
Group Routing without Group Routing Tables

Jorge A. Cobb Mohamed G. Gouda
University of Houston The University of Texas at Austin

Houston, TX 77204-3475 Austin, TX 78712-1188
{cobb@cs.uh.edu} {gouda@cs.utexas.edu}

Abstract
We present a group routing protocol for a network of pro-
cesses. The task of the protocol is to route data messages
to each member of a process group. To this end, a tree of
processes is constructed in the network, ensuring each
group member is included in the tree. To build this tree,
the group routing protocol relies upon the unicast routing
tables of each process. Thus, group routing is a composi-
tion of a unicast routing protocol, whose detailed behavior
is unknown but its basic properties are given, and a pro-
tocol that builds a group tree based upon the unicast rout-
ing tables. The design of the group routing protocol is
presented in three steps. First, a basic group routing pro-
tocol is presented and proven correct. Then, the protocol
is refined twice, strengthening its properties with each
refinement. The final protocol has the property of
adapting the group tree to changes in the unicast routing
tables without compromising the integrity of the group
tree, even in the presence of unicast routing loops.

1. Introduction
In this paper, we present a group routing protocol for a

network of processes. In group routing, the processes in
the network are organized into groups. When the destina-
tion of a data message is a process group, the data mes-
sage is forwarded along the network until it is received by
every member of the process group. Group routing has
many applications, such as audio and video conferencing
[17], replicated database updating and querying, and re-
source discovery [14].

For simplicity, we present a group routing protocol for
a single process group. The extension to multiple groups
is straightforward.

To forward data messages to all group members, a
group tree is constructed. Each node in the tree corre-
sponds to a process in the network, and each edge in the
tree corresponds to a communication link between two
processes. The tree contains each member of the process
group, plus any additional processes necessary to connect
the tree together. When a data message is addressed to the
process group, the message is forwarded along the entire
tree. In this way, each process in the tree, and hence each
group member, receives the data message.

To build a group tree, we take advantage of the unicast
routing tables of each process and use them as a guide in
the construction of an efficient group tree. The unicast
routing tables define a forest of spanning trees, one tree
for each process in the network. The group tree is
constructed as a subset of one of these trees.

Many unicast routing algorithms exist in the literature,
e.g., [1, 2, 12, 13, 16]. These algorithms have many dif-
ferences, such as using different metrics in choosing the
best path between two processes. However, common to
all of these is the ability to change the routing tables in
response to varying network conditions, such as fluctua-
tions in traffic, or changes in the network topology.

To maintain the efficiency of the group tree, when the
unicast routing tables change, the tree is restructured to re-
flect these changes. In addition, the protocol has the nice
property that it maintains the integrity of the group tree
while the unicast routing tables are changing. That is, it
does not introduce temporary loops, it always maintains
the tree connected, and it never removes a group member
from the tree.

Obtaining a broadcast tree from the unicast routing ta-
bles was introduced in [8]. In [6] [7], the broadcast tree is
trimmed into a group tree that excludes those processes
not needed to reach the members of the multicast group.
Unfortunately, as the unicast routing tables change, the
tree may lose its integrity and become disconnected, until
the unicast routing tables converge to a stable value. In
[3] [4], a group tree is initially built from the unicast
routing tables. However, the tree does not adapt itself to
changes in these tables, and thus may lose its efficiency
as network conditions change.

The design of our group routing protocol is based on
the paradigm of protocol composition. The protocol is
correct when composed with any unicast routing protocol
that satisfies the following basic requirement. The routing
tables may fluctuate, but they eventually converge to a
value that, for each pair of processes p and q, defines a
path from p to q. In this way, the group routing protocol
performs as desired even when the details of the particular
unicast routing protocol in use are unavailable.

We design our group routing protocol in three steps.
First, we present a basic version of the protocol, and
prove its correctness. Then, we refine the protocol twice.
Each refined version improves upon the previous version
by satisfying all of the correctness properties of the previ-

network edge not in group tree
group tree edge

a) p originates a data msg b) p forwards a data msg

Figure 1

p q

st

v

data

data data
p q

st

v

data

data data

ous version, plus some additional stronger properties. The
end result is a group routing protocol that adapts itself to
the unicast routing tables, and in addition maintains the
integrity of the group tree at all times.

Due to space restrictions, all proofs are deferred to [5].
The structure of the paper is as follows. In Section 2,

the notation to specify each group routing protocol is in-
troduced. The basic group routing protocol is introduced
in Section 3. In Section 4, the correctness properties of
the basic protocol are presented. The first refinement of
the basic protocol, along with its correctness properties,
is presented in Section 5. The second refinement is pre-
sented in Section 6. In Section 7, possible further refine-
ments are mentioned. Concluding remarks are given in
Section 8.

