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Social dilemmas are central to human society. Depletion of natural resources, climate protection, security of
energy supply, and workplace collaborations are all examples of social dilemmas. Since cooperative
behaviour in a social dilemma is individually costly, Nash equilibrium predicts that humans should not
cooperate. Yet experimental studies show that people do cooperate even in anonymous one-shot
interactions. In spite of the large number of participants in many modern social dilemmas, little is known
about the effect of group size on cooperation. Does larger group size favour or prevent cooperation? We
address this problem both experimentally and theoretically. Experimentally, we find that there is no general
answer: it depends on the strategic situation. Specifically, we find that larger groups are more cooperative in
the Public Goods game, but less cooperative in the N-person Prisoner’s dilemma. Theoretically, we show
that this behaviour is not consistent with either the Fehr & Schmidt model or (a one-parameter version of)
the Charness & Rabin model, but it is consistent with the cooperative equilibrium model introduced by the
second author.

S
ocial dilemmas are situations in which selfish interest collides with collective interest. Every individual has
an incentive to deviate from the common good, but if all subjects acted selfishly they would all be worse off.
Depletion of natural resources, intergroup conflicts, climate protection, security of basic social systems,

workplace collaborations, and price competition in markets are just some of the fundamental situations that can
be modelled by means of a social dilemma. Consequently, understanding how and why cooperation can evolve is
of primary importance across all biological and social sciences1–19.

In modern society, many social dilemmas involve a large number of players: firms trying to sell (approximately)
the same product, countries involved in reducing the greenhouse gas emissions, taxpayers, work groups, etc. Yet,
little is known about the effect of group size on cooperation. Does group size influence cooperation and, if so, how?

A classical point of view states that cooperation should be more difficult in larger groups: since the increase in
the number of people inevitably leads to decreasing individual gains relative to the cost of cooperation, free-riding
would be much more pervasive in larger groups: large groups will fail; small groups may succeed2,5. However,
others pointed out that the increase in the number of people does not necessarily lead to lower individual gains:
the incentive to cooperate can even increase and lead to a positive relation between the size of the group and the
level of collective actions20,21.

These two possibilities can be captured using two well-known economic games.

Public Goods Game (PGG). N $ 2 contributors are endowed with y dollars and must simultaneously decide how
much, if any, to contribute to a public pool. The total amount in the pot is then multiplied by a constant and evenly
redistributed among all players. So the monetary payoff of player i is ui(x1, …, xN) 5 y2xi1c(x11…1xN), where

xi denotes i’s contribution, and the ‘marginal return’ c is assumed to belong to the open interval (
1
N

, 1).

N-person Prisoner’s Dilemma (NPD). N $ 2 agents have the choice of either cooperate (C) or defect (D). To
defect means doing nothing, while to cooperate means paying a cost c . 0 to generate a benefit b . c that gets
shared by all other players. So, if C2i denotes the number of agents other than i who cooperate, then agent i’s

payoff is
bC{i

N{1
{c, if i cooperates, and

bC{i

N{1
, if i defects.

The individual benefit for full cooperation in the PGG is equal to cN and so it increases linearly with the
number of players, while the individual cost for cooperation remains constantly equal to y. On the other hand,
both the individual benefit for full cooperation, b, and the individual cost for cooperation, c, remain constant in
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the NPD as the number of players increases, but, in order to reach the
benefit, one needs more people to cooperate. With the above discus-
sion in mind, we should then observe a positive effect of group size on
cooperation in the PGG and a negative effect of group size on coop-
eration in the NPD.

Experimental research has not helped much so far, though it has
partially confirmed this prediction. Some experimental results sug-
gest that contributions to the public good are slowly increasing with
the number of players22,23, while others suggest no group size effect24

or even a negative effect25. Overall, the picture that emerges is that
group size has a moderate, positive effect on cooperation in PGG: in
her meta-analysis, Zelmer26 uses data from 27 PGG experiments,
conducted using different parametrisations and procedures, and
finds a positive, moderate (at the 10% level) effect of group size on
contributions. However, these experimental studies have been con-
ducted on iterated games, where long-term strategies and group
structure may have played a role in shaping the results.

The effect of group size on cooperation in the NPD is also unclear,
but slightly in the opposite direction than the PGG: some studies
report no effect27, and others report a negative effect28,32. The only
studies regarding one-shot games27,28 have the issue that, together
with the group size, they also vary either b or c. Since these latter
parameters are known to influence the rate of cooperation in oppos-
ite ways29–31, it is then difficult to say which parameter has caused
which effect. To the best of our knowledge, only one study32 keeps b
and c constant while varying the size of the group, but it was con-
ducted on iterated games rather than on one-shot games. In this
study the authors vary the size of the group from two to five players
and find that two people are more cooperative than three, but three
people are statistically as cooperative as four or five people.

