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Summary

We describe group sequential tests for a bivariate response which treat the two
response components separately, rather than through a single summary statistic. Such
methods are necessary if the two responses concern different aspects of a treatment;
for example, it may be desirable to show that a new treatment is both as effective and
as safe as the current standard. We present a formulation of the bivariate testing
problem, describe tests which satisfy Type I error conditions, and show how to find
the sample size guaranteeing a specified power. We describe how properties of group
sequential tests for bivariate normal observations can be computed by numerical

integration.



I. Introduction

This paper was motivated by a design problem concerning a proposed clinical
trial of an analgesic drug used to relieve arthritic pain. The primary endpoint was an
efficacy measure of the amount of pain relief experienced by the patient but a
secondary endpoint concerned a possible effect on the arthritic condition of the joint.
The latter might be considered a ‘‘safety’’ variable. It was thought that the two
outcome measures might be related, if for no other reason than that the drug’s success

in relieving pain may lead the patient to be less careful in protecting the joint.

Interim analyses in many clinical trials now usually include examination of
several patient outcome measures. These endpoints may include several efficacy
variables and/or several safety (e.g., toxicity) variables. Lan and Friedman (1986) cite
the WHO clofibrate study where incidence of coronary heart disease was the primary
endpoint but interim analyses were also performed on total mortality experience.
Whitehead (1986) describes an example where outcome measures were mortality and
the incidence of acute graft versus host disease in a bone marrow transplantation trial;
he gives another example involving both birthweight and length of infants in a trial of
treatments during pregnancy. Cox (1989) and Tang, Gnecco and Geller (1989a)
describe trials in which there were both major and minor endpoints to be considered.
Other examples of multivariate endpoints have been given by O’Brien (1984) and by

Pocock, Geller and Tsiatis (1987).

For ease of exposition, we shall consider only the bivariate case, where each
patient’s data consist of the pair (X;,X;). Our methods can be extended to the
general multivariate case; however, the formulation is somewhat more complex and
the computations more tedious. We shall sometimes refer to X; as the *‘efficacy”
variable and X, as the ‘‘safety’’ variable although they might instead be primary and
secondary outcome measures of either type. For a prototype case we consider the one
sample problem where the pairs (X;,X,) from different patients have independent
bivariate normal distributions each with common mean g = (uy, #,) and correlation p.

We shall take the variances to be known and by appropriate rescaling we can then
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assume VarX; = VarX, =¢? =1, without loss of generality. Also without loss of
generality, we can assume that high values of u; and u, are considered desirable.
Thus, for example, if X, reflects the degree of toxicity, then a high value of u, implies

low toxicity.

Group sequential tests for the one-sample bivariate normal, known variance
problem can be adapted easily to a wide variety of other situations. Sequences of test
statistics with the same joint distributions could arise, for example, in a placebo-
controlled comparative trial where test statistics are based on differences between the
sample means in the two treatment groups. The same basic methods can also be
applied when the variance is unknown, as long as the first group size is large enough
to provide a good estimate of o?. Sequences of test statistics with approximately the
same joint distribution as a sequence of sums of independent normal variates arise in
trials with other types of response, for example, survival data (where the sequence of
logrank statistics is approximately jointly normal), binary data, stratified 2x2 tables, or
problems with covariates; for details see Whitehead (1983, Chap. 3), Pocock er al.

(1987), and Jennison and Turnbull (1989).

Most methods for handling multiple endpoints have involved reduction to a
univariate or ‘‘global’’ statistic: to a 22, F or Hotelling’s T? statistic; to a likelihood
ratio statistic (Kudo, 1963 and Perlman, 1969); to an approximate likelihood ratio
statistic (Tang, Gnecco and Geller 1989b); to a linear combination or generalized least
square statistic (O’Brien 1984); or to a Bonferroni adjusted P-value which considers
the most extreme univariate P-value (Geller and Pocock, 1987 and Pocock er al.
1987). O’Brien (1984) also considers a nonparametric global statistic. These statistics
are then used to test a null hypothesis u; =, =0, say, and the corresponding tests
can have good or poor power properties depending on the class of alternative
hypotheses considered. In the sequential setting, group sequential designs based on 22
and F-statistics have been considered by Jennison and Turnbull (1991a) and a group
sequential design based on O’Brien’s generalized least square statistic has been

proposed by Tang et al. (1989a).
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However, it will often be inappropriate to combine efficacy and safety variables
into a single global statistic. Different response variables may appear in quite different
ways in the formulation of a testing problem; Pocock et al. (1987) remark that ““there
are often disparate features of patient response unsuitable for combining’ and they go
on to describe an instance of myocardial infarctions and non-cardiovascular deaths in a
coronary heart disease trial. Similarly, it may be inappropriate to combine different
responses into a single measure to define a rule for early stopping. In this paper we
shall concentrate on the case of a bivariate response and we shall introduce group

sequential tests which involve the full bivariate nature of the response.

