
Group Secret Handshakes
or

Affiliation-Hiding Authenticated Group Key Agreement

Stanisław Jarecki, Jihye Kim, and Gene Tsudik
Computer Science Department
University of California, Irvine

{stasio, jihyek, gts}@ics.uci.edu

Abstract

Privacy concerns in many aspects of electronic communication trigger the need to re-examine – with
privacy in mind – familiar security services, such as authentication and key agreement.

An Affiliation-Hiding Group Key Agreement (AH-AGKA) protocol (also known asGroup Secret Hand-
shake) allows a set of participants, each with a certificate issuedby the same authority, to establish a
common authenticated secret key. In contrast to standard AGKA protocols, an AH-AGKA protocol has the
following privacy feature: If Alice, who is a member of a group G, participates in an AH-AGKA protocol,
none of the other protocol participantslearnwhether Alice is a member ofG, unless these participants are
themselves members of groupG. Such protocols are useful in suspicious settings where a set of members
of a (perhaps secret) group need to authenticate each other and agree on a common secret key, without
revealing their affiliations to outsiders.

In this paper we strengthen the prior definition of AH-AGKA sothat the security and privacy proper-
ties are maintained under any composition of protocol instances. We also construct two novel AH-AGKA
protocols secure in this new and stronger model under the RSAand Gap Diffie-Hellman assumptions, re-
spectively. Each protocol involves only two communicationrounds and few exponentiations per player (e.g.,
no bilinear map operations). Interestingly, these costs are essentially the same as those of the underlying
(unauthenticated) group key agreement protocol. Finally, our protocols, unlike prior results, retain their
security and privacy properties without the use of one-timecertificates.

Keywords: secret-handshakes, group key agreement, authenticated group key agreement, privacy, privacy-
preserving authentication.

1 Introduction

A traditional authenticated group key agreement (AGKA) protocol is assumed to operate within the con-
fines of a common Public Key Infrastructure (PKI). At the start, participants – who have no prior secrets in
common – exchange their public key certificates (PKCs). Thisexchange leaks information; in particular,
it always reveals a participant’s public key certification authority (CA). However, exchange of credentials,
such as PKCs, is part and parcel of any AGKA and it seems counter-intuitive to be concerned about informa-
tion leakage. At the same time, in many applications, the identity of the certificate-issuing CA determines
the certificate owner’saffiliation. This is not an issue if affiliation by itself is not a sensitive attribute. How-
ever, in certain scenarios, affiliation must be kept privateand protected from all unauthorized parties, most
commonly, those with different affiliations. We consider two motivating examples.

1

• CIA agents often operate in hostile environments and their affiliation represents a closely-guarded
secret. This is mandated by the rules of the agency. Therefore, if two or more CIA agents need
to discover each other and establish a secure communicationchannel, affiliation-leaking information
cannot be exchanged for fear of detection and unpleasant consequences.

• Federal air marshals routinely accompany civilian flights and are required to keep a very low profile,
i.e., to blend in as much as possible. When two or more marshals in an airport (or any common vicin-
ity) need to coordinate activities and set up a secure conference, they must do so in an unobservable
and undetectable manner, i.e., their affiliations must be kept private.

In a two-party setting, affiliation hiding authentication schemes have been addressed in the past with so-
calledsecret handshakeprotocols [1]. The initial work [1] introduced the notion ofprivacy in public key-
based authentication schemes and proposed the first two-party secret handshake scheme based on bilinear
maps and secure under the Gap Diffie-Hellman (GDH) assumption. A subsequent result by Castelluccia,
et al. [9] developed a slightly more efficient secret handshake scheme secure under the Computational
Diffie-Hellman (CDH) assumption. Both schemes can be used intwo versions: If the players use one-time
certificates, in addition to affiliation-hiding these protocols trivially attain a property ofunlinkability, since
in addition to not leaking their affiliations, any two instances of the same player cannot be linked with each
other. If the players re-use their certificates, the protocols are affiliation-hiding but it’s possible to trace
multiple occurrences of the same party.

In this paper we consider affiliation hiding in a multi-party(two or more) setting, i.e. for Authenticated
GroupKey Agreement protocols (AGKA). We construct two practicalAffiliation-Hiding AGKA protocols
(AH-AGKA), wherein participants compute an authenticatedcommon secret key as long as all participants
have the same affiliation, i.e., possess certificates issuedby the same CA. At the same time, in contrast to a
standard AGKA, a party engaging in an AH-AGKA protocol is assured that its affiliation is revealed to only
those other protocol participants that belong to the group governed by the same CA. Our protocols have
similar properties as the two-party secret handshakes of [1, 9], i.e. they offer affiliation-hiding with standard
re-usable certificates, and they can offer unlinkability only if the players use one-time certificates. They
can also offer heuristic unlinkability, e.g if players limit the usage of one certificate based on their physical
mobility.

Group (or multi-party) secret handshake protocols have been considered in prior work, notably [17] and
[12]. In [17], Tsudik and Xu presented the first scheme supporting any number of protocol participants and
reusable certificates. However, their approach assures that the participants in the AGKA protocol success-
fully compute a shared key only if their group revocation information is synchronized (in other words, only
if each participant assumes the same revocationepoch).

Recently, Jarecki et al. [12] constructed a practical AH-AGKA protocol which avoids this synchroniza-
tion assumption, based on the (unauthenticated) Burmester-Desmedt group key agreement protocol [7].
However, this AH-AGKA protocol is secure only with the use ofone-time certificates.1 Also, the model
of security for AH-AGKA protocols considered in [12] is restricted to asingle instanceof an AH-AGKA
protocol execution. Such a model makes sense if each protocol instance uses independent inputs, but it is
insufficient in the standard PKI setting of re-usable certificates.

Our contributions. The contributions of this paper are as follows: First, we upgrade the notion of AH-
AGKA in [12] with a more robust and thus more useful notion. The new notion assumes a standard PKI
model of re-usable certificates and it is modeled on the standard – and very strong – notion for traditional
AGKA protocols in [6, 14], which, in turn, comes from a long line of research on Authenticated 2-party
Key Agreement protocols [3, 16, 8]. This upgraded security notion implies that each AH-AGKA protocol

1We want to point out that in addition to requiring more storage for group members, higher load on the issuing CA, and longer
certificate revocation structures, a protocol that requires single-use certificates is vulnerable todepletion attacks, whereby the
adversary repeatedly engages some user in the AH-AGKA protocol, thus depleting the latter’s supply of one-time certificates.

2

session remains secure given arbitrary scheduling of protocol instances and any message-interleaving pat-
tern between these instances, e.g., a man-in-the-middle attack. Also, the security of a protocol session is
independent of the usage of keys produced by allotherprotocol sessions.

Second, we construct two AH-AGKA protocols that support standard re-usable certificates and satisfy
the new strong notion of AH-AGKA security. Both protocols are implicitly-authenticated variants of the
Burmester-Desmedt GKA protocol. These two protocols are secure under the RSA and the GDH assump-
tions, respectively, in the Random Oracle Model (ROM). (Moreover, the second protocol is secure also
under the CDH assumption, but the security reduction from the CDH problem is weaker.) Each scheme
involves only 2 communication rounds and few exponentiations per participant. From both communication
and computation perspective, the protocol costs are the same as those of theunauthenticatedBurmester-
Desmedt group key agreement protocol [7] and lower than those of the (non affiliation-hiding) signature-
based authenticated version of the Burmester-Desmedt protocol due to Katz and Yung [14]. Consequently,
our protocols show thatAffiliation Hiding for AGKA protocol can be achieved at essentially no additional
cost. Note, however, that an AH-AGKA protocol guarantees success only if all participants are affiliated
with the same CA, which is not the case in a standard AGKA. Moreover, we do not address perfect forward
security in this paper.

Third, an independent consequence of our work is a variant ofthe Burmester-Desmedt GKA protocol
which is secure (in ROM), although without perfect forward secrecy, even if the participants re-use their
Diffie-Hellman key contributions. The standard Burmester-Desmedt GKA protocol is insecure unless each
player uses a new contribution in every protocol instance. As a consequence of re-use of key contributions,
this version of the Burmester-Desmedt protocol requires 2 exponentiations per player instead of 3.
Organization. The rest of this paper is organized as follows: Section 2 formally defines an AH-AGKA
scheme and the desired security/privacy properties. Section 3 defines the cryptographic assumptions re-
quired by our constructions. Section 4 presents the RSA-based AH-AGKA protocol, and Section 5 presents
the DH-based AH-AGKA protocol. The security proofs for the RSA-based scheme are given in detail, but
because of space limitations we relegate the proofs of security for the DH-based scheme to the full version
of this paper [13].