The experimental contribution of this paper is to clarify this point:
Does group size have an effect on cooperation in the PGG and NPD
and, if so, how? Since repetitions may create all sorts of ill-under-
stood noise and spillovers across periods that make it difficult to
isolate the effect of the size of a group, we have focused on one-shot
games. We have conducted two experiments using the online labour
market Amazon Mechanical Turk (AMT)33–35, one with the PGG and
the other one with the NPD. In each of these studies we have sepa-
rated the participants in two conditions. In Condition S participants
played in small groups and in Condition L they played the same one-
shot social dilemma but in large groups. Our results are in line with
the ones discussed above. We report a significant negative effect of
group size on cooperation in the NPD and a significant positive effect
of group size on cooperation in the PGG.

Our paper also provides a theoretical contribution. Since coopera-
tion is typically enforced by means of external controls, such as
punishment for defectors or reputation for cooperators36–43, predict-
ing the expected rate of cooperation without forms of external con-
trols would allow to optimise the use of these techniques, besides
shedding light on the cognitive basis of human decision-making. Are
there theoretical models predicting our findings? We show that our
results are inconsistent with both Fehr & Schmidt’s44 and (the one
parameter version of) Charness & Rabin’s45 models, but they are
consistent with the cooperative equilibrium model13, which indeed
predicts both regularities observed. Moreover, since the cooperative
equilibrium is a parameter-free model, we can make a direct com-
parison between experimental data and predictions. We show that,
though the predictions of the cooperative equilibrium model point
qualitatively in the same direction as the experimental data, they are
quantitatively still quite off. Further research is needed to understand
how the model could be improved to fit the experimental data better
even from a quantitative point of view.

Experimental results
We recruited US subjects using the online labour market AMT. As in
classical lab experiments, AMT workers receive a baseline payment

and can earn an additional bonus depending on how they perform in
the game. AMT experiments are easy to implement and cheap to
realise, since AMT workers are paid a substantially smaller amount
of money than people participating in physical lab experiments.
Nevertheless, it has been shown that data gathered using AMT agree
both qualitatively and quantitatively with those collected in physical
labs34,35,46,47.

We conducted two studies: in Study A we investigated the group
size effect on the Public Goods game and in Study B we investigated
the group size effect on the Prisoner’s dilemma. For the PGG we
opted for small groups of size four and large groups of size forty;
for the NPD we opted for small groups of size two and large groups of
size eleven. These particular choices are due to the theoretical pre-
dictions presented in the next section. Indeed, the cooperative equi-
librium model predicts that the size of the group has a weak positive
effect on cooperation in the PGG and so here we opted for a small
group (four people) and a very large one (forty people); on the other
hand, the cooperative equilibrium predicts a strong (exponential)
negative effect of the size of he group on cooperation in the NPD.
Thus we opted for a very small group N 5 2, because it might be
possible that for N . 2 the rate of cooperation decays already so
much as to make every statistical analysis insignificant. The choice N
5 11 for large groups, was made only because we needed a number
such that the benefit for cooperation, that is $0:30, could be easily
divided by N 2 1.

Study A. Group size effect on cooperation in the Public Goods
Game. As in other experimental23–25 and theoretical48,49 works, we
study group size effect on cooperation in the Public Goods game by
keeping the marginal return for cooperation c fixed and increasing
the size of the group. Participants earned $0.30 for participation and
were randomly assigned to either of two conditions. In Condition S
(as in small), they were asked to play a four-player PGG with
endowment y 5 $0.10 and constant marginal return c 5 0.5; in
Condition L (as in large), they were asked to play a forty-player
PGG with the same endowment and marginal return. After the
instructions, participants were asked to answer four compre-
hension questions. Subjects failing any of them were automatically
excluded from the game. Exact full instructions are reported in the
Method section.

62 subjects (31% female, average age 29:1) passed the comprehen-
sion questions in Condition S and 66 subjects (51% female, mean age
28.9) passed the comprehension questions in Condition L. In AMT
experiments with comprehension questions it is virtually impossible
to stop the experiment when a precise number of participants is
reached. In order to compute the payoffs (for instance) in Con-
dition L, we randomly created two groups of forty people each and
we computed the payoffs. Clearly some of the participants belonged
to both groups. For these participants we randomly selected either of
the two payoffs to be their final bonus.

