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Abstract

Privacy concerns in many aspects of electronic commumigatigger the need to re-examine — with
privacy in mind — familiar security services, such as autteation and key agreement.

An Affiliation-Hiding Group Key Agreement (AH-AGKA) protocol (also knownGasup Secret Hand-
shakg allows a set of participants, each with a certificate issuiigdthe same authority, to establish a
common authenticated secret key. In contrast to standardA\@otocols, an AH-AGKA protocol has the
following privacy feature: If Alice, who is a member of a good, participates in an AH-AGKA protocol,
none of the other protocol participantsarnwhether Alice is a member 6f, unless these participants are
themselves members of groGp Such protocols are useful in suspicious settings wherd afsaembers
of a (perhaps secret) group need to authenticate each othdragree on a common secret key, without
revealing their affiliations to outsiders.

In this paper we strengthen the prior definition of AH-AGKAtkat the security and privacy proper-
ties are maintained under any composition of protocol ins&s. We also construct two novel AH-AGKA
protocols secure in this new and stronger model under the &8AGap Diffie-Hellman assumptions, re-
spectively. Each protocol involves only two communicatoumds and few exponentiations per player (e.g.,
no bilinear map operations). Interestingly, these costs essentially the same as those of the underlying
(unauthenticatédgroup key agreement protocol. Finally, our protocols, ik@lprior results, retain their
security and privacy properties without the use of one-tmificates.

Keywords: secret-handshakes, group key agreement, aigtited group key agreement, privacy, privacy-
preserving authentication.

1 Introduction

A traditional authenticated group key agreement (AGKA)pcol is assumed to operate within the con-
fines of a common Public Key Infrastructure (PKI). At the stparticipants — who have no prior secrets in
common — exchange their public key certificates (PKCs). €kishange leaks information; in particular,
it always reveals a participant’s public key certificatiartheority (CA). However, exchange of credentials,
such as PKCs, is part and parcel of any AGKA and it seems coimtgtive to be concerned about informa-
tion leakage. At the same time, in many applications, thatitjeof the certificate-issuing CA determines
the certificate owner’sffiliation. This is not an issue if affiliation by itself is not a sensgtiattribute. How-
ever, in certain scenarios, affiliation must be kept priaatd protected from all unauthorized parties, most
commonly, those with different affiliations. We consideotmotivating examples.



e CIA agents often operate in hostile environments and tHélation represents a closely-guarded
secret. This is mandated by the rules of the agency. Thexefiotwo or more CIA agents need
to discover each other and establish a secure communicaisomel, affiliation-leaking information
cannot be exchanged for fear of detection and unpleasasteqaences.

e Federal air marshals routinely accompany civilian flightd are required to keep a very low profile,
i.e., to blend in as much as possible. When two or more magiah airport (or any common vicin-
ity) need to coordinate activities and set up a secure cenéer, they must do so in an unobservable
and undetectable manner, i.e., their affiliations must Ipt pavate.

In a two-party setting, affiliation hiding authenticatiochemes have been addressed in the past with so-
calledsecret handshakprotocols [1]. The initial work [1] introduced the notion pfivacy in public key-
based authentication schemes and proposed the first twogearet handshake scheme based on bilinear
maps and secure under the Gap Diffie-Hellman (GDH) assump#osubsequent result by Castelluccia,
et al. [9] developed a slightly more efficient secret hankshecheme secure under the Computational
Diffie-Hellman (CDH) assumption. Both schemes can be usédadnversions: If the players use one-time
certificates, in addition to affiliation-hiding these prodts trivially attain a property ofinlinkability, since
in addition to not leaking their affiliations, any two instas of the same player cannot be linked with each
other. If the players re-use their certificates, the prd®ene affiliation-hiding but it's possible to trace
multiple occurrences of the same party.

In this paper we consider affiliation hiding in a multi-paftwo or more) setting, i.e. for Authenticated
Group Key Agreement protocols (AGKA). We construct two practiédfiliation-Hiding AGKA protocols
(AH-AGKA), wherein participants compute an authenticatedimon secret key as long as all participants
have the same affiliation, i.e., possess certificates idsydide same CA. At the same time, in contrast to a
standard AGKA, a party engaging in an AH-AGKA protocol isw@esl that its affiliation is revealed to only
those other protocol participants that belong to the grosyemed by the same CA. Our protocols have
similar properties as the two-party secret handshakes, 81[Le. they offer affiliation-hiding with standard
re-usable certificates, and they can offer unlinkabilityyahthe players use one-time certificates. They
can also offer heuristic unlinkability, e.g if players linthe usage of one certificate based on their physical
mobility.

Group (or multi-party) secret handshake protocols have beasidered in prior work, notably [17] and
[12]. In[17], Tsudik and Xu presented the first scheme sujppprny number of protocol participants and
reusable certificates. However, their approach assuresighgarticipants in the AGKA protocol success-
fully compute a shared key only if their group revocatiorommhation is synchronized (in other words, only
if each participant assumes the same revocatfmtch).

Recently, Jarecki et al. [12] constructed a practical AHKXGprotocol which avoids this synchroniza-
tion assumption, based on the (unauthenticated) BurmBstemedt group key agreement protocol [7].
However, this AH-AGKA protocol is secure only with the useasfe-time certificates. Also, the model
of security for AH-AGKA protocols considered in [12] is rasted to asingle instancef an AH-AGKA
protocol execution. Such a model makes sense if each piatmtance uses independent inputs, but it is
insufficient in the standard PKI setting of re-usable cedifes.

Our contributions. The contributions of this paper are as follows: First, weragg the notion of AH-
AGKA in [12] with a more robust and thus more useful notion.eTtew notion assumes a standard PKI
model of re-usable certificates and it is modeled on the araind and very strong — notion for traditional
AGKA protocols in [6, 14], which, in turn, comes from a longdi of research on Authenticated 2-party
Key Agreement protocols [3, 16, 8]. This upgraded securitiam implies that each AH-AGKA protocol

IWe want to point out that in addition to requiring more starégr group members, higher load on the issuing CA, and longer
certificate revocation structures, a protocol that regusiagle-use certificates is vulnerable depletion attackswhereby the
adversary repeatedly engages some user in the AH-AGKA @obtthus depleting the latter’s supply of one-time cerdifés.



session remains secure given arbitrary scheduling of pobinstances and any message-interleaving pat-
tern between these instances, e.g., a man-in-the-mid@lekatAlso, the security of a protocol session is
independent of the usage of keys produced bpthier protocol sessions.

Second, we construct two AH-AGKA protocols that supporndtad re-usable certificates and satisfy
the new strong notion of AH-AGKA security. Both protocolssamplicitly-authenticated variants of the
Burmester-Desmedt GKA protocol. These two protocols acergeunder the RSA and the GDH assump-
tions, respectively, in the Random Oracle Model (ROM). (btorer, the second protocol is secure also
under the CDH assumption, but the security reduction from@BDH problem is weaker.) Each scheme
involves only 2 communication rounds and few exponentmgiper participant. From both communication
and computation perspective, the protocol costs are the santhose of thenauthenticatedBurmester-
Desmedt group key agreement protocol [7] and lower tharetlwbshe (non affiliation-hiding) signature-
based authenticated version of the Burmester-Desmediqmiadue to Katz and Yung [14]. Consequently,
our protocols show thahffiliation Hiding for AGKA protocol can be achieved at essentially no addilon
cost. Note, however, that an AH-AGKA protocol guaranteescess only if all participants are affiliated
with the same CA, which is not the case in a standard AGKA. eze we do not address perfect forward
security in this paper.