As mentioned by Goldman (1987), in pharmaceutical trials, proposals to the U.S.
F.D.A. are expected to address side effect issues, even though efficacy is of primary
interest in Phase II and III trials. For ethical reasons there will be interim monitoring
of the safety variables; early stopping will be considered if there appears to be an
unacceptable level of harmful side-effects. The role of the efficacy variables in early
stopping depends on the circumstances of the trial. In the case of a comparative trial
for the treatment of a life-threatening disease, ethical considerations may demand that
the trial be stopped early if one treatment proves superior, as happened, for example,
in the AZT trial for AIDS (Fischl et al. 1987, Barnes 1986). Otherwise, for example
in some pharmaceutical industry applications, a trial may be allowed to continue to the
planned termination even if efficacy results appear positive early on, in order to obtain
the strongest possible evidence on safety and subgroups for submission with the New
Drug Application; see Enas er al. (1989). Early stopping for economic reasons may be
considered if results appear negative, so called ‘‘abandoning of lost causes’, as

discussed by Gould (1983).

In this paper we shall consider both fixed sample and group sequential designs
for a study with bivariate response. We formulate the basic one-sided testing problem
for a bivariate response in Section 2 and describe a fixed sample solution in Section 3.
In Section 4, we propose a general form of group sequential test; details for specific

cases are presented in Section 5. Finally, in Section 6, we discuss variations on the
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basic method, including adaptation to unpredictable group sizes and connections with
other problems, in particular the comparison of two treatments with a control when

response is univariate.

2. The One-Sided Hypothesis and Two-Decision Problem

When deciding on actions to take regarding acceptance or rejection of a new
treatment, it is useful to set up regions of indifference; see, for example, Meier (1975),
Freedman and Spiegelhalter (1983) and Armitage (1987). With regard to variable X,
i=1,2, we shall assume that there are constants ¢; < §; such that the new treatment is
preferred if y; >&; and is unacceptable if p; <g;, but the region & <p;<6; is
considered a region of ‘‘equivalence’” or ‘‘indifference’’. The methods of Freedman
and Spiegelhalter (1983) could be used to elicit these constants in practice. When the
two variables are considered jointly, the parameter space for g is divided into nine

regions as shown in Figure 1.

Figures 1 and 2 about here

However, in the decision problem, one of only two, not nine, decisions must be
made, namely acceptance or rejection of the treatment. Acceptance might mean, for
example, proceeding to submit a New Drug Application to a regulatory body. The
idea of considering just two possible actions may be an oversimplification but it is a
convenient one and will often be appropriate. The nine regions in Figure 1 can be
collapsed into two regions in several different ways; four of the most reasonable are
displayed in Figure 2. Situation (a) occurs if the new treatment is acceptable as long
as it is not unacceptable on either individual variable, whereas, in situation (b), the
treatment must be preferred on both variables in order to be acceptable. Situation (c)
might apply when X; is an efficacy variable and X, a safety variable: for an
improvement in efficacy u; must be in the preference zone, but for safety at least

comparable with the current standard u, need only be in the equivalence region.
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Finally, (d) represents a situation in which the new wreatment will be deemed
acceptable if it is at least equivalent with respect to both variables and preferred on at

least one.

It is convenient if all four situations (a) to (d) can be handled with the same
theory. This can be achieved by considering a transformed problem with shifted

variables, where
in case (a): X is replaced by X —(¢g;, &),
in case (b): X is replaced by X —(&;, &),
in case (¢): X is replaced by X — (6y, &)

In case (d) there is no simple shift of origin but a compromise is to replace X by
X — (3(&1+61), 3(ey+8,)). The means puy and p, are transformed correspondingly.
From now on, we shall assume we are working with the appropriately translated X and
u vectors. The advantage of using such a transformation is that there is now a single

common region over which to control the maximum Type I error, defined to be
o =max {7z (1, ) ; py S0 or py <0} 2.1

where 7 (uy, i) is the probability of accepting the treatment when u = (yy, i1;). We
shall consider procedures that satisfy a Type I error requirement a<a” where

0<a” <1 is prespecified, and ¢ is defined by (2.1).

