
Group Testing and Batch Verification

Gregory M. Zaverucha and Douglas R. Stinson
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo ON, N2L 3G1, Canada

{gzaveruc, dstinson}@uwaterloo.ca

May 27, 2009

Abstract

We observe that finding invalid signatures in batches of signatures that fail batch verification
is an instance of the classical group testing problem. We present and compare new sequential
and parallel algorithms for finding invalid signatures based on group testing algorithms. Of the
five new algorithms, three show improved performance for many parameter choices, and the
performance gains are especially notable when multiple processors are available.

1 Introduction

A batch verification algorithm for a digital signature scheme verifies a list of n (message, signature)
pairs as a group. It outputs 1 if all n signatures are valid, and it outputs 0 if one or more are
invalid. In the most general case, the messages and signers may be different. Batch verification
algorithms may provide large gains in efficiency, as verification of the n signatures is significantly
faster than n individual verifications. In this paper, we address the problem of handling batches
which fail verification, i.e., finding the invalid signatures which caused the batch to fail.

We observe that finding invalid signatures in bad batches is an instance of the group testing
problem, which in brief, is as follows. Given a set B, of n items, d of which are defective, determine
which items are defective by asking queries of the form “Does B′ ⊆ B contain a defective item?”.
Group testing is an old, well-studied problem, for which many algorithms exist. We re-cast some
solutions to the group testing problem as solutions to the invalid signature finding problem, which
are then compared for efficiency, parallelizability and accuracy.

In total, five new algorithms for finding invalid signatures are presented and included in our
comparison. Of these, three give performance improvements. With a single processor, generalized
binary splitting gives a modest improvement over the well-known binary splitting algorithm. In the
case of two or more processors, large improvements are possible using one of two new group testing-
based algorithms: Li’s s-stage algorithm and the Karp, Upfal and Wigderson algorithm. The other
two algorithms also have interesting properties. The algorithm based on cover-free families is fully
parallelizable, and is an improved instance of a known algorithm, the id-code algorithm (for some
parameter choices). The random matrices algorithm is probabilistic, fully parallelizable and enjoys
a simple implementation.

1

We also give some general results on the limits of group testing that are also interesting in
the context of finding invalid signatures in batches, such as the conditions when the näıve testing
strategy is optimal.

Contributions and Outline After describing the link between finding invalid signatures in bad
batches and group testing (§1.1, 1.2) we present new algorithms for finding invalid signatures based
on techniques from the group testing literature (§2). These are grouped according to the adaptive
(i.e. sequential §2.2) or nonadaptive (i.e. parallel §2.3) nature of the algorithm. We then compare
the performance of the new algorithms (and some previously known algorithms) and determine
the best one under various parameter choices (§3). For many parameter choices, especially with
multiple processors, the new methods outperform known methods.

1.1 Batch Verification

Let the algorithms (Gen,Sign,Verify) specify a signature scheme. Gen takes as input a security
parameter k, and outputs a signing and verification keypair (sk, pk). Sign(sk,m) outputs a signature
σ on the message m using the secret key sk, and Verify(pk, σ, m) outputs 1 if σ is a valid signature
of m under the secret key sk which corresponds to pk, and 0 otherwise.

Here is the most general definition of batch verification.

Definition 1.1 ([8]). Let P1, . . . , Pn be n signers, with corresponding keypairs K = {(sk1, pk1), . . . ,
(skn, pkn)} output by Gen(k) for some security parameter k. Let B be a list containing K, and n
tuples of the form (Pti , σi,mi) called the batch (note that the ti and mi values may be repeated.)
The algorithm Batch(B) is a batch verification algorithm provided Batch(B) = 1 if and only if
Verify(pkti

, σ, mi) = 1 for all i.

A few variations appear in the literature, including the case with a single signer or the case of
multiple signers with a single message. We also mention the related concept of aggregate signatures.
Suppose σ1, . . . , σn are signatures on messages m1, . . . ,mn with corresponding verification keys
pk1, . . . , pkn. An aggregation algorithm is a public algorithm, which given the σi, mi and pki

(i = 1, . . . , n) outputs a compressed signature σ. An associated verification algorithm verifies if σ
is a valid compressed signature, given pki and mi (for i = 1, . . . n).

A number of signature schemes in the literature support batch verification. Batch cryptography
was introduced by Fiat [18, 19] to improve efficiency of an RSA-like scheme, where large numbers of
operations are performed at a central site. History shows that secure batch verification algorithms
are tricky to construct; a number of schemes were presented and subsequently broken or shown
to be otherwise flawed. One example is the scheme of Al-Ibrahim et al. [1], which was broken by
Stinson in [39]. Camenisch et al. list and reference ten proposed schemes which were later broken [8,
§1.2]. Despite this poor track record, a number of signature schemes have batch verification, many
of them based on the general techniques described in Bellare et al. [4].

We list a few examples, but omit details since the techniques in this work will apply to any
scheme with batch verification. RSA* is an RSA-variant with batch verification presented by Boyd
and Pavlovski [6]. DSA** is a signature scheme based on DSA, given by Naccache et al. [27],
which uses the small exponents test from [4]. Camenisch et al. [8] give a variant of the Camenisch-
Lysyanskaya signature scheme [7] which supports batch verification, present a batch verifier for the
Π-IBS scheme of Chatterjee and Sarkar [11], and discuss batch verification of BLS signatures [5].

2

Practical considerations and implementation timings of batch verification are given in Ferrara et
al. [17].

1.2 Finding Invalid Signatures in Bad Batches

Suppose we are given a batch B such that Batch(B) = 0. We know that B contains at least one
invalid signature, but what is the best way to determine which of the signatures do not verify?
Verifying each signature individually is certainly an option, but can Batch be applied to subsets of
B to perform less work overall? This problem can be considered the computational version of the
batch verification problem (which is a decision problem). We name it the invalid signature finding
(ISF) problem. This does not apply to aggregate signatures, where, since the batch is compressed,
we do not have enough information to determine which of the original signatures were invalid.