Third, an independent consequence of our work is a variattte@Burmester-Desmedt GKA protocol
which is secure (in ROM), although without perfect forwamtmecy, even if the participants re-use their
Diffie-Hellman key contributions. The standard Burme®esmedt GKA protocol is insecure unless each
player uses a new contribution in every protocol instancea&onsequence of re-use of key contributions,
this version of the Burmester-Desmedt protocol requiresgdentiations per player instead of 3.
Organization. The rest of this paper is organized as follows: Section 2 &igrdefines an AH-AGKA
scheme and the desired security/privacy properties. @egtidefines the cryptographic assumptions re-
quired by our constructions. Section 4 presents the RSAebAsl-AGKA protocol, and Section 5 presents
the DH-based AH-AGKA protocol. The security proofs for thB/&Rbased scheme are given in detail, but
because of space limitations we relegate the proofs of isgdor the DH-based scheme to the full version
of this paper [13].

2 Affiliation-Hiding Authenticated Group Key Agreement: Mo del and Definitions

Entities. Our AH-AGKA model is based on the existing standard modeldothenticated group key
agreement protocols [6, 14]. The main difference is thatstaedard model assumes a global PKI where
each entity has a private/public key-pair and a certificedaed by a CA which is part of the PKI. The PKI
involves acertification hierarchy where the integrity of the association between entitias their public
keys is vouched by a chain of certificates all leading to soommgonly trusted CA-s. In this model, it
is assumed that certificates (which in many applicationgaiorinformation about owneraffiliation) are
publicly available. In contrast, AH-AGKA protocols aim tagbect affiliation privacy of the participants
and certificates are kept private. Another distinctivedeabf our model is its “flat” certification structure,
i.e., certification hierarchies and chains are not allovildtere are only CA-s and entities certified by CA-s;
there are no intermediate CA-s and no delegation of cettfica

An AH-AGKA schemeoperates in an environment that includes a setsefrsl/ and a set ofroupsg.
Each group is administered by a CA responsible for creatieggtoup, admitting entities as members and
revoking membership. We assume upper boundsnd!, respectively, on the total number of groups and
the number of members in any given group, i|§], < m and|i{| < [. We assume that each user can be
a member of many groups. We denote the fact that User I/ is a member of grougs € G asU< G.
The main part of an AH-AGKA scheme is an AH-AGKgrotocol which is executed by any set of users
A ={Uy,..,U,} C U, foranyn > 2. (More on that below.) Hereafter, the tegroup memberefers to
a user who is a member of a particular group, whereas the fglayier andprotocol participantrefer to a
user who is currently taking part in some particular instgaotcan AH-AGKA protocol.
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Groups. We note from the outset that the use of the term group is @atdd in this paper. First, it
denotes a set of users with the same affiliation (membersonfpg®), i.e., with certificates issued by the
same CA. Second, it refers to an ad-hoc grafyp ¢f AH-AGKA protocol participants who may or may not
be all members of the same groGp We make the desired meaning unambiguous from the contest. W
useprotocol participantsor set of playersvhen referring to the second meaning, and wegrsap only in
the first meaning except when re-using the standard terougaf (AuthenticatedisroupKey Agreement,
where the wordsrouprefers to the set of players participating in an instancé@fAGKE protocol.
AH-AGKA Protocol. Using this terminology, each playél; € A participating in an instance of the AH-
AGKE protocol executes the protocol instructions on ingupiblic key of some grou¢r € G s.t.U;< G,
andU;'s certificate of membership i&. The purpose of the AH-AGKA protocol is for the playersAnto
establish an authenticated shared secret key as long aacfipéthem run the protocol on the same public
key, i.e. the public key of the same grodf and (2) for eaclV; € A it holds thatU;< G. This key
is secret and authenticated in the sense that it can be usadyf@ubsequent secure communication, e.g.,
entity authentication or message encryption and/or atitteion.

To avoid any misunderstanding, we stress that such protloed not in general imply an efficient solution
for an (affiliation-hiding)group discoveryproblem, where each participating player starts a protonch
setof its certificates of membership insetof groups, and the protocol succeeds, for example, as long as
all the certificates are valid and all these sets have a ngatyemmion. In contrast, our AH-AGKA schemes
are most practical in scenarios where each user is a membénuaist one group. However, we stress that
if a user is a member of many groups, this would affect exenutifficiency (or robustness), but it would
not affectsecurityand affiliation-hiding of our schemes. Indeed, in the definitions that follow we amsu
w.l.0.g. that each user is a member of every group.

Public Information and Network Assumptions. In our environment, all group& € G are publicly
known. Their CA public keys and certificate revocation li@&RL-s) maintained by CA-s are publicly
accessible. Before any group can be created, a commontygearameter must be publicly chosen, and a
public Setup procedure is executed on that parameter. Jdtap procedure creates common cryptographic
parameters which are used as inputs in all subsequent ptetdéd/e stress that theetup procedure does
not need to be executed by a trusted authority: It can be ee@ty anyone, for example by one of the CAs,
and everyone can verify the validity of its outputs.

We assume that communication between users and CA-s d.eethficate issuance process and the CRL
retrieval, are conducted over anonymous and authenticitmuhels. In practice, a user might communicate
with the CA, e.g., while retrieving the most recent CRL far group, over an anonymous channel such
as TOR [11]. Alternatively, the CRL-s of all groups can be bomed and stored at some highly-available
site where they can be either retrieved in bulk (if small) @ some Private Information Retrieval (PIR)
protocol, e.g., [10].

We assume that all communication within the AH-AGKA protbtakes place over a broadcast channel.
We assume weak synchrony, i.e., the protocol executes mdsoun practice, this assumption implies that
the protocol is started by a broadcast message indicatinguimber of participants. Weak synchrony among
the participants also assumes that the length of the timdomirassigned to each protocol round is large
enough to accommodate clock skews and reasonable comrionidalays. The broadcast channehist
assumed to be authenticated. In fact, the broadcast chsrumd for purely notational convenience since
we make no assumptions about its reliability. Specificallyen a participant broadcasts a message, it could
just as well send a copy of this message to every other patitiover a point-to-point link. In our model,
the adversary is assumed to have full control of the undeglyietwork: it sees the messages broadcasted
by each participant in a given round, and decides which ngesswill bedeliveredto each participant in
that round. The adversary can delete, modify or substityar@essage and it can choose to deliver different
messages to different participants.



As a consequence of this model, the security and privacyligitin Hiding) properties of our AH-
AGKA protocols hold, by definition, giveany adversarial interference in the protocol. However, wesstre
that we do not claim angobustnesgroperties of our protocols, apart from the basic corresstniee. that the
protocols succeeds if the players execute the protocolsatohimg inputs and there is no active adversarial
interference in the protocol. Indeed, constructing AH-A&Krotocols which are robust against protocol
interference is an open issue.