2 Affiliation-Hiding Authenticated Group Key Agreement: Mo del and Definitions

Entities. Our AH-AGKA model is based on the existing standard model forauthenticated group key
agreement protocols [6, 14]. The main difference is that thestandard model assumes a global PKI where
each entity has a private/public key-pair and a certificate issued by a CA which is part of the PKI. The PKI
involves acertification hierarchy, where the integrity of the association between entities and their public
keys is vouched by a chain of certificates all leading to some commonly trusted CA-s. In this model, it
is assumed that certificates (which in many applications contain information about ownersaffiliation) are
publicly available. In contrast, AH-AGKA protocols aim to protect affiliation privacy of the participants
and certificates are kept private. Another distinctive feature of our model is its “flat” certification structure,
i.e., certification hierarchies and chains are not allowed.There are only CA-s and entities certified by CA-s;
there are no intermediate CA-s and no delegation of certificates.

An AH-AGKA schemeoperates in an environment that includes a set ofusersU and a set ofgroupsG.
Each group is administered by a CA responsible for creating the group, admitting entities as members and
revoking membership. We assume upper boundsm andl, respectively, on the total number of groups and
the number of members in any given group, i.e.,|G| ≤ m and|U| ≤ l. We assume that each user can be
a member of many groups. We denote the fact that userU ∈ U is a member of groupG ∈ G asU≺ G.
The main part of an AH-AGKA scheme is an AH-AGKAprotocol, which is executed by any set of users
∆ = {U1, ..., Un} ⊆ U , for anyn ≥ 2. (More on that below.) Hereafter, the termgroup memberrefers to
a user who is a member of a particular group, whereas the termsplayerandprotocol participantrefer to a
user who is currently taking part in some particular instance of an AH-AGKA protocol.

3

Groups. We note from the outset that the use of the term group is over-loaded in this paper. First, it
denotes a set of users with the same affiliation (members of group G), i.e., with certificates issued by the
same CA. Second, it refers to an ad-hoc group (∆) of AH-AGKA protocol participants who may or may not
be all members of the same groupG. We make the desired meaning unambiguous from the context. We
useprotocol participantsor set of playerswhen referring to the second meaning, and we usegrouponly in
the first meaning except when re-using the standard terminology of (Authenticated)GroupKey Agreement,
where the wordGrouprefers to the set of players participating in an instance of the AGKE protocol.
AH-AGKA Protocol. Using this terminology, each playerUi ∈ ∆ participating in an instance of the AH-
AGKE protocol executes the protocol instructions on inputsa public key of some groupG ∈ G s.t.Ui≺ G,
andUi’s certificate of membership inG. The purpose of the AH-AGKA protocol is for the players in∆ to
establish an authenticated shared secret key as long as (1) each of them run the protocol on the same public
key, i.e. the public key of the same groupG, and (2) for eachUi ∈ ∆ it holds thatUi≺ G. This key
is secret and authenticated in the sense that it can be used for any subsequent secure communication, e.g.,
entity authentication or message encryption and/or authentication.

To avoid any misunderstanding, we stress that such protocoldoes not in general imply an efficient solution
for an (affiliation-hiding)group discoveryproblem, where each participating player starts a protocolon a
setof its certificates of membership in asetof groups, and the protocol succeeds, for example, as long as
all the certificates are valid and all these sets have a non-empty union. In contrast, our AH-AGKA schemes
are most practical in scenarios where each user is a member ofat most one group. However, we stress that
if a user is a member of many groups, this would affect execution efficiency (or robustness), but it would
not affectsecurityandaffiliation-hiding of our schemes. Indeed, in the definitions that follow we assume
w.l.o.g. that each user is a member of every group.

Public Information and Network Assumptions. In our environment, all groupsG ∈ G are publicly
known. Their CA public keys and certificate revocation lists(CRL-s) maintained by CA-s are publicly
accessible. Before any group can be created, a common security parameter must be publicly chosen, and a
public Setup procedure is executed on that parameter. TheSetup procedure creates common cryptographic
parameters which are used as inputs in all subsequent protocols. We stress that theSetup procedure does
not need to be executed by a trusted authority: It can be executed by anyone, for example by one of the CAs,
and everyone can verify the validity of its outputs.

We assume that communication between users and CA-s, i.e. the certificate issuance process and the CRL
retrieval, are conducted over anonymous and authenticatedchannels. In practice, a user might communicate
with the CA, e.g., while retrieving the most recent CRL for its group, over an anonymous channel such
as TOR [11]. Alternatively, the CRL-s of all groups can be combined and stored at some highly-available
site where they can be either retrieved in bulk (if small) or via some Private Information Retrieval (PIR)
protocol, e.g., [10].

We assume that all communication within the AH-AGKA protocol takes place over a broadcast channel.
We assume weak synchrony, i.e., the protocol executes in rounds. In practice, this assumption implies that
the protocol is started by a broadcast message indicating the number of participants. Weak synchrony among
the participants also assumes that the length of the time window assigned to each protocol round is large
enough to accommodate clock skews and reasonable communication delays. The broadcast channel isnot
assumed to be authenticated. In fact, the broadcast channelis used for purely notational convenience since
we make no assumptions about its reliability. Specifically,when a participant broadcasts a message, it could
just as well send a copy of this message to every other participant over a point-to-point link. In our model,
the adversary is assumed to have full control of the underlying network: it sees the messages broadcasted
by each participant in a given round, and decides which messages will bedeliveredto each participant in
that round. The adversary can delete, modify or substitute any message and it can choose to deliver different
messages to different participants.

4

As a consequence of this model, the security and privacy (Affiliation Hiding) properties of our AH-
AGKA protocols hold, by definition, givenanyadversarial interference in the protocol. However, we stress
that we do not claim anyrobustnessproperties of our protocols, apart from the basic correctness, i.e. that the
protocols succeeds if the players execute the protocols on matching inputs and there is no active adversarial
interference in the protocol. Indeed, constructing AH-AGKA protocols which are robust against protocol
interference is an open issue.

Player Instances and Protocol Sessions.In line with prior work [8, 6, 14], our model allows for multiple
executions of the AH-AGKA protocol scheduled in an arbitrary way, each involving any set of participants.
We model this in the usual way, by assuming that every userU ∈ U can run multipleinstancesof the
protocol. We denote theτ -th instance of userU asΠτ

U . When playerU starts a new instance of the AH-
AGKA protocol, it creates a new instanceΠτ

U for a locally unique valueτ . Such instances can run on shared
state, e.g., certificates and CRLs held by playerU , but each instance also keeps separate state. Each player
instance can either reject or accept and output a key. We say that an instanceΠτ

U runs aprotocol session,
and we useplayer instanceandprotocol sessioninterchangeably, denoting both asΠτ

U . When referring
to a specific userUi we useΠτ

i as a short-hand version ofΠτ
Ui

, to denoteτ -th instance of userUi ∈ U .
Each instanceΠτ

i keeps a state variable,sidτ
i which can be thought of as asession id. (However, see the

remark below.) This variable is protocol-dependent, but inour protocols it is always set to an entirety of the
communication sent and received by instanceΠτ

i .

AH-AGKA Syntax. We define an AH-AGKA scheme as a collection of the following algorithms:

• Setup: on input of security parameterκ, it generates public parametersparams.

• KGen: executed by the group CA, on inputparams, it outputs the group public keyPK and the
corresponding secret keySK for this group, and an empty certificate revocation listCRL. We denote
the group corresponding to the public keyPK asGroup(PK). If PK was generated by the CA that
maintains groupG thenGroup(PK) = G.

• Add: executed by the CA of groupG, on inputSK andU ∈ U , it addsU to G by generating a
certificate forU , denotedcert. If cert is issued under a public keyPK, we say thatcert ∈ Certs(PK).

• Revoke: executed by the group CA, on inputU ∈ U , it retrieves the correspondingcert ∈ Certs(PK)
issued forU , and revokes it by adding a new entry to the groupCRL which uniquely identifiescert.
If cert is revoked, we say thatcert ∈ RevokedCerts(CRL).

• Handshake: this is the AH-AGKAprotocol itself, which is an interactive protocol executed by some
set of participants∆ = {U1, ..., Un} ⊆ U . EachUi uses its distinct new instanceΠτ

i and runs session
Πτ

i of the protocol on some inputs:
(certτi ,PKτ

i , CRLτ
i)

wherePKτ
i is the public key of the group which, inUi’s view, sets the context for the protocol,certτi

is Ui’s certificate inGroup(PKτ
i), andCRLτ

i is the CRL of this group.2 An instanceΠτ
i either rejects

or outputs an authenticated secret keyKτ
i .

