Group Routing without Group Routing Tables

Jorge A. Cobb Mohamed G. Gouda
University of Houston The University of Texas at Austin
Houston, TX 77204-3475 Austin, TX 78712-1188
{cobb@cs.uh.edu} {gouda@cs.utexas.edu}

To build a group tree, we take advantage of the unicast
Abstract routing tables of each process and use them as a guide in

We present a group routing protocol for a network of pro- the construction c_)f an efficient group tree. The unicast
cesses. The task of the protocol is to route data messagdguting tables define a forest of spanning trees, one tree
to each member of a process group. To this end, a tree dOF €ach process in the network. The group tree is
processes is constructed in the network, ensuring eaci§onstructed as a subset of one of these trees.

group member is included in the tree. To build this tree, Many unicast routing algorithms exist in the literature,
the group routing protocol relies upon the unicast routing €-9-» [1, 2, 12, 13, 16]. These algorithms have many dif-
tables of each process. Thus, group routing is a Composiferences, such as using different metrics in choosing the
tion of a unicast routing protocol, whose detailed behavior Pe€st path between two processes. However, common to
is unknown but its basic properties are given, and a pro_aII of these is tht_e ability to changg_the routing tables in
tocol that builds a group tree based upon the unicast rout!f€SPonse to varying network conditions, such as fluctua-
ing tables. The design of the group routing protocol is tions in traffic, or changes in the network topology.
presented in three steps. First, a basic group routing pro- 10 maintain the efficiency of the group tree, when the
tocol is presented and proven correct. Then, the protocoknicast routing tables changga_, the tree is restructured to re-
is refined twice, strengthening its properties with each flect these chz_inges_. In_ addltlo_n, the_ protocol has the nice
refinement. The final protocol has the property of Property that it maintains the integrity of the group tree
adapting the group tree to changes in the unicast routingNhne the unicast routing tables are c_hanglng. Tha_lt is, it
tables without compromising the integrity of the group does not introduce temporary loops, it always maintains

tree, even in the presence of unicast routing loops. the tree connected, and it never removes a group member
from the tree.
1. Introduction Obtaining a broadcast tree from the unicast routing ta-

In this paper. we present a aroun routing brotocol for ables was introduced in [8]. In [6] [7], the broadcast tree is
paper, P group gp trimmed into a group tree that excludes those processes

network of processes. In group routing, the processes ir, i neoded to reach the members of the multicast group
the network are organized into groups. When the destina '

tion of a data message is a process aroun. the data rneU_nfortunately, as the unicast routing tables change, the
. 9 p group,) tree may lose its integrity and become disconnected, until
sage is forwarded along the network until it is received by

everv member of the process aroun. Groun routing ha the unicast routing tables converge to a stable value. In
y membel P group. roup 9 NaS31 14, a group tree is initially built from the unicast
many applications, such as audio and video conferencin

[17], replicated database updating and querying, and re_outing tables. However, the tree does not adapt itself to
source discovery [14] ying. changes in these tables, and thus may lose its efficiency

S . as network conditions change.
For simplicity, we present a group routing protocol for

. : . The design of our group routing protocol is based on
a smg_le process group. The extension to multiple 9roUPShe paradigm of protocol composition. The protocol is
is straightforward. .

correct when composed with any unicast routing protocol

To forwar_d data messages to all group members, Ghat satisfies the following basic requirement. The routing
group tree is constructed. Each node in the tree corre;

sponds to a process in the network. and each edae in thtables may fluctuate, but they eventually converge to a
P P O ; 9 Value that, for each pair of processes p and g, defines a
tree corresponds to a communication link between two

processes. The tree contains each member of the proceéath from p to g. In this way, the group routing protocol

" rforms as desired even when the details of the particular
group, plus any additional processes necessary to CONNECLy; st rquting protocol in use are unavailable.
the tree together. When a data message is addressed to t Qe design our group routing protocol in three steps.

process group, the message is forwarded along the entirﬁirst, we present a basic version of the protocol, and

trreoeu. l%tgrlr?bvg?yryeizci:\?egrt?l(éegztg]rages;;eee, and hence eaC;g}ove its correctness. Then, we refine the protocol twice.
group ' ge. Each refined version improves upon the previous version
by satisfying all of the correctness properties of the previ-

ous version, plus some additional stronger properties. The .
end result is a group routing protocol that adapts itself to ---- network edge not in group tr
the unicast routing tables, and in addition maintains the —— group tree edc
integrity of the group tree at all times.

