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Introduction

At the current state there is no unified view 
onto the functional demands and their solutions 
in natural and artificial systems. Artificial systems 
have well-defined inputs and their desired outputs 
are given in terms of system requirements that are 
defined by the users or designers of the systems. 
Natural systems, on the other hand, have evolved 
in order to survive in a complex environment. As 
we lack complete knowledge of the constraints 
given by the outside world, we cannot clearly de­
fine the actual optimization goal that implicitly un­
derlies the observed organism. However, some 
striking features in natural organisms seem to be 
powerful solutions to functional demands. Some 
of these solutions are by far not yet achieved in 
artificial systems. The most striking examples are 
the capabilities of the human brain to process nat­
ural languages and to build up concepts of the 
world. However, also small brains, even in insects, 
seem to incorporate powerful solutions to tasks 
that are not yet captured by computer systems, 
e.g., in object recognition and flight control.

In the working group we discussed some areas 
where artificial and natural systems seem to have
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common problems, where they might influence 
each other, and where both neurobiology and 
computer science may profit from each other.

The first area discussed is concerned with build­
ing artificial models, their usefulness for under­
standing the brain, and how they might be used 
for applications.

The second area deals with a problem common 
for all systems that have limited computational 
power and the need to respond within a minimal 
delay, i.e., the question how systems deal with 
time.

The third area was concerned with the concept 
of motivational systems which seem to be the un­
derlying mechanism of emotions. These are potent 
mechanisms that seems to be common in the ani­
mal kingdom and might be an explanation for 
some powerful performances of natural systems, 
but have not yet been implemented in artificial 
systems.

What Are the Mutual Benefits of Neurobiology 
and Models?

There are many attempts for a fruitful interac­
tion of experimentalists and theoreticians. For the 
understanding of natural systems it is necessary to 
develop models that describe our experimental 
findings, incorporate our hypotheses in a formal 
theory, and help to check the consistency of our 
assumptions. The main points of interest in this 
field could be characterized by the following cor­
ner stones:
-  Models should have a predictive attitude, that 

can be tested experimentally
-  Models should be based on biological knowl­

edge
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Regarding the large amount of published mod­
els, many of them disregard one of these points, 
i.e., they are either loosely connected to the bio­
logical substrate or do not produce predictions 
which are experimentally testable. However, there 
are several examples of fruitful interactions be­
tween theoreticians and experimentalists that have 
lead to mutual benefit. On the one hand, these 
collaborations gained more insight into the mecha­
nisms implemented in natural organisms, and on 
the other hand some of them led to new solutions 
for artificial systems. In the following we outline 
some successful examples.
• Studies of the crayfish walking system led to a 

thorough understanding of the coordinating 
mechanisms between ipsilateral legs. A rostrally 
directed influence is active during the stance of 
the posterior leg that prolongs the swing move­
ment of the anterior leg. A caudally directed in­
fluence is active at the end of the stance and the 
beginning of the swing of the anterior leg elicits 
the start of the stance in the posterior leg (Cruse 
and Müller, 1986). These mechanisms haven 
been derived from behavioral data. To test 
whether they really could describe the observed 
behavior when all four ipsilateral legs are cou­
pled in this way, a simple model had been devel­
oped. This model showed that these two mecha­
nisms are not only sufficient to describe normal 
walking coordination, but in addition can de­
scribe small intermediate steps that sometimes 
occur during walking. Although it was first as­
sumed that an additional mechanism would be 
required for these intermediate steps, the model 
showed that this behavior was a „by-product“ of 
the walking mechanism.

• A recurrent network is proposed which can be 
used as a manipulable body model to solve dif­
ferent kinematic tasks as the inverse kinematic 
problem, the direct kinematic problem or any 
mixed problem. The model may be used for 
planning a movement, or „thinking“ , by being 
uncoupled from the motor output, or it may be 
used for direct motor control. The network is 
based on a new type of neuronal network called 
MMC net which is similar to but shows some 
essential differences to the Hopfield type net­
work. These are (1) no symmetrical weights are 
necessary in the MMC net. (2) Furthermore, no 
clipping functions are necessary which allows

for real valued outputs. (3) No limited number 
of discrete attractors, but an infinite number of 
attractors which form a continuum are possible 
in the MMC network. The network can easily 
be scaled up for the 3D case and any arbitrarily 
complicated geometry. There are no problems 
concerning singularities. Although there seems 
to be no immediate way of testing whether such 
a system is realized in the brain, this model may 
serve as a tool in helping to understand the 
properties of recurrent systems. In particular, it 
shows that within this recurrent system no dis­
tinction possible between “sensor” and “m otor” 
elements. In addition, it shows a way how a dy­
namic and nonsymbolic representation of all 
possible arm positions is possible using only a 
very small number of neuronal units (Stein­
kühler and Cruse, 1998).