2. Protocol Notation
In this paper, we present a family of group routing pro-

tocols. Each protocol consists of a set of processes which
exchange messages via communication channels. The pro-
cesses and their channels form a network that may be rep-
resented as an undirected graph. In this graph, a node rep-
resents a process, and an edge between processes p and q
represents two first-in-first-out communication channels,
one channel from process p to process q and another chan-
nel from process q to process p. The channel from process
p to process q is denoted by ch.p.q.

Each process is assigned a unique identifier, which we
assume to be of type integer. We say that processes p and
q are neighbors iff they are joined by an edge in the net-
work graph.

Each process is defined by a set of global and local con-
stants, a set of local variables, and a set of actions. If
multiple processes have the same name for a local vari-
able, say v, then we denote variable v in process p by p.v.

Actions are separated from each other with the symbol
[

]

, using the following syntax:
begin action [

]

action [

]

 . . . [

]

 action end
Each action is of the form guard → command. A guard is
either a boolean expression involving the local variables
of its process, or a receive statement of the form rcv msg
from q, where msg is a message type and q is the identi-
fier of a neighboring process. A command is constructed
from sequencing (;), conditional (if fi), and iterative
(for rof) constructs that group together skip, assign-
ment, and send statements of the form send msg to q.
Similar notations for defining network protocols are dis-
cussed in [9] [11].

An action in process p is said to be enabled if its guard
is either a boolean expression that evaluates to true, or a
receive statement of the form rcv msg from q, and there
is a message of type msg at the head of channel ch.q.p.

An execution step of a protocol consists of choosing
any enabled action from any process, and executing the ac-
tion's command. If the guard of the chosen action is a re-
ceive statement rcv msg from q, and this action is in
process p, then, before the action's command is executed,

a message of type msg is removed from the head of chan-
nel ch.q.p. Protocol execution is fair, that is, each action
that remains continuously enabled is eventually executed.

Multiple actions that differ by a single value can be ab-
breviated into a single action by introducing parameters.
For example, let j be a parameter whose type is the range
0 . . 2. The action

 rcv msg from j → x := j
is a shorthand notation for the following three actions.

 rcv msg from 0 → x := 0
[

]

 rcv msg from 1 → x := 1
[

]

 rcv msg from 2 → x := 2

3. The Basic Protocol
In this section, we define a protocol for routing data

messages to every member of a process group. Any
member of the group can generate data messages, and each
data message is forwarded to each member of the group.
Since group members do not necessarily have direct chan-
nels between each other, data messages are forwarded from
one process in the network to another until they reach
each group member.

To route messages between group members, we
construct a group tree of processes. The edges of the tree
are a subset of the edges in the process network, and the
set of processes in the tree contains all members of the
process group. Each data message is forwarded along the
entire group tree. In this way, each process in the tree, and
hence each group member, receives each data message.
Notice that there may be processes that are nodes in the
group tree but are not members of the process group.
These additional nodes are needed to ensure the group tree
is connected.

To forward a data message along the group tree, the
originator of the message forwards the message to all of
its neighbors in the tree, as shown in Figure 1. When a
process receives a data message from a neighbor in the
tree, it forwards the message to all of its neighbors in the
tree except the one from which the message was received.

To determine which edges in the network belong to the
group tree, we take advantage of the spanning trees pro-

vided by the unicast routing tables in the network. The
unicast routing table at each process p determines, for
each possible destination process r, which neighbor is the
next-hop in the unicast path from p to r. Hence, a
spanning tree rooted at r is obtained by choosing all
network edges (p, q), where q is the next-hop in the
unicast path from p to r.

To build a group tree, we designate one process in the
network as the root of the tree. The parent of each process
p in the tree is the next-hop neighbor in the unicast path
from p to the designated root process. Thus, the group
tree is a subset of the unicast spanning tree whose root is
also the designated root process.

Note that the group tree must contain all members of
the process group, plus any additional processes required
to complete the tree. A process p determines that it be-
longs in the group tree as follows. If p is a group mem-
ber, then p belongs in the group tree. If p is not a group
member, but it has a neighbor that belongs in the group
tree, and the neighbor's parent in the group tree is p, then
p also belongs in the group tree.

The general strategy is the following. If a process deter-
mines that it belongs in the group tree, it sends a request
message to its parent in the tree. When the parent receives
the request, it adds the process to its set of children and re-
turns a reply to the child. Each process in the tree sends a
request periodically to its parent. To ensure that at most
one request is outstanding at any time, a process will not
send a new request to its parent until a reply is received
for the previous request. If a parent does not receive a re-
quest from a child within some timeout period, it removes
the process from its set of children.