We will treat the algorithm Batch as a generic test for invalid signatures, and present solutions
which work for any signature scheme equipped with a Batch function as described in Definition 1.1.
There are several advantages of generic ISFs.

1. Applicability. A generic ISF may be used with any signature scheme which provides batch
verification. This includes future schemes.

2. Implementation. A single implementation may be used to locate bad signatures of multiple
signature schemes, reducing the need to maintain multiple ISF implementations. The single
generic ISF may be optimized, verified and otherwise improved since the effort is amortized
over a larger number of applications.

3. Ability to handle variations of the ISF problem. The group testing literature has considered
many variations of the problem, many of which are applicable to variations of the ISF problem.

The performance of an ISF may be evaluated based on the number of calls to Batch and the
parallel performance of the algorithm.

1.2.1 Related Work

There have been five papers addressing the ISF problem. The first two are by Pastuszak et al.
[30, 29]. They consider a generic Batch function for a signature scheme and study the divide-and-
conquer method of finding bad signatures in [29]. The divide-and-conquer verifier was originally
described in [27] under the name cut and choose, and is referred to binary splitting in the group
testing literature. In brief, a batch B is divided in half, then Batch is recursively called on each
sub-batch, until 1 is output (this sub-batch contains only valid signatures) or until the sub-batch
has size one, which identifies the bad signatures. This method was implemented in the work of
Ferrara et al. [17], and we discuss their findings in §2.2.1 when we relate the divide-and-conquer
verifier to well-known techniques from group testing.

The second paper [30] approaches the problem using identification codes (id-codes), a code
which encodes an ISF algorithm, by specifying subsets of B to test with Batch in such a way that
all bad signatures may be identified. This approach is an instance of well-known non-adaptive
group testing algorithms based on cover-free, separable and disjunct matrices, discussed in §2.3.1.
A limitation of [30, 29] is that either the number of bad signatures in a batch, or a bound on the
number of bad signatures is required a priori. This is common to most group testing algorithms as
well.

3

The work of Law and Matt [24] improves the divide-and-conquer method by considering the
details of the signature scheme. The second part of [24] gives an improved invalid signature finder
using a special version of Batch. The batch verification and invalid signature finding tasks are
combined, to allow information and intermediate computations from the verification step to be
used in the ISF step. This trades off general applicability for improved computational efficiency.
Along similar lines, Matt improves the performance of these methods when the number of invalid
signatures is large [25]. This addresses a limitation of [24]. The improved techniques of [25] are
applicable to the Cha-Cheon signature scheme [10] and the pairing-based schemes discussed in
Ferrara et al. [17].

2 Group Testing-Based ISF Algorithms

We begin with a general description of the group testing problem called the (d, n)-problem. Consider
a set of n items which contains exactly d defective items, called the defective set. Identification
of a defective item requires the application of an error-free test, and we may test an arbitrary
subset of the items. The test outcome may be positive if the subset of items contains at least one
defective item, or negative if no defective items are present in the subset. An algorithm A which
finds all d defective items is a solution to the problem. An algorithm where the tests are applied
sequentially, and subsequent tests depend on the results of previous tests is called an adaptive
algorithm. Nonadaptive algorithms require all tests to be specified at the outset; hence they may
be executed in parallel.

Group testing has a long history, originating in World War II, motivated by the task of testing
blood samples of draftees to detect syphilis [14, 16]. In this application, a single test on a combi-
nation of blood samples will return positive if any of the samples would test positive for syphilis.
Since there were only a few thousand cases of the disease in millions of draftees, large subsets would
come back negative, saving many individual tests. Group testing later found many industrial ap-
plications, a line of research initiated by Sobel and Groll [40]. In the past 50 years or so, a large
literature has grown around the problem, and many variants have been considered. The book of
Du and Hwang [15, 16] is a comprehensive reference.

It should now be clear that the ISF problem is a group testing problem: the items are signa-
tures, the test applied to subsets is the batch verification algorithm, and the defectives are invalid
signatures. This basic model makes the following assumptions:

• The subset tests all have the same cost, regardless of the number of items being tested.

• The number of defectives d, or a bound on d, is known a priori.

The first is a simplifying assumption, since the cost of Batch(B) is typically composed of a fixed
overhead cost independent of |B|, plus a variable cost which grows with |B|. It does however, allow
us to keep our analysis general, and ignore the details of Batch. The second allows some group
testing algorithms to be more efficient. We will discuss the importance of the bound on d for each
algorithm, and the behaviour of the algorithm when d is bounded incorrectly.

Probabilistic group testing (PGT) assumes a probability distribution on the defective set, while
combinatorial group testing (CGT) does not. The only information CGT assumes about the defec-
tive set is that it is a d-subset of the n items. Some applications of batch verification may benefit
from PGT if it is reasonable to make an assumption about the distribution of invalid signatures;
however, we do not consider PGT algorithms in this paper.

4

Denote the minimal number of calls to Batch required to find d invalid signatures in a batch of
size n by M(d, n). First note that M(d, n) ≤ n− 1, by verifying n− 1 signatures individually and
inferring the validity of the last signature from knowledge of d and the other n− 1 signatures. The
following general lower bound is proven in [16, Cor. 2.1.11].

Theorem 2.1. M(d, n) ≥ min
{

n− 1, 2` +
⌈
log

(
n−`
d−`

)⌉}
for 0 < ` ≤ d < n.

Unless stated otherwise, log x is the base two logarithm of x, ln x is the natural logarithm of x,
and e is the natural base.

2.1 Individual Testing

The simplest way of identifying all invalid signatures in a bad batch is to individually verify each
signature. The question is, when is this näıve testing strategy optimal? Recall that M(d, n) is the
smallest possible number of tests for any (d, n) algorithm. Combining [16, Th. 3.5.1] and [16, Th.
3.5.3], we have the following result.