Player Instances and Protocol Sessions.In line with prior work [8, 6, 14], our model allows for multig
executions of the AH-AGKA protocol scheduled in an arbirasay, each involving any set of participants.
We model this in the usual way, by assuming that every U5ex U/ can run multipleinstancesof the
protocol. We denote the-th instance of uset/ asIlj;. When playelU starts a new instance of the AH-
AGKA protocol, it creates a new instant; for a locally unique value. Such instances can run on shared
state, e.g., certificates and CRLs held by pldyebut each instance also keeps separate state. Each player
instance can either reject or accept and output a key. Wehsayah instancél;, runs aprotocol session
and we useplayer instanceand protocol sessionnterchangeably, denoting both &;. When referring

to a specific uset/; we usell] as a short-hand version 6[5 , to denoter-th instance of uset/; ¢ U.
Each instancéI] keeps a state variableid] which can be thought of assession id (However, see the
remark below.) ThIS variable is protocol-dependent, butunprotocols it is always set to an entirety of the
communication sent and received by instafi¢e

AH-AGKA Syntax. We define an AH-AGKA scheme as a collection of the followingagithms:
e Setup: on input of security parameter, it generates public parametgrsams.

e KGen: executed by the group CA, on inpptrams, it outputs the group public kefPX and the
corresponding secret k&§/iC for this group, and an empty certificate revocationi®&L. We denote
the group corresponding to the public KBYC asGroup(PK). If PK was generated by the CA that
maintains grougs thenGroup(PK) = G.

e Add: executed by the CA of groug’, on inputSXC andU € U, it addsU to G by generating a
certificate forU, denotectert. If cert is issued under a public ké9/KC, we say thatert € Certs(PK).

e Revoke: executed by the group CA, on inplite U, it retrieves the correspondirgrt € Certs(PK)
issued forl/, and revokes it by adding a new entry to the grédpL which uniquely identifiegert.
If cert is revoked, we say thatrt € RevokedCerts(CRL).

e Handshake: this is the AH-AGKA protocolitself, which is an interactive protocol executed by some
set of participants\ = {U;, ..., U, } C U. EachU; uses its distinct new instané& and runs session
II7 of the protocol on some inputs:

(cert], PK],CRLT)

wherePC] is the public key of the group which, itf;’s view, sets the context for the protocoért]
is U;’s certificate inGroup(PK7 ), andCRLT is the CRL of this group. An instancd1? either rejects
or outputs an authenticated secret Key.

Remark: Our syntax, though adopted from earlier AGKA models of [6], 1ig slightly different from

that used in some other work on Key Agreement protocols, BY.where a protocol instance takes as
additional input, a so-callesession-iddifferent from thesid] value introduced above). In this alternative
model, creation of a fresh and locally-unique session-wsnmon to all players engaging in the protocol,

2As in standard authentication protocols in the PKI moded, rtfore recent CRL, the better. However, we do not assume that a
player has the most recent group CRL.



is assumed to be done before the protocol starts. In conimaiste model of [6, 14], which we adopt, no
such agreed-upon value is assumed. (However, our protaiwigarly to the AGKA protocol in [14], in the
first protocol round create a valyenhich plays the role of such unique session-id input. As a sainark,
we point out that unlike the protocol of [14], our AH-AGKA prcol manages to piggyback the creation of
this session-ig onto the first round of the protocol, thus saving one commatitn round.)

Partnering. The purpose of thélandshake protocol is to allow a set of participants withatching inputs

i.e. specifying the same group, to establish a common key. We use the tegasion partneringo denote
protocol instances that run on matching inputs and whengralbcol messages between them are properly
delivered. Namely, we say that a set of protocol instaf{d€s, I17?, ..., II7» } is partneredif there exists

a single public keyPK and a single valugid such that, for each sessidfi’, in this set it holds that
PK!* = PK andsid]" = sid. The latter implies complete agreement among these plagerices with
regard to the set of messages sent and delivered betweeririkesces.

Correctness. We say that an AH-AGKA scheme ixorrect if, assuming that all keys, certificates and
CRL-s are generated by following tiBetup, KGen, Add andRevoke procedures, the following holds:

For any set opartneredsessiondI’, I1%?, ..., II7» wherecert* € Certs(PK") for eachi, and
cert]" ¢ RevokedCerts(CRL]T-j) for all pairs(i, j), there exists a single unique bit-strifg of
lengthx such that each sessidlj* accepts and outpufs," = K.

We define AH-AGKA security similarly to standard AGKA prows in the PKI model, but we must
adapt these security notions to our setting. In the settiag &dH-AGKA scheme, the protocol participants,
instead of recognizing one another by individual publickeyant to establish authenticated sessions with
anyother participants as long as all these participants areenoked members of the same group. This is
reflected in the fact that a user starts an AH-AGKE protocstiance on just his certificate and the public key
of some chosen grou@. One implication this bears for the AH-AGKA security defiait is that, unlike in
a standard AGKA protocol in the PKI model, our notion of séyumust explicitly include admission and
revocation actions of the CA's which manages the groups.

AH-AGKA security is defined via a game between an adversatyaaset of users communicating over
a network. In this game, the adversary gets to see the pubjis &f all groups, and some number of
certificates in each group, corresponding to all corruptegigrs and leaked secrets. The adversary then
schedules any number éfandshake protocol instances, involving any combination of honestrsisand
groups. The adversary has complete control of the netwak i sees all messages and can delay, delete,
modify, or inject any messages received by the honest @ayEne adversary can also request that some
key established in some protocol sessiomdwealed We say that the AGKA protocol isecureif, for each
(unrevealed) session executed by an honest player, thesadyeannot distinguish the key output by the
player on that session from a random bitstring of the samgther{As discussed below, the only exception
is if the adversary previously requested that a key be reddalr some protocol sessigrartneredwith the
one at hand.)

Formally, security is defined via an interaction of an adseas algorithm.4 and a challenge€ on
common inputgx, [, m). The interaction starts witi generatingparams via Setup(x), and initializingm
groupsGy, ..., Gy, by running theKGen(params) algorithmm times. C initializes all members in these
groups, by running th&dd(SK;) algorithm, for eactSK;, j = 1,...,m, for I times. This wayC generates
m certificates for every/ € U, thus making every user a member of every group. The adyerbgets all
generated public keyBX4, ..., PK,,. It then chooses any subdeev C U/ of initially corrupted players and
gets the set of their certificat¢sert; ) | U; € Rev, j € {1,...,m}}. For each groug in G, the challenger
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runs theRevoke algorithm to revoke all corrupted membérse Rev, and outputs the resulting CRL-s for
each group, i.eGRL1,...,CRL,,.

After this initialization, .A schedules any number blandshake protocols, arbitrarily manipulates their
messages, requests the keys on any number of the (accegeBgidNns, and optionally corrupts any number
of additional players, all of which can be modeled Myissuing any number of the commands listed be-
low. Finally, A stops and outputs a single bit The commands the adversary can issue, and the way the
challengerC responds to them, are listed below. In all commands we asthat& < U/ \ Rev.

e Start(U,G): If U = U, for someU; € U\Rev andG = G| for someG; € G, the challenger retrieves
key PIC; for groupGj, certificatecert; ) issued to playet/; for groupG/;, and theCR L, for group
G, and initiates instancélj;, wherer is an index that has not been used by usebefore. The
challenger follows thélandshake protocol on behalf of instanddj; on inputs(cert; ), PC;, CRL;),
forwarding any message generated by this instangk fbhe challenger keeps the state of all initiated
instances. We denote the group upon wHikh s initiated asGroup(I17;). If II7; is triggered orG;
thenGroup(1I7;) = G;. C also hands tod the indexr of this instance.

e Send(U, T, M): If instancellf; has been initiated and is still active delivers aset M of messages
to this instance. The se¥t should normally contaim — 1 messaged/,, ...M,, forn > 2, which
models the messages that instahte receives in the current round of this protocol. The instance
interprets these messages as broadcasted-blydistinct instances of the protocol in the same round.
(A could send an empty sgi1, but an instance would invariable immediately abandon toéopol
as a result.)C forwards to.A any messagel;; generates in response. IIff; outputs a key( stores
this key with the session state.

e Reveal(U, 7): If IIf; outputs a session kdy, C sendskK to A. If the session has either not completed
yet or has been rejected,sendsA4 a null value.

e Test(U,7): This query is allowed only once. If sessidlj, has output a session kedy, C picks a
random bitb. If b = 1, thenC sendsK to A. If b = 0 thenC sends tad a randomk-bit long value
K, instead ofK. If the session does not exist, failed, or is still actives tihallenger ignores this
command.