The unicast routing protocol adapts the unicast routing
tables in each process to changes in network conditions,
such as traffic loads. While the unicast routing tables are
changing, problems in unicast routing may arise, such as
routing loops. We assume that these problems are tempo-
rary, and that the unicast routing tables will converge to a
consistent value.

If the unicast spanning tree changes, the group tree
changes accordingly, and becomes a subgraph of the new
spanning tree. However, while these changes are occur-
ring, the group tree may become disconnected, disrupting
the delivery of data messages. In Sections 5 and 6, we re-
fine our solution to ensure that the integrity of the group
tree is never violated.

We next present the code for each process p in the net-
work. Its constants and variables are as follows.

Process p has a global constant, root, which is the iden-
tifier of the group member chosen as the root of the group
tree. It also has two local constants, also known as in-
puts. Input nbr p is a set containing the identifiers of the
neighbors of process p. Input mbr is a boolean indicating
whether p is a member of the process group or not.

Process p maintains in variable pr the identifier of its
parent in the group tree, and maintains in variable chl the
set of neighbors which are its children in the group tree. If

process p determines that it does not belong in the group
tree, it assigns its own identifier p to pr.

The function ROUTE(p, q) returns the next-hop neigh-
bor in the unicast path from p to q. Note that this func-
tion may not always return the same value, since the uni-
cast routing path may be undergoing some changes. Also,
we assume that ROUTE(p, p) always returns p. Hence, if
root = p, then pr is always equal to p.

Each process p in the network is defined as follows.

process p

const
root : integer (* root of group tree *)

inp
nbr : set of integer, (* neighboring processes *)
mbr : boolean (* is p a group member *)

var
chl : set of integer, (* children of p *)
pr : integer, (* parent of p *)
wr : set of integer (* set of pending replies *)

par
j : nbr (* j ranges over all neighbors *)

begin
 mbr → for each d in (chl ∪ {pr}) - {p} do

send data to d
rof

[

]

 rcv data from j →
if j ∈ chl ∪ {pr} →

for each d ∈ (chl ∪ {pr}) - {j, p}
send data to d

rof;
if mbr → deliver data
[

]

 ¬mbr → skip
f i

[

]

 j ∉ chl ∪ {pr} → skip
f i

[

]

 chl ≠ ∅ ∨ mbr →
pr := ROUTE(p, root);
if pr ≠ p ∧ pr ∉ wr → send rqst to pr;

wr := wr ∪ {pr}
[

]

 pr = p ∨ pr ∈ wr → skip
f i

[

]

 rcv rqst from j → chl := chl ∪ {j};

send rply to j

[

]

 rcv rply from j → wr := wr - j

[

]

 timeout j ∈ chl ∧ j.pr ≠ p →
chl := chl - {j};
if chl = ∅ ∧ ¬mbr → pr := p
[

]

chl ≠ ∅ ∨ mbr → skip
f i

end
Process p has six actions. In the first action, the pro-

cess creates a data message and sends it to its parent and

children in the group tree. In the second action, process p
receives a data message from one of its neighbors in the
group tree, and forwards the message to all other neigh-
bors in the tree. Also, if p is a member of the group, the
data message is delivered to the application.

In the third action, process p checks whether it should
be part of the group tree. If so, it chooses the next-hop
neighbor to the root as its parent, and it sends a request to
this neighbor, provided it is not waiting for a reply from
an earlier request. In the fourth action, the process receives
a request from a neighbor. Thus, the neighbor is added to
the set of children, and a reply is returned to the child. In
the fifth action, the reply is received from the parent.

The final action is a timeout action that models the ex-
piration of a timer. We simplify the modeling of this ac-
tion by using a global predicate as the action's guard,
rather than modeling a real-time clock explicitly. In this
global predicate, j.pr stands for the value of variable pr of
neighbor j. Although timeout actions are modeled by a
predicate, they can be implemented in practice using a
real-time clock [11].

In the timeout action, if the process has a child j, and it
has not received a request from this neighbor in a certain
amount of time (i.e., j.pr ≠ p), it removes the child from
set chl. Furthermore, if the process determines that it
should no longer take part in the group tree, it assigns its
own identifier to pr.

Note that once the unicast routing tables and the group
tree have achieved their final values, the periodic exchange
of request and reply messages in the protocol occurs only
between neighbors in the group tree. Thus, processes that
are not in the group tree do not incur any processing over-
head in maintaining the tree.