Theorem 2.2. Let d be the number of invalid signatures in a batch of size n, and let M(d, n) be
as defined above. Then

M(d, n) < n− 1 for n > 3d, and
M(d, n) = n− 1 for n ≤ 2.625d.

Therefore, when the number of bad signatures is at most n/3 it is possible to do better than
individual testing, and when there are more than n/2.625 bad signatures the näıve strategy is
optimal. What is best when n < 3d and n ≥ 2.625d remains unknown; however, Hu, Hwang and
Wang [21] conjectured that individual testing is optimal whenever n ≤ 3d.

We note that individual testing is trivially parallelizable.

2.2 Adaptive ISF Algorithms

In this section we will present some adaptive ISF algorithms, based on group testing algorithms.
In adaptive (or sequential) algorithms, the results of each test determines the items to be tested in
subsequent tests. We will use the notation (d, n), where d is an upper bound on the number of bad
signatures in the batch of size n.

2.2.1 Binary Splitting

An adaptive group testing algorithm is naturally represented as a binary tree. Nodes of the tree
contain elements to be tested, starting at the root, which contains all n items. In binary splitting,
at each level of the tree, we halve (i.e. divide as evenly as possible) the set of items in the parent
node, to create two child nodes. When a test returns negative, this node becomes a leaf, since we
know the set of items at this node is valid. Repeating this process recursively, we ultimately end
up with nodes containing a single item, thus identifying the invalid items of the batch. By using
depth first search from the root of the tree we may locate an invalid item using at most dlog(n)e
tests. We may remove the invalid item, and repeatedly apply the binary splitting algorithm to find
d invalid items using at most d dlog(n)e tests.

5

An implementation of binary splitting for the BLS signature scheme [5] is discussed in the work
of Ferrara et al. [17]. They performed experiments with n = 1024 and they found binary splitting
was faster than individual verification when d < 0.15n. In these experiments, a random fraction of
the batch was corrupted, however Ferrara et al. note that in practice if corrupted signatures occur
in bursts, the binary splitting algorithm will have better performance. Ordering of the batch may
be an important consideration for applications using binary splitting.

A variant of binary splitting is Hwang’s generalized binary splitting. The intuition of the algo-
rithm is that there is roughly one defective item in every n/d items, and therefore a group smaller
than n/2 could be tested and a defective found with fewer tests. When d = 1 the number of tests
required by generalized binary splitting is blog(n)c+ 1, and when d ≥ 2, the number of tests is not
more than d− 1 +

⌈
log

(
n
d

)⌉
, which gives a noticeable saving as d gets larger [16, Cor. 2.2.4].

Karp, Upfal and Wigderson describe an algorithm to identify a single invalid item using p
processors in at most

⌈
logp+1 n

⌉
parallel tests [22]. The algorithm is identical to binary splitting

when p = 1, since it uses a (p + 1)-ary tree in the same way that binary splitting does. At each
level, p of the child sets are tested in parallel, and (if necessary) the validity of the (p + 1)-th set is
inferred. We may repeatedly apply this algorithm to identify d invalid items in at most d

⌈
logp+1 n

⌉
parallel tests. We will refer to this algorithm as the KUW algorithm.

2.2.2 Li’s s-Stage Algorithm

This algorithm has s rounds of testing, identifying good items at each round, until the last round
when the algorithm corresponds to individual testing. Li’s algorithm begins by grouping the batch
into g1 groups of size k1 (some groups might have k1 − 1 items). The groups are tested, and items
in valid groups are set aside. The i-th stage divides the remaining elements into gi groups of size
ki, tests them, and then removes items in valid groups. The final stage has ks = 1, and remaining
items are identified as valid or invalid.

When optimal choices (see [16, §2.3]) are made for gi, ki and s, the number of tests is not more
than

e

log e
d log

(n

d

)
.

When p processors are available, Li’s algorithm may be parallelized (see [15, p. 33]) and the number
of parallel tests is not more than

e

log e

d

p
log

(
n

dp

)
+ ln

(
n

dp

)
+ d .

2.3 Nonadaptive Algorithms

As we have seen, some adaptive algorithms are somewhat parallelizable. All nonadaptive algorithms
are completely parallelizable. Recall that nonadaptive tests may be completely specified without
information from previous tests. This can be be especially useful for online batch verification in a
system with time constraints where a batch of n signatures arrive every time interval and must be
processed before the next batch arrives, with a known number of tests. This might be applicable in
the example of public key authentication in vehicular networks (this example is discussed in [8, 17])
or authentication of data reported periodically from sensors (as discussed in [9]). We continue to
use the (d, n) notation defined at the beginning of Section 2.

6

2.3.1 Nonadaptive Group Testing with Cover-Free Families

A useful combinatorial structure for designing nonadaptive CGT (NACGT) algorithms is a cover-
free family. Cover-free families are also studied under the terms disjunct matrices [16], binary
superimposed codes [23], and strongly selective families [12]. Stinson et al. [37] discusses relations
between these structures. We choose the language of cover-free families since they have found
multiple applications in cryptography (see [20, 26, 36] for examples).

Definition 2.3. A d-cover-free family is a t× n binary matrix, with n ≥ d + 1, such that for any
set of columns C and single column c such that |C| = d and c 6∈ C the following property holds.
Let U(C) be the binary OR of the columns in C. The cover-free property ensures that c 6∈ U(C),
that is, c is 1 in at least one position where U(C) is 0. We will use the notation d-CFF(t, n) for
cover-free families.

The cover-free property ensures that no d-set of columns “covers” any other column. A d-
separable matrix satisfies a weaker property, namely, the OR of any two sets of d columns are
distinct. While any d-separable matrix yields a NACGT algorithm, it is not efficient [16, Ch. 7].
We now describe how a d-CFF(t, n) defines an efficient (d, n) NACGT algorithm.

