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Group-size effects on the evolution of cooperation in the spatial public goods game
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We study the evolution of cooperation in public goods games on the square lattice, focusing on the effects that

are brought about by different sizes of groups where individuals collect their payoffs and search for potential

strategy donors. We find that increasing the group size does not necessarily lead to mean-field behavior, as is

traditionally observed for games governed by pairwise interactions, but rather that public cooperation may be

additionally promoted by means of enhanced spatial reciprocity that sets in for very large groups. Our results

highlight that the promotion of cooperation due to spatial interactions is not rooted solely in having restricted

connections amongst players, but also in individuals having the opportunity to collect payoffs separately from

their direct opponents. Moreover, in large groups the presence of a small number of defectors is bearable, which

makes the mixed phase region expand with increasing group size. Having a chance of exploiting distant players,

however, offers defectors a new way to break the phalanx of cooperators, and even to resurrect from small

numbers to eventually completely invade the population.

PACS numbers: 87.23.Ge, 87.23.Kg, 89.75.Fb

The public goods game [1, 2] is played in groups and cap-

tures the essential social dilemma in that collective and indi-

vidual interests are inherently different. Players must decide

simultaneously whether they wish to contribute to the com-

mon pool, i.e. to cooperate, or not. All the contributions are

then multiplied to take into account synergetic effects of coop-

eration, and the resulting amount is divided equally among all

group members irrespective of their strategies. Selfish play-

ers obviously should decline to contribute if the investment

costs exceed the return of the game. However, if nobody de-

cides to invest the group fails to harvest the benefits of a col-

lective investment, and the society may evolve towards the

“tragedy of the commons” [3]. Yet despite of the obvious so-

cial dilemma, observations indicate that individuals cooperate

much more in public goods games than expected [4], which

calls for the identification of mechanisms that can sustain co-

operation. The sustenance of cooperation in sizable groups

of unrelated individuals, as is the case by the public goods

game, is particularly challenging since group interactions tend

to blur the trails of those who defect. Unlike by pairwise inter-

actions, reciprocity [5, 6] often fails as it is not straightforward

to determine with whom to reciprocate. Social enforcement,

on the other hand, may work well, although it is challenged

by the fact that it is costly (see [7] for a review). Recently

studied ways of promoting cooperation in public goods games

include the introduction of volunteering [8, 9] and the intro-

duction of social diversity by means of complex interaction

networks [10, 11], random exploration of strategies [12], as

well as various forms of reward [13–16] and punishment [17–

20], to name but a few.

Spatial reciprocity [21], being part of the big five [22], is

long established as a prominent mechanism for the evolution

of cooperation [23]. The spatial public goods game [24] in

particular, is interesting also from the viewpoint of physics,

for example in terms of phase transitions [25], pattern for-

mation [26], effects of inhomogeneous player activities [27],

diversity [28] and noise [29], as well as coevolutionary pro-

cesses [30] and processes taking place on complex networks

[31, 32]. While the efficiency of spatial reciprocity is known

FIG. 1: Left: Schematic presentation of different group sizes G on

the square lattice. Depicted are groups containing G = 9 (open

square), 45 (grey square), 97 (plus), 185 (filled square) and 301

(cross) players, respectively. The focal player is marked by a star.

Right: Schematic presentation of possible sources of strategy inva-

sion. Three different cases are considered, namely, the adoption can

only be attempted from the nearest neighbors (open squares), from

the focal group (white patch), or from all the groups (grey areas)

where the focal player is a member.

to be vitally affected by the structure of interaction graphs

[33], there is still a lack of studies systematically analyz-

ing the impact of group size on the evolution of cooperation.

Although it is traditionally assumed that very large groups

should result in mean-field behavior due to the emergence of

all-to-all coupling (see e.g. [34]), certain studies suggest that

this may not always be the case [35]. Adding to this the ex-

perimental findings [36], indicating that larger groups (of size

40 or 100) provide public goods more efficiently than small

groups (of size 4 or 10), clearly outlines the need for clarify-

ing the importance of the group size, especially for games that

are governed by group interactions.