Due to space restrictions, all proofs are deferred to [5].

The structure of the paper is as follows. In Section 2,
the notation to specify each group routing protocol is in-
troduced. The basic group routing protocol is introduced
in Section 3. In Section 4, the correctness properties of
the basic protocol are presented. The first refinement of
the basic protocol, along with its correctness properties,
is presented in Section 5. The second refinement is pre-
sented in Section 6. In Section 7, possible further refine-) p originates a data rr b) p forwards a data m
ments are mentioned. Concluding remarks are given in
Section 8.

Figure 1

2. Protocol Notation a message of type msg is removed from the head of chan-

In this paper, we present a family of group routing pro- nel ch.g.p. Protocol execution is fair, that is, each action
tocols. Each protocol consists of a set of processes whiclihat remains continuously enabled is eventually executed.
exchange messages via communication channels. The pro- Multiple actions that differ by a single value can be ab-
cesses and their channels form a network that may be rep2réviated into a single action by introducing parameters.
resented as an undirected graph. In this graph, a node rep=0r €xample, let j be a parameter whose type is the range
resents a process, and an edge between processes p anfl g- 2- The action

represents two first-in-first-out communication channels, . rcv msg from j - x:=j .
one channel from process p to process g and another chats & shorthand notation for the following three actions.
nel from process q to process p. The channel from process rcv msg from 0 - x:=0
p to process q is denoted by ch.p.q. [] rov msgfrom1 - x:=1

Each process is assigned a unique identifier, which we [| rcv msgfrom 2 - x:=2

assume to be of type integer. We say that processes p and _
q are neighbors iff they are joined by an edge in the net-3. The Basic Protocol

work graph. In this section, we define a protocol for routing data
Each process is defined by a set of global and local cons ’ P g

¢ Iooal variobl 4 oot imessages to every member of a process group. Any
stants, a set of local variables, and a set of actions. ltnemper of the group can generate data messages, and eact

multiple processes have the same name for a local varigais message is forwarded to each member of the group.
able, say v, then we de(r;ofte varlabrl]e Vh'n prqtr:]eshs p by E"’ISince group members do not necessarily have direct chan-
Actions are separated from each other with the symbol,o|g petween each other, data messages are forwarded from

[. using the following syntax: one process in the network to another until they reach
begin action []action[] .. .[] action end each group member.
Each action is of the formuard - commandA guard is To route messages between group members, we

either a boolean expression involving the local variablesconstruct a group tree of processes. The edges of the tree
of its process, or a receive statement of the faammsg are a subset of the edges in the process network, and the
from g, where msg is a message type and g is the identiset of processes in the tree contains all members of the
fier of a neighboring process. A command is constructedprocess group. Each data message is forwarded along the
from sequencing (;), conditionalf(fi), and iterative entire group tree. In this way, each process in the tree, and

(for rof) constructs that group togethskip, assign- hence each group member, receives each data message.

ment, and send statements of the faend msgto qg. Notice that there may be processes that are nodes in the

Similar notations for defining network protocols are dis- group tree but are not members of the process group.

cussed in [9] [11]. These additional nodes are needed to ensure the group tree
An action in process p is said to éeabledif its guard is connected.

is either a boolean expression that evaluates to true, or a To forward a data message along the group tree, the
receive statement of the formgev msgfrom ¢, and there originator of the message forwards the message to all of
is a message of type msg at the head of channel ch.q.p. its neighbors in the tree, as shown in Figure 1. When a
An execution step of a protocol consists of choosing process receives a data message from a neighbor in the
any enabled action from any process, and executing the adree, it forwards the message to all of its neighbors in the
tion's command. If the guard of the chosen action is a retree except the one from which the message was received.
ceive statementcv msgfrom g, and this action is in To determine which edges in the network belong to the
process p, then, before the action's command is executedjroup tree, we take advantage of the spanning trees pro-

vided by the unicast routing tables in the network. The process p determines that it does not belong in the group

unicast routing table at each process p determines, fotree, it assigns its own identifier p to pr.

each possible destination process r, which neighbor is the The function ROUTE(p, q) returns the next-hop neigh-

next-hop in the unicast path from p to r. Hence, a bor in the unicast path from p to g. Note that this func-

spanning tree rooted at r is obtained by choosing alltion may not always return the same value, since the uni-

network edges (p, q), where q is the next-hop in thecast routing path may be undergoing some changes. Also,

unicast path from p to r. we assume that ROUTE(p, p) always returns p. Hence, if
To build a group tree, we designate one process in theoot = p, then pr is always equal to p.