4. Protocol Properties
In this section, we characterize the behavior of the pro-

tocol of Section 3 using closure and convergence proper-
ties [9]. We first define the terms closure and convergence,
and then present the specific closure and convergence
properties of the protocol.

A computation of a network protocol N is a sequence
(state.0, action.0; state.1, action.1; state.2, action.2; . . .
) where each state.i is a state of N, each action.i is an ac-
tion of some process in N, and state.(i+1) is obtained
from state.i by executing action.i. Computations are fair,
i.e., every continuously enabled action is eventually exe-
cuted. Computations are also maximal, i.e., if state.j is
the last state in a computation, then no action is enabled
in state.j.

A state predicate of a network protocol N is a function
that yields a boolean value (true or false) at each state of
N. A state of N is an S-state iff the value of state predi-
cate S is true at that state.

In our state predicates we make use of universal quan-
tifications of the form:

〈∀ x : R(x) : T(x)〉

This predicate is true iff every possible value of x that sat-
isfies the boolean function R(x) also satisfies the boolean
function T(x). We assume that the values of x are re-
stricted to process identifiers in the network. If R(x) is
omitted, x ranges over all process identifiers.

Let S be a state predicate of N. Predicate S is a closure
in N iff at least one state of N is an S-state, and every
computation that starts in an S-state is infinite and all its
states are S-states. Predicate S is a weak-closure in N iff
at least one state of N is an S-state, and every computa-
tion that starts in an S-state has an infinite suffix consist-
ing solely of S-states.

Let S be a closure in N, and S' be a closure or a weak-
closure in N. We say that S converges to S' iff every
computation whose initial state is an S-state contains an
S'-state.

From the above definition, if S converges to S' in N,
and if the system is in an S-state, then eventually the
computation should reach an S'-state. Furthermore, if S'
is a closure, the computation continues to encounter only
S'-states indefinitely. If S' is a weak-closure, the computa-
tion may encounter a finite number of non-S'-states, but
this is followed by an infinite number of S'-states.

We next present the properties of the protocol of
Section 3. To begin, we require the system to have a sen-
sible initial state, which we characterize with predicate C0
below. The notation rqst#ch.p.q denotes the number of
messages of type rqst currently in channel ch.p.q.

C0 ≡ S0 ∧ S1
S0 ≡ 〈∀ p,q :: (q ∉ p.wr ∧ rqst#ch.p.q + rply#ch.q.p = 0)

 ∨ (q ∈ p.wr ∧ rqst#ch.p.q + rply#ch.q.p = 1)〉
S1 ≡ 〈∀ p : p.chl = ∅ ∧ ¬p.mbr : p.pr = p〉

Predicate C0 states that variable wr in each process ac-
curately reflects whether a reply is expected for each
neighbor. Also, it states that variable p.pr does not point
to a neighbor if p does not belong in the group tree.

A simple initial state of the protocol that satisfies C0
is, for all p, p.pr = p, p.wr = ∅, and no request or reply
messages in any channel.

Property 1
C0 is a closure

Thus, if C0 holds in the initial state of a computation,
then it holds in all states of the computation.

Before presenting the next two properties, we define the
following. Let GT be the set of edges in the group tree1.
Edges in GT are directed, i.e., edge (p, q) differs from edge
(q, p). Let p and q be any pair if neighboring processes.

a) (p, q) ∈ GT ⇔ p.pr = q ∨ p ∈ q.chl
b) (p, q) ∈ BE ⇔ p.pr = q ∧ p ∈ q.chl
c) (p, q) ∈ GE ⇔ (p, q) ∈ GT - BE

1 The term tree is a misnomer, since the graph of the group
tree may temporarily contain loops or be disconnected.
However, the graph will converge to a tree.

group tree edges
unicast routing path

p

q

root

r

Figure 2: changing parents

Thus, edge (p, q) is in GT if either p considers q to be its
parent or q considers p to be its child. The edges in GT are
divided into a set of black edges, BE, and a set of gray
edges, GE. An edge (p, q) is black if p and q agree, i.e., p
considers q to be its parent, and q also considers p to be
its child. An edge (p, q) is gray if p and q do not agree.
This disagreement is temporary, and it occurs only during
a period of transition in which the group tree is adapting
to new changes in the unicast routing tables.

For the following two properties, we make the assump-
tion that the unicast routing tables may fluctuate tem-
porarily, but eventually remain fixed and define a span-
ning tree for each destination.

Let UT be the edges of the unicast spanning tree with
the same root as the group tree. Let path(UT, p) be the
edges in UT of the path from p to the root, and
sub(UT, p) be the subtree of UT rooted at p.