Table 1 reports all relevant statistics. SEM denotes the standard
error of the mean. It is clear that increasing the group size has the
effect that more and more people contribute to the public good. The

Table 1 | Descriptive statistics of Study 1. Public Goods Game with

4 players (Condition S) versus PGG with 40 players (Condition L). In

both conditions, the maximum possible contribution was $0.10 and

the marginal return was c 5 0.5. The results show clearly that the
larger group is much more cooperative than the smaller group
and this is confirmed by the statistical analysis, showing that the
means are signifcantly different (Rank-sum, p 5 0.0002)

Condition % free-riders % contributors Mean contribution SEM

S 48.38 30.64 3.92 0.56
L 21.21 60.60 6.91 0.51

www.nature.com/scientificreports
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visual impression is confirmed by the Wilcoxon rank-sum test (P 5
0.0002).

Study B. Group size effect on cooperation in the N-person Pri-
soner’s Dilemma. As in our first study, also Study B uses US subjects
recruited through the online labour market AMT. Participants
earned $0.30 for participation and were randomly assigned to
either of two conditions. In Condition S, they were asked to play a
two-player PD with benefit b 5 $0.30 and cost c 5 $0.10. in
Condition L, they were asked to play an eleven-player PD with the
same benefit and cost. Also here we asked for comprehension
questions and we automatically excluded from the game those
subjects who fail to correctly answer any of them. Full instructions
are reported in the Method section.

75 subjects (28% female, average age 28:8) passed the comprehen-
sion questions in Condition S and 78 subjects (32% female, mean age
29.6) passed the comprehension questions in Condition L. Table 2
reports all relevant statistics. SEM denotes the standard error of the
mean. It is clear that increasing the group size has the effect that fewer
and fewer people cooperate. The visual impression is confirmed by
Wilcoxon rank-sum test (P 5 0.0404).

Theoretical results
The previous section reported experimental results in support of the
following two findings: (i) Group size has a positive effect on coop-
eration in the Public Goods Game; (ii) Group size has a negative
effect on cooperation in the N-person Prisoner’s Dilemma. Are there
mathematical models of human behaviour predicting both these
regularities?

Here we first consider two of the most widely used models of
human behaviour, the Fehr & Schmidt44 and (a one-parameter ver-
sion of) the Charness & Rabin’s45 models, and we show that none of
them predict the above regularities. Then we extend the cooperative
equilibrium model13 from two-person social dilemmas to some social
dilemmas and we show that it in fact predicts both of them. Proofs of
the results are postponed to the Supplementary Information.

From now on, we fix the following notation. Given a game G, let P
denote the set of players, each of which has pure strategy set Si and
monetary payoff function ui.

Fehr & Shmidt model. Fehr & Schmidt model44 assumes that, given
the strategy profile s, the utility of player i is

Ui sð Þ~ui sð Þ{ ai

N{1
X

j=i

max uj sð Þ{ui sð Þ,0
! "

{
bi

N{1

X

j=i

max ui sð Þ{uj sð Þ,0
! "

,
ð1Þ

where 0 # bi # ai are individual parameters. Specifically, ai

represents the extent to which player i is averse to inequity in the
favour of others, and bi represents the extent to which player i is
averse to inequity in his favour.

Given a population P of players, each of which with parameters
(ai, bi), we denote by m P, NPD b,cð Þð Þ the percentage of people i[P
such that Ui(C, …, C, D, C, …, C) # Ui(C, …, C) in the NPD.

Proposition 1. For fixed b and c, the function m P, NPD b,cð Þð Þ is
decreasing with N.

Similarly, consider the PGG with total endowment normalised to
be y 5 1, so as full cooperation means to contribute 1 and defection
corresponds to contribute 0. Let m P, PGG c,Nð Þð Þ denote the per-
centage of people i[P such that Ui(1, …, 1, 0, 1, …, 1) # Ui(1, …, 1).

Proposition 2. For fixed c, the function m P, PGG c,Nð Þð Þ is inde-
pendent of N.

In conclusion, while the results of our Study B are consistent with
the Fehr-Schmidt model, those of our Study A are not.

Charness & Rabin’s model. We consider the following simple form
of the Charness & Rabin model45. Given a strategy profile s, we
assume that player i experiences a tension between self interest and
common interest and so he or she has utility

Ui sð Þ~aiui sð Þz 1{aið Þ
XN

j~1

uj sð Þ, ð2Þ

where ai g [0, 1] is an individual parameter describing how much
player i cares about the total welfare.