Session Freshness and Legitimate Adversaries We call an active sessidii;, of an uncorrupted playér
fresh if for all sessiond17;, partnered witHI7; the adversary has not queriBaveal (U, 7) or Reveal(U’, 7).
Note that the adversary knows whether any two sessions aeeped or not. We call an adversagy
legitimateif it poses aTest query on a fresh sessidiy , and afterwardsA does not issue Beveal query on
I17; or anyTl7,, partnered witHI7,.

Definition 1. Denote the final output of adversary in the above interaction with the challengéron
common input$k, [, m) as(A,C(b))(x,l,m). We define the adversary’s advantage in the security game as

Adv 3 = |Prb=1b" |V — (A,C(b))(k,l,m)] — 1/2|

where the probability is taken over the random coins used BypdC and a random choice of the challengers
bit 5.

We call an AH-AGKA schente, t, ¢s, ¢, [, m)-securein the Random Oracle Model if for all legitimate
adversaries4 who run in timet, start g; AH-AGKA sessions, and makig hash function queries, it holds
that Adv 5 < e.



We define the affiliation-hiding property using a similar gaas in the security definition in the previous
section. However, the adversary’s goal in the affiliatiddidig game is not to violate semantic security of
some session key (as in the security game above) but to learpatticipants’ affiliation. We model the
property of the attacker'sability to learn the affiliation by comparing two executions of theedary:
one where the challenger follows the protocols faithfultykmehalf of all honest participants, and the other
where the adversary interacts wittsimulator, instead of the real users. The simulator attempts to follow
the adversary’s instructions, except that it is never toddgroups for which the (scheduled by the adversary)
Handshake protocol instances are executed, i.e., if the adversanessaStart(U, G) query, the simulator
gets only an identifie(z‘%l) which is uniquely but arbitrarily assigned to the pdif, G) € U x G.

Consequently, these inputs are also the only thing thatdhersary can possibly learn from the interac-
tion with a simulator. The simulated protocol messages eagal only whether or not two sessions involve
the samduser,group) pair. However, the adversary does not leaiohadroup, nor can he decide if two
instances of two different users belong to the same grouge that we allow the adversary to be abldimd
instances which involve the same (user,group) pair bechessmulator gets the saméfor such instances.
Indeed, all AH-AGKA schemes we propose in this paper arealité in this sense.

Formally, the game betweea andC?", on common inputs:, [, m, starts exactly as the game between
A andC in the security definition above. Namel2" runsSetup(x) — params, then runsm instances of
KGen(params) — (PK;,SK;), for j = 1,..,m, thenim instances of thé\dd algorithm, Add(SK;) —
cert;!), fori = 1,...,l andj = 1, ..., m, which generaté certificates for each of the: groups.C3" gives
to A all public keysPK; and the certificates of all corrupted usefsert;) | i € Rev,j € {1,...,m}},
revokes all of these certificates, and finally publishes ¢iselting CRL-s.

After this initialization,.4 schedules any number Bbndshake instances and manipulates their messages
in arbitrary ways. We model this interaction betwedrandC2" by allowing .4 any number of queries
Start(U, G) andSend(U, T, M) to C, as in the security game.

However, A does not make @est query in this game. Instead?" picks a random bib at the beginning
of the execution and performd’s commands depending on the valuebofif b = 0, C2" responds to4’s
commandsStart(U, G) andSend(U, s, M) by following the corresponding protocol on behalf of theruse
exactly as in the security game in above. Otherwise-(1), C?" replies to.A with messages produced by
the simulatorSZ M, which is an interactive machine which runs only on inpptisams, and, instead of
Start(U, G) andSend(U, s, M), it gets on-line inputStart(id) andSend(id, M), respectively, wherél is
a unique (and random) string assigned to tliisG) pair. At the end of the game, the adversary outputs a
bit '.

Definition 2. Denote the final output of adversary in the above interaction with the challengé?" on
common inputsk,l,m) as (A,C?"(b))(x,l,m). We define the adversarial advantage in the affiliation-
hiding game as

Adv 3" (k,1,m) = |Pr[b =¥ | b « (A,C*"(D))(k,1,m)] — 1/2]

where the probability is taken over the random coins usedltand C" and a random choice of the chal-
lengers bith.

We call an AH-AGKA schenwffiliation-hiding if for any probabilistic polynomial-time adversaoy,
for parameterd anm polynomially related tos, the adversarial advantagedvjh(m, [,m) is a negligible
function ofk.

Remark on the Affiliation-Hiding Notion.  First, note that the above definition restricisto only Start
andSend queries. This results in a restricted notion of affiliatiuiding, which can and should be strength-
ened to include the information thé can gain about session keys from higher-level protocolslaiea by



Reveal queries. Such strengthening is in fact necessary in peabgcause without theeveal queries, A’s
view does not even contain information on whether a givesigadnstance failed or succeeded, which is
something that a network adversary can very often learnactjge. We leave consideration of stronger
notions of affiliation-hiding to the full version of the pap&econd, an exact-security version of the above
notion can be easily extrapolated, and this too will be idetliin the full version, together with the exact
security bounds on affiliation-hiding for the two AH-AGKAemes presented in this paper.

3 Cryptographic Assumptions

Definition 3. LetS-RSA-IG(x) be an algorithm that outputs so-called safe RSA instancespairs(n, )
wheren = pq, e is a small prime that satisfiegcd(e, ¥(n)) = 1, andp, ¢ are randomly generated-bit
primes subject to the constraint that= 2p’ + 1, ¢ = 2¢' + 1 for primep’, ¢, p’ # ¢'.

We say that the RSA problem(ist)-hard on2x-bit safe RSA moduli, if for every algorithg that runs
in timet we have

Pr[(n,e) « S-RSA-IG(k),g <« Z;, : A(n,e,g) = zs.t.2°=¢g (mod n)] <e.

Definition 4. Let G be a cyclic group of prime ordey with a generatorg. We say that the Square Diffie-
Hellman Problem (SDH) s is (e, t)-hard if for every algorithmA running in timet we have

Prix — Zq : A(g9,9%) = gx2] <e.

DDH oracle: A DDH oracle in groupG is an algorithm that returns 1 on queries of the fdgry®, ¢¥, ¢°)
wherez = xy mod ¢, and0 on queries of the fornig, ¢*, ¢¥, g°) wherez # zy mod q.

Definition 5. We say that the Gap Square Diffie-Hellman Problem (GSDH) augf is (¢, t)-hard if for
every algorithmA running in timet on access to the DDH oracleDHg in groupG we have

2

Priz «— Z; : APPHs (4 g7y — 2] < ¢,

It is well known that the SDH problem is equivalent to the camapional Diffie-Hellman (DH) problem.
Just note thag™ = (g(=+¥)*/(g**¢¥*))2"", and that oracle errors can be easily corrected since beth th
SDH and the DH problems are random self-reducible. Simjléile GSDH problem is equivalent to the
Gap Diffie-Hellman problem (GDH), which is believed to bedar many prime-order groups. In particular,
generic group algorithms cannot solve it in time better thay/q) [5].