3. Fixed Sample Design

We consider a fixed sample design for the problem of Section 2 in which »n
bivariate normal observations {X;;;i=1,2, j=1,...,n} are taken, E(XU,ij)=u,
Vaerj = Vaerj = ¢2=1 and Corr(le,ij)=p for j=1,...,n. We define
5(} =n"1(X;; +...+ X;,), i=1,2, to be the sample means and compute standardized

values Z; = X;Vn, i=1,2. We consider the decision rule:
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If min(Z;,Z;) > @ '(1-a") accept the treatment,
otherwise reject the treatment.

Here o is the specified size of the test and @ is the standard normal cdf. By using a
coupling argument whereby sample points are mapped from (x;,x) to
(x; +vy,%, +y), it is easy to show that z (u,, #,) is monotone increasing in both

arguments. Hence, for any value of p,

max { 7 (4, ly); #1 S0o0r uy; <0} < max{z(0,),n(,0)}

*

= Pr{Z;>® (1-a")} = Pr{Z,>&'(1-a")} = o,

ie., the maximum Type I error equals the specified value a*. In general the
acceptance probability, Pr { min(Z,, 2Z,) > ®(1-a”)}, depends on pu as well as the
correlation p. This can be easily calculated using tables or computer programs for the
bivariate normal distribution, thus the operating characteristic of the test with »n
observations can be constructed and this can be used to choose a suitable sample size.

For example, n could be chosen to satisfy a power requirement of the form
mw (g, hy) 2 1-B" whenever gy >puf and p, = p, (2.2)
for specified 8 (0<" <1) and alternative g™ = (uy , #45) where g1 >0 and y; > 0.

If the correlation is not known but can be bounded below by some known value
p. then the Type II error probability requirement can be guaranteed with a sample size
found by solving = (,uf , ,uz*) =1-B" with p= pz. This follows from Slepian’s
inequality (see, for example, Tong, 1980, p. 12), which implies that the acceptance
probability is an increasing function of p. In particular (2.2) will be satisfied for any

p if the sample size is calculated for the most extreme case, p = —1. In this case
m(uypy) = (P py —c) = ®(c—Vnp) ) (2.3)

where x* =max (x,0) and ¢ = CI)'l(l — a”). Thus, the sample size, n, needed to

achieve 7 (41, #t3) = 1-" can be found using standard univariate normal tables.
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If the correlation is unknown but can be assumed positive, as might be the case if
response variables are both measures of efficacy, the power requirement (2.2) can be
guaranteed by solving x(,uf , ,u; )y =1-8" with p=0. In this case the necessary

sample size is found by solving
7 (ug,43) = (1=®(c—Vnp))} (1-®(c-Vnp)} = 1-4
and, again, only univariate normal tables are needed.

As an example, suppose a” =0.05, and Type II error B =0.2 is to be allowed
at g* =(0.2,0.2). Then c¢=® 1(0.95)=1.645. Table la shows the sample size n
needed for various values of p. Sample sizes for general Uy = ,uz* =p", say, general
o, and the same " and B* can be obtained by multiplying the entries by the factor
(0.20/u™)?. In practice these values should be rounded up to the next highest
integer. It can be seen that, apart from when p is very close to 1, the sample sizes are
not very sensitive to changes in p. Table 1b shows the effect on the power at
4" =(0.2,0.2) as p varies for a fixed sample size n =206, i.e., the sample size needed

to achieve power 0.8 if p=0.2.

Tables 1a and 1b about here

4. Group Sequential Designs

We now generalize the fixed sample test of the previous section to a group
sequential design. Suppose the kth interim analysis (k21) takes place after n(k)
bivariate observations, Xy, ..., X, have been sampled. If groups are of equal size,
g, then n(k) =gk, if g=1, we have the fully sequential case. We define the sample
mean vector in(k) =()—(.1,n(k), X.Z,n(k)) = X X;/n(k), where the sum is taken over all
n(k) observations in the first k groups. Now define standardized variates
Zy = (Zi» Zoy) = Xy Vn(k). Thus each Z; is bivariate normal with mean uNn(k),
unit variances and correlation p. In addition, defining sample sums

n(k)

St = I X; = Z\Nn(k) (k=1)
j=1
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and Sq =(0, 0); the increments {S;—S;_;, k> 1} are independent bivariate normal with
means my M, variances my, and correlation p, where my =n(1) and my = n(k)-n(k-1),

k>1, is the size of the kth group. Thus
Corr (Zy., Zye) = (p+ (1=p) &) Nn(k)n(k’)
fori,I=1,2 and 1<k<k’, where §; is the Kronecker delta.