Property 2
For any process p,

C0 ∧ p.mbr converges to
C0 ∧ p.mbr ∧ 〈∀ r,s : (r,s) ∈ path(UT, p) : (r,s) ∈ BE〉

Property 3
For any process p,

C0 ∧ 〈∀ r : r ∈ sub(UT, p) : ¬r.mbr〉
converges to

〈∀ r, s : r ∈ sub(UT, p) : (r, s) ∉ GT〉 ∧
C0 ∧ 〈∀ r : r ∈ sub(UT, p) : ¬r.mbr〉
The first property states that if a process is a group

member, then all the edges in its unicast path to the root
will become black, i.e., they will be part of the group
tree. The second property states that if all the processes in
a subtree of UT are not members of the process group,
then the entire subtree will be removed from the group
tree. These two properties combined imply that GT will
become the smallest subgraph of UT that connects all the
members of the process group, as desired.

5. First Refinement: Maintaining
Connectivity

We next refine the basic protocol of Section 3 by re-
stricting when a process changes its parent. The purpose

of this restriction is to ensure that a process that has
joined the group tree remains connected to the tree while
changes in the unicast routing tables are occurring. This
refined protocol must preserve all the correctness proper-
ties presented in the previous section.

To show how a process becomes disconnected from the
tree, consider the following. Assume p.pr = q, ROUTE(p,
root) = r, and all edges in the unicast path from p to the
root do not belong to the group tree, as shown in Figure
2. It is possible that, after p chooses r as its parent, q
times out and removes p from its set of children before all
the edges in the unicast path from p to the root have been
added to the group tree. If this occurs, p will be temporar-
ily disconnected from the group tree.

To prevent this from occurring, p should not change its
parent from q to r until r is connected to the group tree.
We say that a process r is connected to the group tree if r
is the root, or if the edge between r and its parent is black
and the parent of r is also connected to the group tree.

Recall that process r determines that it should join the
group tree if either it is a member of the process group or
if its child set is non-empty. To ensure r's child set is
non-empty, p sends a request to r as if r were its parent.
Process r adds p to its child set, and returns a reply to p.
The reply includes a bit indicating if r is connected to the
group tree. Process p continues to send requests to r until
it receives a reply with this bit set to true. Then, p
chooses r as its parent, i.e., it assigns r to p.pr, and thus
becomes connected to the tree.

To perform the above, process p maintains two parent
variables: the current parent, pr, which is connected to the
group tree, and the tentative parent, tpr, which may not be
connected to the tree. If p has no parent that is connected
to the tree, then p.pr = p. When a reply is received from
the tentative parent indicating that it is connected to the
group tree, p turns its tentative parent into its current par-
ent by assigning tpr to pr.

We next present the actions of the refined process. The
first two actions are the same as in Section 3. The re-
maining four actions are as follows.

[

]

 chl ≠ ∅ ∨ mbr →
tpr := ROUTE(p, root)
if tpr ≠ p ∧ tpr ∉ wr → send rqst to tpr;

wr := wr ∪ {tpr}
[

]

 tpr = p ∨ tpr ∈ wr → skip
fi;
if pr ≠ p ∧ pr ∉ wr → send rqst to pr;

wr := wr ∪ {pr}
[

]

pr = p ∨ pr ∈ wr → skip
f i

[

]

 rcv rqst from j →
chl := chl ∪ {j};
b := (pr ≠ p ∨ p = root);
send rply(b) to j

[

]

 rcv rply(b) from j →
wr := wr - {j}
if j = tpr ∧ b → pr := tpr
[

]

¬(j = tpr ∧ b) → skip
f i

[

]

 timeout j ∈ chl ∧ j.pr ≠ p ∧ j.tpr ≠ p ∧ rply#ch.p.j=0
→ chl := chl - {j};

if chl = ∅ ∧ ¬mbr → pr := p; tpr := p
[

]

chl ≠ ∅ ∨ mbr → skip
f i

In the first action above, process p checks whether it
should be part of the group tree. If it should be, the next-
hop neighbor to the root is chosen as the tentative parent,
and a request is sent to this neighbor. Similarly, a request
is sent to the current parent, to prevent it from removing
p from its child set.

In the second action above, a request is received from a
neighbor. The neighbor is added to the child set as in the
basic protocol. A reply is sent to the child indicating
whether p is connected to the tree or not. Process p is
connected to the tree if p has a parent that is also
connected to the tree, i.e., if pr ≠ p, or if p is the root. In
the third action above, a reply is received from a neighbor.
If the reply is from the tentative parent, and the tentative
parent is connected to the tree, then process p makes the
tentative parent its current parent.