Remark: Our syntax, though adopted from earlier AGKA models of [6, 14], is slightly different from
that used in some other work on Key Agreement protocols, e.g., [8], where a protocol instance takes as
additional input, a so-calledsession-id(different from thesidτ

i value introduced above). In this alternative
model, creation of a fresh and locally-unique session-id’s, common to all players engaging in the protocol,

2As in standard authentication protocols in the PKI model, the more recent CRL, the better. However, we do not assume that a
player has the most recent group CRL.

5

is assumed to be done before the protocol starts. In contrast, in the model of [6, 14], which we adopt, no
such agreed-upon value is assumed. (However, our protocols, similarly to the AGKA protocol in [14], in the
first protocol round create a values which plays the role of such unique session-id input. As a side remark,
we point out that unlike the protocol of [14], our AH-AGKA protocol manages to piggyback the creation of
this session-ids onto the first round of the protocol, thus saving one communication round.)

Partnering. The purpose of theHandshake protocol is to allow a set of participants withmatching inputs,
i.e. specifying the same groupG, to establish a common key. We use the termsession partneringto denote
protocol instances that run on matching inputs and where allprotocol messages between them are properly
delivered. Namely, we say that a set of protocol instances{Πτ1

1 , Πτ2
2 , ..., Πτn

n } is partneredif there exists
a single public keyPK and a single valuesid such that, for each sessionΠτi

i , in this set it holds that
PKτi

i = PK andsidτi
i = sid. The latter implies complete agreement among these player instances with

regard to the set of messages sent and delivered between these instances.

Correctness. We say that an AH-AGKA scheme iscorrect if, assuming that all keys, certificates and
CRL-s are generated by following theSetup, KGen, Add andRevoke procedures, the following holds:

For any set ofpartneredsessionsΠτ1
1 , Πτ2

2 , ...,Πτn
n wherecertτi

i ∈ Certs(PKτi
i) for eachi, and

certτi
i 6∈ RevokedCerts(CRL

τj

j) for all pairs(i, j), there exists a single unique bit-stringK of
lengthκ such that each sessionΠτi

i accepts and outputsKτi
i = K.

We define AH-AGKA security similarly to standard AGKA protocols in the PKI model, but we must
adapt these security notions to our setting. In the setting of an AH-AGKA scheme, the protocol participants,
instead of recognizing one another by individual public keys, want to establish authenticated sessions with
anyother participants as long as all these participants are non-revoked members of the same group. This is
reflected in the fact that a user starts an AH-AGKE protocol instance on just his certificate and the public key
of some chosen groupG. One implication this bears for the AH-AGKA security definition is that, unlike in
a standard AGKA protocol in the PKI model, our notion of security must explicitly include admission and
revocation actions of the CA’s which manages the groups.

AH-AGKA security is defined via a game between an adversary and a set of users communicating over
a network. In this game, the adversary gets to see the public keys of all groups, and some number of
certificates in each group, corresponding to all corrupted players and leaked secrets. The adversary then
schedules any number ofHandshake protocol instances, involving any combination of honest users and
groups. The adversary has complete control of the network, i.e., it sees all messages and can delay, delete,
modify, or inject any messages received by the honest players. The adversary can also request that some
key established in some protocol session berevealed. We say that the AGKA protocol issecureif, for each
(unrevealed) session executed by an honest player, the adversary cannot distinguish the key output by the
player on that session from a random bitstring of the same length. (As discussed below, the only exception
is if the adversary previously requested that a key be revealed for some protocol sessionpartneredwith the
one at hand.)

Formally, security is defined via an interaction of an adversarial algorithmA and a challengerC on
common inputs(κ, l,m). The interaction starts withC generatingparams via Setup(κ), and initializingm
groupsG1, ..., Gm, by running theKGen(params) algorithmm times. C initializes all members in these
groups, by running theAdd(SKj) algorithm, for eachSKj , j = 1, ...,m, for l times. This way,C generates
m certificates for everyU ∈ U , thus making every user a member of every group. The adversary A gets all
generated public keysPK1, ...,PKm. It then chooses any subsetRev ⊆ U of initially corrupted players and
gets the set of their certificates{certi(j) | Ui ∈ Rev, j ∈ {1, ...,m}}. For each groupG in G, the challenger

6

runs theRevoke algorithm to revoke all corrupted membersU ∈ Rev, and outputs the resulting CRL-s for
each group, i.e.,CRL1, ..., CRLm.

After this initialization,A schedules any number ofHandshake protocols, arbitrarily manipulates their
messages, requests the keys on any number of the (accepting)sessions, and optionally corrupts any number
of additional players, all of which can be modeled byA issuing any number of the commands listed be-
low. Finally,A stops and outputs a single bitb′. The commands the adversary can issue, and the way the
challengerC responds to them, are listed below. In all commands we assumethatU ∈ U \ Rev.

• Start(U,G): If U = Ui for someUi ∈ U\Rev andG = Gj for someGj ∈ G, the challenger retrieves
keyPKj for groupGj , certificatecerti(j) issued to playerUi for groupGj , and theCRLj for group
Gj , and initiates instanceΠτ

U , whereτ is an index that has not been used by userU before. The
challenger follows theHandshake protocol on behalf of instanceΠτ

U on inputs(certi(j),PKj , CRLj),
forwarding any message generated by this instance toA. The challenger keeps the state of all initiated
instances. We denote the group upon whichΠτ

U is initiated asGroup(Πτ
U). If Πτ

U is triggered onGj

thenGroup(Πτ
U) = Gj . C also hands toA the indexτ of this instance.

• Send(U, τ,M): If instanceΠτ
U has been initiated and is still active,C delivers asetM of messages

to this instance. The setM should normally containn − 1 messagesM2, ...Mn, for n ≥ 2, which
models the messages that instanceΠτ

U receives in the current round of this protocol. The instance
interprets these messages as broadcasted byn−1 distinct instances of the protocol in the same round.
(A could send an empty setM, but an instance would invariable immediately abandon the protocol
as a result.)C forwards toA any messageΠτ

U generates in response. IfΠτ
U outputs a key,C stores

this key with the session state.

• Reveal(U, τ): If Πτ
U outputs a session keyK, C sendsK toA. If the session has either not completed

yet or has been rejected,C sendsA a null value.

• Test(U, τ): This query is allowed only once. If sessionΠτ
U has output a session keyK, C picks a

random bitb. If b = 1, thenC sendsK toA. If b = 0 thenC sends toA a randomκ-bit long value
K ′, instead ofK. If the session does not exist, failed, or is still active, the challenger ignores this
command.

Session Freshness and Legitimate Adversaries.We call an active sessionΠτ
U of an uncorrupted playerU

fresh, if for all sessionsΠτ ′

U ′ partnered withΠτ
U the adversary has not queriedReveal(U, τ) or Reveal(U ′, τ ′).

Note that the adversary knows whether any two sessions are partnered or not. We call an adversaryA
legitimateif it poses aTest query on a fresh sessionΠτ

i , and afterwardsA does not issue aReveal query on
Πτ

U or anyΠτ ′

U ′ partnered withΠτ
U .

Definition 1. Denote the final output of adversaryA in the above interaction with the challengerC on
common inputs(κ, l,m) as〈A, C(b)〉(κ, l,m). We define the adversary’s advantage in the security game as

Adv sec
A = |Pr[b = b′ | b′ ← 〈A, C(b)〉(κ, l,m)] − 1/2|

where the probability is taken over the random coins used byA andC and a random choice of the challengers
bit b.

We call an AH-AGKA scheme(ǫ, t, qs, qH , l,m)-securein the Random Oracle Model if for all legitimate
adversariesA who run in timet, start qs AH-AGKA sessions, and makeqH hash function queries, it holds
that Adv sec

A ≤ ǫ.

7

We define the affiliation-hiding property using a similar game as in the security definition in the previous
section. However, the adversary’s goal in the affiliation-hiding game is not to violate semantic security of
some session key (as in the security game above) but to learn the participants’ affiliation. We model the
property of the attacker’sinability to learn the affiliation by comparing two executions of the adversary:
one where the challenger follows the protocols faithfully on behalf of all honest participants, and the other
where the adversary interacts with asimulator, instead of the real users. The simulator attempts to follow
the adversary’s instructions, except that it is never told the groups for which the (scheduled by the adversary)
Handshake protocol instances are executed, i.e., if the adversary issues aStart(U,G) query, the simulator
gets only an identifier(îd) which is uniquely but arbitrarily assigned to the pair(U,G) ∈ U × G.