As before, we consider a population P and we denote
m P, NPD b,cð Þð Þ the percentage of people i g P such that Ui(C, …,
C, D, C, …, C) # Ui(D, …, D) in the NPD.

Proposition 3. For fixed b and c the function m P, NPD b,cð Þð Þ is
independent of N.

Proposition 4. For fixed c, the function m(PGG(c, N)) is increasing
with N.

In sum, this one-parametric version of the Charness & Rabin
model makes qualitatively the right prediction in the PGG, but not
in the NPD.

We mention that the most general form of the Charness & Rabin
model takes also into account inequity aversion and uses the utility
function

Vi xi, . . . ,xNð Þ~ 1{aið Þxi

zai di min x1, . . . , xnð Þz 1{dið Þ x1z . . . zxNð Þð Þ:
ð3Þ

Not surprisingly, this general version makes the right prediction in
both the PGG and the NPD (we leave the tedious computation to the
reader). What we find surprising, however, is that the ultimate reason
for the different predictions is caused by two different effects: the
tendency to maximise group welfare favours cooperation in large
PGG and inequity aversion prevent cooperation in the NPD.

We now pass to the description of a model which predicts both
regularities by appealing to the same effect (tendency to maximise
the group welfare) and without using any free parameter. The price to
pay is a major technical difficulty and the fact that the model, at the
moment, is definable only for what we call highly symmetric games.

Cooperative equilibrium. The cooperative equilibrium is a new
parameter-free solution concept for two player social dilemmas,
which has been shown to make accurate predictions of average
behaviour in one-shot13,50 and iterated51 social dilemmas. It is
typically a mixed strategy depending on the payoffs, which orga-
nises all classical regularities: The level of cooperation in the
Prisoner’s Dilemma increases as the cost/benefit ratio decreases;
The level of cooperation in the Traveler’s dilemma increases as the
bonus/penalty decreases; The level of cooperation in the Public
Goods Game increases as the constant marginal return increases.
We now extend this model to some N-player social dilemmas and
show that it predicts also the regularities reported in the Experi-
mental Results section.

Table 2 | Descriptive statistics of Study 2. Prisoner’s Dilemma with 2

players (Condition S) versus Prisoner’s Dilemma with 11 players

(Condition L). In both conditions, b 5 $0.30 and c 5 $0.10. The
results suggest that larger groups are less cooperative than smal-
ler ones. This is confirmed by the statistical analysis, which show
that the means are significantly difference (Rank-sum, p 5
0.0404)

Condition % cooperators SEM

S 41.33 4.87
L 25.64 4.97

www.nature.com/scientificreports
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The key idea behind the cooperative equilibrium is the assumption
that humans do not act a priori as single agents, but they forecast how
the game would be played if they formed coalitions and then act so as
to maximise their forecast.

A general theory for every normal form game would require to
consider all possible coalition structures and deal with the fact that
different players may have different forecasts about the same coali-
tion structure. Here we eliminate this problem by restricting to only
highly symmetric social dilemmas.

. Symmetry. All players have the same set of strategies S and for
each player i, for each permutation p of the set of players, and for
each strategy profile (s1, …, sN) g SN one has

ui s1, . . . , sNð Þ~up ið Þ sp 1ð Þ, . . . , sp Nð Þ
! "

: ð4Þ

. High symmetry. The game is symmetric and has a unique (and
symmetric) Nash equilibrium and a unique (and symmetric)
profile of strategy maximizing the total welfare.

Given the high level of symmetry of the games under considera-
tion, we consider only the two extremal scenarios: the selfish coali-
tion structure and the fully cooperative coalition structure.

Let P denote the set of players, each of which has pure strategy set
S, mixed strategy set P Sð Þ, and utility function ui. Coalition struc-
tures are just partitions of the player set. We denote ps the selfish
coalition structure and pc the fully cooperative coalition structure.
Every coalition structure p g {ps, pc} gives rise to a new game Gp,
where players in the same coalition play as a single player aiming to
maximise the sum of the payoffs of the players belonging to that
coalition. For every highly symmetric social dilemma, Gp has a
unique Nash equilibrium, which we denote sp. Fix i g P and let j
g P \ {i} be another player. We denote Ij(p) the maximum payoff that
player j can obtain by leaving the coalition structure p. Formally,

Ij pð Þ : ~max uj s
p
{j,sj

# $
{uj s

p
{j,s

p
j

# $
: sj[P Sð Þ

n o
: ð5Þ

Ij(p) will be called the incentive of player j to abandon the coalition
structure p

Given a profile of strategies (s1, …, sN), a strategy s’i[P Sð Þ is
called an i-deviation from (s1, …, sN) if ui s’i,s{ið Þ§ui s1, . . . ,sNð Þ.