In the last action, a neighbor is removed from the child
set after a timeout. If a neighboring process j does not
consider p to be either its current or tentative parent (i.e.,
it has not sent a request to p for some time) and the last
reply from p to j has been received by j, then j is removed
from the child set. Furthermore, both pr and tpr are set to
p if p no longer needs to take part in the group tree.

The reason we require the timeout period to be long
enough to ensure j has received the last reply is as fol-
lows. Assume the reply indicates that p is connected to
the tree. However, after removing j from the child set, p
no longer needs to be on the group tree, and sets tpr and
pr to p. If later j decides to rejoin the tree using p as a ten-
tative parent, and j receives the old reply from p, it will
erroneously conclude that p is connected to the tree, and
prematurely choose p as its current parent.

We next present the properties of the protocol presented
in this section. We begin by noting that if a process has a
current parent, and the process is a member of the process
group, then the process will continue to have a current
parent indefinitely.

Property 4
For all processes p,

p.pr ≠ p ∧ p.mbr ∧ p ≠ root is a closure

Property 4 is satisfied without making any assumptions
about the behavior of the unicast routing tables, i.e., they
are free to change at any point along the computation.

Let q be the current parent of p. To prevent p from be-
ing disconnected from the group tree, q must also have a

current parent or be the root. We express this in predicate
C1 below. This predicate must hold at the initial state of
the system. It is stronger that C0, because it involves the
new variables introduced in the refinement, i.e., p.tpr and
the bit in the rply message, and it also involves the above
requirement on connectivity.

C1 ≡ C0 ∧ S2 ∧ S3 ∧ S4
S2 ≡ 〈∀ p, q : p.pr = q ∧ p ≠ q :

(p, q) ∈ BE ∧ (q.pr ≠ q ∨ q = root)〉
S3 ≡ 〈∀ p, q : rply(true) ∈ ch.p.q :

q ∈ p.chl ∧ (p.pr ≠ p ∨ p = root)〉
S4 ≡ 〈∀ p : p.chl = ∅ ∧ ¬p.mbr : p.tpr = p〉
A simple initial state of the protocol that satisfies C1

is, for all p, p.pr = p, p.tpr = p, p.wr = ∅, and no request
or reply messages in any channel.

The refinement in this section also satisfies Properties
1, 2 and 3 of Section 4, with the exception that each oc-
currence of C0 in these properties is replaced by C1.
Hence, C1 is a closure, and the group tree converges to
the smallest subgraph of the unicast spanning tree that
maintains all the group members connected.

Predicate C1 states that if a process p has a current par-
ent, then the edge from p to its parent is black, and the
current parent of p also has a current parent or is the root.
Hence, either the group tree has a path of black edges
from p to the root, or the path of black edges starting
from p leads to a loop. The obvious shortcoming is that
if a loop exists, then p is temporarily unreachable from
the root of the tree.

To see this, consider the system state depicted in Figure
3. In this state, p chooses r as its tentative parent, and
sends a request to r. Process r receives the request, and
adds p to its child set. Then, r chooses s as its tentative
parent, it sends a request to s, and s adds r to its child set.
Thus, all the edges in the path from p to s become gray.
Then, since s is connected to the tree, r chooses s as its
current parent, making the edge (r, s) black. Subsequently,
edge (p, r) also becomes black, forming a loop.

Note that the loop is possible even if the unicast rout-
ing tables are loop-less, as shown in the figure. Therefore,
restricting the group routing protocol to work only in
conjunction with a loop-less unicast routing protocol is
not sufficient. The problem must be solved by further re-
fining the protocol, which is the topic of the next section.

6. Second Refinement: Preventing
Routing Loops

We next present the second and final refinement of the
group routing protocol. The purpose of this refinement is
to avoid loops in the group tree when changes occur in
the unicast routing tables. This loop-freedom must be
achieved while still maintaining all the properties pre-
sented for the basic protocol and for the first refinement of
the previous section.

The refinement consists of introducing a diffusing com-
putation as a method for avoiding loops. Each process

black group tree edges
unicast spanning tree

p

q

root

r

Figure 3: Temporary loops in group tree

ts

maintains an integer timestamp variable, called ts. The
root process increments its timestamp periodically. A
non-root process may not increment its timestamp on its
own. Instead, each parent includes its timestamp in each
reply sent to a child. If a process receives a timestamp
from its current parent that is larger than its own, then it
sets its timestamp to the timestamp of its current parent.