Input: Signatures σ1, . . . , σn, batch verification function Batch.
Output: Up to d invalid signatures.

1. Construct a matrix A which is a d-CFF(t, n) .

2. Associate σi to column i of A. Each row of A will define a sub-batch to test; if σi has a 1 in
row j then σi is included in sub-batch j.

3. Compute Batch(B1), . . . ,Batch(Bt) where Bi = {σj : Ai,j = 1}.

4. For each row i such that Batch(Bi) = 1 mark all σj ∈ Bi as valid.

5. Output all the remaining signatures as invalid, i.e., signatures which do not belong to a valid
batch.

We now explain how the algorithm correctly identifies valid signatures (and thus correctly out-
puts invalid signatures in step 5). Suppose σi is a valid signature. Let C be the set of columns
corresponding to the invalid signatures. We are assuming that |C| ≤ d. Let C ′ be any set of d
columns that contains C as a subset and does not contain i (C ′ exists because n ≥ d + 1). Since A
is the matrix of a d-CFF(t, n), there exists a row j such that Aj,i = 1 and Aj,c = 0 for all c in C ′.
Therefore Batch(Bj) = 1 and σi is recognized as a valid signature in step 4 of the algorithm.

Remark 2.4. Shultz makes the following observation for batches containing d′ > d invalid signa-
tures [33]. Let B′ be the resulting set of signatures after removing all the signatures belonging to
valid sub-batches, in step 4. If |B′| > d, the number of invalid signatures in the input batch exceeds
d. In this case some valid signatures may be covered by U(D), but are not present in a valid test.
Thus B′ contains all d′ invalid signatures, but may contain some valid signatures as well.

A recent paper of Porat and Rothschild [31] explicitly constructs (n, d)-strongly selective families
from error correcting codes. This structure is equivalent to a (d−1)-CFF(t, n) (see [12]), and hence
it gives a nonadaptive ISF.

7

Theorem 2.5 ([31], Th. 1). It is possible to construct a d-CFF(t, n) with t = Θ((d + 1)2 log n) in
Θ((d + 1)n log n) time.

In light of the bounds on t given in Appendix A, this construction is asymptotically optimal.
We choose to ignore the constant hidden by the Θ-notation, as even with this assumption the CFF
algorithm is outperformed by other methods.

2.3.2 Nonadaptive Group Testing with id-codes

The definition of identification codes is very general: any binary matrix which specifies a group
testing algorithm is an id-code. Thus CFF are id-codes, and the d-separable property defined in
2.3.1 is both necessary and sufficient for an id-code. The construction of id-codes put forward
in Pastuszak et al. [29] is a cover-free family with some additional constraints on the number of
nonzero row and column entries. Using their construction gives the following ISF.

Theorem 2.6 ([29], Cor. 4). The number t of tests necessary to identify d bad signatures in a
batch of size n satisfies t ≤ (d + 1)

√
n.

Clearly, as n → ∞ for fixed d, this method will require a much larger number of tests than
CFF-based methods, since

√
n dominates log n. However, the CFF constructions presented have a

quadratic dependence on d, while d is linear in Theorem 2.6. Therefore, for fixed n and increasing
d, there will be a crossover point after which the id-code ISF outperforms the CFF ISF. Comparing
the formulae,

(d + 1)2 log(n) < (d + 1)
√

n

d <

√
n

log n
− 1 .

This gives the value of d in terms of n before which the CFF ISF outperforms the id-code ISF. For
example, when n = 103, 104, 105, 106, d must be greater than 2, 6, 18, 49 (resp.) for the id-code ISF
to be more efficient.

2.3.3 Random Matrices

In this section we describe a probabilistic nonadaptive ISF which is based on a random matrix,
and fails with a given probability. Du and Hwang give the probability that a random matrix is a
d-CFF.

Theorem 2.7. Let C be a random t×n binary matrix where Ci,j = 1 with probability q = 1/(d+1).
Then C is a d-CFF(t, n) with probability at least

(d + 1)
(

n

d + 1

) [
1− q(1− q)d

]t
.

Proof. Let D be a set of d columns of C, and let c a single column. In a single row, the probability
that c = 1 and D = 0, . . . , 0 is q(1− q)d. (Note that q = 1/(d+1) maximizes this probability.) The
probability that this pattern does not occur in any of the t rows is

[
1− q(1− q)d

]t. Since the d+1
columns of D and c may be chosen in (d + 1)

(
n

d+1

)
ways, this gives the bound on the probability

that C is a CFF stated in the theorem.

8

Now we consider constructing an ISF as described at the beginning of Section 2.3.1 using random
matrices. Certainly, this approach would succeed with probability at least that given by Theorem
2.7. However, the ISF will have significantly better performance, since the only case that affects
our result is when the d columns corresponding to the bad signatures cover another column. If
this occurs, then the covered column may be valid, but it will not appear in a valid test. Columns
corresponding to valid signatures which cover each other will have no effect on the ISF. Therefore,
we need only consider the probability that a fixed set of d columns covers another column. Since
the d columns corresponding to defectives are fixed with respect to a batch, the remaining column
may be chosen in n−d ways, which gives the following result. The same improvement may be used
in DNA library screening (see [16, Th. 9.3.3] and [2]).

Theorem 2.8. There exists an ISF which identifies d defectives in a batch of size n using t tests
with failure probability Pd,n ≤ (n− d)

[
1− q(1− q)d

]t, where q = 1/(d + 1).

Remark 2.9. The error of this ISF is one-sided. It may output a valid signature as invalid. To
detect this, we must individually test the output signatures, to confirm that they are invalid.

3 Comparison of Algorithms

In this section we compare the ISF algorithms given in Section 2. We compare them based on the
number of tests, and their behaviour when d (the number of defectives) is unknown, or estimated
incorrectly. Finally we discuss how the ISFs given by Law and Matt [24, 25] for a specific class of
signature schemes compare to the generic ISF algorithms given in this paper.