We denote Dj(p) the maximal loss that players j can incur if he
decides to leave the coalition structure p to try to achieve his maximal
possible gain, but also other players deviate from the coalition struc-
ture p to either follow their selfish interests or anticipate player j’s
deviation. Formally,

Dj pð Þ : ~max uj s
p
i ,s

p
{i

! "
{uj sj,s{j

! "% &
, ð6Þ

where sj runs over the set of strategies such that uj s
p
{j,sj

# $
is max-

imized and s2j runs over the set of profiles of strategies (sk)k?j for
which there is h such that sh is an h-deviation from either sp or (sp

j ,
s2j). Dj(p) is called the disincentive for player j in abandoning the
coalition structure p. The number

ti,j pð Þ : ~
Ij pð Þ

Ij pð ÞzDj pð Þ

will be informally interpreted as the probability that player i assigns
to the event ‘‘player j, knowing that all other players are thinking
about playing according to p, abandons the coalition structure p’’.
In the context of anonymous games, where the reasoning of a player
cannot affect the reasoning of another player, we define, for J=!,

ti,J pð Þ : ~P
j[J

ti,j pð Þ:

Now to define ti,! pð Þ, which is the probability that nobody aban-
dons the coalition structure, we use the law of total probabilities.
Assume, for simplicity, that ti,j(p) does not depend on i and j, as is
the case in symmetric games. We find

ti,! pð Þ~1{
XN{1

k~1

{1ð Þkz1
N{1

k

 !

ti,j pð Þk

~1z
XN{1

k~1

{1ð Þk
N{1

k

 !
ti,j pð Þk

~
XN{1

k~0

{1ð Þk
N{1

k

 !

ti,j pð Þk

~
XN{1

k~0

N{1

k

 !

{ti,j pð Þ
! "k

:

Using Newton’s binomial law we finally find

ti,! pð Þ~ 1{ti,j pð Þ
! "N{1

:

Now, let ei,! pð Þ be the minimum payoff for player i if nobody
abandons the coalition structure p, which is just ui(sp), and, finally,
let ei,J(p) be the infimum of payoffs of player i when she plays s

p
i but

at least one player j g J \ {i} plays a j-deviation from sp. The forecast
of player i associated to the coalition structure p is defined as

vi pð Þ : ~
X

j(P\ if g
ei,J pð Þti,J pð Þ: ð7Þ

Observe that symmetry implies that the forecast vi(p), if p g {ps, pc},
actually does not depend on i and so there is a coalition structure "p
(independent of i) which maximises the forecast for all players.
Moreover, vi "pð Þ~vj "pð Þ, for all i, j g P. We denote this number
v "pð Þ and we use it to define common beliefs or, in other words, to
make a tacit binding among the players.

Definition 1. The induced game Ind G,"pð Þ is the same game as G
except for the set of profiles of strategies: the induced game contains
only those strategy profiles s such that ui sð Þ§v "pð Þ, for all i g P.

The induced game does not depend on the maximizing coalition
structure, that is, in case of multiple coalition structures maximising
the forecast, one can choose one of them casually to define the
induced game and this game does not depend on such a choice.

Since the set of strategy profiles in the induced game is convex and
compact (and nonempty) one can compute Nash equilibria of the
induced game.

Definition 2. A cooperative equilibrium for G is a Nash equilib-
rium of the game Ind G,"pð Þ.

It has been proven in13 that this model organises all classical
observations on two-person social dilemmas: The rate of cooperation
in the Prisoner’s Dilemma increases as the cost/benefit ratio
decreases; the rate of cooperation in the Traveler’s dilemma increases
as the bonus/penalty decreases; the rate of cooperation in the Public
Goods Game increases as the constant marginal return increases. We
now show that it organises also the regularities observed in our
experiments.

Let PGG(N, c) denote the Public Goods Game with N players and
constant marginal return c. To simplify the formulas, we assume that
the total endowment of each player is normalized to y 5 1. Denote

v c,Nð Þ~cN
cN{1

c N{1ð Þ

' (N{1

zc 1{
cN{1

c N{1ð Þ

' (N{1
 !