Here we therefore study the evolution of cooperation in

the public goods game on the square lattice, whereon ini-

tially each player on site x is designated either as a cooper-

ator (sx = C) or defector (sx = D) with equal probabil-

ity. We note, however, that the main findings do not depend

on the host lattice topology because the large group size in-

teractions diminish the fine topological differences. Players
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FIG. 2: Critical multiplication factor rc in dependence on G. Strat-

egy donors were selected only from the four nearest neighbors (filled

squares), from within the group of players where player x is fo-

cal (open circles), or amongst all the groups where player x is a

member (filled circles). The uncertainty by strategy adoptions was

K/G = 0.1 (the normalization of K with G takes into account the

number of groups participating in the accumulation of payoffs).

can collect payoffs from groups ranging in size from G = 5
to 445, as depicted schematically in Fig. 1. In addition, we

also consider different groups of players that are eligible to

act as strategy donors, ranging from nearest neighbors only

to all players that are members in the groups containing the

focal player, i.e. the one potentially adopting a new strategy.

Note that there exist exactly n = G groups containing any

given player x (one group where player x is focal and n − 1
groups where this is not the case). Each selected player x ac-

quires its payoff Px by accumulating its share of the public

good from all the n groups with which it is affiliated (un-

less stated otherwise). Without loss of generality coopera-

tors contribute 1 to the pool while defectors contribute noth-

ing, and subsequently all the contributions within a group are

multiplied by the enhancement factor r and divided equally

amongst all the members. Employing the Monte Carlo simu-

lation procedure, each elementary step involves randomly se-

lecting one focal player x and one player y that is eligible to

act as a strategy donor. Following the accumulation of pay-

offs Px and Py as described above, player y tries to enforce

its strategy sy on player x in accordance with the probabil-

ity W (sy → sx) = {1 + exp[(Px − Py)/K]}−1, where K
determines the uncertainty by strategy adoptions [29]. To ac-

count for the different number of groups affecting the absolute

values of the payoffs when increasing G (and thus indirectly

influencingW ), parameters r and K must be considered prop-

erly normalized with G to ensure relevant comparisons of re-

sults. During a Monte Carlo step (MCS) all players will have

a chance to pass their strategy once on average. For the results

presented below we used the square lattice having L = 400
to 1600 linear size and up to 107 MCS before determining the

stationary fraction of cooperators ρC within the whole popu-

lation.

Figure 2 features the critical multiplication factor rc at

which cooperators die out in dependence on G. Above this
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FIG. 3: Critical multiplication factor rc in dependence on G, as ob-

tained when the payoffs are acquired from a single group where the

corresponding players are focal. The symbols correspond to those

used in Fig. 2, determining the set of potential strategy donors. The

uncertainty by strategy adoptions was K = 0.1 (note that the nor-

malization with G is unnecessary since all the payoffs originate from

a single group).

rc value the cooperators can coexist with defectors by form-

ing a mixed phase. If exceeding a second critical rc value (not

shown here), the defectors will die out and the system will ar-

rive at the pure C phase, as demonstrated in previous works

considering small group sizes [29, 35, 37–41]. In the present

work we focus on the group-size dependence of the lower crit-

ical rc that limits the surviving chance of cooperator strategy.

As Figure 2 suggests, increasing the group size can drastically

decrease the minimally required r for the sustenance of coop-

eration, and there is no indication of arriving at mean-field

behavior (note that rc = G in the well-mixed case [42]) even

for very large groups. However, the positive effect depends

significantly on the available set of potential strategy donors.

The smaller the latter (nearest neighbors → focal group → all

groups), the stronger the promotion of cooperation induced

by large G. An alternative, and in fact more interesting, inter-

pretation is that the larger the difference between interaction

(used for the accumulation of payoffs) and replacement (used

for selecting potential strategy donors) groups, the smaller the

rc at any given G. This is different from what was reported

in [43] for games governed by pairwise interactions, where

cooperators were found diminishing as the overlap between

interaction and replacement graphs was lessened.