network as the root of the tree. The parent of each process Each process p in the network is defined as follows.

p in the tree is the next-hop neighbor in the unicast pathprocess p

from p to the designated root process. Thus, the group

tree is a subset of the unicast spanning tree whose root i

also the designated root process.)
Note that the group tree must contain all members ofI NP .] .

the process group, plus any additional processes required nbr @ set of integer, (* neighboring processes *)

onst
root : integer (* root of group tree *)

to complete the tree. A process p determines that it be- mbr : boolean (* is p a group member *)
longs in the group tree as follows. If p is a group mem- var
ber, then p belongs in the group tree. If p is not a group chl : set of integer, (* children of p *)
member, but it has a neighbor that belongs in the group pr . integer, (* parent of p *)
tree, and the neighbor's parent in the group tree is p, then wr : set of integer (* set of pending replies *)
p also belongs in the group tree. par

The general strategy is the following. If a process deter- i - nbr (* j ranges over all neighbors *)

mines that it belongs in the group tree, it sends a request ~ .
message to its parent in the tree. When the parent receivededin . O
the request, it adds the process to its set of children and re- MPr — for each din (chiL {pr}) - {p} do

turns a reply to the child. Each process in the tree sends a send datato d
request periodically to its parent. To ensure that at most rof
one request is outstanding at any time, a process will noJ] rcv datafromj -
send a new request to its parent until a reply is receive if jOchlO {pr} -
for the previous request. If a parent does not receive a re- for each d O (chl O {pr}) - {j, p}
guest from a child within some timeout period, it removes send datato d
the process from its set of children. rof:
The unicast routing protocol adapts the unicast routing if ’mbr ., deliver data
tables in each process to changes in network conditions, [I —mbr L sKip

such as traffic loads. While the unicast routing tables are
changing, problems in unicast routing may arise, such as
routing loops. We assume that these problems are tempo-

fi
[[iochlO{pr} - skip

rary, and that the unicast routing tables will converge to a fi
consistent value. [Jehlz0 Ombr -
If the unicast spanning tree changes, the group tree pr := ROUTE(p, root);
changes accordingly, and becomes a subgraph of the new if przp0Oprdwr - send rgstto pr;
spanning tree. However, while these changes are occur- wr :=wr [{pr}

ring, the group tree may become disconnected, disrupting
the delivery of data messages. In Sections 5 and 6, we re-
fine our solution to ensure that the integrity of the group
tree is never violated.

[pr=pOprOowr - skip
fi
[[rev rgstfromj — chl:=chiO {j};

We next present the code for each process p in the net- send rply to j
work. Its constants and variables are as follows. ; — ;
Process p has a global constant, root, which is the iden-[| r_CV "ply f-rom] _> W= W
tifier of the group member chosen as the root of the group[| timeout j O chl Uj.pr#p -
tree. It also has two local constants, also known as in- chl :=chl - {j};
puts. Input nbr p is a set containing the identifiers of the if chl=00-mbr - pr:=p
neighbors of process p. Input mbr is a boolean indicating [| chiz0 Ombr - skip
whether p is a member of the process group or not. fi

Process p maintains in variable pr the identifier of its
parent in the group tree, and maintains in variable chl theenOI - . . -
set of neighbors which a(re its children in the group tree. If Process p has six actions. In the first action, the pro-
9 group " 7 cess creates a data message and sends it to its parent anc