When the routing tables indicate to a process that it
should choose a different parent, i.e., when the tentative
parent is not the current parent, the process ignores the
timestamps received from the current parent. When the
process receives a reply from the tentative parent with a
timestamp greater than its own, and the tentative parent is
connected to the tree, the process chooses the tentative
parent as its current parent, and sets its timestamp to the
tentative parent's timestamp.

The reason no loops are created is the following. All
processes in the group subtree rooted at p have a times-
tamp no greater than the timestamp of p. Thus, when the
tentative parent provides to p a timestamp greater than p's
timestamp, it indicates to p that the tentative parent is not
part of the subtree rooted at p. Thus, choosing this neigh-
bor as the new current parent cannot introduce a loop.

The only actions requiring a change for the refinement
are the action to receive a request and the action to receive
a reply. In addition, a new action to increase the times-
tamp of the root is needed. These actions are as follows.

 p = root → ts := ts + 1

[

]

 rcv rqst from j →
chl := chl ∪ {j};
b := (pr ≠ p ∨ p = root);
send rply(b, ts) to j

[

]

 rcv rply(b, t) from j →
wr := wr - {j}
if j = tpr ∧ b ∧ t > ts → pr, ts := tpr, t
[

]

 ¬(j = tpr ∧ b ∧ t > ts) → skip
f i

Note that process p only accepts timestamps from the
tentative parent tpr and not from its current parent pr.
However, if p is not in the process of changing parents,
then pr = tpr, and p will accept new timestamps from its

current parent. Thus, p always has one parent from which
it accepts new timestamps, whether it is in the process of
changing parents or not.

We next present the properties of the protocol described
in this section. Since we have introduced a new variable ts
in each process, we need to strengthen the initial state of
the system to reflect an appropriate value for these vari-
ables. The new initial state predicate C2 is defined next.

C2 ≡ C0 ∧ S4 ∧ S5 ∧ S6 ∧ S7
S5 ≡ 〈∀ p, q : p.pr = q ∧ p ≠ q :

(p, q) ∈ BE ∧ (q.pr ≠ q ∨ q = root) ∧ q.ts ≥ p.ts〉
S6 ≡ 〈∀ p, q, t : rply(true, t) ∈ ch.p.q :

q ∈ p.chl ∧ (p.pr ≠ p ∨ p = root) ∧ p.ts ≥ t〉
S7 ≡ 〈∀ p : : p.ts ≤ root.ts〉
An initial state of the protocol that satisfies C2 is, for

all p, p.pr = p, p.tpr = p, p.ts = 0, and p.wr = ∅, and no
request or reply messages in any channel.

The refinement in this section satisfies Properties 1, 2
and 3 of Section 4, with the exception that each occur-
rence of C0 in these properties is replaced by C2. Thus,
C2 is a closure, and the group tree converges to the
smallest subgraph of the unicast spanning tree that main-
tains all the group members connected. Also, the refine-
ment in this section satisfies Property 4 of the previous
section, that is, a group member that has a current parent
will continue to have a current parent indefinitely.

Predicate C2 indicates that the timestamp of each pro-
cess is at most the timestamp of its current parent. This
alone does not guarantee loop freedom, since all the pro-
cess in a loop could have identical timestamps. Loop free-
dom is guaranteed by the additional property below, which
is true even if the unicast routing tables are never stable.

Let pr_path(p) be the set of processes in the path ob-
tained by following the pr variables starting with p.pr.

Property 5
C2 ∧ 〈∀ p : p.pr ≠ p : root ∈ pr_path(p)〉 is a closure

Property 5 states that if a process p chooses a neighbor
as its current parent, then there is a path from this neigh-
bor to the root obtained by following the pr variables be-
ginning with p.pr. From C2, this path consists entirely
of black edges, that is, each parent and its child in the
path are in agreement with each other. Also, from
Property 4, once a process has a current parent, it contin-
ues to have a current parent throughout the computation.
Finally, from Property 3, every member of the group
eventually has a current parent, provided the unicast rout-
ing tables become stable.

In summary, every group member is guaranteed to have
a current parent leading to the root once the unicast rout-
ing tables are stable. While the unicast routing tables are
changing, any process that has a current parent continues
to have a current parent and also has a path to the root.
Thus, the group tree adapts to the new unicast spanning
tree, and in the process it continues to be loopless and
maintains all the group members connected, as desired.

7. Further Refinements
There are several other possible refinements for the

group routing protocol. We mention a few of these briefly
in this section.

The basic protocol and its refinements assume that the
membership of a process in the process group is constant.
The protocols in this paper can be easily enhanced to
allow a process to join or leave the process group at will.

