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Group-theoretic exploitations of symmetry in computational solid
and structural mechanics
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SUMMARY

The use of group theory in simplifying the study of problems involving symmetry is a well-established
approach in various branches of physics and chemistry, and major applications in these areas date back
more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient
strategies for exploiting symmetry in the computational problems of solid and structural mechanics has
led to the development of group-theoretic methods over the past 40 years. This paper reviews the advances
made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite
element analysis, and summarizes the various implementation procedures currently available. Illustrative
examples of typical solution procedures are drawn from recent work of the author. It is shown how
the group-theoretic approach, through the characteristic vector-space decomposition, enables considerable
simplifications and reductions in computational effort to be achieved. In many cases, group-theoretic
considerations also allow valuable insights on the behaviour or properties of a system to be gained, before
any actual calculations are carried out. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nature exhibits symmetry on a level ranging from the microscopic to the macroscopic, from
atoms, molecules and crystals, to planetary systems and cosmic structures. Considerations of
symmetry have played a major role in shaping the man-made world of architecture and engineering
construction, and in the design of all sorts of machinery. In simple terms, a body or a structure
is said to exhibit symmetry if one part of it is similar or identical to another part relative to a
centre, an axis or a plane. More formally, a body or a structure is said to exhibit symmetry if it
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can be turned into one or more new configurations physically indistinguishable from the initial
configuration through the application of one or more symmetry operations such as reflections in
planes, rotations about axes, or inversions about some centre.

Although wider in its scope, group theory has been described as ‘the mathematics of symmetry’
[1], because it is in the systematic study of symmetry and its consequences that this branch of
mathematics has found its most fruitful applications. Of particular interest here are symmetry
groups (that is, groups whose elements are symmetry operations). Applications of group theory to
problems in physics and chemistry are well known. They have been demonstrated in areas such
as quantum mechanics, molecular chemistry and crystallography [2–8].

Up to about 1970, and as noted by Glockner [1], only isolated cases existed in which researchers
had exploited group-theoretic methods in structural mechanics, unlike in the domains of physics
and chemistry, where group-theoretic techniques as a tool for handling symmetry were already
well established. Considerable progress has been made since that time, and as will be seen in this
paper, fruitful applications have arisen in areas such as vibration, stability, bifurcation and finite
element analysis, among others.

Traditionally, structural analysis has exploited symmetry via two well-known approaches. The
first makes use of the concepts of ‘symmetry’ and ‘antisymmetry’, and is applicable to structures
that exhibit planes or axes of symmetry. Simplification in the analysis is achieved by dividing the
structure into substructures through the axes or planes of symmetry, and then analysing only one
substructure. Appropriate boundary conditions have to be imposed along the planes of division, to
simulate the continuity of the full structure.

Instead of partitioning the physical system into substructures through symmetry planes, one can
alternatively manipulate the stiffness matrix of the complete system and partition it, enabling the
analysis of the entire structure to be effected on the basis of a much smaller matrix. Clearly, this
implies reduced computer storage requirements and reduced computational time. If s represents the
number of symmetry axes (planes) of a symmetric skeletal structure, then according to Kardestuncer
and Berg [9], the stiffness matrix of such a structure will possess (s+1) symmetry axes, and only
0.25s of the stiffness matrix will be needed to perform the analysis for the entire structure.

The second approach makes use of the concept of ‘cyclic’ or ‘rotational’ symmetry. Here the
structure consists of identical substructures forming a rotationally periodic pattern (that is, the
substructure is repeated a number of times as one sweeps through a full circle around the axis of
rotational symmetry of the structure). For structures with this type of symmetry, discrete Fourier
methods can be applied to simplify the analysis [10–12].

Clearly, these methods cannot take into account the types of symmetry for which they are
not suited, and in the case of structural configurations possessing complex or mixed symmetry
properties, only a portion of the total symmetry can be exploited. As we shall see, the group-
theoretic approach, based on the theory of symmetry groups and associated representation theory,
has the capability of taking into account all the symmetry properties of a configuration in a
systematic manner. This has pointed to the possibility of dramatic reductions in computational
effort, particularly in the case of large-scale problems that are rich in symmetry. Furthermore, in
those cases where engineering structures exhibit small deviations from perfect symmetry, group
theory can still be employed to simplify the analysis [13].