children in the group tree. In the second action, process [rhis predicate is true iff every possible value of x that sat-
receives a data message from one of its neighbors in thésfies the boolean function R(x) also satisfies the boolean
group tree, and forwards the message to all other neighfunction T(x). We assume that the values of x are re-
bors in the tree. Also, if p is a member of the group, thestricted to process identifiers in the network. If R(x) is
data message is delivered to the application. omitted, x ranges over all process identifiers.
In the third action, process p checks whether it should Let S be a state predicateNf Predicate S is elosure
be part of the group tree. If so, it chooses the next-hopin N iff at least one state df is an S-state, and every
neighbor to the root as its parent, and it sends a request toomputation that starts in an S-state is infinite and all its
this neighbor, provided it is not waiting for a reply from states are S-states. Predicate Svuseak-closuran N iff
an earlier request. In the fourth action, the process receiveat least one state of is an S-state, and every computa-
a request from a neighbor. Thus, the neighbor is added tdion that starts in an S-state has an infinite suffix consist-
the set of children, and a reply is returned to the child. Ining solely of S-states.
the fifth action, the reply is received from the parent. Let S be a closure iN, and S' be a closure or a weak-
The final action is a timeout action that models the ex- closure inN. We say that Sonvergesto S' iff every
piration of a timer. We simplify the modeling of this ac- computation whose initial state is an S-state contains an
tion by using a global predicate as the action's guard,S'-state.
rather than modeling a real-time clock explicitly. In this From the above definition, if S converges to SNin
global predicate, j.pr stands for the value of variable pr ofand if the system is in an S-state, then eventually the
neighbor j. Although timeout actions are modeled by a computation should reach an S'-state. Furthermore, if S'
predicate, they can be implemented in practice using as a closure, the computation continues to encounter only
real-time clock [11]. S'-states indefinitely. If S' is a weak-closure, the computa-
In the timeout action, if the process has a child j, and ittion may encounter a finite number of non-S'-states, but
has not received a request from this neighbor in a certairthis is followed by an infinite number of S'-states.
amount of time (i.e., j.p¥ p), it removes the child from We next present the properties of the protocol of
set chl. Furthermore, if the process determines that itSection 3. To begin, we require the system to have a sen-
should no longer take part in the group tree, it assigns itssible initial state, which we characterize with predicate CO
own identifier to pr. below. The notation rgst#ch.p.q denotes the number of
Note that once the unicast routing tables and the groupmessages of type rgst currently in channel ch.p.q.
tree have achieved their final values, the periodic exchangg~q = 5o 51
of request and reply messages in the protocol occurs only_ . —
between neighbors in the group tree. Thus, processes théo_ m p,qD.. (0 p.erD rgstiich.p.q + rply#ch.q.p_— 0)
are not in the group tree do not incur any processing over-_ (@O p.wr L rgstitch.p.q + rply#ch.q.p =)
head in maintaining the tree. S1=Mp: p.chl =0 L=p.mbr: p.pr=pl
. Predicate CO states that variable wr in each process ac-
4. Protocol Properties curately reflects whether a reply is expected for each

In this section, we characterize the behavior of the pro-heighbor. Also, it states that variable p.pr does not point
tocol of Section 3 using closure and convergence proper0 @ neighbor if p does not belong in the group tree.
ties [9]. We first define the terms closure and convergence, A simple initial state of the protocol that satisfies CO
and then present the specific closure and convergencés, for all p, p.pr = p, p.wr €1, and no request or reply

properties of the protocol. messages in any channel.
A computationof a network protocoN is a sequence property 1
(state.O, action.O; state.1, action.1; state.2, action.2; . .. C0is a closure

) where each state.i is a stateNgfeach action.i is an ac-
tion of some process iN, and state.(i+1) is obtained
from state.i by executing action.i. Computations are fair,
i.e., every continuously enabled action is eventually exe-
cuted. Computations are also maximal, i.e., if state.j is
the last state in a computation, then no action is enable

Thus, if CO holds in the initial state of a computation,
then it holds in all states of the computation.

Before presenting the next two properties, we define the
following. Let GT be the set of edges in the groupltree

dges in GT are directed, i.e., edge (p, q) differs from edge
g, p). Let p and g be any pair if neighboring processes.

in state.].

A state predicatef a network protocaN is a function a) (p, q)U GT = p.pr=qdpdqg.chl
that yields a boolean value (true or false) at each state of b) (p, q)0 BE < p.pr =gl p O qg.chl
N. A state ofN is anS-stateiff the value of state predi- c) (p,)0 GE < (p, q)0 GT - BE

cate S is true at that state.
In our state predicates we make use of universal quan-
tifications of the form:
0 x : R(x) : T(x)J 1 The term tree is a misnomer, since the graph of the group
tree may temporarily contain loops or be disconnected.
However, the graph will converge to a tree.

of this restriction is to ensure that a process that has
joined the group tree remains connected to the tree while
—— group tree edges changes in the unicast routing tables are occurring. This
refined protocol must preserve all the correctness proper-
ties presented in the previous section.

To show how a process becomes disconnected from the
tree, consider the following. Assume p.pr = g, ROUTE(p,
root) = r, and all edges in the unicast path from p to the
root do not belong to the group tree, as shown in Figure
2. It is possible that, after p chooses r as its parent, q
times out and removes p from its set of children before all
the edges in the unicast path from p to the root have been
added to the group tree. If this occurs, p will be temporar-
ily disconnected from the group tree.