: ð8Þ
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Theorem 1. The only (pure) cooperative equilibrium of the
PGG(N, c) is to contribute

max 0,
v c,Nð Þ{1

cN{1

' (
: ð9Þ

In particular, it is increasing with the variable N.
Let PD(b, c, N) denote the N-person Prisoner’s Dilemma with cost

c and benefit b. Denote

v b, c, Nð Þ~ b{cð Þ 1{
c
b

# $N{1
{c 1{ 1{

c
b

# $N{1
' (

:

Theorem 2. The only cooperative equilibrium of PD(b, c, N) pre-
dicts cooperation with probability

l~max 0,
v b, c, Nð Þ

b{c

' (
:

So cooperation is predicted to decrease with the number of agents.

Comparison between predictions and experimental data. Table 3
summarizes the comparison between the models in consideration.
Fehr & Schmidt’s model makes qualitatively the right prediction in
the NPD but not in the PGG; the one-parameter version of the
Charness & Rabin model makes qualitatively the right prediction
in the PGG but not in the NPD. The two-parameter version of the
Charness & Rabin model makes qualitatively the right prediction for
both games, at the price of using two free parameters. The
cooperative equilibrium makes qualitatively the right prediction
for both games, without using any free parameter. Since the
cooperative equilibrium is parameter-free, we can make a direct
comparison between its predictions and experimental data. Results
are summarised in Table 4 and Table 5. While the qualitative
behaviour is well-captured, the quantitative prediction is still quite
off. An interesting topic for further research is to understand what
can be done to improve the quantitative predictions.

Discussion
We have studied how the size of a group influences cooperation in
two one-shot social dilemmas, the Public Goods Game and the N-
person Prisoner’s Dilemma. The reason why we have considered
these two games is that we expected opposite results. In the PGG
the invidual benefit for full cooperation is equal to cN and so it
increases linearly with the size of the group, while the cost of coop-
eration remains constantly equal to y; in the NPD both the individual
benefit for full cooperation b and the cost of cooperation c remain
constant, but, in order to reach the benefit, one needs more people to
cooperate. This difference suggests that we should see a positive effect
of group size on cooperation in the PGG and a negative effect of
group size on cooperation in the NPD.

To test this prediction we have conducted two experiments using
the online labour market Amazon Mechanical Turk. Our results
confirmed it showing that forty players are significantly more effi-
cient in providing the public good than only four players
(P50.0002), and that two players are significantly more cooperative
than eleven in a Prisoner’s Dilemma (P50.0404).

Although the positive effect of group size on cooperation in the
PGG has long been debated26,54, we do not find it to be very surpris-
ing. It is indeed predicted by the Charness & Rabin model. Also
theoretical research on iterated spatial PGGs shows that group size
should have a positive effect on cooperation, at least when the PGG is
played on a lattice and, after each round, a vertex can take one of his
neighbours’ strategy with probability depending on the payoff
difference49.

Yet, surprisingly, we have found that neither the Fehr & Schmidt
model nor (a one-parameter version of) the Charness & Rabin model
predict both the regularities observed. The general form of Charness
& Rabin’s utility makes the right prediction, at the price of using two
free parameters. Moreover, different predictions are due to different
causes: tendency to maximise the group welfare favours cooperation
in large PGGs and inequity aversion prevents cooperation in large
NPDs.

We have then extended the cooperative equilibrium model from
two-player social dilemmas to some N-player symmetric games, that
we have called highly symmetric. Despite the fact that this model does
not use any free parameter, it is able to predict both the above men-
tioned regularities by appealing to a single cause: tendency to max-
imise total welfare. The quantitative predictions of the model are not
dramatically far from the data we gathered, but, at least in three out of
four cases, they are still quite off. More experimental data are needed
to understand if and how the model can be improved to fit the data
better also from a quantitative point of view. In a one-shot setting, as
the one under consideration, it is likely that a substantial proportion
of players make computational mistakes when they reason about the
strategy they want to choose. Thus, a promising direction of research
is to define a sort of quantal cooperative equilibrium in a similar way
as the standard notion of quantal response equilibrium52 is defined.
Ideally, the quantal cooperative equilibrium would be a one-para-
meter solution concept where the parameter represents the extent to
which the players make mistakes in the computations needed to
compute the cooperative equilibrium.