Consequently, these inputs are also the only thing that the adversary can possibly learn from the interac-
tion with a simulator. The simulated protocol messages can reveal only whether or not two sessions involve
the same(user,group) pair. However, the adversary does not learn which group, nor can he decide if two
instances of two different users belong to the same group. Note that we allow the adversary to be able tolink
instances which involve the same (user,group) pair becausethe simulator gets the samêid for such instances.
Indeed, all AH-AGKA schemes we propose in this paper are linkable in this sense.

Formally, the game betweenA andCah, on common inputsκ, l,m, starts exactly as the game between
A andC in the security definition above. Namely,Cah runsSetup(κ) → params, then runsm instances of
KGen(params) → (PKj ,SKj), for j = 1, ..,m, thenlm instances of theAdd algorithm,Add(SKj) →
certi

(j), for i = 1, ..., l andj = 1, ...,m, which generatel certificates for each of them groups.Cah gives
to A all public keysPKj and the certificates of all corrupted users:{certi(j) | i ∈ Rev, j ∈ {1, ...,m}},
revokes all of these certificates, and finally publishes the resulting CRL-s.

After this initialization,A schedules any number ofHandshake instances and manipulates their messages
in arbitrary ways. We model this interaction betweenA andCah by allowingA any number of queries
Start(U,G) andSend(U, τ,M) to C, as in the security game.

However,A does not make aTest query in this game. Instead,Cah picks a random bitb at the beginning
of the execution and performsA’s commands depending on the value ofb. If b = 0, Cah responds toA’s
commandsStart(U,G) andSend(U, s,M) by following the corresponding protocol on behalf of the user,
exactly as in the security game in above. Otherwise (b = 1), Cah replies toA with messages produced by
the simulatorSIM, which is an interactive machine which runs only on inputsparams, and, instead of
Start(U,G) andSend(U, s,M), it gets on-line inputsStart(îd) andSend(îd,M), respectively, wherêid is
a unique (and random) string assigned to this(U,G) pair. At the end of the game, the adversary outputs a
bit b′.

Definition 2. Denote the final output of adversaryA in the above interaction with the challengerCah on
common inputs(κ, l,m) as 〈A, Cah(b)〉(κ, l,m). We define the adversarial advantage in the affiliation-
hiding game as

Adv ah
A (κ, l,m) = |Pr[b = b′ | b′ ← 〈A, Cah(b)〉(κ, l,m)] − 1/2|

where the probability is taken over the random coins used byA andCah and a random choice of the chal-
lengers bitb.

We call an AH-AGKA schemeaffiliation-hiding if for any probabilistic polynomial-time adversaryA,
for parametersl an m polynomially related toκ, the adversarial advantageAdv ah

A (κ, l,m) is a negligible
function ofκ.

Remark on the Affiliation-Hiding Notion. First, note that the above definition restrictsA to only Start

andSend queries. This results in a restricted notion of affiliation-hiding, which can and should be strength-
ened to include the information theA can gain about session keys from higher-level protocols, modeled by

8

Reveal queries. Such strengthening is in fact necessary in practice because without theReveal queries,A’s
view does not even contain information on whether a given session instance failed or succeeded, which is
something that a network adversary can very often learn in practice. We leave consideration of stronger
notions of affiliation-hiding to the full version of the paper. Second, an exact-security version of the above
notion can be easily extrapolated, and this too will be included in the full version, together with the exact
security bounds on affiliation-hiding for the two AH-AGKA schemes presented in this paper.

3 Cryptographic Assumptions

Definition 3. Let S-RSA-IG(κ) be an algorithm that outputs so-called safe RSA instances, i.e. pairs(n, e)
wheren = pq, e is a small prime that satisfiesgcd(e, φ(n)) = 1, andp, q are randomly generatedκ-bit
primes subject to the constraint thatp = 2p′ + 1, q = 2q′ + 1 for primep′, q′, p′ 6= q′.

We say that the RSA problem is(ǫ, t)-hard on2κ-bit safe RSA moduli, if for every algorithmA that runs
in timet we have

Pr[(n, e)← S-RSA-IG(κ), g ← Z
∗
n : A(n, e, g) = z s.t.ze = g (mod n)] ≤ ǫ.

Definition 4. Let G be a cyclic group of prime orderq with a generatorg. We say that the Square Diffie-
Hellman Problem (SDH) inG is (ǫ, t)-hard if for every algorithmA running in timet we have

Pr[x← Zq : A(g, gx) = gx2

] ≤ ǫ.

DDH oracle: A DDH oracle in groupG is an algorithm that returns 1 on queries of the form(g, gx, gy , gz)
wherez = xy mod q, and0 on queries of the form(g, gx, gy, gz) wherez 6= xy mod q.

Definition 5. We say that the Gap Square Diffie-Hellman Problem (GSDH) in groupG is (ǫ, t)-hard if for
every algorithmA running in timet on access to the DDH oracleDDHG in groupG we have

Pr[x← Zq : ADDHG(g, gx) = gx2

] ≤ ǫ.

It is well known that the SDH problem is equivalent to the computational Diffie-Hellman (DH) problem.
Just note thatgxy = (g(x+y)2/(gx2

gy2

))2
−1

, and that oracle errors can be easily corrected since both the
SDH and the DH problems are random self-reducible. Similarly, the GSDH problem is equivalent to the
Gap Diffie-Hellman problem (GDH), which is believed to be hard in many prime-order groups. In particular,
generic group algorithms cannot solve it in time better thanΩ(

√
q) [5].

4 AH-AGKE Scheme based on the RSA Assumption

• Setup: On security parameterκ, theSetup procedure picks two other parametersκ′, andκ′′. Param-
eterκ is the length of the key output by the key agreement protocolHandshake, κ′ is an additional
parameter which in practice can be160, andκ′′ is chosen so that the RSA problem for2κ′′-bit safe
RSA moduli has at leastκ-bit security (see theorem 1 for exact bounds). Whenever we say that two
distributionsD1,D2 are statistically close we mean that the statistical difference between them is
bounded byO(2−min(κ,κ′,κ′′)). The setup procedure also chooses aκ′-bit prime q̂ and defines hash
functionsHq̂ : {0, 1}∗ → Z∗q̂ andH : {0, 1}∗ → {0, 1}κ.

• KGen: Generate a2κ′′-bit safe RSA modulusn = pq, wherep = 2p′+1, q = 2q′+1, andp, q, p′, q′

are primes. Pick a random elementg s.t.g generates a maximum subgroup inZ∗n, i.e. ord(g) = 2p′q′,
and s.t.−1 /∈ 〈g〉. (This holds for about half of the elements inZ∗n, and it is easily tested.) Note that
in this caseZ∗n ≡ 〈−1〉 × 〈g〉. Therefore, in particular, ifx← Z2p′q′ andb← {0, 1} then(−1)bgx is

9

distributed uniformly inZ∗n. RSA exponents(e, d) are chosen in the standard way, as a small primee
andd = e−1 (mod φ(n)). The secret key is(p, q, d) and public key is(n, g, e). Key generation also
fixes a hash functionHn : {0, 1}∗ → Zn, specific to the group modulusn.3

• Add: To add userU to the group, the manager picks a random stringid ← {0, 1}κ′
and computes

a (full-domain hash) RSA signature onid, σ = hd (mod n), whereh = Hn(id). U ’s certificate is
cert = (id, σ).

• Revoke: To remove userU from the group, the manager appends stringid to the groupCRL, where
(σ, id) is U ’s certificate in this group.

• Handshake: This is an AGKA protocol executed by some set∆ = {U1, ..., Un} of players. Each
player Ui starts a sessionΠτi

i for a (locally) freshτi, on someinputs (certi, (n, e, g), CRLi) s.t.
(n, e, g) is some public key,certi = (idi, σi) is Ui’s certificate for this public key(n, e, g), i.e.
certi ∈ Certs(n, e, g), and CRLi is the (hopefully recent) CRL for groupGroup(n, e, g). The
Handshake protocol is in Figure 1 below (see also the note below).

Notational Simplifications. In figure 1, we make several assumptions to simplify the notation. First, we
denote the set of participating players as simplyU1, ..., Un, even though they can be anyn usersUi1 , ..., Uin

amongU = {U1, ..., Ul}, for anyn ≥ 2. Secondly, we assume that the order between the players, which in
the full protocol is determined on-line according to the players’ messages in Round 1, is simplyU1, ..., Un.4

For simplicity of notation, we assume that the indices cyclemodulon, i.e. Un+1 = U1. We also assume
that each instanceΠτ

i starts on the same public key(n, e, g). (Since we are not concerned with robustness
properties in this paper, we do not concern ourselves with what happens with executions of instances which
are notpartnered, and in particular do not run on the same public keys.)