To prevent this from occurring, p should not change its
Thus, edge (p, q) is in GT if either p considers q to be itsparent from g to r until r is connected to the group tree.
parent or ¢ considers p to be its child. The edges in GT ardVe say that a process r is connected to the group tree if r
divided into a set of black edges, BE, and a set of grayis the root, or if the edge between r and its parent is black
edges, GE. An edge (p, q) is black if p and q agree, i.e., gaind the parent of r is also connected to the group tree.
considers q to be its parent, and g also considers p to be Recall that process r determines that it should join the
its child. An edge (p, q) is gray if p and q do not agree. group tree if either it is a member of the process group or
This disagreement is temporary, and it occurs only duringif its child set is non-empty. To ensure r's child set is
a period of transition in which the group tree is adapting non-empty, p sends a request to r as if r were its parent.
to new changes in the unicast routing tables. Process r adds p to its child set, and returns a reply to p.

For the following two properties, we make the assump- The reply includes a bit indicating if r is connected to the
tion that the unicast routing tables may fluctuate tem- group tree. Process p continues to send requests to r until
porarily, but eventually remain fixed and define a span- it receives a reply with this bit set to true. Then, p
ning tree for each destination. chooses r as its parent, i.e., it assigns r to p.pr, and thus

Let UT be the edges of the unicast spanning tree withbecomes connected to the tree.
the same root as the group tree. Let path(UT, p) be the To perform the above, process p maintains two parent
edges in UT of the path from p to the root, and variables: the current parent, pr, which is connected to the
sub(UT, p) be the subtree of UT rooted at p. group tree, and the tentative parent, tpr, which may not be
Property 2 connected to the tree. If p has no parent _that is _connected

to the tree, then p.pr = p. When a reply is received from
For any process p, the tentative parent indicating that it i ted to th
C0 O p.mbr converges to P g It IS connected 1o the

. . group tree, p turns its tentative parent into its current par-
COUp.mbrd r,s : (r,s)0 path(UT, p) : (r,sJ BEL ent by assigning tpr to pr.

- - - unicast routing path

Figure 2: changing paret

Property 3 We next present the actions of the refined process. The
For any process p, first two actions are the same as in Section 3. The re-

codOr: rOsub(UT, p) i=r.mbr] maining four actions are as follows.

converges to [Jchi= 0O O mbr -

0 r, s : rd sub(UT, p) : (r, sgd GTL tpr := ROUTE(p, root)

COLM r:rsub(UT, p) :=r.mbrt] if tprz pOtpr0wr — send rgstto tpr;

The first property states that if a process is a group wr = wr [{tpr}
member, then all the edges in its unicast path to the root [] tor =pOtprOwr — skip
will become black, i.e., they will be part of the group fi:
tree. The second property states that if all the processes in if przp0OprOwr - send rgstto pr;
a subtree of UT are not members of the process group, wr :=wr O {pr}

then the entire subtree will be removed from the group
tree. These two properties combined imply that GT will
become the smallest subgraph of UT that connects all the

[[pr=pOprowr - skip
fi

members of the process group, as desired. rcv rgstfrom j -
) .) o chl := chid {j};
5. First Refinement: Maintaining b := (pr# p O p = root);
Connectivity send rply(b) toj

We next refine the basic protocol of Section 3 by re-
stricting when a process changes its parent. The purpose

[| rev rply(b) from j - current parent or be the root. We express this in predicate

wr ;= wr - {j} C1 below. This predicate must hold at the initial state of

if j=tpor0b — pr:=tpr the system. It is stronger that CO, because it involves the
[l"(j =tpr0b) - skip new ya_riables introduced in the (efinement, i.e., p.tpr and
fi the bit in the rply message, and it also involves the above