Table 3 | Summary of the predictions of the models under consid-

eration. FS denotes the Fehr & Schmidt model, which predicts no

group size effect on cooperation in the PGG, a negative effect of

group size on cooperation in the NPD, and uses two free para-

meters; CR1 denotes the Charness & Rabin model with only one

free parameter; CR2 denotes the Charness & Rabin model with two

parameters; finally, CE denotes the cooperative equilibrium model

Model PGG NPD free parameters

FS none negative two
CR1 positive none one
CR2 positive negative two
CE positive negative none

Table 4 | Comparison between predictions of the cooperative equi-

librium and experimental data in the PGG. In Condition S, the

cooperative equilibrium coincides with the Nash equilibrium. In

Condition L, it predicts that players should contribute about 35%

of their endowment. CE correctly predicts a positive effect of group

size on cooperation

Condition Mean contribution CE prediction

S 3.92 0
L 6.91 3.46

Table 5 | Comparison between the prediction of the cooperative

equilibrium and experimental data. The cooperative equilibrium

coincides with the Nash equilibrium in Condition L and predicts

that half of the people cooperate in Condition S. The cooperative

equilibrium correctly predicts a negative effect of group size on

cooperation in the NPD

Condition % cooperators CE prediction

S 41.33 50
L 25.64 0
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Other research questions are worth being mentioned. One way to
look at our experimental results is as follows. By leaving both the cost
and the benefit of cooperation constant, the group size has a negative
effect on cooperation, while, when the increase in the number of
agents correspond to an increase in the benefit of cooperation (or,
equivalently, to a decrease in the cost of cooperation), then the size of
the group may have a positive effect on cooperation which is ulti-
mately due to the increase of the benefit of cooperation (or to the
decrease of the cost of cooperation). Our results thus suggest that the
pure effect of the group size on cooperation is negative: more people
are less likely to cooperate. The group size might have a positive effect
only when it generates an increase of the benefit of cooperation or a
decrease of the cost of cooperation. Since the difference between the
benefit for cooperation and the cost of cooperation in the Public
Goods game can be seen as an externally imposed reward to enforce
cooperation, it is interesting to figure out what is the cheapest
sequence (parametrized by the size of the group) of rewards that
gives rise to a positive effect of the size of the group on cooperation.
More precisely, let 1 , bN , N be a non-decreasing sequence of real
number. Define the N-player general Public Goods game to be the N-
player game where each player can either contribute 0 or 1 and gets
monetary payoff

ui x1, . . . , xNð Þ~1{xiz
bN

N

XN

j~1

xj,

where xj denotes player j’s contribution. Our results show that the
group size has a positive effect on cooperation when bN increases
linearly with the number of players (bN 5 cN in the standard PGG)
and it has a negative effect on cooperation when bN is constant in N
(which is essentially equivalent to the NPD). Consequently, there
must be a sequence bN of numbers representing the behavioural
transition from a negative effect of the group size on cooperation
to a positive effect. An interesting question would be to find this
sequence.

Our model also predicts existence of strategic situations for which
group size has a non-linear effect with intermediate groups being
more cooperative. Theorems 1 and 2 indeed imply that a general
PGG defined by a sequence bN 5 cN, for N # N0, and bN~bN0 ,
for all N . N0, will have a cooperative equilibrium whose maximum
level of cooperation is reached for some intermediate group size. This
strategic situation is likely to happen in real-life situations, in which
when the number of cooperators reaches a saturation threshold, no
additional benefit is created. A concrete example of such a situation
has been recently reported in ref. 53. Here the authors report a field
study in which intermediate groups were more cooperative than
small and large groups. The case reported is that of monitoring the
Wolong Nature Reserve, Sichuan Province, China, by means of a
number of households. They found that if the number of households
is either too small or too large, then the monitoring effort of each
household is also small; the monitoring effort of the households is
maximized when the number of households is somewhat
intermediate.

Other research questions come from looking at some of the pre-
dictions made by the cooperative equilibrium model.

. For fixed N and c, the benefit b has a positive effect on cooperation
in the NPD.

. For fixed N and b, the cost c has a negative effect on cooperation in
the NPD.

Confirmation of these two predictions have been recently found in
the case of two players29–31 and we cannot find any reasonable
motivation why they should fail in larger groups.

The model also predicts that, with N fixed, c has a positive effect on
cooperation in the PGG. This fact has been confirmed by several
experimental studies on both one-shot and iterated PGGs26,54–57.