3.1 Number of Tests

First, for each of the ISF algorithms in Section 2, we give the bound on the worst case number
of calls to Batch (Table 1). Table 1 gives the bound for the trivial parallelization of (generalized)
binary splitting: divide the original batch into p equal-sized sub-batches. The KUW algorithm is
a better parallelization of binary splitting. For generalized binary splitting, the bounds given hold
for d ≥ 2, while for d = 1 the number of required tests is blog nc+ 1.

Next we compare the number of tests required by each method for various choices of n, d,
and p (the number of processors available). In Ferrara et al. [17], the choices n = 1024, d =
1, . . . , 153 were used when investigating the practical performance of the binary splitting method.
In Pastuszak et al. [29], choices of n ∈ [16, 1024] are used to give the average number of tests
for the binary splitting method when d = 1, . . . , 16. In Law and Matt [24], tables are given with
n = 24, 26, 28, 210, 212 and d = 1, . . . , 4. In Matt [25], the parameters chosen for comparison are
n = 24, 26, 28, 210 and d = 1, . . . , n (here the goal was to show better performance with large d). All
previous work considered p = 1, i.e., a single processor. We will compare the ISF algorithms with
n = 103, 104, 105, 106, d = 1, 2, 3, 4, 10 and p = 2, 4, 8, 16. Table 2 gives the algorithm requiring the
fewest tests when p = 1 and Table 3 provides the same information when p ≥ 2 (according to the
bounds in Table 1). A finer grained comparison is given in Appendix B, where Tables 5, 6 and 7
give the actual number of tests required under various combinations of parameters.

Discussion In the case of a single processor, (Tables 2 and 5), we find that the adaptive algo-
rithms have the best performance. In particular, generalized binary splitting slightly outperforms

9

Method Sec. Tests (worst case) Tests with p processors

Individual Testing 2.1 n− 1 dn/pe − p

Binary Splitting (B.S.) 2.2.1 d dlog ne d
⌈
log

(
n
p

)⌉
Gen. Bin. Splitting (G.B.S) 2.2.1 d− 1 +

⌈
log

(
n
d

)⌉
d− 1 +

⌈
log

(
n/p
d

)⌉†
Li’s s-stage 2.2.2 e

log ed log n
d

e
log e

d
p log n

dp + ln n
dp + d

PR CFF 2.3.1 (d + 1)2 log n ((d + 1)2 log n)/p

PPS id-codes 2.3.2 (d + 1)
√

n ((d + 1)
√

n)/p

KUW 2.2.1 d dlog2 ne d
⌈
logp+1 n

⌉
Table 1: Summary of the number of tests required for the ISF algorithms presented in §2. The
number of tests required by the random matrices ISF must be computed using Theorem 2.8. “PR
CFF” is the ISF based on Theorem 2.5, and “PPS id-codes” is the ISF in Theorem 2.6.

binary splitting, especially as d grows. With a single processor the KUW algorithm has the same
performance as binary splitting, hence we have omitted it from the table.

When two or more processors are available to the ISF (Tables 3, 6 and 7), Li’s s-stage algorithm
and the KUW algorithm begin to show the best performance. The performance gap is most pro-
nounced as the number of processors grows for any of the choices of (n, d) presented. In general,
the nonadaptive algorithms improve when more processors are available, as they provide a speedup
linear in the number of processors. Regarding the nonadaptive algorithms, the PR CFF algorithm
(Th. 2.5) requires fewer tests than the PPS id-code algorithm (Th. 2.6) when d <

√
n/ log n − 1.

If a failure probability of 0.001 is tolerable (see Remark 2.9), the random matrix ISF (RM ISF)
outperforms the CFF and id-codes methods since it requires a weaker property from the matrix, as
discussed following Theorem 2.7. The RM ISF with failure probability 0.001 is best overall when
p = 16, d = 4 and n = 104, 105, 106 (see Appendix B). However, determining whether the RM ISF
has failed requires d individual verifications.

In the detailed tables of Appendix B, there are many parameter combinations where multiple
ISFs require a nearly equal number of tests. In these cases, implementation factors, average case
performance, and the size of subset tests may influence the best choice.

3.2 Unknown Number of Invalid Signatures

Table 4 lists the behaviour of each of the algorithms when the true number of signatures, is d′, a
value different from our estimate d.

The binary splitting algorithm has a certain grace with respect to handling arbitrary d, in that
the algorithm’s behaviour is unchanged, and the bound on the number of tests holds as d changes.
On the other hand, Li’s s-stage algorithm, and generalized binary splitting begin by computing
some parameters based on n and d in order to meet the performance bound stated in Table 1. If
a batch contains d′ 6= d invalid signatures these parameters will not be chosen optimally, and it is

10

n d Fewest Tests

103 1–3 (generalized) binary splitting
4,10 generalized binary splitting

104 1 (generalized) binary splitting
2–4,10 generalized binary splitting

105 1,2 (generalized) binary splitting
3,4,10 generalized binary splitting

106 1–3 (generalized) binary splitting
4,10 generalized binary splitting

Table 2: Algorithm requiring the fewest number of tests when p = 1. The number of tests required
by all algorithms listed in Table 1 is given in Table 5.

n d
Fewest Tests when p =
2 4 8 16

103 4 KUW LI LI LI
104 4 KUW KUW LI LI
105 4 KUW KUW LI LI
106 4 KUW KUW KUW LI
103 10 LI LI LI LI
104 10 KUW LI LI LI
105 10 KUW LI LI LI
106 10 KUW LI LI LI

Table 3: Algorithm requiring the fewest number of tests with p processors. The number of tests
required by all algorithms listed in Table 1 is given in Tables 6 and 7. Here, LI stands for Li’s
Algorithm (§2.2.2).

unclear to what extent this will hurt the performance of the algorithm. It is also unclear whether
better performance is obtained by underestimating or overestimating d′.