We shall construct a group sequential test in which there are to be a maximum of
K analyses (also referred to as ‘‘stages’’) where K and, in this development,
n(1),...,n(K) are fixed. The decision rule involves specification of continuation,
acceptance and rejection regions in R? at each of K possible stages. Following on
from the fixed sample case discussed in Section 3, we shall restrict our attention to

‘“‘L-shaped’’ regions, i.e., sequential decision rules of the form:

If Zy, > byy and Zyy > by, stop at stage k and accept the treatment,
if Zy, <ay or Zy, <ay stop at stage k and reject the treatment,
otherwise continue to stage k+1.

Here a; <by fori=1,2 and 1 <k<K-1 and ayx = b and ayx =byg in order to
ensure termination at stage K. The boundary values {ay,by;1<k<K} and
{ayy, by 1Sk<K} are to be chosen to satisfy the error probability requirement

a=a" where a, the maximum Type I error, is defined by (2.1).

Operationally, the test can be described as running univariate group sequential
tests separately on each variable, stopping the trial to accept the treatment only if both
univariate tests stop to accept at the same stage, but stopping to reject as soon as

either univariate test rejects. At each stage, the plane R? is divided into 3 regions,
R =1{(Z1,2y): Zy <ay or Z, <ayl,
Q@ = {(21,22)1 Zl >b1k and Zz >b2k}’

Gr=REAR,\ &y
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Respectively, these are called the rejection, acceptance and continuation regions at the

kth stage. These regions are illustrated in Figure 3.

Figure 3 about here

We define
m@) =Pr, (Z;et;,15i<k-1and Z € &)

to be the probability that, for given g, the treatment is accepted precisely at stage k

(1<k<K). The overall probability of acceptance is then
K
) = X m).

A coupling argument, similar to that in Section 3, shows that 7 (1, #,) is a monotone
increasing function of both x; and u,. Thus, in order to satisfy the Type I error
probability requirement that z(u) < a" whenever gy <0 or pu, <0, it is sufficient to
ensure that 7 (0, =) <a” and 7 (==, 0) < a”. This can be done by choosing constants
{ayg,bie; 1<k<K} and {ay,by;1<k<K)} from separate univariate group
sequential designs that have Type I error a’, ie., {ay, by} must form the boundary
for {Zy,) of a size @" one-sided test of Hy : g1 =0, vs Hy : y; >0, etc. Proposals for
such one-sided testing procedures have been discussed by several authors, including
DeMets and Ware (1980, 1982), Whitehead and Stratton (1983), Jennison (1987) and
Emerson and Fleming (1989). Some specific boundaries are discussed in the next

section.

It is important to note that only the properties of univariate group sequential tests
are needed to construct a bivariate procedure of this type satisfying the Type I error
requirement that ¢, as defined by (2.1), is at most a". In particular, knowledge of p is
not needed. If each univariate test has size @ and power y at the alternative u= pu’
then, not only do 7z (0,e)=m(,0) =", but also 7z (p’,)=m(e,u’)=7y.

Additionally, the expected sample sizes or ‘‘average sample numbers’” (ASNs) in the

limiting cases where y; or u, are infinite, are simply those of the univariate
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procedures. However, for general values of (u,, i,) the operating characteristic and
ASN must be computed from bivariate calculations, even if p=0. In particular,
bivariate calculations are needed to evaluate the acceptance probability at ¢ in order

to check requirement (2.2).

Since the joint distribution of (Zq,...,Z;) is known for any posited values of
41,4y and p, the operating characteristic and stopping time distribution can be
computed for any sequence of cumulative group sizes {n(k); k=1, ... ,K} and for any
specified boundary. This is accomplished by the two-dimensional analogue of the
recursion formulae given by, for example, Armitage, McPherson and Rowe (1969) or
DeMets and Ware (1980). We present details of the numerical integration of up to

2K-dimensional integrals in the Appendix.

Suppose equally sized groups of g observations are to be used. Since the
boundary values {ay, b, } are defined on the scale of the standardized statistics, {Z;},
it follows that values of x (u) at g =(0,0), (0, <) and (e, 0) do not vary with g if
{ay, by} are held fixed. Thus, having chosen {ay,b;} to meet the Type I error
requirement @ = a”, the group size, g, can be selected to give 7 ( ,ul* , ,u; )y=1-8" and
it follows from the monotonicity of z (u) that the Type II error probability requirement
(2.2) will then be satisfied. The required value of g does depend on p. However, we
shall see in Section 5 that this dependence is slight and a reasonable initial estimate of
p may suffice for design purposes. In view of the bivariate nature of y, it may well
be helpful to examine a test’s operating characteristic, 7 (1), over a range of values of
4. A contour plot of 7z, an example of which appears in Section 5, provides a very

helpful tool to this end.