Before considering specific applications of group theory in the various areas of solid and
structural mechanics, let us begin by summarizing the basic concepts of symmetry groups and
their representation. Much of the behaviour of a symmetric physical system can be explained in
terms of the intrinsic properties of the associated symmetry group and its representations. It is for
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this reason that the most important aspects of the theory are included here. For a more detailed
treatment of group theory and symmetry groups, the reader is referred to specialist texts on the
subject (for example, Reference [4]).

2. BASIC CONCEPTS OF SYMMETRY GROUPS AND REPRESENTATION THEORY

A set of elements {a,b,c, . . . ,g, . . .} comprises a group G with respect to a binary operation (for
example, multiplication) if the following axioms are satisfied [4]:

(i) The product c of any two elements a and b of the group, denoted by c=ab, must be a
unique element which also belongs to the group.

(ii) Among the elements of G, there must exist an identity element e which, when multiplied
with any element a of the group, leaves the element unchanged: ea=ae=a.

(iii) For every element a of G, there must exist another element d also belonging to the group
G, such that ad=da=e; d is referred to as the inverse of a, and denoted by a−1.

(iv) The order of the multiplication of three or more elements of G does not affect the result
(that is, multiplication is associative): a(bc)=(ab)c.

Groups for which ab=ba (for any elements a and b of the group) are called Abelian groups.
When all elements of G are symmetry operations, then the group G is called a symmetry group.
Symmetry operations are transformations which bring an object into coincidence with itself, and
leaves it indistinguishable from its original configuration. For finite objects (whose symmetry
groups are referred to as point groups), symmetry operations are of the following types:

(i) reflections in planes of symmetry, which we will denote by �l , where l is the plane of
symmetry,

(ii) rotations about an axis of symmetry, which we will denote by cn , if the angle of rotation
is 2�/n,

(iii) rotation–reflections, which we will denote by sn; these represent a rotation through an
angle 2�/n, combined with a reflection in the plane perpendicular to the axis of rotation.
The special case of sn when n=2 is sometimes referred to as an ‘inversion’ (symbol i).
It represents a reflection through the centre of symmetry (that is, the one point of a finite
object which remains unmoved by all symmetry operations).

The present review will concern symmetry groups associated with common structural config-
urations, which may or may not be Abelian groups. More detailed classification of symmetry
groups is usually based on the types of symmetry elements making them up. For example, groups
denoted by Cn and Cnv all possess a single n-fold axis of rotational symmetry (giving n rotation
elements, one of which is equivalent to the identity element e), with the Cnv groups possessing an
additional n reflection elements. Groups Cn and Cnv are of order n and 2n, respectively, the order
of a group being simply the total number of elements comprising it. Groups Cn are referred to as
cyclic groups. Figure 1 illustrates Cn and Cnv configurations for n=8.

An element a of a group G is said to be conjugate to the element b belonging to the same group
if there exists an element g in G, such that a=g−1bg. The collection of all elements formed by
evaluating g−1bg for all g in the group is called the class of b.

Let us next turn our attention to the representation of symmetry groups. If a set of symmetry
operators {a,b,c, . . . ,g, . . .} in an n-dimensional vector space V constitutes a group G in the
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(a) (b)

Figure 1. (a) C8 configuration and (b) C8v configuration.

sense already defined, then the set R(G) of matrices describing all the symmetry operators of G,
with respect to a particular basis of the n-dimensional vector space, constitutes an n-dimensional
representation of G. The trace of a matrix (i.e. the sum of the diagonal elements) representing an
operator a is called the character of a, denoted by �(a).