_))) _ requirement on connectivity.
1 tmleoutj Ehﬁhlzgrj“prﬂ#}p O j.tpr # p O rply#ch.p.j=0 Cl=cols20S30S4
if chl=0 0O-mbr - pr:=p;tpr:=p S2=p q:ppr=dlp#q:
[| chiz0 Ombr — skip (P, @) BE LI(q.pr# q Lq = root]]
i S3=M p, q : rply¢rue) O ch.p.q :
i i i g O p.chiO(p.pr#z p Op = root]]
In the first action above, process p checks whether it g4 = [p : p.chl =0 O-p.mbr : p.tpr = A
should be part of the group tree. If it should be, the next-) o o
hop neighbor to the root is chosen as the tentative parent, A simple initial state of the protocol that satisfies C1
and a request is sent to this neighbor. Similarly, a requests. for all p, p.pr = p, p.tpr = p, p.wr 2, and no request
is sent to the current parent, to prevent it from removing Of reply messages in any channel.
p from its child set. The refinement in this section also satisfies Properties
In the second action above, a request is received from &, 2 and 3 of Section 4, with the exception that each oc-
neighbor. The neighbor is added to the child set as in thecurrence of CO in these properties is replaced by C1.
basic protocol. A reply is sent to the child indicating Hence, C1 is a closure, and the group tree converges to
whether p is connected to the tree or not. Process p ishe smallest subgraph of the unicast spanning tree that
connected to the tree if p has a parent that is alsonaintains all the group members connected.
connected to the tree, i.e., if pmp, or if p is the root. In Predicate C1 states that if a process p has a current par-
the third action above, a reply is received from a neighbor.ent, then the edge from p to its parent is black, and the
If the reply is from the tentative parent, and the tentative current parent of p also has a current parent or is the root.
parent is connected to the tree, then process p makes tHdence, either the group tree has a path of black edges
tentative parent its current parent. from p to the root, or the path of black edges starting
In the last action, a neighbor is removed from the child from p leads to a loop. The obvious shortcoming is that
set after a timeout. If a neighboring process j does notif & loop exists, then p is temporarily unreachable from
consider p to be either its current or tentative parent (i.e. the root of the tree.
it has not sent a request to p for some time) and the last To see this, consider the system state depicted in Figure
rep|y from p toj has been received byJ, thenj is removed3. In this state, p chooses r as its tgntatlve parent, and
from the child set. Furthermore, both pr and tpr are set tosends a request to r. Process r receives the request, and
p if p no longer needs to take part in the group tree. adds p to its child set. Then, r chooses s as its tentative
The reason we require the timeout period to be longpParent, it sends a request to s, and s adds r to its child set.
enough to ensure j has received the last reply is as fol-Thus, all the edges in the path from p to s become gray.
lows. Assume the reply indicates that p is connected tolhen, since s is colnnected to the tree, r chooses s as its
the tree. However, after removing j from the child set, p current parent, making the edge (r, s) black. Subsequently,
no longer needs to be on the group tree, and sets tpr angidge (p, r) also becomes black, forming a loop.
pr to p. If later j decides to rejoin the tree using p as a ten- Note that the loop is possible even if the unicast rout-
tative parent, and j receives the old reply from p, it will ing tables are loop-less, as shown in the figure. Therefore,
erroneously conclude that p is connected to the tree, andiestricting the group routing protocol to work only in
premature|y choose p as its current parent. Conjunc_tipn with a Ioop-Iess unicast routing pI’OtOCO| is
We next present the properties of the protocol presentedot sufficient. The problem must be solved by further re-
in this section. We begin by noting that if a process has &fining the protocol, which is the topic of the next section.

current parent, and the process is a member of the proces .] .
group, then the process will continue to have a currentg- Second Refinement: Preventing

parent indefinitely. Routing Loops

Property 4 We next present the second and final refinement of the

For all processes p, group routing protocol. The purpose of this refinement is
p.prz p O p.mbrdp # root is a closure to avoid loops in the group tree when changes occur in

the unicast routing tables. This loop-freedom must be
achieved while still maintaining all the properties pre-
Ysented for the basic protocol and for the first refinement of
the previous section.

The refinement consists of introducing a diffusing com-
utation as a method for avoiding loops. Each process

Property 4 is satisfied without making any assumptions
about the behavior of the unicast routing tables, i.e., the
are free to change at any point along the computation.

Let g be the current parent of p. To prevent p from be-
ing disconnected from the group tree, q must also have %

. . current parent. Thus, p always has one parent from which
~-- Uunicastspanningtree 4 it accepts new timestamps, whether it is in the process of
—— black group tree edges ’// . changing parents or not.

| We next present the properties of the protocol described
in this section. Since we have introduced a new variable ts
in each process, we need to strengthen the initial state of
the system to reflect an appropriate value for these vari-
ables. The new initial state predicate C2 is defined next.