5. Choice of Boundary Values

We now discuss specific choices of the constants {ay, by ;i=1,2, k=1,... ,K }.
We restrict ourselves to the case of equally spaced analyses, where n(k)=gk for
common group size g. Recall that the Type I error probability requirement a < o,

where « is given by (2.1), can be met by considering properties of univariate tests.
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For each i=1, 2, we require that the one-sided group sequential test with boundary
{ay.by ; k=1,...,K} for the sequence of standardized statistics {Z;, ;k=1,...,K}
should have probability & of exiting by the upper boundary when u;=0. The group

size, g, can then be chosen to satisfy the Type II error requirement (2.2).

DeMets and Ware (1980, Sec. 3.2) suggested construction of a one-sided
univariate test by adapting the two-sided test of Pocock (1977); starting from a two-
sided test of Hy : y;=0 with Type I error 2a”, the lower boundary and the terminal
decision to accept H,, are combined into a single decision ‘‘accept Hy’’, Hy is rejected
only if the upper boundary is exceeded. This procedure gives a boundary of the form
bii=..=bg=a=ay and a;; =...=a; g} =—a. We shall refer to this as Procedure
A. The parameter a is chosen to satisfy the a" condition and is equal to the constant z
for a=2a" of Pocock (1977); values of a for " =0.005, 0.025 and 0.05 and
1<K<10 are tabulated by Jennison and Turnbull (1989, Table 1).

Tables 2a and 2b about here

We consider the example of Section 3 with a*=0.05 and Type II error 8 =0.2
to be allowed at g = (0.2, 0.2). However, suppose now observations are to be taken
in up to K=5 groups of equal size g. From Table 1 of Jennison and Turnbull (1989),
we find a=2.122, which specifies the test for given g. Table 2a gives the maximum
sample size, gK, needed for selected values of p. The group size is obtained by
dividing this entry by K (=5) and rounding up to the next highest integer. The table
also gives the expected sample sizes when u = (0, 0), (0.2,0.2), (0, =) and (0.2, o).
By symmetry, the ASNs at g =(e,0) and (e, 0.2) are the same as at (0, ) and
(0.2, o), respectively. All sample size entries in the table should be multiplied by the
factor (0.20/u*)? for the problem of general o, @*=0.05 and B*=0.2 at
u*=(u",pu"). Comparison with Table la shows that reductions in ASN over the
fixed sample size test are achieved at g2 =(0.2,0.2) and (0.2, ); the larger ASNs at

1£=1(0,0) and (0,) are a consequence of the high expected sample size of the
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underlying DeMets and Ware (1980) univariate test at £ =0. Again, it can be seen
that the required sample sizes are not very sensitive to changes in p except for values
of p very close to 1; since the maximum Type I error does not depend on p at all, a
reasonable estimate of p will suffice for design purposes. The effect of misspecifying
p on the power of a test is illustrated in Table 2b which shows power at
u* =(0.2,0.2) for various p when g =52 (gK =260), the group size that would be

chosen to achieve power close to 0.8 if p were estimated to be 0.2.

The two-sided univariate test of O’Brien and Fleming (1979) can be adapted to
give a one-sided test in a similar fashion. In the resulting bivariate test we set
by =aVKlk =—ay (1<k<K-1, i=1,2), and b;x = a;x =a. Again a must be chosen to
satisfy the a" requirement; it is the same constant as is needed for a two-sided
O’Brien and Fleming test with probability a" of exiting by the upper boundary when
u;=0 and values for a” =0.005, 0.025 and 0.05, and 1<K <10 are given in Jennison
and Turnbull (1989, Table 1). The O’Brien-Fleming design has the features that very
strong evidence is needed to stop a trial at the earliest stages and that the final critical
values are close to those used in a fixed sample test. As for Procedure A, the
univariate test has a high expected sample size at 4 =0 and this leads to high ASNs
for the bivariate test at, for example, g = (0, 0) and (0, «2). To avoid this problem, we

must start with a more satisfactory one-sided test.

Emerson and Fleming (1989) have proposed a family of one-sided symmetric
group sequential boundaries for the univariate problem. This family contains tests
with boundaries of different shapes, indexed by a parameter p=0. For given values of
p, o, K and g the boundaries for {Z;} of a univariate one-sided test of Hy : ; =0 vs

H, : y; >0, with Type I error ¢, are given by
by = kP ¢
a; = 6Vgk — by (5.1)

where & =20KP“1/\/E , ensuring that g =b;g, i=1,2, and czcl((‘f‘;), is a constant,

independent of g, that can be obtained from Table 1 of Emerson and Fleming (1989).
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(Note that Emerson and Fleming express the boundary values in terms of the sample
sums Vgk Z; and thé above values need to be multiplied by the factor Vgk to obtain
their expressions for {a, b;}). When plotted on this scale against stage number, £,
the boundaries are symmetric about a straight line of slope 6/2 and their shape varies

from triangular for p =0 to pear-shaped for p =0.5.