4 AH-AGKE Scheme based on the RSA Assumption

e Setup: On security parameter, theSetup procedure picks two other parametefsandx”. Param-
eterx is the length of the key output by the key agreement protbiasidshake, «’ is an additional
parameter which in practice can b0, andx” is chosen so that the RSA problem fbt”-bit safe
RSA moduli has at least-bit security (see theorem 1 for exact bounds). Wheneveraydrat two
distributions D1, D, are statistically close we mean that the statistical difiee between them is
bounded byO(2-"(%:+"%"))  The setup procedure also chooses-hit prime ¢ and defines hash
functionsH; : {0,1}* — Z7 andH : {0,1}" — {0, 1}".

e KGen: Generate ax”-bit safe RSA modulus = pg, wherep = 2p' +1,q¢ = 2¢' + 1, andp, ¢,p’, ¢’
are primes. Pick a random elemerg.t. ¢ generates a maximum subgroupif, i.e. ord(g) = 2p'¢/,
and s.t.—1 ¢ (g). (This holds for about half of the elements4tj, and it is easily tested.) Note that
in this caseZ;; = (—1) x (g). Therefore, in particular, if < Z,, andb « {0, 1} then(—1)"¢* is
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distributed uniformly inZ*. RSA exponentsge, d) are chosen in the standard way, as a small peime
andd = e~! (mod ¢(n)). The secret key i§p, ¢, d) and public key ign, g, ¢). Key generation also
fixes a hash functiod,, : {0,1}* — Z,, specific to the group modulus®

e Add: To add uselU to the group, the manager picks a random stiifig— {0, 1}“' and computes
a (full-domain hash) RSA signature o, o = h? (mod n), whereh = H,(id). U’s certificate is
cert = (id, o).

¢ Revoke: To remove uset/ from the group, the manager appends stiiitp the groupCR L, where
(0,id) is U’s certificate in this group.

e Handshake: This is an AGKA protocol executed by some get= {U,...,U,} of players. Each
player U; starts a sessiofil]* for a (locally) freshr;, on someinputs (cert;, (n, e, g),CRL;) S.t.
(n,e, g) is some public keycert; = (id;,0;) is U;'s certificate for this public keyn, e, g), i.e.
cert; € Certs(n,e,g), andCRL; is the (hopefully recent) CRL for grou@roup(n,e,g). The
Handshake protocol is in Figure 1 below (see also the note below).

Notational Simplifications. In figure 1, we make several assumptions to simplify the ftatFirst, we
denote the set of participating players as sinigly..., U,,, even though they can be anyusersl;,, ..., U;,
amongi/ = {Uy, ...,U;}, for anyn > 2. Secondly, we assume that the order between the playershuvhi
the full protocol is determined on-line according to theypls’ messages in Round 1, is simply, ..., U,,.*

For simplicity of notation, we assume that the indices cyntulon, i.e.U,.1 = U;. We also assume
that each instancH! starts on the same public kéy, e, g). (Since we are not concerned with robustness
properties in this paper, we do not concern ourselves witht Wwappens with executions of instances which

are notpartnered and in particular do not run on the same public keys.)

Affiliation hiding property of the protocol in figure 1 dependrucially on the fact that if the distribution of
variabled; is indistinguishable from uniform ovef,, then the distribution ob; = 6; + kn is statistically
close tolU,..~ .. There is an alternative way that we can use to hide the rah@g which does not take
the x bandwidth overhead [2], which is to repeat pickifiguntil 6; € {0,1}2%"~!. However, the expected
running time of such procedure is twice larger than ours.edweer, such procedure can be subject to timing
attacks. Note that the overhead~obits our procedure incurs is small comparedéd = |n|.

Protocol Correctness. To see that the protocdfiandshake in Figure 1 is correct, note that if some
sessiondI{, ..., II7» are partnered then they all run on the same public (key, g), and all the values
(01,1dy, 1, X1)seeekOnyidn, pn, X)) are exchanged between them without interference. Thexefiost of

all, each participating player will create the same ordeorgrihe participants, and hence each player labels
all the exchanged values in the same way, so we can assuminfaicity that this ordering coincides
with the original labels = 1,...,n. Each player also computes also the same valaadsid;. To see
that each player computes the same valyand hence the same kdy;, note that for eacly we have

3Selecting separate hash functigh, for every group is done purely for notational conveniencetamily of hash functions
H, :{0,1}* — Z, s.t. eachH,, is statistically close to a random function with rangg, can be easily implemented in the random
oracle model with a single hash function with rargé” . E.g.,Hn(m) = H(n,m) mod n.

4This ordering is done as follows: In the protocol each pldygepicks a long-enough random nonge(see Round 1 in figure
2), which U; then includes irall its messages in the protocol. After receiving some set ofsages in Round 1 (note that we
assume weak synchrony), every receiver sorts all the redenessages by the increasing order of thesealues. Each player
then (re)labels all the participants and the messagesvest@i Round 1, including its own messages and its inputgrdow to
this order. The actual protocol runs exactly as the simglifitocol in figure 2 in the case that this ordering of plaggeated in
Round 1 coincides with the original labels= 1, ..., n of the participantd/, ..., U, assumed for simplicity in figure 2.

10



The inputs of instancB? of playerU, arecert; = (0, d;), (n, g, ¢e), andCRL,. Note thato¢ = H,, (id;) mod n.

[Round 1]: U; picks random values; — {0,1}, t; «— Z, /2, andy; < {0,1}3%, computesd); = (—1)%c;g"
(mod n), setsf; = ; + vn for randomw — [0, ..., |22"+% /n|], andU; broadcast$d; , id;, ju).

e Assume that playel/; receivedn-1 messageds, idi, pi1) , -, (Biz1, idi—1, pie1)s (0it1,idiv1, it1),
(0, 1d,, 1) in Round 1. (This is a simplification. In the real protocol leaeceiverU; orders the
received messages, and the players which sent them, acgaodvalues: these messages contain. $ee
footnote 4.)

If any two messages contain the same vatlyeor the same valug;, playerU; rejects.

L4 Ui setss = ((n7 g, 6)7 {977 Zd_]7 Mj}jZI,...,n)

o If id; € CRL, for anyj thenU; picks a random valug; in Zg and setseject = T. Otherwise,U;
computesX; = H@((2i+1)ti, S)/H@((Zi_l)ti78) (mod qA) , Whereziﬂ = (9i+1)26(hi+1)_2 (mod n)
andz;_, = (Gi_l)Qe(hi_l)_Q (mod TL)

(Note that if(id;, o;) is a certificate for public keyn, e, g) andf; = (—1)%0;g' +vn thenz; = g2¢%i.)

[Round 2]:
U, broadcast$X;, u;).

o If in Round 2 player U; receives n-1 values X; accompanied byu;’s that match the
L1y ey fhie1s fhit1, -5 b, VAlUES above, if]'[;?:1 X; = 1, and if reject # T, thenU; computes
k; = H@((Zi_l)ti,s)n . (Xi)n_l . (Xi+1)n_2 X o (mod qA) and outputss; = H(ki,sidi), where
sid; = ((n, g, 6), {Hj, Z'dj, i, Xj}jzl,___,n). OtherwiseU; rejects.

Figure 1. RSA-based Affiliation-Hiding AGKE protocol

zj = 02°h;? = g*%, and therefore, each; = Hy(g**'i!+1,5)/H;(g*=1%, 5) (mod §). Note also that

H;((zi—1), s) = Hy(g*'-1%, s). It follows that for everyi we have
ki = Hg(g?i=2" | s) % Hy(g?*+1, s) * ... % Hy(g**=2%-1 s) mod ¢
Therefore all the key#(; are the same as well.