• A simulated flying autonomous agent has the 
task of avoiding obstacles in a virtual 3D envi­
ronment. There are horizontal and vertical vis­
ual motion detectors which are attached to the 
body of the agent and linked to the motor sys­
tem through weighted connections with a sim­
ple feed-forward architecture (Neuman et al.,
1997). The connection weights are optimized by 
a genetic algorithm that evaluates the flight per­
formance of the agent in order to obtain its fit­
ness value. One of the difficulties in 3D flight 
is the simultaneous control of 6 kinematically 
coupled degrees of freedom, 3 for rotation and
3 for translation. Given all 6 degrees of free­
dom, the system fails to evolve an appropriate 
behavior, because in some situations during 
flight the visual input is rotated, and the simple 
information processing architecture does not al­
low to compensate for this. If, on the other 
hand, the agent is stabilized with respect to the 
roll and pitch axes and therefore is restricted to
4 degrees of freedom, the system is able to learn 
full 3D obstacle avoidance and flight stabilisa­
tion. The stabilizing task can be realized by a 
separate mechanism that is responsible for the 
correct orientation of the visual input by rotat­
ing the head of the agent. In biology such mech­
anisms have been observed in flying insects. 
Flies, for example, always keep their head in an 
upright position, even when their body is ro­
tated by 90° with respect to their head during 
curve flight.
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• Another example of flight stabilization via the 
implementation of a principle found in biologi­
cal systems was given by Franceschini (1996) in 
the discussion. The basic principle is based on 
the ocelli that are found in various insect species 
and usually consist of three eyes with special 
photoreceptors for UV light. With a UV-sensi- 
tive receptor, the detection of the horizon is rel­
atively simple as the horizon will produce a 
sharp change from dark to light. Any shift in 
the position of the horizon could thus be easily 
detected by the ocelli, and this signal could be 
used for pitch correction.

• Several other examples, mostly from insect vi­
sion, were additionally discussed. The general 
principle seemed to be that natural systems try 
to reduce the amount of computation wherever 
possible. This is often achieved by peripheral 
adaptations that produce homogeneous data 
that can be easily computed. A fascinating ex­
ample for this principle is the compound eye of 
the fly where the size of the facettes is enlarged 
in the periphery, thus yielding flow fields that 
can be computed by simple elementary motion 
detectors.

• An important aspect concerning the limitations 
of simulations is the emergence of new features 
that can be seen when algorithms are imple­
mented in a hardware model. By studying the 
interactions of such a hardware agent, hitherto 
unknown benefits of crossmodal interaction be­
tween different sensors can be observed that 
lead to surprising effects (see Pfeifer et al., 1998: 
this issue, pp. 480-503).
These examples illustrate that technical applica­

tions can benefit from biological models and vice 
versa. During evolution biological systems have 
developed information processing strategies that 
are optimized for survival in a particular environ­
ment. The essential elements for processing the 
information are not restricted to the nervous sys­
tem or brain, but also include the morphology of 
the complete agent with all possibilities of in­
teraction with the environment by sensory or mo­
tor systems. This has to be considered when bio­
logical information processing strategies are 
modeled in artificial systems. However, we want 
to stress that apart from these „tailored solu­
tions“, analysis of biological information process­
ing can yield more general principles of informa­

tion processing that can solve problems not found 
in natural situations.

Even though the examples listed above are ex­
citing and well established models, it is rather as­
tonishing that the number of fruitful interactions 
between experimentalists and theoreticians is not 
growing. Problems in collaborations exists on both 
sides. Theoreticians often do not focus on the bio­
logical details, that are in many cases not easily to 
be incorporated into a formal framework. Experi­
mentalists, on the other hand, are concerned about 
acquiring new data that are publishable in highly 
rated journals from their field. Thus, experimen­
talists are often not willing to take the time to es­
tablish the thorough formal framework required 
by theoreticians, and they are often skeptical 
about predictions from people not from their 
own field.

An important aspect for a good cooperation is 
an intense contact between experimentalists and 
theoreticians. Successful interaction have so far 
mostly arised out of few individual collaborations, 
mostly within institutes. The major reason for that 
lies in the lack of a common language for both 
research fields. The establishment of interdisci­
plinary curricula is strongly recommended to over­
come this communication problem. An additional 
problem for interdisciplinary research is the rigid 
system of university positions found in Germany. 
Although interdisciplinary research is most wel­
comed and needed, it is not sufficiently acknowl­
edged when such a researcher applies for an aca­
demic position.

What Time Scales Are Important for Artificial 
and Natural Systems

A major problem imposed on both artificial and 
natural systems is the necessity to react appropri­
ately to sensory stimuli in a minimal amount of 
time. Two contradictory needs have to be fulfilled: 
first of all, the agent has to react appropriately to 
avoid costly or even fatal wrong behavior. To 
achieve certainty about the sensory input, time 
consuming high-level computation is required. 
This, however, interferes with the second require­
ment: agents in a realistic environment do simply 
not always have the time for a high-level analysis. 
As an example, a mouse that is attacked by a cat 
should not try to make a detailed analysis of the



visual features of the predator, but should rather 
make an escape reaction as quickly as possible. In 
other words, there is a trade-off between the ex­
pense of sensory analysis and reaction time.