We construct bivariate tests by defining {ay, by ;k=1,...,K} by (5.1) with
a=a" for i=1,2. This ensures a maximum Type I error probability of a” at
(i1, ) =(0,00) or (eo,0), as required. Incidentally, it also follows that the
acceptance probability or operating characteristic function is 1-a™ at (g, i) = (8, =)
or (o, 8). A search technique can now be employed to find the group size g that

satisfies the Type II error constraint given by (2.2).

Emerson and Fleming (1989) discuss the choice of the parameter p. They explain
(p. 908) that a low value of p implies more conservative testing at the earlier analyses.
A design with p=0.5 might be considered a one-sided analogue of the Pocock (1977)
test, while p =0 is analogous to the procedure of O’Brien and Fleming (1979). If
expected sample size is used as a criterion, Table 2 of Emerson and Fleming (1989)
suggests that, of these two, the design based on p=0.5 is to be preferred. We shall
refer to the bivariate group sequential based on these Emerson and Fleming boundaries

with p =0.5 as Procedure B.

Tables 3a and 3b about here

We consider the same example as that considered previously for the fixed sample
procedure and for Procedure A. Here a’=0.05, ﬁ*= 0.2 at p*z (0.2,0.2) and up to
K=5 groups of equal size g are available. From Table 1 of Emerson and Fleming
(1989) we find ¢ =2.065 for =0.05, p=0.5 and 5 groups of observations. Table 3a
gives the maximum sample size, gK, needed for selected values of p. The group size
g is obtained by dividing this entry by K (=5) and rounding up. From g and c, the
boundary values can be calculated using (5.1). Table 3a also gives the ASNs at
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u=(0,0), (0.2,0.2), (0,) and (0.2, ). Again all entries should be multiplied by
(0.20/u*)? for general ¢ and u"=(u”, ") in place of (0.2,0.2). Table 3b shows
the effect on the power at u*=(0.2,0.2) for this procedure as p varies for a fixed

group size g = 65, (gK = 325), chosen to achieve power close to 0.8 at p=0.2.

Comparing the results of Tables Ia, 2a and 3a, we see that Procedure B’s
increased opportunity for early stopping to reject leads to a much lower expected
sample size, well below the fixed sample size, when the treatment is poor. The one
drawback of Procedure B is its high maximum sample size; this problem could be
alleviated by basing the bivariate test on an Emerson and Fleming (1989) test with
smaller parameter p or one of the efficient univariate tests with low maximum sample
size described by Eales and Jennison (1991). Since the maximum Type I error
probability in (2.1) occurs at g =(0, ) or (e, 0), it may be desirable, instead, to
restrict attention to Type I errors at more plausible values of u. A contour plot of
Type 1 error provides a convenient way of displaying the operating characteristic of a
bivariate group sequential test. Figure 4a shows the operating characteristic of
Procedure B with g = 65; the ASN of this test is shown in Figure 4b. These contour
plots were produced using the CONICON 3 (Sibson, 1987) contour drawing package,

which implements the method of Sibson and Thomson (1981).

Figures 4a and 4b about here

6. Concluding remarks

In some situations, it may not be desirable to stop early for acceptance (see Gould
1983 and Ho 1986, Sec. 2.4). This may be the case if both outcome variables are
safety measures. We can then set by =+ (i=1,2; k=1, ...,K-1) in the procedures
of Section 4. If we leave the other boundary values a;;, ..., a;x and by unchanged,
the procedure will be conservative in that the Type I error will be lower, but of course

the Type II error at u” will increase.
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An important practical problem is how to cope with unequal and unpredictable
group sizes. Our Type I error condition will be satisfied as long as the univariate tests
underlying a bivariate test maintain their Type I errors. This can be achieved using an
"error spending function" approach; see Jennison (1987) and Eales and Jennison
(1991) for a description of the Lan and DeMets (1983) error spending function method
applied to one-sided tests. One situation where unequal group sizes will arise is when
group sizes are chosen adaptively to achieve a maximum sample size appropriate to

estimates of p based on the accumulating observations.