When a batch contains d′ > d invalid signatures, the CFF and id-code algorithms output a set
B′ of ` signatures, where d < ` ≤ n. All d′ defectives are in B′; however, it may contain valid
signatures as well. As d′ increases, ` will increase as well, and less information is gained. The case
d′ > d is easily recognized (if |B′| > d), and we may restart the ISF with a larger estimate of d.

The random matrix ISF outputs each d′ > d with probability Pd′,n, given in Theorem 2.8. For
these algorithms we may run t tests to identify some valid signatures, remove them from the batch,
re-estimate d, and re-run the ISF.

Another option when d is unknown is to use a competitive algorithm, i.e., one which assumes
no a priori information about d, yet completes in a bounded number of tests (see [16, Ch. 4]). For
example, the “jumping algorithm” of Bar-Noy et al. [3], identifies d invalid signatures in at most
1.65d(log n

d + 1.031) + 6 tests, for 0 ≤ d ≤ n. Note that this flexibility comes at a cost because the
performance of a competitive algorithm when d is known to be small is poorer than the other ISFs
presented.

11

Algorithm When d′ < d When d′ > d

B.S. Outputs d′ invalid signatures in time MB.S.(d′, n).

G.B.S., Li Outputs d′ invalid signatures but using suboptimal
parameter choices thus requiring extra work.

KUW Outputs d′ invalid signatures in time MKUW(d′, n).

CFF,
id-codes

returns d′ invalid signatures returns a set of d ≤ ` ≤ n poten-
tially invalid signatures

RM Outputs d′ signatures in
MRM(d, n) tests

Outputs d bad signatures with prob.
Pd,n and d′ bad signatures with
probability Pd′,n (see Th. 2.8)

Table 4: Behaviour of ISFs when the true number of invalid signatures d′ differs from the estimated
number d. Here, MA(d, n) represents the number of tests required by algorithm A for a batch of
size n with d defectives.

3.3 Comparison to Non-Generic ISF Algorithms

Recall from Section 1.2 that a non-generic ISF is an ISF which is customized to a particular signature
scheme, integrated into the Batch algorithm. In the single processor setting, the ISFs requiring the
fewest number of tests were binary splitting and generalized binary splitting. Since the non-generic
ISF given by Law and Matt [24, 25] outperforms binary splitting, their ISF will outperform the
generic ISF algorithms presented here (for the pairing-based signature schemes to which it applies).

The faster choice in the parallel case would depend on how well the specialized ISFs described by
Law and Matt parallelize. If their improved version of binary splitting yields an improved version of
the KUW test (which is similar to binary splitting) then the parameter combinations where KUW
is the best may be improved upon.

A general comparison is beyond the scope of this work since the units are different: number of
calls to Batch() (this work) vs. number of multiplications in a finite field (Law and Matt).

4 Conclusion

We have introduced a number of new algorithms for finding invalid signatures in bad batches. For
many parameter choices, and especially with multiple processors, the new methods outperform
known methods. Our comparison shows that the best algorithm depends strongly on the choice of
parameters, and no single algorithm is best in all cases. Topics for future work include: i) comparison
of implementations to compensate for not considering the sizes of sub-batches, and ii) specializing
the given ISFs to specific signature schemes, perhaps by using techniques from Law and Matt’s
specialized ISFs for pairing-based signature schemes.

Acknowledgements: Thanks are due to Urs Hengartner, Artur Jackson, and Aniket Kate for
providing feedback on an earlier draft of this paper. This research was supported by an NSERC
discovery grant, and PGS scholarship.

12

References

[1] M. Al-Ibrahim, H. Ghodosi and J. Pieprzyk. Authentication of concast communication. Proc.
of INDOCRYPT 2002, LNCS 2551 (2002), 185–198.

[2] D.J. Balding, W.J. Bruno, E. Knill and D.C. Torney. A comparative survey of nonadaptive
probing designs. Genetic Mapping and DNA Sequencing, IMA Vol. in Math. and Its Applications
(1996), 133–154, Springer-Verlag.

[3] A. Bar-Noy, F.K. Hwang, I. Kessler and S. Kutten. Competitive group testing in high speed
networks. Discrete Applied Math. 52 (1994), 29–38.

[4] M. Bellare, J. Garay and T. Rabin. Fast batch verification for modular exponentiation and
digital signatures. Proceedings of EUROCRYPT 1998, LNCS 1403 (1998), 236–250.

[5] D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. Journal of
Cryptology 17 (2004), 297319.

[6] C. Boyd and C. Pavlovski. Attacking and repairing batch verification schemes. Proceedings of
ASIACRYPT 2000, LNCS 1976 (2000), 58–71.

[7] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. Proceedings of
SCN 2002, LNCS 2576 (2002), 268–289.

[8] J. Camenisch, S. Hohenberger and M. Østergaard Pedersen. Batch verification of short signa-
tures. Proceedings of EUROCRYPT ’07, LNCS 4515 (2007), 246–263.

[9] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya and M. Meyerovich. How to win
the clonewars: efficient periodic n-times anonymous authentication. Proceedings of the 13th
ACM Conference on Computer and Communications Security (CCS) (2006), 201–210.

[10] J. Cha and J. Cheon. An identity-based signature scheme from gap Diffie-Hellman groups.
Proceedings of PKC 2003, LNCS 2567 (2003), 18–30.

[11] S. Chatterjee and P. Sarkar. Trading time for space: Towards an efficient IBE scheme with
short(er) public parameters in the standard model. Proceedings of the 8th International Con-
ference on Information Security and Cryptology (ICISC), LNCS 3935 (2005), 424–440.

[12] A.E.F. Clementi, A. Monti, and R. Silvestri. Distributed broadcast in radio networks of un-
known topology. Th. Comp. Sci. 302 (2003), 337–364.