Our observations can be corroborated further by consider-

ing public goods games where each player x acquires its pay-

off Px only from the one group where it is focal. Figure 3

shows the results. The most relevant difference with the re-

sults presented in Fig. 2 can be observed for the case where

strategy donors are selected amongst all the groups where

player x is a member (filled circles). Note that distant players

can interact indirectly here, i.e. although they do not collect

payoffs from the same group, their strategies influence the in-

come of the other player. In this case there exists an optimal

group size where rc is minimal (instead of a continuous down-

ward trend), although the well-mixed limit (rc = G), and
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FIG. 4: (Color online) Characteristic snapshots of the spatial grid for

G = 5 (top row) and G = 301 (bottom row), using focal group

imitation range as obtained for K/G = 0.1 and L = 200 system

size. Cooperators are marked by green (light grey) and defectors by

red (dark grey) colors. In both cases the final outcome is a full D
phase where normalized synergy factors are almost equal far from

the transition points (r/G = 0.74 and r/G = 0.24, respectively).

Prepared initial states were used to highlight the two significantly

different strategy invasion processes. Snapshots in the top row were

taken at MCS = 0, 50, 100, 200 and 1500, while in the bottom row

they were taken at MCS = 0, 30, 100, 300 and 400.

in fact even the small-group limit (r/G → 0.915), is never

reached for very large G. Results presented in Fig. 3 lead

to the conclusion that it is beneficial for the evolution of co-

operation not only if the interaction and replacement groups

are different, but also, when players have the ability to play

the game (collect their payoffs) with other players who are

beyond the scope of potential donors of a new strategy. For

the uppermost curve in Fig. 3 (closed circles) this is not war-

ranted (note that the payoffs are collected only from the group

where a given player x is central, while strategy donors are

sought from all the groups where player x is member), and it

is indeed there where the promotion of cooperation by means

of large groups is least effective. Nevertheless, large groups

are definitely better suited for the effective provision of pub-

lic goods under unfavorable conditions (small r) then small

groups, thus supporting the experimental findings of Isaac et

al. [36].

Characteristic snapshots of the spatial grid for small and

large G, as depicted in Fig. 4 in the top and bottom row,

respectively, serve well to understand the differences in the

evolutionary process that is brought about by differently sized

groups. For small groups (G = 5, top row), the evolution

of strategies proceeds with the characteristic propagation of

the fronts of the more successful strategy (in this case D) un-

til eventually the maladaptive strategy C goes extinct. For

intermediate values of r, we would observe the well-known

clustering of cooperators [21]. On the other hand, for large

groups (G = 301, bottom row) the cooperator clusters are

very strong and can easily outperform the defectors, even if

r is very small. However, as the number of defectors in the

large groups goes down, their payoff suddenly becomes very

competitive, to the point where defectors can strike back and

invade the seemingly invincible cooperative clusters. Such

an alternating time evolution is completely atypical and was

previously associated with cooperators only (see for example

[44]), i.e. the density of cooperators typically goes down ini-

tially, until some form of reciprocity or a feedback effect es-
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FIG. 5: (Color online) Time courses of the density of cooperators ρC
for G = 5 (dashed blue line) and G = 445 (solid red line), starting

from the mentioned prepared initial state (see Fig. 4) and using all-

group imitation range, as obtained for K/G = 0.1 and L = 800

system size. Synergy factors were r/G = 0.7 and r/G = 0.6,

respectively.

tablishes itself and enables the cooperators to win back lost

ground to defectors. For spatial public goods games played in

large groups we here demonstrate that the scenario is exactly

the opposite. Defectors are the ones who can resurrect from

small numbers to overtake cooperators, and it is indeed the

difficulty of prevention of this negative backfiring of the ini-

tial cooperative success that limits the success of large groups

to sustain cooperation at even smaller multiplication factors.

The two opposite time courses presented in Fig. 5 illus-

trate the atypical evolutionary process at large G succinctly.

To obtain smooth curves, we have used larger system sizes

(L = 800) and averaged the data over 50 independent runs.

While for small G (dashed line) the fraction of cooperators

ρC decreases monotonically to zero, the outlay for G = 445
(solid line) is very much different. There we can first observe

a significant increase in ρC , which is brought about by the

formidably strong cooperative phalanx, which can easily de-

feat weak defectors deep in the D domain. The dissolution of

D domains, however, serves well the surviving defectors who

then become the “leaders” of a counter attack that eventually

leads to the complete extinction of cooperators. Hence, we

can observe the fall of ρC , although as emphasized, this one

is due to completely different circumstances than the one re-

ported for the G = 5 case. The time evolution of defectors,

as we have demonstrated for G = 445 (dominance following

near extinction), was previously associated with cooperative

behavior only, and it is only the special impact of distant inva-

sion, which is made possible by large groups, on the evolution

of cooperation that is able to offer such a reversal of expected

roles of the two strategies.