Theorem 1. Assuming that the RSA problem(ig, ¢')-hard on random safe RSA moduli of leng#’,
the above tuple of algorithm&etup, KGen, Add, Revoke, Handshake) is an (e, ¢, ¢s, g7, [, m)-secure AH-
AGKE scheme in the Random Oracle Model as long as

€ ~ mx (26/ + 2qu2—,.@/ + q§2—3n + qs2_,{n+2)
t & = (mxtyy+ qs * qu * teap)

wheret,, is the time to generate an RSA private/public key pair@pglis the time of (multi)exponentiation
modulon, for 2«”-bit RSA moduli.

Proof. Assume a legitimate PPT adversadyinteracting with challenge€ as described in the security
definition (definition 1). Assume that there are groups and users in the universe, and thdt runs
in time ¢, starts at most; sessions, and makes at mast queries to the hash functions,,, H;, and
H. Assume w.l.o.g. thafd always makes a test query on some session. Dehdie = |Pr[b =
b]|, i.e. the advantage of the adversatyin the interaction withC, by e. We split the security proof into
two parts. First we describe the simulation proced@W€M, which using.A, attempts to solve fot s.t.
2¢ = g mod n on an RSA challengén, ¢, g). This simulation procedure will run in timg& approximately
t+ (m * thg + qs * qu * teap). We will then argue that the probability fZM's success in solving the
RSA challenge is at least > ¢/m — (2lqu 2~ +¢2273% + ¢,27%"+2), assuming that elemenin ST M'’s
challenge is such thgt-1) x (g) = Z. Note that ifn is a safe RSA modulus then for a randgne 2
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this holds with probabilityl /2 — O(2-1"/2) ~ 1/2. Therefore, the success 8Z.M on solving a random
g € Z is (statistically close to) at least half the above expmssivhich completes the proof.

PART |: CONSTRUCTION OF A SIMULATOR

Setup. Given the RSA challengén, e, g), STM follows the Setup algorithm with parameters, «’, and
k" = |n|/2. As mentioned above, we assume that) x (g) = Z*.

Initialization of all groups. Let G* € G be a group s.t. the probability that the adversaryests on
II7 s.t. Group(II7) = G* is not less thari/m. (Recall that we assumd always tests some session.)
Simulator SZM initializes all the groups irG exceptG* as in the real protocol.SZM also creates
certificates for each of these groups by following &l procedure, and in the rest of the simulat®h.M
simply follows theHandshake protocol on behalf of all instancd3] s.t. Group(II7) # G*. Thus, in the
rest of the simulation description we will only descrilS& M'’s actions with regard to instancé§] s.t.
Group(II7) = G*.

For groupG*, ST M sets its public key aén, e, g), and creates the certificates for each revoked player
U; € Rev by simulating an RSA signatured;, ;) under key(n, e, g). Namely,SZ.M picks two random
valuesid; « {0,1}* ando; « Z;, and assigngl,,(id;) to o (mod n). If A has already queriefl,, on
anyid;'s chosen bySZ M in this way,SZ.M abandons the simulation. For eath¢ Rev in G*, STM
picks a random valugl; — {0, 1}%*P% ST M hands taA all the public keys and the certs of the corrupted
players.

Hash queries toH,,, H; and H. For each query to H,,, STM picks randonu «— Z;; and setdd,, () =
a® - g~' (mod n). W.l.o.g, assume thall,, is queried on eachd; for U; ¢ Rev. Denote value: chosen
above forx = id; asa;, andH,(id;) = a5g—* ash,. For the queries td{ and H;, SZM simply passes
these queries té/ and H;, respectively. However, for each query s) to H;, STM also tries to solve the
RSA challenge as we describe below.

After the above initializationSZ.M must provide responses fot’s queriesStart, Send, Reveal, and
Test, which would look taA as the real execution, i.e. asitis interaction with challengeaf. For notational
convenience assume that the local indeof each instancél; is globally unique (e.g., assume thain II7
has a suffix). In the following description, we add as a superscript tistance index to all values related
to II7. For exampled?, X7 will refer to message8;, X; sent by instancél]. As mentioned above§Z M
responds te4’s commands relating to instanc&§ s.t. Group(1I7) # G* by simply following the honest
players’ protocol. However, for queries involving groGfj, simulatorSZ.M respondes as follows:

Start commands.For theStart(U;, G*) commandSZ M initializes instancél]. STM picksb] «— {0, 1},

V[ « Zps, and compute®] = (—1)" - a; - g% (mod n). Notice that the distribution of] in this
simulation and in the real protocol are statistically clbgeause both are statistically close to uniform in
Zr. Note that sincé; = (a;)¢/g, therefored? = (—1) - (h;ig)?- g7 = (=1)% -hd. g4t = (=1)% -hd. gt7
(mod n), wheret] =~7 4+ d (mod ¢(n)/2). The simulator does not know eithéror ¢7, but will use the
above relation to solve fog? later. STM also chooseg] «— {0,1}3%, v « [0, ..., [22"+%/n]], sets
07 = 07 + v7 and replies witH67, id;, u7).

Send queries.Consider an instandg] created by th&tart command above. We denote thend command
to this instance corresponding to Round 1 of the protocdbdm;, and theSend command corresponding
to Round 2 of the protocol b§end,. In the following statement, just like we did in the desddptof the
protocol, we assume that the index of playgrinvolved in sessiofdl] belongs to set € {1,..,n}. (In
generali € {1,..,1} wherel = |U| > n, but the proof in the general case is easy to extrapolate fhem
proof we give here.)

For theSend, (U;, T, {é}, iZl;, ﬂ;}j:17,.7n,#i) command, unless there are collisiongds or p's, STM

setss] as in the protocol. If anjfd;’s are onCRL; thenSI M setsX] «— Z; andreject] = T'. Otherwise,
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SIMsetsX] = ¢, /cl; | (mod ¢) where values] ; for j =i—1andj = i+ 1 are chosen as follows.
If 3 somell}, which received th&end; query s.t.:

1. (97, ,zd, N ) = (QJ,ZdJ,,uJ)
2..(07) idy, i) = (07 id], puT) for j' =i’ + Lorj =i — 1
3. siT,/ =s] andrejeth-T,/ £T

thenSZM assignSch — c{,'j,, Wherecj,’j, is a valueSZ M has previously chosen when dealing with the

Send; command to sessioHZT,'. Note that this case corresponds to an adversary who hpmestes the
messages of matching instandés andHT' from one to another. In such case in the real execution these
two instances would compute the same vaiZU]e_ c e where

/
ol .= Hy((27)%,s]) and ciTlij, = H;((25 Vo sT)

2¥) J

If any of these conditions are not met, which correspondshéodase where there is no instariﬁg’
which runs on matching inputs d$], or when the adversary actively interferes in the commuioica

between these two instance®/M picks a fresh random valug ; < ZZ. In both casesSZM stores
[7,107, sT, (9},2‘?1;,/1;), CZj] in a table denoted’y,. Finally, STM replies with( X7, u] ).

For all theSend, (U;, 7, { A},ﬂ}}jzl,__,n#,-) commandsSZM abandonsl7; if valuesji? are not correct
or I7_ lXT #1, WhereXT X[, otherwiseSTM setssid; as in the protocol, computes

K= (cfm)" - (X)) (XL)" 2 (X)) (mod ) 1)
and outputds] = H (k7 ,sid;).
Reveal queries.OnReveal (U;, 7), if instancell] has output a session kéy’, STM delivers it toA.