A natural next step is to develop procedures for the two-sided problem, testing
between the hypotheses Hy:u=pu, and Hy :p#py or Hy:peN and Hy 1 ¢ N
where N is a neighbourhood of u,. The acceptance region CQ,( at stage k (1<k<K)
would consist of a bounded neighbourhood of g, surrounded by a continuation region
€, (with Tox empty), the rejection region being K ,=R? \ (&, \ G, These
regions could be constructed from univariate two-sided group sequential tests in a
parallel fashion to the development in Section 3 for one-sided tests. The operating
characteristic and expected sample size function can be computed numerically
following the method described in the Appendix. With the extra boundaries, there is
more freedom and more choices must be made. Similar methods could be applied in

bioequivalence problems, where the roles of Hy and H, are reversed.

Two-dimensional repeated confidence sets, generalising repeated confidence
intervals (Jennison and Turnbull 1989, 1991b), can be obtained by inverting group
sequential bivariate tests. For the one-sided tests of Sections 4 and 35, these sets would
be semi-infinite. Such repeated confidence sets could be used to monitor a group
sequential study in a flexible manner, rather than with a rigid stopping rule. However,
it would be important to tailor their shape so that they provided useful guidance for

resolving the underlying decision problem.

It is interesting to note that the problem of comparing two competing treatments
with a control treatment can be formulated in a way that leads to a structure similar to

the one we have already discussed. Suppose at analysis k, 1<k<K, the statistic Z;;
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represents the observed difference between treatment A and the control, and Z;; the
difference between treatment B and the control. If responses are normally distributed,
the sequence of bivariate statistics, {Zy,Zy;k=1,...,K}, will have the form
described previously, the pair Z;, and Z,, being correlated due to both statistics’
dependence on the control observations. The choice of stopping rule must depend on
the formulation of the testing or selection problem but the same numerical methods
developed for multiple endpoints can be used to design and evaluate the resulting

sequential procedures.

Another situation where the numerical methods of this paper may be helpful is in
studying confidence intervals for the mean of a distribution, observations from which
are correlated with the variable used to define a univariate group sequential test.
Suppose observations (X, X,) are bivariate normal with mean (4;, ¢;) and non-zero
correlation p and data are collected using a sequential stopping rule defined in terms
of the X;s. Methods for constructing a confidence interval for u, in this situation
have been proposed by Whitehead (1986); one application cited is a comparison of two
treatments with respect to the lengths of new-born babies in a sequential trial when the
stopping rule was based on birthweights. Our methods, applied to appropriately
defined bivariate stopping and decision rules, would allow numerical computation of

the coverage probabilities of confidence intervals for u, under specific values of ;.
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APPENDIX

Numerical computation for bivariate group sequential tests

The operating characteristic and expected sample size of a bivariate group sequential
test can be calculated from the terms Pr, (stop to accept at stage k) and Pr, (stop to

reject at stage k) for k=1, ..., K. For the acceptance probabilities, we write

Pry, (stop to accept at stage k) = Pr, (Z; € G i=1,....k-land Z; e @)

= an(zu) f faCzarzn) o [ itz 71 -1) [ faizjizjor. 210 21520

Ry Ra1(z11) Ry; Ryj(zy;

oo [ o 2 ee)) | fazas 72 k-1s 21 210-1) A2k A2y - A2y dyy
Ru Ry (21)

The ranges of integration are, for j=1,...,k=1: Ry; =(ay;, %), Ryj(z1;) = (ay;, o) if
z1;<by; and Ryj(z;;) =(ay;, by)) if zy; 2byj; and for j=k: Ry =(by,>°) and
Ry (214) = (by, ). The functions f;; are conditional probability densities: fi;(z11) is
the marginal density of Z;;, f,1(zy;,21;) is the conditional density of Z,;; given
Zyy =1zyy; for j>1, f1(z1,2;,j-1) is the density of Z;; conditional on Z; ;_; =2y ;
and f5;(z3), 23 j-1,21j>21,j-1) is the density of Z;; conditional on Z; ; ; =2, ; 5,
Zyj=z; and Z;; =2y 1. For equally sized groups of g observations, the

conditional densities are obtained from

Zi ~NQEgp, D

Zyn | Zy =2y ~ N (Ng i +p (211 Vg 1), 1-p?)

Z1i 1 Zy jo1=nj00 ~ NQ@D m+{G-Dj}zy j1, 1))
and

Zyj 1 2y j1=23 j-15 217715 Z1,j-172 i1

~ N (N(gl) N {UG=1Dj} 23 j_1+plz j=NLG=DI) ) 21 joy =N(&L) ], (L=p ) ).

The probabilities of rejection can be expressed as multiple integrals in a similar way.
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We have evaluated these multiple integrals using Simpson’s rule to replace the
integrals by sums and then summing over zy; and zyy, zj5 and zy, efc. in order. If

Simpson’s rule is applied each time with a grid of n points, the total number of

arithmetic operations is of order Kn* and the numerical error decreases as n™%.