[13] A. De Bonis and U. Vaccaro. Constructions of generalized superimposed codes with applica-
tions to group testing and conflict resolution in multiple access channels. Th. Comp. Sci. 306
(2003), 223–243.

[14] R. Dorfman. The detection of defective members of large populations. Ann. Math. Statist. 14
(1943), 436–440.

[15] D. Du and F.K. Hwang. Combinatorial Group Testing and its Applications. World Scientific,
Singapore, 1993.

13

[16] D. Du and F.K. Hwang. Combinatorial Group Testing and its Applications 2nd Edition. World
Scientific, Singapore, 2000.

[17] A.L. Ferrara, M. Green, S. Hohenberger and M. Østergaard Pedersen. Practical Short Signature
Batch Verification ePrint Report 015/2008 (2008). Available online: http://eprint.iacr.
org/2008/015

[18] A. Fiat. Batch RSA. Proceedings of CRYPTO’89 (1989), 175–185.

[19] A. Fiat. Batch RSA. Journal of Cryptology 10 (1997), 75–88.

[20] J.A. Garay, J.N. Staddon and A. Wool. Long-lived broadcast encryption. Proceedings of
CRYPTO 2000, LNCS 1880 (2000), 333–352.

[21] M.C. Hu, F.K. Hwang and J.K. Wang. A boundary problem for group testing. SIAM J. Alg.
Disc. Methods 2 (1981), 81–87.

[22] R.M. Karp, E. Upfal and A. Wigderson. The complexity of parallel search. J. Comput. Syst.
Sci. 36 (1988), 225–253.

[23] W.H. Kautz and R.G. Singleton. Nonrandom binary superimposed codes. IEEE Transactions
on Information Theory 10 (1964), 363–373.

[24] L. Law and B.J. Matt Finding invalid signatures in pairing-based batches. Proceedings of
Cryptography and Coding 2007, LNCS 4887 (2007), 34–53.

[25] B.J. Matt. Identification of multiple invalid signatures in pairing-based batched signatures.
Proceedings of PKC 2009, LNCS 5443 (2009), 337–356.

[26] C.J. Mitchell and F.C. Piper. Key storage in secure networks. Discrete applied mathematics
21 (1988), 215–228.

[27] D. Naccache, D. M’raihi, S. Vaudenay and D. Raphaeli. Can DSA be improved? Complexity
trade-offs with the digital signature standard. Proceedings of EUROCRYPT ’94, LNCS 950
(1994), 77–85.

[28] Q.A. Nguyen and T. Zeisel. Bounds on constant weight binary superimposed codes. Problems
in Control and Information Theory 17 (1988), 223–230.

[29] J. Pastuszak, D. Michalek, J. Pieprzyk and J. Seberry. Identification of bad signatures in
batches. Proceedings of PKC 2000, LNCS 1751 (2000), 28–45.

[30] J. Pastuszak, J. Pieprzyk and J. Seberry. Codes identifying bad signatures in batches. Pro-
ceedings of INDOCRYPT 2000, LNCS 1977 (2000), 143–154.

[31] E. Porat and A. Rothschild. Explicit non-adaptive combinatorial group testing schemes. Pro-
ceedings of Automata, Languages and Programming, ICALP 2008, LNCS 5125 (2008), 748–759.

[32] M. Ruszinkó. On the upper bound of the size of the r-cover-free families. Journal of Combi-
natorial Theory Series A 66 (1994), 302–310.

[33] D.J. Shultz. Topics in nonadaptive group testing. Ph.D. Dissertation, Temple University, 1992.

14

[34] J. Spencer. Minimal completely separating systems. Journal of Combinatorial Theory 8 (1970),
446–447.

[35] E. Sperner. Ein Satz Uber Untermengen einer endliche Menge. Math. Zeit. 27 (1928) 544–548.

[36] J.N. Staddon, D.R. Stinson and R. Wei. Combinatorial properties of frameproof and trace-
ability codes. IEEE Trans. Inf. Theory 47 (2001), 1042–1049.

[37] D.R. Stinson, T. van Trung and R. Wei. Secure frameproof codes, key distribution patterns,
group testing algorithms and related structures. Journal of Statistical Planning and Inference
86 (2000), 595–617.

[38] D.R. Stinson, R. Wei and L. Zhu. Some new bounds for cover-free families. Journal of
Combinatorial Theory Series A. 90 (2000), 224-234.

[39] D.R. Stinson. Attack on a concast signature scheme. Information Processing Letters 91 (2004),
39-41.

[40] M. Sobel and P.A. Groll. Group testing to eliminate efficiently all defectives in a binomial
sample. Bell System Tech. J. 28 (1959), 1179–1252.

[41] J.H. van Lint. Introduction to Coding Theory. Springer, New York, 1998.

A Bounds and Constructions of Cover-Free Families

The number of rows, t, in the matrix representation of a d-CFF(t, n) gives the number of tests
required in the group testing algorithm given in the previous section. In this section we present
bounds for t since this indicates how well (at best) we can expect CFF-based nonadaptive group
tests to perform.

First we present a necessary condition for the existence of CFF, a lower bound on the number
of rows.

Theorem A.1 (see [38], Th. 1.1). For any d ≥ 1, in a d-CFF(t, n)

t ≥ c

(
d2

log d

)
log n

The constant c is approximately 1/8 (shown in [32]).

It is immediately clear that the nonadaptive feature comes at a cost, since the number of tests
will always be larger than d dlog(n)e, the number of tests required by binary splitting (c.f. 2.2.1).

De Bonis and Vaccaro bound t from the other direction.

Theorem A.2 ([13], Cor. 1). There exists a d-CFF(t, n) with

t < 24d2 log(n + 2) .

Their proof method is constructive, based on a greedy algorithm, and it is efficient for small
CFF.