Affiliation hiding property of the protocol in figure 1 depends crucially on the fact that if the distribution of
variableθ̄i is indistinguishable from uniform overZn then the distribution ofθi = θ̄i + kn is statistically
close toU22κ′′+κ . There is an alternative way that we can use to hide the range of θi, which does not take
theκ bandwidth overhead [2], which is to repeat pickingθ̄i until θ̄i ∈ {0, 1}2κ′′−1. However, the expected
running time of such procedure is twice larger than ours. Moreover, such procedure can be subject to timing
attacks. Note that the overhead ofκ bits our procedure incurs is small compared to|θ̄i| = |n|.

Protocol Correctness. To see that the protocolHandshake in Figure 1 is correct, note that if somen
sessionsΠτ1

1 , ...,Πτn
n are partnered then they all run on the same public key(n, e, g), and all the values

(θ1, id1, µ1,X1),...,(θn, idn, µn,Xn) are exchanged between them without interference. Therefore, first of
all, each participating player will create the same order among the participants, and hence each player labels
all the exchanged values in the same way, so we can assume for simplicity that this ordering coincides
with the original labelsi = 1, ..., n. Each player also computes also the same values and sidi. To see
that each player computes the same valueki and hence the same keyKi, note that for eachj we have

3Selecting separate hash functionHn for every group is done purely for notational convenience. Afamily of hash functions
Hn : {0, 1}∗ → Zn s.t. eachHn is statistically close to a random function with rangeZn, can be easily implemented in the random
oracle model with a single hash function with range22κ′′+κ. E.g.,Hn(m) = H(n,m) mod n.

4This ordering is done as follows: In the protocol each playerUi picks a long-enough random nonceµi (see Round 1 in figure
2), whichUi then includes inall its messages in the protocol. After receiving some set of messages in Round 1 (note that we
assume weak synchrony), every receiver sorts all the received messages by the increasing order of theseµi values. Each player
then (re)labels all the participants and the messages received in Round 1, including its own messages and its inputs, according to
this order. The actual protocol runs exactly as the simplified protocol in figure 2 in the case that this ordering of playerscreated in
Round 1 coincides with the original labelsi = 1, ..., n of the participantsU1, ..., Un assumed for simplicity in figure 2.

10

The inputs of instanceΠτ
i of playerUi arecerti = (σi, idi), (n, g, e), andCRLi. Note thatσe

i = Hn(idi) mod n.

[Round 1]: Ui picks random valuesbi ← {0, 1}, ti ← Zn/2, andµi ← {0, 1}3κ, computes̄θi = (−1)biσig
ti

(mod n), setsθi = θ̄i + νn for randomν ← [0, ..., ⌊22κ′′+κ/n⌋], andUi broadcasts(θi, idi, µi).

• Assume that playerUi receivedn-1 messages(θ1, id1, µ1) , ..., (θi−1, idi−1, µi−1), (θi+1, idi+1, µi+1),
(θn, idn, µn) in Round 1. (This is a simplification. In the real protocol each receiverUi orders the
received messages, and the players which sent them, according to valuesµ these messages contain. See
footnote 4.)
If any two messages contain the same valueidj or the same valueµj , playerUi rejects.

• Ui setss = ((n, g, e), {θj, idj , µj}j=1,...,n)

• If idj ∈ CRLi for any j thenUi picks a random valueXi in Z∗

q̂ and setsreject = T . Otherwise,Ui

computesXi = Hq̂((zi+1)
ti , s)/Hq̂((zi−1)

ti , s) (mod q̂) , wherezi+1 = (θi+1)
2e(hi+1)

−2 (mod n)
andzi−1 = (θi−1)

2e(hi−1)
−2 (mod n).

(Note that if(idj , σj) is a certificate for public key(n, e, g) andθj = (−1)bj σjg
tj +νn thenzj = g2etj .)

[Round 2]:
Ui broadcasts(Xi, µi).

• If in Round 2 player Ui receives n-1 values Xj accompanied byµj ’s that match the
µ1, ..., µi−1, µi+1, ..., µn values above, if

∏n
j=1 Xj = 1, and if reject 6= T , then Ui computes

ki = Hq̂((zi−1)
ti , s)n · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi−2 (mod q̂) and outputsKi = H(ki, sidi), where

sidi = ((n, g, e), {θj, idj , µj , Xj}j=1,...,n). OtherwiseUi rejects.

Figure 1. RSA-based Affiliation-Hiding AGKE protocol

zj = θ2e
j h−2

j = g2etj , and therefore, eachXi = Hq̂(g
2etiti+1 , s)/Hq̂(g

2eti−1ti , s) (mod q̂). Note also that
Hq̂((zi−1)

ti , s) = Hq̂(g
2eti−1ti , s). It follows that for everyi we have

ki = Hq̂(g
2eti−1ti , s) ∗Hq̂(g

2etiti+1 , s) ∗ ... ∗Hq̂(g
2eti−2ti−1 , s) mod q̂

Therefore all the keysKi are the same as well.

Theorem 1. Assuming that the RSA problem is(ǫ′, t′)-hard on random safe RSA moduli of length2κ′′,
the above tuple of algorithms(Setup,KGen,Add,Revoke,Handshake) is an(ǫ, t, qs, qH , l,m)-secure AH-
AGKE scheme in the Random Oracle Model as long as

ǫ ≈ m ∗ (2ǫ′ + 2lqH2−κ′
+ q2

s2
−3κ + qs2

−κ′′+2)

t ≈ t′ − (m ∗ tkg + qs ∗ qH ∗ texp)

wheretkg is the time to generate an RSA private/public key pair andtexp is the time of (multi)exponentiation
modulon, for 2κ′′-bit RSA moduli.

Proof. Assume a legitimate PPT adversaryA interacting with challengerC as described in the security
definition (definition 1). Assume that there arem groups andl users in the universe, and thatA runs
in time t, starts at mostqs sessions, and makes at mostqH queries to the hash functionsHn, Hq̂, and
H. Assume w.l.o.g. thatA always makes a test query on some session. DenoteAdv sec

A = |Pr[b′ =
b]|, i.e. the advantage of the adversaryA in the interaction withC, by ǫ. We split the security proof into
two parts. First we describe the simulation procedure,SIM, which usingA, attempts to solve forz s.t.
ze = g mod n on an RSA challenge(n, e, g). This simulation procedure will run in timet′ approximately
t + (m ∗ tkg + qs ∗ qH ∗ texp). We will then argue that the probability ofSIM’s success in solving the
RSA challenge is at leastǫ′ ≥ ǫ/m− (2lqH2−κ′

+q2
s2
−3κ +qs2

−κ′′+2), assuming that elementg in SIM’s
challenge is such that〈−1〉 × 〈g〉 = Z∗n. Note that ifn is a safe RSA modulus then for a randomg ∈ Z∗n

11

this holds with probability1/2 − O(2−|n|/2) ≈ 1/2. Therefore, the success ofSIM on solving a random
g ∈ Z∗n is (statistically close to) at least half the above expression, which completes the proof.

PART I: CONSTRUCTION OF A SIMULATOR

Setup. Given the RSA challenge(n, e, g), SIM follows theSetup algorithm with parametersκ, κ′, and
κ′′ = |n|/2. As mentioned above, we assume that〈−1〉 × 〈g〉 = Z∗n.

Initialization of all groups. Let G∗ ∈ G be a group s.t. the probability that the adversaryA tests on
Πτ

i s.t. Group(Πτ
i) = G∗ is not less than1/m. (Recall that we assumeA always tests some session.)

SimulatorSIM initializes all the groups inG exceptG∗ as in the real protocol.SIM also createsl
certificates for each of these groups by following theAdd procedure, and in the rest of the simulationSIM
simply follows theHandshake protocol on behalf of all instancesΠτ

i s.t. Group(Πτ
i) 6= G∗. Thus, in the

rest of the simulation description we will only describeSIM’s actions with regard to instancesΠτ
i s.t.

Group(Πτ
i) = G∗.

For groupG∗, SIM sets its public key as(n, e, g), and creates the certificates for each revoked player
Ui ∈ Rev by simulating an RSA signature(idi, σi) under key(n, e, g). Namely,SIM picks two random
valuesidi ← {0, 1}κ

′
andσi ← Z∗n, and assignsHn(idi) to σe

i (mod n). If A has already queriedHn on
any idi’s chosen bySIM in this way,SIM abandons the simulation. For eachUi /∈ Rev in G∗, SIM
picks a random valueidi ← {0, 1}kappa′

. SIM hands toA all the public keys and the certs of the corrupted
players.