Computer simulations can solve this problem by 
stepping out of the „real“ time, performing the 
time-consuming computations, and going back 
into „real“ time. Animals (that do not have that 
option) found another solution: they interpret sen­
sory information predominantly on the basis of the 
actual behavioral context. By doing so, they im­
plicitly form a hypothesis on the possible relevant 
stimuli that might occur in this context, allowing 
them to react as quickly as possible. A good every­
day example is a person hiking through an area 
full of snakes; due to this knowledge, he will react 
very quickly when he encounters a snake or even 
a snake-like object (trading reaction time for level 
of analysis), whereas the same person would re­
quire a much longer time to react to a snake 
found, for example, in his office. For artificial 
agents that interact with the real world, an analo­
gous extraction of a behavioral context might pro­
vide an interesting alternative to achieve fast per­
formance.

Apart from this general principle, natural organ­
isms display behavior on a large variety of time 
scales. Especially the resolution of very short times 
poses a formidable problem for neuronal systems 
as the neuronal hardware is not well suited to en­
code time differences of less than a millisecond. 
However, some specialists have evolved mecha­
nisms to deal with even shorter intervals. As an 
example, neurons in the auditory system of barn 
owls have to phase-lock to frequencies above
5 kHz, that is, the cells have to phase-lock in the 
range of 20 microseconds. To deal with this prob­
lem, specialized membrane channels (outward- 
rectifying potassium channels) have evolved that 
shorten the postsynaptic potentials to allow these 
fast processes. In respect to longer time intervals, 
there seem to be elementary units that, in humans, 
are made up of either 30 milliseconds (within such 
a unit, sensory stimuli are perceived as simulta­
neous events) or roughly 200 milliseconds (fast 
movements, syllable rhythm of speech). To deal 
with longer time scales, different memory-related 
processes are involved. Taken together, natural or­
ganisms have evolved different mechanisms to 
deal with the large variety of time scales, ranging
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from specialized neurons over network dynamics 
up to memory processes.

Motivation in Natural and Artificial Systems

One important aspect in the development of au­
tonomous agents is the development of fitness 
functions. One approach in the field of artificial 
life is the development of virtual worlds, in which 
autonomous agents fight for certain resources, for 
example CPU time. In this case it is possible to 
generate agents, which are well adapted to this 
problem.

In an example given by Maes (1991) on the basis 
of some kind of two-layered WTA system the in­
ternal activation of ten different modules (e.g. ap­
proach food, eat, fight, sleep) decisions are pos­
sible as they can be observed in behaving animals 
as are mutual inhibition of behaviors, opportunis­
tic behavior, support of follow-up behavior, or dis­
placement behavior. These agents have incorpo­
rated a motivational system based on an approach 
by Konrad Lorenz (the „hydraulic“ model of moti­
vation and behavior). The discussion of these ex­
amples led to the fascinating question about moti­
vation and emotion in computer systems.

It was agreed that the aspects of emotion are 
not well understood even in natural systems, and 
so the term motivation was used in the restricted 
sense of priorizing a certain task out of a variety 
of options. An analogous situation in a computer 
would be a multitasking system that has to work 
on several problems and has to „decide“ which 
task to perform first. The implementation of such 
motivational states would yield computers that are 
adapted to the needs of their user, making as­
sumptions on the priorities of the user, and se­
quentially working on the different problems ac­
cording to those. Such systems would be most 
welcomed in all situations where the complexity 
of the problem requires some sort of priorizing, 
e.g., in searching very large databases where a 
complete search would take too much time. The 
major problem for all approaches is the decision 
process and the variables it should be influenced 
by. However, it seems that even in humans the 
parameters that influence a decision are usually 
restricted to a very low number. An implementa­
tion of motivational and priorizing systems in com­
puters might therefore not be out of reach.

Report: The Behaviour of Natural and Artificial Systems
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It should however be noted that the analysis of 
emotional and motivational systems in humans 
and animals is still far from being complete. Few 
areas like, e.g., the amygdala, are undoubtedly in­
volved in emotional processes, but most other 
structures and mechanisms contributing to these 
are still debated.

Resume
One point often raised during the discussions 

was the interdependence of function and structure. 
Several examples clearly showed that natural or­

ganisms have developed a lot of specialized organs 
or strategies (facette eye of the fly, interpretation 
of sensory inputs within the behavioral context), 
which are useful for the organism in the natural 
environment and reduce the necessary amount of 
computation. One major outcome for both com­
puter scientists and neurobiologists was that artifi­
cial and natural organisms should be investigated 
in their interaction with the environment. Only by 
doing so, adaptations and specializations in natural 
organisms can be completely understood, and the 
fitness of an artificial organism can be assessed.
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