If the basis of V is changed, a new set of matrices R′(G), also constituting a representation of
the group G, results. Since a basis transformation does not change the trace of a matrix representing
a linear operator in an n-dimensional vector space, this second representation of G will have the
same set of characters as the first representation.

Suppose now that a basis is found with respect to which the matrices of the group representation
are expressed as direct sums of submatrices that no further change of basis can reduce to matrices
of smaller dimensions

R(G)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R(1)G 0 · 0

0 R(2)G · 0

· · · ·

0 0 · R(k)G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Then sets R(�)(G) (�=1, 2, . . . ,k) of these submatrices (a set covering all the symmetry operators
of the group G) constitute irreducible representations. The representation R(G) is said to be fully
reducible, and Equation (1) may be rewritten as

R(G)= R(1)(G)+R(2)(G)+·· ·+R(k)(G) (2)

In the above equations, R(G) is a matrix of size n×n, whereas R(1)(G), R(2)(G), . . . , R(k)(G)

are the block-diagonal submatrices of R(G). These blocks are of size n1×n1,n2×n2, . . . ,nk×nk ,
respectively, where n1+n2+·· ·+nk =n.

The above process of reduction (culminating in irreducible representations) effectively divides
the vector space V of the problem into a number of group-invariant subspaces U (i), such that none
of these subspaces can be divided into further group-invariant subspaces of smaller dimensions.
According to representation theory, if a group G of order m has k classes, then the number of
different irreducible representations is finite and equal to k.
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Table I. General format for character tables.

G K1 K2 · K j · Kk

R(1) �(1)
1 �(1)

2 · �(1)
j · �(1)

k

R(2) �(2)
1 �(2)

2 · �(2)
j · �(2)

k
· · · · · · ·
R(i) �(i)

1 �(i)
2 · �(i)

j · �(i)
k

· · · · · · ·
R(k) �(k)

1 �(k)
2 · �(k)

j · �(k)
k

In any irreducible representation, all group elements belonging to the same class have the same
character, since traces of conjugate elements are equal. Denoting the k different classes of a group
G by K1,K2, . . . ,Kk , the k different irreducible representations by R(1), R(2), . . . , R(k), and the
character which belongs to the class K j in the representation R(i) by �(i)

j , characters can be listed in
the format depicted in Table I. Comprehensive lists of character tables for point groups are widely
available [4, 5]. The sets of characters �(i)

j ( j =1,2, . . . ,k) for different irreducible representations
are always different (i.e. no two sets are the same).

If we introduce addition as a second operation into a group G, we can create the group algebra Z .
The group algebra, whose elements are all the linear combinations of group elements, has the
properties of a vector space. In the group algebra Z , the elements of G constitute a basis of Z ,
since they are linearly independent. All elements of G that commute with every element of Z
comprise the centre of the group algebra. Class sums (i.e. sums of group elements belonging to
the same class) form a basis of the centre of the group algebra, and the dimension of the centre
equals the number of classes.

A crucial concept in the application of group theory is that of an idempotent. Idempotents
P(i) of the group algebra are its non-zero elements which satisfy the relation P(i)P(i) = P(i).
Orthogonal idempotents satisfy the relation P(i)P( j) =0 if i �= j . They are linearly independent;
the sum of orthogonal idempotents is also an idempotent. Idempotents of the centre of the group
algebra are linear combinations of class sums. An idempotent P(i) corresponding to the irreducible
representation R(i), by operating on vectors of the space V , nullifies every vector which does not
belong to the subspace U (i) of R(i). Thus, out of all the vectors belonging to the group-invariant
subspaces U (1),U (2), . . . ,U (k), the operator P(i) selects all vectors belonging to the subspace U (i)

(which all have a definite symmetry-type characteristic of the subspace), and therefore acts as
a projection operator [4] of the subspace U (i). For instance, when applied as operators upon
the positional functions f1, f2, . . . , fn of a problem, idempotents generate the symmetry-adapted
positional functions for their respective subspaces, enabling basis vectors for the various subspaces
to be written down.