Hash queries toHn, Hq̂ and H. For each queryx to Hn, SIM picks randoma← Z∗n and setsHn(x) =
ae · g−1 (mod n). W.l.o.g, assume thatHn is queried on eachidi for Ui /∈ Rev. Denote valuea chosen
above forx = idi asai, andHn(idi) = ae

ig
−1 ashi. For the queries toH andHq̂, SIM simply passes

these queries toH andHq̂, respectively. However, for each query(r, s) to Hq̂, SIM also tries to solve the
RSA challenge as we describe below.

After the above initialization,SIM must provide responses forA’s queriesStart, Send, Reveal, and
Test, which would look toA as the real execution, i.e. as inA’s interaction with challengerC. For notational
convenience assume that the local indexτ of each instanceΠτ

i is globally unique (e.g., assume thatτ in Πτ
i

has a suffixi). In the following description, we add as a superscript the instance indexτ to all values related
to Πτ

i . For example,θτ
i , Xτ

i will refer to messagesθi, Xi sent by instanceΠτ
i . As mentioned above,SIM

responds toA’s commands relating to instancesΠτ
i s.t.Group(Πτ

i) 6= G∗ by simply following the honest
players’ protocol. However, for queries involving groupG∗, simulatorSIM respondes as follows:

Start commands.For theStart(Ui, G
∗) command,SIM initializes instanceΠτ

i . SIM picksbτ
i ← {0, 1},

γτ
i ← Zn/2, and computes̄θτ

i = (−1)b
τ
i · ai · gγτ

i (mod n). Notice that the distribution of̄θτ
i in this

simulation and in the real protocol are statistically closebecause both are statistically close to uniform in
Z∗n. Note that sincehi = (ai)

e/g, thereforēθτ
i = (−1)b

τ
i ·(hig)d ·gγτ

i = (−1)b
τ
i ·hd

i ·gd+γτ
i = (−1)b

τ
i ·hd

i ·gtτi

(mod n), wheretτi = γτ
i + d (mod φ(n)/2). The simulator does not know eitherd or tτi , but will use the

above relation to solve forgd later. SIM also choosesµτ
i ← {0, 1}3κ, ντ

i ← [0, ..., ⌊22κ′′+κ/n⌋], sets
θτ
i = θ̄τ

i + ντ
i and replies with(θτ

i , idi, µ
τ
i).

Send queries.Consider an instanceΠτ
i created by theStart command above. We denote theSend command

to this instance corresponding to Round 1 of the protocol bySend1, and theSend command corresponding
to Round 2 of the protocol bySend2. In the following statement, just like we did in the description of the
protocol, we assume that the index of playerUi involved in sessionΠτ

i belongs to seti ∈ {1, .., n}. (In
generali ∈ {1, .., l} wherel = |U| > n, but the proof in the general case is easy to extrapolate fromthe
proof we give here.)

For theSend1(Ui, τ, {θ̂τ
j , îd

τ

j , µ̂
τ
j }j=1,..,n,j 6=i) command, unless there are collisions inid’s or µ’s, SIM

setssτ
i as in the protocol. If anŷid

τ

j ’s are onCRLi thenSIM setsXτ
i ← Z∗q̂ andrejectτi = T . Otherwise,

12

SIM setsXτ
i = cτ

i,i+1/c
τ
i,i−1 (mod q̂) where valuescτ

i,j for j = i−1 andj = i+1 are chosen as follows.

If ∃ someΠτ ′

i′ which received theSend1 query s.t.:

1. (θτ ′

i′ , id
τ ′

i′ , µ
τ ′

i′) = (θ̂τ
j , îd

τ
j , µ̂

τ
j)

2. (θ̂τ ′

j′ , îd
τ ′

j′ , µ̂
τ ′

j′) = (θτ
i , idτ

i , µτ
i) for j′ = i′ + 1 or j′ = i′ − 1

3. sτ ′

i′ = sτ
i andrejectτ

′

i′ 6= T

thenSIM assignscτ
i,j ← cτ ′

i′,j′, wherecτ ′

i′,j′ is a valueSIM has previously chosen when dealing with the

Send1 command to sessionΠτ ′

i′ . Note that this case corresponds to an adversary who honestly routes the
messages of matching instancesΠτ

i andΠτ ′

i′ from one to another. In such case in the real execution these
two instances would compute the same valuecτ

i,j = cτ
i′,j′ , where

cτ
i,j = Hq̂((ẑ

τ
j)t

τ
i , sτ

i) and cτ ′

i′,j′ = Hq̂((ẑ
τ ′

j′)
tτ

′

i′ , sτ ′

i′)

If any of these conditions are not met, which corresponds to the case where there is no instanceΠτ ′

i′

which runs on matching inputs asΠτ
i , or when the adversary actively interferes in the communication

between these two instances,SIM picks a fresh random valuecτ
i,j ← Z∗q̂ . In both casesSIM stores

[j,Πτ
i , sτ

i , (θ̂τ
j , îd

τ
j , µ̂

τ
j), c

τ
i,j] in a table denotedTHq̂

. Finally,SIM replies with(Xτ
i , µτ

i).

For all theSend2(Ui, τ, {X̂τ
j , µ̂τ

j }j=1,..,n,j 6=i) commands,SIM abandonsΠτ
U if valuesµ̂τ

j are not correct

or Πn
j=1X̂

τ
j 6= 1, whereX̂τ

i = Xτ
i ; otherwiseSIM setssidτ

i as in the protocol, computes

kτ
i = (cτ

i,i−1)
n · (X̂τ

i)n−1 · (X̂τ
i+1)

n−2 · · · (X̂τ
i−2) (mod q̂) (1)

and outputsKτ
i = H(kτ

i , sidτ
i).

Reveal queries.OnReveal(Ui, τ), if instanceΠτ
i has output a session keyKτ

i , SIM delivers it toA.

Test query. Finally, if adversary issues commandTest(i, τ) thenSIM picks a random bitb asC does, and
if b = 1 thenSIM replies withKτ

i toA. Otherwise,SIM returns a random value in{0, 1}κ.

Computing the RSA challenge.Every timeAmakes a query(r, s) to Hq̂, SIM attempts to solve its RSA
challenge as follows. For each entry[j,Πτ

i , sτ
i , (θ̂τ

j , îd
τ
j , µ̂

τ
j), c

τ
i,j] in tableTHq̂

s.t. sτ
i = s, SIM wants to

check if
r = ((θ̂)2e(ĥ)−2)t = (θ̂)2e(γ+d)(ae/g)−2(γ+d) = (θ̂/a)2(eγ+1)g2γg2d (mod n) (2)

whereθ̂ = θ̂τ
j , a is the value s.t.̂h = Hn(îd

τ

j) = ae · g−1 (mod n), and(t, γ) = (tτi , γ
τ
i) defined when

sessionΠτ
i was started. Note that ifr = (ẑτ

j)t
τ
i , i.e. A queriesHq̂ on pair (r, s) = ((ẑτ

j)t
τ
i , sτ

i), where

ẑτ
j = (θ̂τ

j)2e(ĥ)−2 andtτi is the value that satisfies̄θτ
i = (−1)b

τ
i (hi)

dgtτi , thenr = ((θ̂τ
j)2e(ĥ)−2)t

τ
i .

The waySIM can verify if equation (2) holds is to compute

w = r · (θ̂/a)−2(1+eγ)g−2γ (mod n) (3)

and test ifwe = g2. If this holds thenSIM extractsgd by computingwβgα, whereα, β satisfyeα+2β = 1.

PART II: A NALYSIS OF THE SIMULATION

First note that if the adversaryA runs in timet then the running timet′ of the above simulatorSIM is
dominated byt + m ∗ tkg + qs ∗ qH ∗ texp, wheretkg is the time to generate an RSA private/public key pair
andtexp is the time of an exponentiation modulon.

13

Denote asNb the real network as executed by the challengerC with a fixed bitb. Recall that ifb = 0 then
C sends toA a randomκ-bit long value and ifb = 1 thenC delivers the session key of the tested instance.
We also denote asSIMb an execution of the above simulatorSIM with a fixed bitb on challenge(n, e, g)
whereg satisfies〈−1〉 × 〈g〉 = Z∗n.

We define the following events:

NEb: A outputs 1 on interaction withNb.

NEG,b: A outputs 1 and tests sessionΠτ
i s.t. Group(Πτ

i) = G, on interaction withNb.

SEG,b: A outputs 1 and tests sessionΠτ
i s.t. Group(Πτ

i) = G, on interaction withSIMb.

sCollision: There is a userUi s.t. sτ1
i = sτ2

i for someτ1 6= τ2, either in an execution or in a simulation.

HnFailure: A queriesHn on idi for someUi ∈ Rev beforethis value is chosen, byC in an execution
and bySIM in a simulation.