C2=Ccols400S50S60 S7
S5=[Ip,q:p.pr=dip#q:

(p,)0 BEU(q.pr# q g = root)l q.ts= p.td]
S6=[0p, g, t: rplyfrue, t) d ch.p.q :
Figure 3: Temporary loops in group t q O p.chl O (p.pr# p Op = root)d p.ts> tOJ
S7= p : :p.ts< root.td]

maintains an integer timestamp variable, called ts. The An initial state of the protocol that satisfies C2 is, for
root process increments i_ts timestamp _periodically. A all p, p.pr = p, p.tpr = p, p.ts = 0, and p.wfl5 and no
non-root process may not increment Its timestamp on ItSrequest or rep|y messages in any channel.
own. Instead, each parent includes its timestamp in each The refinement in this section satisfies Properties 1, 2
reply sent to a child. If a process receives a timestampand 3 of Section 4, with the exception that each occur-
from its current parent that is larger than its own, then itrence of CO in these properties is replaced by C2. Thus,
sets its timestamp to the timestamp of its current parent. C2 is a closure, and the group tree converges to the
When the routing tables indicate to a process that itsmallest subgraph of the unicast spanning tree that main-
should phoose a different parent, i.e., when th.e tentatiVQainS all the group members connected. Also, the refine-
parent is not the current parent, the process ignores thénent in this section satisfies Property 4 of the previous
timestamps received from the current parent. When thesection, that is, a group member that has a current parent
process receives a reply from the tentative parent with aill continue to have a current parent indefinitely.
timestamp greater than its own, and the tentative parent is predicate C2 indicates that the timestamp of each pro-
connected to the tree, the process chooses the tentativgess is at most the timestamp of its current parent. This
parent as its current parent, and sets its timestamp to thglone does not guarantee loop freedom, since all the pro-
tentative parent's timestamp. cess in a loop could have identical timestamps. Loop free-
The reason no loops are created is the following. All dom is guaranteed by the additional property below, which
processes in the group subtree rooted at p have a timess true even if the unicast routing tables are never stable.
tamp no greater than the timestamp of p. Thus, when the | et pr_path(p) be the set of processes in the path ob-
tentative parent provides to p a timestamp greater than p'sained by following the pr variables starting with p.pr.
timestamp, it indicates to p that the tentative parent is notP tv 5
part of the subtree rooted at p. Thus, choosing this neigh- roperty .) '
bor as the new current parent cannot introduce a loop. C2UM p: p.pr# p : rootd pr_path(pls a closure
The only actions requiring a change for the refinement Property 5 states that if a process p chooses a neighbor
are the action to receive a request and the action to receivas its current parent, then there is a path from this neigh-
a reply. In addition, a new action to increase the times-bor to the root obtained by following the pr variables be-
tamp of the root is needed. These actions are as follows. ginning with p.pr. From C2, this path consists entirely

p=root o ts:=ts+1 of black edges, that is, each parent and its child in the
. path are in agreement with each other. Also, from
[l rev rastfrom j N Property 4, once a process has a current parent, it contin-
chl:=child {j}; ues to have a current parent throughout the computation.
b := (pr# p U p = root); Finally, from Property 3, every member of the group
send rply(b, ts)to j eventually has a current parent, provided the unicast rout-
[rev rply(o, t)from j - ing tables become stable.

In summary, every group member is guaranteed to have

a current parent leading to the root once the unicast rout-

[l S(=tporObOt>ts) skip ing tak_)les are stable. While the unicast routing tables_ are

: - changing, any process that has a current parent continues

fi to have a current parent and also has a path to the root.

Note that process p only accepts timestamps from theThus, the group tree adapts to the new unicast spanning

tentative parent tpr and not from its current parent pr.tree, and in the process it continues to be loopless and
However, if p is not in the process of changing parents,maintains all the group members connected, as desired.

then pr = tpr, and p will accept new timestamps from its

wr = wr - {j}
if j=tprdb0Ot>ts —» pr, ts:=tpr,t

7. Further Refinements References

There are several other possible refinements for the[l] Arora A., Gouda M., Herman T., “"Composite Routing
group routing protocol. We mention a few of these briefly ~ Protocols”,Proceedings of the Second IEEE Symposium
in this section. on Parallel and Distributed Processing990. _

The basic protocol and its refinements assume that the?] Dl?é?ae:ég?\gleuctgr’ ilh?)rr]il;ﬁ:ng",12thSt§pvr¥:sgsiaﬁqsr:1gnor?f
membership of a process in the process group Is constant. Protocol Specificatio% Testing' and Vgrifigatior%z
The protocols in this paper can be easily enhanced to[3] ’ '

i . Ballardie T., “"Core Based Tree Multicast", Internet RFC,
allow a process to join or leave the process group at will. ™ ,,ork in progress.