Another possible refinement is to allow a process to
send data messages to the process group, even though the
process is not a member of the group. In this case, the
process would not receive any data messages addressed to
the group, but it would be able to send data messages to
all group members. To accomplish this, the message sent
by a non-member is routed through the network as if it
were a unicast message to the root of the group tree.
When the message arrives to a process that is in the group
tree, the process forwards the message to all its neighbors
in the tree, as if it had originated the message.

It is also possible to modify the group routing protocol
to become more fault-tolerant. In particular, the protocol
could begin from an arbitrary initial state, and converge to
the desired state where the group tree is the required subset
of the unicast spanning tree. To achieve fault-tolerance,
the unicast routing protocol must be fault-tolerant, and
also the communication protocol to exchange messages
between neighbors must be fault-tolerant. Fault-tolerant
protocols for these tasks are referenced in [10].

Another refinement to increase fault-tolerance is to have
multiple choices for a root process. These choices should
be linearly ordered. Assume the unicast routing tables in a
process indicate that the highest ordered choice cannot be
reached. This could occur because the chosen process is
down or the faulty links have partitioned the network. If
this is the case, the process chooses as a root the first
process in the order of choices which is reachable
according to its routing tables, and chooses its new parent
accordingly.

8. Concluding Remarks
The technique of propagating timestamps has been used

previously in unicast routing protocols [1]. The purpose
of the timestamp in these protocols is to quickly break
routing loops that form in networks whose topology
quickly changes, such as mobile networks [15]. In our
protocol, we use the technique somewhat differently. The
timestamps are used to ensure that the group tree always
remains loopless.

There has been some debate on whether a single "core"
group tree should be used to multicast data messages to a
process group, or multiple group trees should be used,
one per source of data messages [7]. Regardless of which
of these two approaches is taken, the techniques presented
in this paper may be used to ensure that each tree is re-
sponsive to the changes in the unicast routing tables
without compromising the integrity of the tree.

References
[1] Arora A., Gouda M., Herman T., ``Composite Routing

Protocols'', Proceedings of the Second IEEE Symposium
on Parallel and Distributed Processing, 1990.

[2] Alaettinoglu C, Shankar U., ``Stepwise Design of
Distance-Vector Algorithms'', 12th Symposiumm on
Protocol Specification, Testing and Verification, 1992.

[3] Ballardie T., ``Core Based Tree Multicast'', Internet RFC,
work in progress.

[4] Ballardie T., Francis P., Crowcroft J, ``Core Based Trees:
An Architecture for Scalable Inter-Domain Multicast
Routing'', ACM SIGCOMM Conference, 1993.

[5] Cobb J, Gouda M, ``Group Routing without Group
Routing Tables: An exercise in Protocol Design'', to
appear in Computer Communications, 1996. Also, to
appear in a technical report, University of Houston, 1996
(available from the authors).

[6] Deering S., Cheriton D., ``Multicast Routing in Datagram
Networks and Extended LANs'', ACM Transactions on
Computer Systems, Vol 8., No 2., May 1990.

[7] Deering S. et. al., ``An Architecture for Wide-Area
Multicast Routing'', ACM SIGCOMM Conference, 1994.

[8] Dalal, Y. K., Metcalfe, R. M., ``Reverse Path Forwarding
of Broadcast Packets'', Communications of the ACM,
Vol. 21, No. 12, Dec. 1978.

[9] Gouda M., ``Protocol Verification Made Simple'',
Computer Networks and ISDN Systems, Vol. 25, 1993,
pp. 969-980.

[10] Gouda M., ``The Triumph and Tribulation of System
Stabilization'', International Workshop on Distributed
Algorithms, 1995.

[11] Gouda M., The Elements of Network Protocols, text-
book in preparation.

[12] Gouda M., Schneider M., ``Maximum Flow Routing'',
Joint Conference on Information Sciences, 1994.

[13] Cheng C., Riley R., Kumar S, Garcia-Luna-Aceves J.,
``A Loop-free Bellman-Ford Routing Protocol without
Bouncing Effect'', ACM SIGCOMM Conference, 1989.

[14] Kahle B., Schwartz M., Emtage A., Neuman B., ``A
Comparison of Internet Resource Discovery
Approaches'', Computing Systems, Vol. 5 No. 4., Fall
1992.

[15] Perkins, C. et. al., ``Ad Hoc Networking in Mobile
Computing'', ACM SIGCOMM Conference, 1994.

[16] Shin K. G., Chen M., ``Performance Analysis of
Distributed Routing Strategies Free of Ping-Pong-Type
Looping'', IEEE Transactions on Computers, 1987.

[17] Wilbur S., Handley M., ``Multimedia Coferencing: from
Prototype to National Pilot'', INET' 92 International
Networking Conference.