N̄EG∗,b = NEG∗,b ∧ ¬(HnFailure ∨ sCollision)

S̄EG∗,b = GEG∗,b ∧ ¬(HnFailure ∨ sCollision)

Hq̂Query: There is a sessionΠτ
i s.t.A queriesHq̂ on pair(ẑτ

j)t
τ
i , sτ

i), for j = i−1 or j = i+1, which

relates to thisΠτ
i session, i.e.̂zτ

j = (θ̂τ
j)2e(Hn(îd

τ
j))−2, andtτi satisfiesgtτi = (θτ

i)2e(Hn(idi))
−2.

Note that by the assumption thatAdv sec
A = |Pr[b′ = b]| ≥ ǫ we have|Pr[NE1] − Pr[NE0]| ≥ 2ǫ. Also,

sincePr[Eb] =
∑

G∈G Pr[NEG,b], let G∗ ∈ G be a group s.t.

|Pr[NEG∗,1]− Pr[NEG∗,0]| ≥ 2ǫ/m (4)

Assume that this is a group chosen by the simulatorSIM above. (Note thatSIM could also guessG∗
with 1/m probability.) We will argue the following four facts:

|Pr[NEG∗,b]− Pr[N̄EG∗,b]| ≤ Pr[HnFailure ∧ sCollision] for b = 0, 1 (5)

Pr[HnFailure ∧ sCollision] ≤ lqH2−κ′
+ q2

s · 2−3κ (6)

|Pr[S̄EG∗,1]− Pr[S̄EG∗,0]| ≤ qH2−κ′
(7)

|Pr[N̄EG∗,b | ¬Hq̂Query]− Pr[S̄EG∗,b | ¬Hq̂Query]| ≤ qs2
−κ′′+2 for b = 0, 1 (8)

Note that by inequalities (4)-(7) it follows that for eitherb = 0 or b = 1 we have:

|Pr[N̄EG∗,b]− Pr[S̄EG∗,b]| ≥ ǫ/m− (lqH2−κ′
+ q2

s2
−3κ + qH2−κ′

/2) ≥ ǫ/m− (2lqH2−κ′
+ q2

s2
−3κ)

Together with (8), this inequality implies that

Pr[Hq̂Query] ≥ ǫ/m− (2lqH2−κ′
+ q2

s2
−3κ + qs2

−κ′′+2)

Since whenever eventHq̂Query happens the simulatorSIM solves its RSA challenge, this implies our
claim thatǫ′ ≥ ǫ/m− (2lqH2−κ′

+ q2
s2
−3κ + qs2

−κ′′+2)

It remains for us to argue that statements (5)-(8) above indeed hold. Note that inequality (5) follows im-
mediately from the definition ofNEG∗,b. For inequality (6) observe thatPr[HnFailure] ≤ lqH2−κ′

because
|Rev| ≤ l and the response on each query toHn is a random element in the set of size{0, 1}κ′

. Also
Pr[sCollision] ≤ q2

s · 2−3κ because a collision insτ
i values for any userUi can only happen if two sessions

14

Πτ1
i andΠτ2

i of this user choose the same valueµτ1
i = µτ2

i . Since every session chooses itsµτ
i value at

random in a set of size2−3κ, and there are at mostqs sessions, the above bound follows.
Equality (8) is also straightforward to see. First note thatthe statistical difference between all the values

θτ
i in the execution and the simulation isqs2

−κ′′+2, because for eachΠτ
i , the difference between distribution

of tτi chosen as in the execution astτi ← Zn/2, and the distribution of valuestτi = γτ
i + d (mod φ(n)/2)

for γτ
i uniform in Zn/2 (recall that this is how valuetτi is defined in the simulation), is at most2−κ′′+2.

Everything else in the execution and the simulation is distributed in the same way, providedg is correct
and eventHnFailure does not happen, except for the way valuescτ

i,j are computed. Now, ifHq̂Query does
not happen, i.e. if for all sessionsΠτ

i , adversaryA does not query the hash functionHq̂ on the proper pair
(ẑτ

j)t
τ
i , sτ

i) that corresponds to theΠτ
i session, then the wayc’s are computed in the execution (as outputs of

Hq̂) and the way they are picked in the simulation (at random inZ∗q̂ except if two sessions are partnered) are
the same fromA’s point of view. The reason that’s the case is that the only case in the protocol execution
when two sessionsΠτ

i ,Π
τ ′

i′ compute twoc values on the same input is ifsτ
i = sτ ′

i′ . But if there is no collisions
in s values (eventsCollision) then this implies in particular that that the adversary re-routed messages of these
two sessions between each other, and in this case the simulator SIM also makes the twoc values equal to
one another.

It remains to argue that inequality (7) holds. Note that the only difference in these two interactions is
that in S̄EG∗,1 A gets keyKτ

i = H(kτ
i , sτ

i) on testedΠτ
i , while in S̄EG∗,0 A gets a randomκ-bit value

instead ofKτ
i . Note that inA’s interaction withS̄E, if we disregard for a moment the informationA gets

from queries toH(kτ ′

i′ , sτ ′

i′) for anyΠτ ′

i′ (this information is contained in the answers ofTest andReveal
queries), then valuekτ

i is hidden fromA in an information-theoretic way, i.e. it’s uniformly distributed
in Z∗q̂ independently from everything elseA sees. The reason that’s the case is because, by equation (1),
for eachΠτ

i , valuekτ
i is distributed independently fromA’s view as long ascτ

i,i−1 is independent from
A’s view. DisregardingA’s queries toH, the only way valuecτ

i,i−1 enters into the informationA gets in
the simulation is viaXτ

i = cτ
i,i+1/c

τ
i,i−1 (mod q̂), where thecτ

i,i+1 is chosen independently fromcτ
i,i−1,

exceptif Πτ
i is partnered byA’s Send1 commands with some other sessionΠτ ′

i′ (see the three conditions on
sessionsΠτ

i andΠτ ′

i′ in the procedure forSIM onSend1 query). In that case we havecτ
i,j = cτ ′

i′,j′ for some

j = i ± 1 andj′ = i′ ± 1, and thus we have to ask ifcτ
i,i−1 is still perfectly uniform givenXτ

i ,Xτ ′

i′ . Let

us call a pair(Πτ
i ,Π

τ ′

i′) related if this is the case and assumej = i + 1 andj′ = i′ − 1 (in general there
are three other cases forA to pair up these sessions, but the argument given here can be extended to this
general case). LetΠ

τi1
i1

, ...,Π
τin
in

be sessions s.t. for eachj, sessionsΠ
τij

ij
andΠ

τij+1

ij+1
are related in the above

way. However, even in this case, each variablecij ,ij−1
, taken by itself, is still uniformly distributed inZ∗q̂

(althoughnot independently from one another) givenA’s view X
τi1
i1

, ...,X
τin
in

, because eachXi1 sets one
constraint between twoc’s but there aren + 1 independently chosenc’s involved.

Finally, let us put back the additional information relatedto any of thesecij ,ij−1 values thatA gets from

hash function outputsH(k
τij

ij
, s

τij

ij
). Note thatA gets to see these outputs from both itsReveal andTest

queries, andA can queryH to search for the matching valuek
τij

ij
for anyΠ

τij

ij
in a chain of related sessions

Π
τi1
i1

, ...,Π
τin
in

. Learning any suchk
τij

ij
value implies learning the correspondingc

τij

ij ,ij−1 value, and together

with X
τi1
i1

, ...,X
τin
in

this leads to recovery ofall valuesc
τi1
i1,i1−1, ..., c

τin
in,in−1. However,A can only makeqH

hash queries toH, and since each of these values is (individually) uniform inZ∗q̂ , the ability to queryH can

leak information on any of these values with probability at mostqh2−κ′
, becausêq is aκ′-bit prime. This

implies theqh2−κ′
bound on the distance between the two simulations, forb = 0 andb = 1.

Theorem 2. The AH-AGKE protocol defined by the above tuple(Setup,KGen,Add,Revoke,Handshake) is
Affiliation-Hiding.

Proof. Since theid values are chosen independently of the group, the only values which can reveal some-

15

thing about the group membership of the honest player are theθ values. We claim that the distribution of
valueθ sent by an honest user in this protocol is statistically close to a uniform distribution on(2κ′′+κ)-bit
strings, denotedZ22κ′′+κ . Recall that for all groupsG1, ..., Gm we have2κ′′ = |n1| = ... = |nm|. We use
U ≈S V to denote that distributionU is statistically close toV in the sense that the difference between these
distributions is at mostO(2−min(κ,κ′′)).