Modern computers are capable of carrying out these calculations rapidly; exact
computations for sequential r-tests described by Jennison and Turnbull (1991a), which
also involved keeping track of two statistics from stage to stage, required a similar

amount of computation.

In principle, the same computational approach may be used with more than two
variables but the computational burden increases rapidly. For a d-variate response the

number of arithmetic operations required is of order Kn?* but numerical error is still

4

of order n™%. In particular, for d>4 a better rate of convergence per numerical

operation would be obtained using Monte Carlo simulation.
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Table 1a. Sample sizes, n, required for fixed sample procedures with " =0.05,
B°=0.2 at g =(0.2,0.2) and selected values of p.

pl -1 0.5 -02 0 02 0.5 08 1

n l 2141  213.8 2120 209.6 2060 1979 183.8 1546

Table 1b. Power, 1-8, at p=u" =(0.2,0.2) for procedure with a” =0.05 and
n =206, for selected values of p.

P | -1 =05 -02 0 02 0.5 0.8 1

1-8 l 0.780 0781 0.786 0.792 0.800 0.817 0.843 0.890
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Table 2a. Maximum sample sizes and ASNs at several values of u for Procedure A
with K = 5 stages, " =0.05, 8~ =0.2 at " = (0.2, 0.2) and selected values of p.

p Maximum sample ASN at (puq, p) =
size, gK 0,0) (0.2,0.2) (0,) (0.2,0)

-1 270.7 256.9 218.5 256.9 145.0
-0.5 271.0 257.3 204.5 257.2 145.0
-0.2 268.7 255.1 195.7 255.0 144.4
0 265.3 2519 189.1 251.8 143.6
0.2 260.4 247.3 181.7 247.2 142.3
0.5 249 4 236.9 168.7 236.8 139.3
0.8 2309 219.2 150.9 219.2 133.9
1 193.9 184.0 121.6 184.0 121.6

Table 2b. Power, 1-8, at u= /t* =(0.2,0.2) for Procedure A with K=5 stages,
a” =0.05 and gK = 260 for selected values of p.

P | 1 -05 -02 0 02 05 0.8 1

1-B8 l 0776 0775 0.782 0789 0.799 0.819 0.848 0.897
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Table 3a. Maximum sample sizes and ASNs at several values of u for Procedure B
with K = 5 stages, o~ = 0.05, B =0.2at u* =(0.2,0.2) and selected values of p.

p Maximum sample ASN at (1, Hq) =
size, gK 0,00 (0.2,0.2) (0,0) (0.2,¢0)

-1 336.5 78.9 198.3 127.1 140.6
-0.5 336.4 86.8 188.3 127.1 140.5
-0.2 3335 914 179.6 126.0 139.8

0 329.8 94.0 173.2 124.6 138.8

0.2 324.2 96.2 166.3 122.5 137.4

0.5 311.2 98.3 154.2 117.6 133.8

0.8 288.0 97.8 137.9 108.8 127.1

1 238.6 90.1 111.1 90.1 111.1

Table 3b. Power, 1 -f, at u= [1* =(0.2,0.2) for Procedure B with K=35 stages,
a" =0.05 and gK = 325 for selected values of p.

p ] -1 ~-0.5 -0.2 0 0.2 0.5 0.8 1

1-5 l 0.782 0782 0.787 0.793 0.801 0.818 0.845 0.894
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Figure 1. Preference regions in terms of g = (i, o).

(= +) ©0,+) (+,+)
Uy =0,
(-, 0) 0,0 (+,0)
Hy =8
(=) ©0,-) (+,-)
My =€ My =6

The symbol +, 0 or — in the first position in each pair indicates that the new treatment
is preferred, considered equivalent or unacceptable, respectively, with regard to the
first variable. The second entry in each pair is similarly defined for the second

variable.
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Figure 2. Possible acceptance and rejection regions for g = (u;, i)

4+ | R A A + R A
Uy 0| R A A Uy 0 R R
- | R R R - | R R R
- 0 + - 0 +
H H1
(a) (b)
+ R A + A A
Uy 0 R R A Uy 01l R R A
- R R - iR R R
- 0 + - 0 +
H H
(c) (d)

Key. The action appropriate for specified values of g is R: Reject treatment, A:
Accept treatment.



Figure 3. Decision regions at stage &
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The test stops to accept at stage  if Z=(Z;,Z,)e &, stops to reject if Z € R, , and
continues if Ze ¢ ,.
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Figure 4a. Contour plot of the operating characteristic of Procedure B with K =35,
a*=0.058"=0.2atu*=(0.2,0.2) and p=0.2.