Another possible refinement is to allow a process to [4] Ballardie T., Francis P., Crowcroft J, "Core Based Trees:
send data messages to the process group, even though the An Architecture for Scalable Inter-Domain Multicast
process is not a member of the group. In this case, the Routing",ACM SIGCOMM Conferencel 993.
process would not receive any data messages addressed fo] Cobb J, Gouda M, “Group Routing without Group
the group, but it would be able to send data messages to Routing Tables: An exercise in Protocol Design”, to
all group members. To accomplish this, the message sent a@ppear inComputer Communicationsl996. Also, to
by a non-member is routed through the network as if it ?;vpaeil?arb:g ?rcf?ndtwécglu;ﬁg?sr)t' University of Houston, 1996
were a unicast message to the root of the. group tree 6] Deering S., Cheriton D., “"Multicast Routing in Datagram
When the message arrives to a process that is in the grou[)

8) Networks and Extended LANSACM Transactions on
tree, the process forwards the message to all its neighbors computer Systems/ol 8., No 2., May 1990.

in the tree, as if it had originated the message. [7] Deering S. et. al., An Architecture for Wide-Area
It is also possible to modify the group routing protocol Multicast Routing" ACM SIGCOMM Conference,994.
to become more fault-tolerant. In particular, the protocol [8] Dalal, Y. K., Metcalfe, R. M., “"Reverse Path Forwarding
could begin from an arbitrary initial state, and converge to of Broadcast Packets'Communications of the ACM,
the desired state where the group tree is the required subset_Vol. 21, No. 12, Dec. 1978. _
of the unicast spanning tree. To achieve fault-tolerance,[9] Gouda M., “Protocol Verification Made Simple”,
the unicast routing protocol must be fault-tolerant, and ggmgg;egslaletworks and ISDBystemsVol. 25, 1993,
lso he communicaton ot o SXChaNge MESSA0STf Gouda ., “The Trumoh and Trbultion of Systn
- Stabilization", International Workshop on Distributed
protocols for these tasks are referenced in [10]. Algorithms, 1995.
Another refinement to increase fault-tolerance is to have[11] Gouda M.,The Elements of Network Protocokext-
multiple choices for a root process. These choices should book in preparation.
be linearly ordered. Assume the unicast routing tables in a[12] Gouda M., Schneider M., ““Maximum Flow Routing",
process indicate that the highest ordered choice cannot be Joint Conference on Information Scienc&894.
reached. This could occur because the chosen process id3] Cheng C., Riley R., Kumar S, Garcia-Luna-Aceves J.,
down or the faulty links have partitioned the network. If A Loop-free Bellman-Ford Routing Protocol without
this is the case, the process chooses as a root the first Bouncing Effect’ ACM SIGCOMM Conferencd989.
process in the order of choices which is reachable 4] Kahle B., Schwartz M., Emtage A., Neuman B., “A

. - ; - Comparison of Internet Resource Discovery
according to its routing tables, and chooses its new parent Approaches",Computing Systemsvol. 5 No. 4., Fall

accordingly. 1992,
. [15] Perkins, C. et. al., "Ad Hoc Networking in Mobile
8. Concluding Remarks Computing”, ACM SIGCOMM Conference 994.

The technique of propagating timestamps has been usedit6] Shin K. G., Chen M., “"Performance Analysis of
previously in unicast routing protocols [1]. The purpose E(')So"'itr’]“f??Eggui'rg%siggéiz'%i 'ggr‘; ?thellﬁgg-?Pong-Type
of the timestamp In these. protocols is to quickly break [17] Wi?bu? S Handley M., “MultimediapCoferenci.ng: from
routing loops that form in net_works whose topology Prototype to National Pilot"INET' 92 International
quickly changes, such as mobile networks [15]. In our Networking Conference.
protocol, we use the techniqgue somewhat differently. The
timestamps are used to ensure that the group tree always
remains loopless.

There has been some debate on whether a single "core"
group tree should be used to multicast data messages to a
process group, or multiple group trees should be used,
one per source of data messages [7]. Regardless of which
of these two approaches is taken, the techniques presented
in this paper may be used to ensure that each tree is re-
sponsive to the changes in the unicast routing tables
without compromising the integrity of the tree.

