number of SAs increases
as the group size increases. When the group sizes are small
and medium, both materialization algorithms significantly
out-perform RO. It is counter-intuitive to see that when the
group size is large, the benefit of materialization decreases.
After some investigation, we discovered that when the group
is large, it is easy to have a relevance list that can provide
enough pruning power to trigger the early stopping condi-
tions. As a result, pruning through the disagreement lists is
no longer as effective.

5.2.4 Effect of Partial Materialization
We study the impact of materializing different numbers of

disagreement lists (DLs). The group size is fixed at 5 and
its similarity is fixed at 0.5, the number of recommended
items is 5. We report SAs and DIP by varying the number
of materialized disagreement lists. As shown in Figure 4,
the performance is at its worst when the number of DLs
is 0, which corresponds to RO. It starts getting better as
more DLs are added and the performance is best when the
number of DLs reaches 3. Then, it starts degrading and
never gets better. However, from the 4th to the 10th list,
the number of DIP remains almost the same. By examining
the 4th list, we noticed that many top items in that list are
not present in the final result, and, as a result, the number
of SAs increases unnecessarily. We also noticed that the top
items in the 4th list are shared by all subsequent lists (which
explains the close-to-constant performance). This situation
can arise when a subset of the group dislikes the same set
of movies equally.

Varying # of materialized lists

0

50

100

150

200

250

300

350

400

450

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10

No of lists materialized

#
D

IP
s
 a

n
d

 #
S

A
s

#DIPs

#SAs

Figure 4: Effect of the number of DLs.

5.2.5 Effect of Threshold Sharpening
Figure 5 illustrates the effect of Threshold Sharpening

during TA. More specifically, we investigated the impact of
optimization for FM by recording average number of SAs with
different numbers of items recommended for 10 small user
groups. Figure 5 records average number of SAs for FM with
optimization and FM without optimization for k=5, 10 and
30. This result corroborates our theoretical analysis, i.e.,
FM with optimization is never worse than FM without op-
timization. In fact, it is easy to observe that the effect of
optimization becomes significant with higher values of k.
We realized that our data set is responsible for such phe-

Average #SAs with k

0

50

100

150

200

250

300

350

400

450

k=5 k=10 k=30

No of Items Returned

A
v
e
ra

g
e
 #

S
A

s

FM with optimization

FM without optimization

Figure 5: Effect of Threshold Sharpening on TA.

nomenon, where disagreement is noteworthy only after first
few items between user pairs and becomes more significant
as we scan deep into the lists.

6. RELATED WORK
Recommendations: The goal of a recommendation strat-

egy [1] and [11] is to estimate a user’s rating for items he
has not rated before, and return k items with highest esti-
mated ratings. The two most popular families of recommen-
dation strategies are item-based and collaborative filtering.
The former leverages items similar to the user’s previously
highly rated items and the latter leverages users who share
the user’s interests. In this paper, we use collaborative fil-
tering to generate individual recommendations.

Group Recommendations: [9] describes the two preva-
lent approaches: virtual user and recommendation aggrega-
tion. The former combines existing ratings of each group
member to create a virtual user to whom conventional rec-
ommendation strategies are applied. The latter creates in-
dividual recommendation lists for each member and consoli-
date those lists to form the group’s list. We adopt the latter
approach for its flexibility as described in [9]. Most of the
studies on group recommendations focus on group formation
and evolution, privacy concerns and interfaces for support-
ing group recommendations. Furthermore, with the excep-
tion of PolyLens [13], only few conducted user studies to
evaluate the benefits of group recommendations. PolyLens
is a group recommender extension to the MovieLens rec-
ommender system. The authors report a user study where
existing MovieLens users were allowed to form groups (e.g.,
by inviting each other) and the system studied how groups
affected the way they used MovieLens. In order to produce
group recommendations, individual groups members’ rec-
ommendations were merged using the least misery model.
User satisfaction was measured in terms of different criteria:
how easy the process of creating groups was; how easy it is
to add members to a group; how useful group recommenda-
tions were; and overall satisfaction. The study concluded,
among other findings, that users in a group prefer group
recommendations than the individual recommendations.

We note here that none of the group recommendation
studies we have encountered provides any performance ex-
periments or a theoretical and empirical study of different
consensus functions, as it is done in this paper.

Top-K Processing: The family of top-k threshold algo-
rithms [5, 7] aim to reduce the amount of processing required
to compute top-ranked answers, and have been used in the

relational [4], XML [12], and many other settings. Mono-
tonic score aggregation functions, which operate on sorted
input, enable the early pruning of low-rank answers. In this
work, we apply these algorithms on user’s relevance lists
and introduce pair-wise disagreement lists to improve per-
formance.

7. CONCLUSION
Group recommendation is becoming increasingly impor-

tant as people engage in social activities on the Web. This is
the first attempt to define the semantics and study the effi-
ciency of delivering recommendations to groups of users. We
formalized the notion of a consensus function which achieves
a balance between an item’s aggregate relevance to the group
and individual member’s disagreements over the item. We
designed and implemented efficient threshold algorithms to
compute group recommendations. We report on a user study
on MovieLens data using Amazon’s Mechanical Turk and a
comprehensive performance study of our algorithms. We
established that disagreements between group members im-
pacts both quality and efficiency, and can be exploited to
increase the effectiveness of group recommendation.

8. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6), 2005.

[2] S. Amer-Yahia, M. Benedikt, L. Lakshmanan, and
J. Stoyanovich. Efficient Network-Aware Search in
Collaborative Tagging Sites. In VLDB, 2008.

[3] S. Amer-Yahia, L. Lakshmanan, and C. Yu. SocialScope:
Enabling Information Discovery on Social Content Sites. In
CIDR, 2009.

[4] M. J. Carey and D. Kossmann. On saying ”enough
already!” in sql. In SIGMOD, 1997.

[5] R. Fagin. Combining fuzzy information: an overview.
SIGMOD Record, 32(2):109–118, 2002.

[6] R. Fagin and et. al. Optimal Aggregation Algorithms for
Middleware. In PODS, 2001.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[8] GroupLens at University of Minnesota.
http://www.grouplens.org/node/73.

[9] A. Jameson and B. Smyth. The Adaptive Web, volume
4321 of LNCS, chapter Recommendation to Groups, page
596. Springer-Verlag, 2007.

[10] K. Jarvelin and K. Kekalainen. Cumulated gain-based
evaluation of ir techniques. ACM TOIS, 20(4), 2002.

[11] J. A. Konstan. Introduction to recommender systems. In
SIGIR, 2007.

[12] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava.
Adaptive processing of top-k queries in xml. In ICDE, 2005.

[13] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl.
Polylens: A recommender system for groups of user. In
ECSCW, pages 199–218, 2001.

[14] J. Stoyanovich, S. Amer-Yahia, C. Marlow, and C. Yu. A
Study of the Benefit of Leveraging Tagging Behavior to

Model UserśInterests in del.icio.us. In AAAI Spring
Symposium on Social Information Processing, 2008.