Test query. Finally, if adversary issues commaiiést (i, 7) thenSZ.M picks a random bit asC does, and
if b =1 thenSZM replies withK to A. Otherwise SZM returns a random value §0,1}"*.

Computing the RSA challenge Every time.4 makes a queryr, s) to H;, ST M attempts to solve its RSA

challenge as follows. For each enfgyII7, Z,(HT zd],u]), ci;lintableTy, s.t. sT = s, STM wants to
check if
r=((0)(h)72) = (0)*0F(a/g)720F) = (6/a)* TV g71g*" (mod n) )
whered = 07, a is the value s.th = H,(id;) = a® - g~* (mod n), and(t,v) = (t7,~7) defined when
sessionlI] was started. Note that if = (2]7)%7, i.e. A queriesH; on pair(r,s) = ((2;) sT), where
&7 = (67)%(h)~% andt] is the value that satisfig = (—1)7 (h)?g"7 , thenr = ((67)%(h) %)%
The waySZ M can verify if equation (2) holds is to compute

=7 (0/a) > FMg™>7  (mod n) (3)

and test ifw® = ¢2. If this holds therSZ M extractsy® by computingw® ¢, whereq, 3 satisfyea+23 = 1.
PART Il: ANALYSIS OF THE SIMULATION

First note that if the adversart runs in timet then the running time#' of the above simulatafZ M is
dominated by + m * ty4 + qs * qu * texp, Wherety, is the time to generate an RSA private/public key pair
andt.,,, is the time of an exponentiation moduto
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Denote asV, the real network as executed by the challer@eiith a fixed bitb. Recall that ift = 0 then
C sends to4 a randomk-bit long value and ih = 1 thenC delivers the session key of the tested instance.
We also denote aSZ.M;, an execution of the above simulat8¥ M with a fixed bitb on challenggn, e, g)
whereg satisfies(—1) x (g) = Z".

We define the following events:

NEy: A outputs 1 on interaction withv,.

NEg : A outputs 1 and tests sessiiii s.t. Group(II7) = G, on interaction withVy,.

SEg . A outputs 1 and tests sessiiii s.t. Group(II7) = G, on interaction withSZM,,.

sCollision: There is a usel/; s.t.s]' = s> for somer; # 7, either in an execution or in a simulation.

H,Failure: A queriesH,, onid; for someU; € Rev beforethis value is chosen, by in an execution
and bySZ M in a simulation.

N_EG*,b = NEg- p A —(HnFailure V sCollision)
SEg+ b = GEg+» A —(HyFailure v sCollision)

HgQuery: There is a sessiol] s.t. A queriesH; on pair(z‘;)tf, s7), for j =i—1orj = i+1, which
relates to thidI} session, i.eT = (67)%(H,(id;))~2, andt] satisfiesy® = (67)%(H,(id;)) 2.

Note that by the assumption thatlv 5 = |Pr[b’ = b]| > ¢ we have| Pr[NE;| — Pr[NEg]| > 2¢. Also,
sincePr[Ep] = > 5cq Pr[NEg ), let G* € G be a group s.t.

| Pr[NEg- 1] — Pr[NEg- o]| > 2¢/m 4)

Assume that this is a group chosen by the simul&d\1 above. (Note thaSZ M could also gues§*
with 1/m probability.) We will argue the following four facts:

| Pr[NEg: ] — Pr[NEg+p]| < Pr[H,Failure A sCollision] forb=0,1 (5)

Pr[H,Failure A sCollision] < lgu2~" + g2 - 273 (6)

| Pr[SEg- 1] — Pr[SEg-o]] < qu2™" (7)

| Pr[NEg- p, | =HgqQuery] — Pr[SEg-, | “HgQuery]| < ¢.27% *2 forb=0,1 (8)

Note that by inequalities (4)-(7) it follows that for eithiee= 0 or b = 1 we have:
| Pr[NEg- 3] — Pr[SEq-p]| > ¢/m — (Igu2™" + q2273% + qu27" /2) > ¢/m — (2lqu2™" + ¢?27°")
Together with (8), this inequality implies that
Pr[HgQuery] > ¢/m — (2qu2_“/ + q§2_3“ + q32_“”+2)

Since whenever everi;Query happens the simulat@ZM solves its RSA challenge, this implies our
claim thate’ > e/m — (21q 2" + ¢2273% + ¢,27%"12)

It remains for us to argue that statements (5)-(8) abovecithdh®ld. Note that inequality (5) follows im-
mediately from the definition odNEg- ,. For inequality (6) observe thétr[H,Failure] < lgr2~" because
|Rev| < I and the response on each queryHg is a random element in the set of sig@ 1}*'. Also
Pr[sCollision] < ¢2 - 273 because a collision is] values for any usel/; can only happen if two sessions
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ITI7* andII]* of this user choose the same vajue = ;2. Since every session choosesifsvalue at
random in a set of siz2~3%, and there are at mogt sessions, the above bound follows.

Equality (8) is also straightforward to see. First note thatstatistical difference between all the values
07 in the execution and the simulationgs2—*"+2, because for eadi?, the difference between distribution
of 7 chosen as in the execution gs« Z,,,, and the distribution of value§ = 7] + d (mod ¢(n)/2)
for 47 uniform in Z, , (recall that this is how valu€] is defined in the simulation), is at magt~"+2.
Everything else in the execution and the simulation is ithsted in the same way, providegdis correct
and evenH,Failure does not happen, except for the way valulejsare computed. Now, iHgQuery does
not happen, i.e. if for all sessions], adversary4 does not query the hash functiéfy, on the proper pair
(éf)tf, sT) that corresponds to tHé&! session, then the ways are computed in the execution (as outputs of
H;) and the way they are picked in the simulation (at randorﬂ;‘irexcept if two sessions are partnered) are
the same fromA’s point of view. The reason that’s the case is that the ongeda the protocol execution
when two sessiori7, IT;, compute twa: values on the same input issif = s7, . But if there is no collisions
in s values (everiCollision) then this implies in particular that that the adversarymated messages of these
two sessions between each other, and in this case the simSIaf\M also makes the twe values equal to
one another.

It remains to argue that inequality (7) holds. Note that thb difference in these two interactions is
that in SEg- 1 A gets keyK? = H(k7,sT) on testedI?, while in SEg- o A gets a randonk-bit value
instead ofK7. Note that inA’s interaction withSE, if we disregard for a moment the informatiohgets
from queries toff (k7 , s7) for anyTI7 (this information is contained in the answersTeft and Reveal
queries), then valug’ is hidden fromA in an information-theoretic way, i.e. it's uniformly digiuted
in zZ; independently from everything elsé sees. The reason that’s the case is because, by equation (1),
for eachll], valuek; is distributed independently fromd’s view as long as, ; is independent from
A’s view. Dlsregardlngéls queries toH, the only way value:j; , enters into the information gets in
the simulation is viaX] = ¢, /c]; ; (mod §), where thecZT’ZJrl is chosen independently fronj, ,,

exceptf II7 is partnered by4’s Send; commands with some other sessltbp’ (see the three conditions on
sessiongI’ andHT, in the procedure fo§ZM onSend; query). In that case we havg; = c, 7 for some
j =14+ 1andj’ = £ 1, and thus we have to askdf,_, is still perfectly uniform glvenXT,XT Let
us call a pair(HlT,HZT,') relatedif this is the case and assunje= i + 1 andj’ = ¢ — 1 (in general there
are three other cases fgt to pair up these sessions, but the argument given here caxtdreded to this
general case). LGHT"l ”” be sessions s.t. for eaghsessmn:ﬂ K andH fl are related in the above
way. However, even in thls case each variable,_,, taken by |tself is stlll uniformly distributed nZ x
(althoughnot independently from one another) givetis view X“‘1 , ...,X ", because eacl;, sets one
constraint between twads but there are: + 1 independently chosers invoIved