Another highly symmetric social dilemma to which the coopera-
tive equilibrium model can be applied is the Bertrand Competition
(BC). In the BC, N $ 2 firms compete to sell their identical product.
Each of the firms can choose a price between the ‘price floor’ L and
the ‘reservation value’ H . L. The firm that chooses the lowest price,
say s, sells the product at that price, getting a payoff of s; all other
firms get nothing. Ties get split among all firms that made the cor-
responding price. One easily sees that the only cooperative equilib-
rium of this game is to set the price

max L, H:
H

H{1ð ÞN

' (N{1
 !

: ð10Þ

So the cooperative equilibrium makes the prediction that the size of
the group has a strong (more than exponential) negative effect on
cooperation in the BC. This prediction has been partially confirmed
by other experimental studies58–60, which have shown that four peo-
ple are already enough to completely destroy cooperative behaviour.
However, these studies concern iterated games and so more experi-
mental evidence would be needed.

On the theoretical side, many questions concerning the model
should be addressed, starting from the broad question of extending
the cooperative equilibrium model as far as possible, at least to
include other relevant social dilemmas such as the Volunteer
dilemma61 and the collective-risk social dilemma62. Unfortunately,
these social dilemmas possess one of the general characteristics pre-
venting the development of a general theory: in case the game Gp has
many (possibly infinite) equilibria, which one should be used as a
reference strategy profiles sp to compute incentives and disincen-
tives? Other theoretical questions include: Can the cooperative equi-
librium be expressed in terms of classical utility theory through a
utility function to be maximised?

Method
The experimental part of this article uses US subjects recruited through Amazon
Mechanical Turk. Participants were randomly assigned to one of four experiments
using economic games (PGGlarge, PGGsmall, NPDlarge, NPDsmall). After entering
the survey, AMT workers were asked to type their Turk ID and a long CAPTCHA-like
code. Specifically, in order to filter out lazy participants, we asked them to write the
following neutral sentence (taken from Wikipedia) in reverse order.

Morocco has a coast on the Atlantic Ocean that reaches past the Strait of Gibraltar
into the Mediterranean Sea. It is bordered by Spain to the north, Algeria to the east, and
Western Sahara to the south. Since Morocco controls most of Western Sahara, its de
facto southern boundary is with Mauritania.

Participants who passed this first test were presented the rules of the game. In
Condition PGGsmall they were presented as follows:

You are part of a group of four participants. The amount of money you can earn
depends on each of the four participants’ decisions.

All participants are given 10 ¢ and each one has to decide how much, if any, to
contribute to a pool. Your gain will be what you keep plus half of the total amount
contributed by all players.

So, for instance:

. If everyone contributes all of their money, then you end the game with 20 ¢.

. If you do not contribute anything and everyone else contributes all of their money,
then you end the game with 25 ¢.

. If no one contributes anything, then you end the game with 10 ¢.

Instructions for Condition PGGlarge were exactly the same, a part from obvious
changes. Instructions for Condition NPDsmall were instead presented as follows:

You have been paired with another participant. The amount of money you can earn
depends on your and the other participant’s decision.

You are both given 10 ¢ and each of you must decide whether to keep it or give it
away. Each time a participant gives away their 10 ¢, the other participant earns 30 ¢.

So:

. If you both decide to give the 10 ¢, you end the game with 30 ¢.

. If you keep it and the other participant gives it away, you end the game with 40 ¢.

. If you give it away and the other participant keeps it, you end the game with 0 ¢.

. If you both keep it, then you end the game with 10 ¢.

Instructions for Condition NPDlarge were exactly the same, a part from obvious
changes.

In order to have good quality results, after explaining the rules of the game, we
asked four comprehension questions. Participants who failed any of the compre-
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hension questions were automatically excluded from the game. We could do this very
easily using the Survey builder Qualtrics, which allows us to use skip logics: programs
that automatically end the survey if the correct answer is not selected. Questions were
formulated in such a way to make clear the duality between maximising one’s own
payoff and maximising the others’ payoff. Specifically, we asked the following
questions.

1. What is the choice you should make to maximise your gain?
2. What is the choice you should make to maximise the other participants’ gains?
3. What choice should the other participants make to maximise their own gains?
4. What choice should the other participants make to maximise your gain?

Subjects who passed the comprehension questions were then asked to make their
decision. After playing, subjects were asked a few basic demographic questions
(gender, age, and level of education) and the reason why they made their decision.
After this, the survey ended providing the code to claim for the bonus. Participants
were also informed that computation and payment of the bonuses would be made at
the end of the experiment. No deception was used. Written consent was obtained by
all participants, and the experiments were approved by the Southampton University
Ethics Committee on the Use of Human Subjects in Research and carried out in
accordance with the approved guidelines.
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