In sum, we have studied the evolution of cooperation in

the spatial public goods games on the square lattice, thereby

focusing on revealing the impact of different group sizes on

the effective provision of public goods. Motivated by the ex-

perimental findings indicating that larger groups are advanta-

geous to small groups [36], we find that large groups indeed
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significantly promote the evolution of cooperation. Quite re-

markably, if only the interaction and replacement groups are

sufficiently different, and if players have the ability to play

the public goods game with at least some of the players that

are then not considered as potential donors of a new strategy,

the large groups prove impervious to defectors even at very

low multiplication factors. Since spatial reciprocity is inher-

ently routed in the formation of compact cooperative clusters,

it seems natural that larger groups, potentially giving rise to

larger cooperative clusters, will be more effective in warrant-

ing high levels of cooperation than small groups. However,

it is the size of large groups that may backfire on the coop-

erators when the number of defectors in such groups become

very low. Then the advantages of defection become so strong

that cooperators may still be defeated despite of their stel-

lar start. It is mainly this mechanism that limits the success

of large groups to sustain cooperation and puts a lid on the

pure number-in-the-group effect [45]. We would also like to

emphasize that the identified mechanism of promotion of co-

operation by means of participation in large groups is robust

and independent of details such as the uncertainty by strategy

adoptions or the local structure of the interaction network. In

particular, the joint membership in large groups will indirectly

link vast numbers of players [29], thus rendering local as well

global structural properties of interaction networks practically

irrelevant for the final outcome of the game. There are several

examples, like local and federal tax payment, health insurance

or pension systems, when people are involved in partly sep-

arated large structured common ventures. Without applying

our model directly to such systems, the present work offers

an explanation why in fact cooperation can survive even when

the benefits of large-scale collaboration are relatively modest.

Acknowledgments

Authors acknowledge support from the Hungarian National

Research Fund (grant K-73449), the Bolyai Research Fund,

and the Slovenian Research Agency (grant Z1-2032).

[1] M. A. Nowak, Evolutionary Dynamics (Harvard University

Press, Cambridge, MA, 2006).

[2] K. Sigmund, The Calculus of Selfishness (Princeton University

Press, Princeton, MA, 2010).

[3] G. Hardin, Science 162, 1243 (1968).

[4] E. Fehr and H. Gintis, Annu. Rev. Sociol. 33, 43 (2007).

[5] R. Axelrod, The Evolution of Cooperation (Basic Books, New

York, 1984).

[6] M. A. Nowak and K. Sigmund, Nature 393, 573 (1998).

[7] K. Sigmund, Trends Ecol. Evol. 22, 593 (2007).

[8] C. Hauert, S. De Monte, J. Hofbauer, and K. Sigmund, Science

296, 1129 (2002).

[9] D. Semmann, H.-J. Krambeck, and M. Milinski, Nature 425,

390 (2003).

[10] F. C. Santos, M. D. Santos, and J. M. Pacheco, Nature 454, 213

(2008).

[11] H.-F. Zhang, R.-R. Liu, Z. Wang, H.-X. Yang, and B.-H. Wang,

EPL 94, 18006 (2011).

[12] A. Traulsen, C. Hauert, H. D. Silva, M. A. Nowak, and K. Sig-

mund, Proc. Natl. Acad. Sci. USA 106, 709 (2009).

[13] D. G. Rand, A. Dreber, T. Ellingsen, D. Fudenberg, and M. A.

Nowak, Science 325, 1272 (2009).

[14] C. Hauert, J. Theor. Biol. 267, 22 (2010).

[15] A. Szolnoki and M. Perc, EPL 92, 38003 (2010).

[16] C. Hilbe and K. Sigmund, Proc. R. Soc. B 277, 2427 (2010).

[17] C. Hauert, A. Traulsen, H. Brandt, M. A. Nowak, and K. Sig-

mund, Science 316, 1905 (2007).

[18] D. Helbing, A. Szolnoki, M. Perc, and G. Szabó, PLoS Comput.
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