As we noted in the construction, values(−1)bgt (mod n) are uniformly distributed inZ∗n for (b, t) ←
{0, 1} × Z2p′q′ . Take anyh ∈ Z∗n andσ = hd mod n. Define a random variablēθb,t = (−1)bgtσ mod n.
Since multiplication byσ is a permutation inZ∗n, we have

{θ̄b,t}(b,t)←{0,1}×Z2p′q′
≡ Z∗n

SinceZn/2 ≈S Z2p′q′ , the above implies that

{θ̄b,t}(b,t)←{0,1}×Zn/2
≈S Z∗n

Because the proportion of elements inZn which are divisible byp′ or q′ is O(2−κ′′
), we haveZ∗n ≈S Zn.

Therefore
{θ̄b,t}(b,t)←{0,1}×Zn/2

≈S Zn

Finally, if k is chosen uniformly in[0, ..., ⌊22κ′′+κ/n⌋], this implies that for every2κ′′-bit n we have

{θ̄b,t + kn}(b,t,k)←{0,1}×Zn/2×Z
⌊22κ′′+κ/n⌋

≈S {0, 1}2κ′′+κ

Therefore the difference between the distribution of values θτ
i in the protocol execution and a simulation

where these values are chosen uniformly among(2κ′′ + κ)-bit strings, is at mostO(2−min(κ,κ′′)). Since
there areqs sessions the difference between the distribution of adversary’s view of an interaction with the
network and an interaction with a simulator is at mostqsO(2−min(κ,κ′′)).

5 Affiliation-Hiding AGKA Scheme based on the Diffie-HellmanProblem

We present the DH-based AH-AGKA scheme. Due to space constraints we present only the scheme, a
sketch of correctness, and the statements of theorems aboutits security and affiliation-hiding. The proofs
will be included in a full version of this paper [13]. We note that the proof of security of this AH-AGKE pro-
tocol follows a similar logic to the proof of security of the RSA-based AH-AGKA protocol in the previous
section, but it includes rewinding.

• Setup: The setup algorithm outputs the standard discrete logarithm parameters(p, q, g), i.e., primes
p, q of size polynomial inκ, s.t. g is a generator of a subgroup inZ∗p of orderq. We also define hash
functionsHq : {0, 1}∗ → Zq, H̄q : {0, 1}∗ → Zq, andH : {0, 1}∗ → {0, 1}κ.

• KGen: The secret key is chosen as a random numberx ∈ Zq and the public key isy = gx (mod p).

• Add: For any userU in the group,CA computes the certificatecert as a Schnorr signature [15] on an
empty message under the keyy, namelycert = (w, t) wherew = gr (mod p), andt = r + xHq(w)
(mod q), for randomr ← Zq. Note that(w, t) satisfies equationgt = wyHq(w) (mod p).

• Revoke: To revoke userU , theCRL is appended with (hash of)w, where(w, t) wasU ’s certificate.

• Handshake: This is an AGKA protocol executed by some set∆ = {U1, ..., Un} of players. Each
playerUi starts a sessionΠτi

i for a (locally) freshτi, on someinputs(certi, y, CRLi) s.t.y is some
public key,certi = (wi, ti) is Ui’s certificate for this public keyy, i.e.certi ∈ Certs(y), andCRL is
the (hopefully recent) CRL for groupGroup(y). TheHandshake protocol is in Figure 2 below.

16

The inputs of instanceΠτ
i of playerUi arecerti = (wi, ti), y, andCRLi. Note thatgti = wiy

Hq(wi).

[Round 1]: PlayerUi picksµi ← {0, 1}3κ, and broadcasts(wi, µi)

• Assume that playerUi receivedn-1 messages(w1, µ1), ..., (wi−1, µi−1), (wi+1, µi+1), ..., (wn, µn) in
Round 1. (This is a simplification as in Figure 1. See footnote4.)
If any two messages contain the same valueµj or the same valuewj , playerUi rejects.

• Ui setss = (y, {wj , µj}j=1,...,n).

• If wj ∈ CRLi for any j thenUi picks a random valueXi in Zq and setsreject = T . Otherwise,Ui

computesXi = H̄q((zi+1)
ti , s)/H̄q((zi−1)

ti , s) (mod q) wherezi−1 = wi−1y
Hq(wi−1) andzi+1 =

wi+1y
Hq(wi+1).

(Note that if(wi−1, ti−1) and(wi+1, ti+1) are certificates under keyy thenzi±1 = gti±1 .)

[Round 2]: PlayerUi broadcasts(Xi, µi).

• If in Round 2 player Ui receives n-1 values Xj accompanied byµj ’s that match the
µ1, ..., µi−1, µi+1, ..., µn values above, and ifreject 6= T , thenUi computeski = H̄q((zi−1)

ti , s)n ·
Xn−1

i ·Xn−2
i+1 · · ·Xi−2 (mod q) and outputsKi = H(ki, sidi), wheresidi = (y, {wj, µj , Xj}j=1,...,n).

OtherwiseU rejects.

Figure 2. DH-based Affiliation-Hiding AGKA protocol

Protocol Correctness. Similarly to the correctness argument for the RSA-based protocol, if n instances
Πτ

i are executed on the same public keyy and their messages are properly exchanges, they output same
valuessτ

i , sidτ
i , and they all compute the same key material

kτ
i = H̄q(g

ti−1ti , s) ∗ H̄q(g
titi+1 , s) ∗ ... ∗ H̄q(g

ti−2ti−1 , s) mod q

whereti’s are defined by the first message as in Figure 2. Therefore allpartnered sessions also output the
same keysKτ

i .

Theorem 3. The AH-AGKA scheme defined by the above tuple(Setup,KGen,Add,Revoke,Handshake) is
affiliation-hiding.

Theorem 4. Assuming that the GSDH problem in a subgroup generated byg in Z∗p is (ǫ′, t′)-hard, the
AH-AGKA scheme defined by the above tuple(Setup,KGen,Add,Revoke,Handshake) is (ǫ, t, qs, qH , l,m)-
secure in the Random Oracle Model for

ǫ ≈ cǫ ∗ (ǫ′ + (lmqH/q + (qs)
22−3κ))

t ≈ t′ − ct ∗ lqs(qH)2texp

wheretexp is a cost of exponentiation in the subgroup generated byg andct, cǫ are small constants, assuming
the cost of accessing the DDH oracle is constant.

References

[1] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong. Secret handshakes from
pairing-based key agreements. In24th IEEE Symposium on Security and Privacy, Oakland, CA, May
2003.

[2] M. Bellare, A. Boldyreva, A. Desai and D. Pointcheval. Key-privacy in public-key encryption. In
Advances in Cryptology - ASIACRYPT 2001, 2001.

[3] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of authenti-
cation and key-exchange protocols. In30th STOC’01, 2001.

17

[4] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary
Attacks InAdvances in Cryptology - EUROCRYPT 2000, 2000.

[5] D. Boneh, H. Shacham, and B. Lynn. Short signatures from the Weil pairing. InJ. of Cryptology, vol.
17, no. 4, pp. 297-319, 2004.

[6] E. Bresson, O. Chevassut, D. Pointcheval, and J. Quisquater. Provably Authenticated Group Diffie-
Hellman Key Exchange InProceedings of the 8th ACM conference on Computer and communications
security (CCS’01), 2001

[7] M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. InAdvances
in Cryptology - EUROCRYPT 1994, 1994.

[8] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building Secure
Channels. InAdvances in Cryptology - CRYPTO 2001, 2001.

[9] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from ca-oblivious encryption. InAd-
vances in Cryptology - ASIACRYPT 2004, 2004.

[10] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Retrieval InJournal of the
ACM, Volume 45, Issue 6, Pages:965-981, 1998

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion Router In13th
USENIX Security Symposium, August 2004.

[12] S. Jarecki, J. Kim, and G. Tsudik. Authentication for Paranoids: Multi-Party Secret Handshakes. In
ACNS’06, June 2006.

[13] S. Jarecki, J. Kim, and G. Tsudik. Group Secret Handshakes or Affiliation-Hiding Authenticated Group
Key Agreement. To appear on IACR eprint archives (http://eprint.iacr.org), 2007.

[14] J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange InAdvances in
Cryptology - ASIACRYPT 2003. 2003

[15] C. Schnorr. Efficient identification and signatures forsmart cards. InAdvances in Cryptology -
CRYPTO 1989, 1989.

[16] V. Shoup. On Formal Models for Secure Key Exchange. InTheory of Cryptography Library, 1999.

[17] G. Tsudik and S. Xu. A Flexible Framework for Secret Handshakes. InPrivacy-Enhancing Tech-
nologies Workshop (PET’06), June 2006. Earlier version appeared as a Brief Announcement in ACM
PODC’05, August 2005.

18