15

A.1 Explicit Constructions of Cover-Free Families

The case d = 1. Construction of 1-CFF(t, n) is optimal and simple; choose all
(

t
bt/2c

)
length t

binary vectors with weight bt/2c. This is proven in Spencer [34], based on Sperner’s theorem [35],
and gives the following nonadaptive ISF.

Theorem A.3. In a batch of n signatures, a single bad signature may be identified using t parallel
tests, provided (

t

bt/2c

)
≥ n .

Therefore, 15, 20 and 25 tests may identify a single bad signature in a batch of size at most
6435, 184756 and 5200300, respectively.

CFF from codes with large distance. This construction is due to Kautz and Singleton [23]
(and is it also described in [16]). They prove a lemma that gives conditions under which a constant
weight binary code is a CFF. The codewords of a constant weight code all have a fixed number
of nonzero coordinates. Now suppose we have an (N,n, q, `) code, i.e. n codewords of length N
over q symbols with minimum distance `. We must replace the q-ary alphabet with a binary one.
Let ϕ : {1, . . . , q} → {0, 1}q0 be a map which encodes 1, . . . , q as binary vectors of length q0. The
codeword (c1, . . . , cN) will be replaced by (ϕ(c1), . . . , ϕ(cN)).

A simple choice of ϕ encodes i as the i-th column of the q × q identity matrix. The resulting
code has constant weight, and gives a d-CFF(qN, n) if d < N−1

N−` . This gives the following explicit
construction.

Theorem A.4. Let q be a prime power, 2 ≤ k < q be an integer and C be a (q, qk, n, ` = q−(k−1))
Reed-Solomon code (see [41, §6.8]). Then C is d-CFF(q2, n) if

d <
q − 1
k − 1

.

For example, using Theorem A.4, we can construct an ISF for n = 512, d = 3 with t = 64 or for
n = 4096, d = 7 with t = 256.

Alternate choices of ϕ are possible, so long as the encoding ϕ(1), . . . , ϕ(q) forms a d-CFF(q0, q).
Smaller values of q0 yield CFF with fewer rows. We refer the reader to Kautz and Singleton [23],
and Nguyen and Zeisel [28] for the details of such recursive constructions.

B Comparison Details

Table 5 gives the number of tests required by each algorithm when p = 1, with varying n and d,
while Tables 6 and 7 fix d = 4 and d = 10 respectively, with varying n and p.

16

Method n = 103, d = n = 104, d =
1 2 3 4 10 1 2 3 4 10

Binary Splitting 10 20 30 40 100 14 28 42 56 140
Gen. Bin. Splitting 10 20 30 39 87 14 27 40 52 121
Li’s s-stage 18 33 47 60 125 25 46 66 85 187
PR CFF 13 89 159 249 1205 16 119 212 332 1607
PPS id-codes 63 94 126 158 347 200 300 400 500 1100
Random Matrices 49 87 124 162 387 57 101 145 189 452

n = 105 n = 106

Binary Splitting 17 34 51 68 170 20 40 60 80 200
Gen. Bin. Splitting 17 34 50 65 154 20 40 60 79 187
Li’s s-stage 31 58 84 110 250 37 71 103 135 312
PR CFF 20 149 265 415 2009 23 179 318 498 2411
PPS id-codes 632 948 1264 1581 3478 2K 3K 4K 5K 11K
Random Matrices 65 115 166 216 517 73 130 186 243 581

Table 5: Table showing the number of tests required by each group testing algorithm from Table
1 when n = 103, 104, 105, 106 and d = 1, 2, 3, 4, 10. For random matrices a success probability of
99.9% is required.

Method
d = 4

n = 103, p = n = 104, p =
2 4 8 16 2 4 8 16

Binary Splitting 36 32 28 24 52 48 44 40
Gen. Bin. Splitting 35 31 27 23 48 44 40 36
KUW 28 20 16 12 36 24 20 16
Li’s s-stage 35 19 12 8 49 27 17 12
PR CFF 125 63 32 16 166 83 42 21
PPS id-codes 79 40 20 10 250 125 63 32
Random Matrices 81 41 21 11 95 48 24 12

n = 105 n = 106

Binary Splitting 64 60 56 52 76 72 68 64
Gen. Bin. Splitting 61 57 53 49 75 71 67 63
KUW 44 32 24 20 52 36 28 20
Li’s s-stage 64 36 22 16 79 45 28 20
PR CFF 208 104 52 26 249 125 63 32
PPS id-codes 719 396 198 99 2.5K 1250 625 313
Random Matrices 108 54 27 14 122 61 31 16

Table 6: Table showing the number of tests required by each group testing algorithm from Table
1 when n = 103, 104, d = 4 and the number of processors available is p = 2, 4, 8, 16. For random
matrices a success probability of 99.9% is required.

17

Method
d = 10

n = 103, p = n = 104, p =
2 4 8 16 2 4 8 16

Binary Splitting 90 80 70 60 130 120 110 100
Gen. Bin. Splitting 77 67 57 47 111 101 91 80
KUW 70 50 40 30 90 60 50 40
Li’s s-stage 67 35 21 14 100 53 31 21
PR CFF 603 302 151 76 804 402 201 101
PPS id-codes 174 87 44 22 550 275 138 69
Random Matrices 194 97 49 25 226 113 57 29

n = 105, p = n = 106, p =
2 4 8 16 2 4 8 16

Binary Splitting 160 150 140 130 190 180 170 160
Gen. Bin. Splitting 144 134 124 114 177 167 157 147
KUW 110 80 60 50 130 90 70 50
Li’s s-stage 134 70 41 27 167 88 51 33
PR CFF 1005 503 252 126 1206 603 302 151
PPS id-codes 1739 870 435 218 5500 2750 1375 688
Random Matrices 259 130 65 33 291 146 73 37

Table 7: Table showing the number of tests required by each group testing algorithm from Table
1 when n = 103, 104, d = 10 and the number of processors available is p = 2, 4, 8, 16. For random
matrices a success probability of 99.9% is required.

18