Finally, let us put back the additional information relatedany of these:;, ;. -1 values that4 gets from

hash function outputsH(ij , s;J ). Note thatA gets to see these outputs from bothRts/eal and Test
queries, andd can queryH to search for the matching Va|l£l$j for anyHTij in a chain of related sessions

7_

;' I T Learning any such Y value implies learning the correspondlqg __, value, and together

i1 )

Tzn Tim
with X this leads to recovery cll valueSC21 -1 G —q - However, A can only makeyy

hash quenes té{ and since each of these values is (|nd|V|duaIIy) uniforrﬂ}‘n the ability to queryH can

leak information on any of these values with probability atsty,2~"', because is a x’-bit prime. This
implies theg,2~*" bound on the distance between the two simulations) fer0 andb = 1. O

Theorem 2. The AH-AGKE protocol defined by the above tuletup, KGen, Add, Revoke, Handshake) is
Affiliation-Hiding.

Proof. Since theid values are chosen independently of the group, the only saldech can reveal some-
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thing about the group membership of the honest player aré Wadues. We claim that the distribution of
valued sent by an honest user in this protocol is statisticallyetosa uniform distribution of2x" + «)-bit
strings, denoted,..., .. Recall that for all group§/1, ..., G,,, we have2s” = |ni| = ... = |n,|. We use
U =~g V to denote that distributiofy is statistically close td in the sense that the difference between these
distributions is at mosD (2™ (%)),

As we noted in the construction, valugs1)®g? (mod n) are uniformly distributed irZ;: for (b, t) «
{0,1} x Zyp . Take anyh € Z; ando = h? mod n. Define a random variabl, ; = (—1)’¢*o mod n.
Since multiplication by is a permutation ir¥Z}, we have

{0,630,y (01} x 25, = Zn

SinceZ, ) s Zayq, the above implies that
{§b7t}(b,t)<—{0,1}><Zn/2 ~s Zy,

Because the proportion of elements4p which are divisible by’ or ¢ is 0(2"’””), we haveZ: ~g Z,.
Therefore

{00,03 (6.1)— 0.1} %2,/ S Zn
Finally, if & is chosen uniformly ifo, ..., | 22" % /n|], this implies that for evergx”-bit n we have

_ ~ 2% 4k
{Obe + kn} k) —101% 2,03 2 s, 5 10,1}

Therefore the difference between the distribution of valijein the protocol execution and a simulation
where these values are chosen uniformly am@hg + «)-bit strings, is at mos©(2-™"(%+")), Since
there arey, sessions the difference between the distribution of adwgssview of an interaction with the
network and an interaction with a simulator is at magd (2~ (%)), O

5 Affiliation-Hiding AGKA Scheme based on the Diffie-HellmanProblem

We present the DH-based AH-AGKA scheme. Due to space camistiae present only the scheme, a
sketch of correctness, and the statements of theorems ibseturity and affiliation-hiding. The proofs
will be included in a full version of this paper [13]. We nobat the proof of security of this AH-AGKE pro-
tocol follows a similar logic to the proof of security of theSR-based AH-AGKA protocol in the previous
section, but it includes rewinding.

e Setup: The setup algorithm outputs the standard discrete Idgariarametersp, ¢, g), i.e., primes
p, q of size polynomial i, s.t. g is a generator of a subgroup #J of orderq. We also define hash
functionsH, : {0,1}* — Z,, H, : {0,1}* — Z,, andH : {0,1}* — {0, 1}".

e KGen: The secret key is chosen as a random numberZ, and the public key ig = ¢* (mod p).

e Add: For any usel/ in the group(C.A computes the certificatert as a Schnorr signature [15] on an
empty message under the kgynamelycert = (w, t) wherew = ¢" (mod p), andt = r + zH,(w)
(mod g), for randomy «+ Z,. Note that(w, t) satisfies equatiop’ = wy™«(*) (mod p).

e Revoke: To revoke uset/, theCRL is appended with (hash of), where(w, t) wasU’s certificate.

e Handshake: This is an AGKA protocol executed by some get= {U,...,U,} of players. Each
playerU; starts a sessiol;’ for a (locally) freshr;, on someinputs (cert;, y, CRL;) S.t.y is some
public key,cert; = (w;, t;) is U;’s certificate for this public key, i.e.cert; € Certs(y), andCRL is
the (hopefully recent) CRL for grou@roup(y). TheHandshake protocol is in Figure 2 below.
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The inputs of instancH] of playerU; arecert; = (w;, t;), y, andCRL;. Note thatgt = w;ya(wi),
[Round 1]: PlayerU; picksp; < {0, 1}, and broadcastsu;, i;)

e Assume that playel/; receivedn-1 messagesws, ji1), «.., (Wi—1, fti—1), (Wit1, fit1)s eoer (Wi, fir) IN
Round 1. (This is a simplification as in Figure 1. See footdo}e _

If any two messages contain the same valyer the same value;, playerU; rejects.

o U;setss = (y, {wj, ptj}j=1,...n)-

o If w; € CRL; for anyj thenU; picks a random valug; in Z, and setgeject = T'. Otherwise,U;
computesX; = H,((zi+1)%,s)/Hy((zi—1)",s) (mod q) wherez;_; = w;_1yHaWi-1) andz;;; =
wi+1yHQ(wi+1)_

(Note that if (w;_1,t;—1) and(w; 11, t;+1) are certificates under keythenz; ., = gti+1.)

[Round 2]: PlayerU, broadcast$X;, 1;).

e If in Round 2 player U; receives n-1 values X; accompanied byu;’s that match the
Py ooy i1y [it1, -, n, VAlUes above, and ieject # T, thenU; computesk; = H,((zi—1)%,s)™ -
Xz-nil . TXV;_EQ " - Xi_o (InOd q) and Output§(l- = H(kl, Sidi), Wheresidi = (y, {U)j, Hj, Xj}j:l,...,n)-
Otherwisel rejects.

Figure 2. DH-based Affiliation-Hiding AGKA protocol

Protocol Correctness. Similarly to the correctness argument for the RSA-basetbpab, if n instances
II7 are executed on the same public keynd their messages are properly exchanges, they output same
valuess?, sid], and they all compute the same key material

kT = Hy(g" ", s) x Hy(g"""**,s) % ... ¥ Hy(g" 2" s) mod q

7

wheret;'s are defined by the first message as in Figure 2. Therefopaglhered sessions also output the
same keyd<.

Theorem 3. The AH-AGKA scheme defined by the above t(fdeup, KGen, Add, Revoke, Handshake) is
affiliation-hiding.

Theorem 4. Assuming that the GSDH problem in a subgroup generated toy Z; is (¢',t')-hard, the
AH-AGKA scheme defined by the above typkeup, KGen, Add, Revoke, Handshake) is (e, ¢, ¢s, ¢r, I, m)-
secure in the Random Oracle Model for

¢ ~ cex(€+ (Imgn/q+ (g:)°27°))
t ~ t— Cy * ZQS((]H)Ztexp

wheret,,, is a cost of exponentiation in the subgroup generategldmydc;, c. are small constants, assuming
the cost of accessing the DDH oracle is constant.
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