The orthogonal idempotents of the centre of the group algebra (P(i) for the subspaceU (i), for i=
1,2, . . . ,k) can be written down directly from the character table of the group, using the relation [14]

P(i) = �(i)

m

∑
g

�(i)(g−1)g (3)

where m is the order of G (i.e. the number of elements of G), �(i) is the dimension of the i th
irreducible representation, given by �(i) =�(i)(e), the first character of the i th row of the character
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table), �(i) is a character of the i th irreducible representation, g is an element of G, and g−1 its
inverse.

Summarizing, if a physical system possesses symmetry properties which can be described by a
group, decomposition of the vector space V of the system on the basis of the above procedure results
in a block-diagonal form of the matrix of equations describing the behaviour of the system, allowing
separation into independent sets of equations each corresponding to a particular subspace of V .

Various classes of problems in structural mechanics will be considered in the following sections.
While group-theoretic formulations will differ from one application to another, the basic ideas will
remain essentially the same.

In this paper, we are not concerned with applications of group theory to the solution of differential
equations as an end in itself, but rather with applications of group theory to the solution of
physical problems exhibiting symmetry (which may or may not involve differential equations).
However, since differential equations feature so frequently in solid and structural mechanics, we
will just briefly mention here their connection with group theory. Applications of group theory to
the solution of differential equations had their origins about 125 years ago, in the work of Sophus
Lie. Many papers have since been written on the subject. For a comprehensive treatment of the
subject, the reader is referred to References [15, 16].

A symmetry of a differential equation is a transformation which maps any solution of the
differential equation to another solution. A Lie symmetry is characterized by an infinitesimal
transformation which leaves a differential equation invariant under the transformation of all inde-
pendent and dependent variables. The Lie symmetries of differential equations form a group, in
the sense defined earlier. Applications of Lie groups in the theory of differential equations include:
(i) mapping solutions of differential equations to other solutions; (ii) reduction of the order of
ordinary differential equations and of the number of independent variables of partial differential
equations; (iii) construction of invariant solutions; and (iv) construction of conservation laws. Prob-
lems of structural mechanics recently studied on the basis of Lie groups include the Timoshenko
beam equations [17], the theory of shells and rods [18], the theory of affine rods [19], and the von
Karman equations for large deflections of thin elastic plates [20].

3. BIFURCATION PROBLEMS

Renton’s paper of 1964, on the buckling of symmetrical frameworks [21], ranks among the earliest
applications of group theory to problems of structural stability. Since then bifurcation theory has
emerged as one of the most fruitful areas of application of group-theoretic methods in structural
mechanics. A group-theoretic bifurcation theory has been given by Sattinger [22], and detailed
considerations of the singularity behaviour of symmetric configurations, and how group-theoretic
bifurcation theory accounts for this, may be seen in the work of Golubitsky and Schaeffer [23, 24].
The reader interested in a comprehensive treatment of groups and bifurcation theory is referred to
these books. However, the main concern of this work was problems of local (as opposed to global)
bifurcation.

With regard to specific problems, the post-buckling secondary-bifurcation behaviour of an axially
compressed bar of constant rectangular cross section has been investigated by Buzano [25], who
employed group-theoretic concepts to simplify the analysis and generate the required bifurcation
diagrams. The symmetry group C2v (describing the rectangular shape of the cross section) forms
the basis for the formulation of the problem. The author adopts the ratio of the sides of the
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rectangular section as a parameter, and when this ratio is made to equal one, the results for a
square cross section are directly deduced without having to re-formulate the problem in terms of
the C4v symmetry of the square.

The development of group-theoretic procedures for global (as opposed to local) bifurcation anal-
ysis has been the subject of many fairly recent investigations. It is recognized that symmetric struc-
tures have a much more complex bifurcation behaviour than non-symmetric structures. Multiple
critical points, where two or more eigenvalues vanish simultaneously, are inherent in symmetric
structures [26]. For structural configurations of this kind, the group-theoretic approach is naturally
suited to untangling the problem and simplifying the analysis. Typically, the procedure allows
the tangent-stiffness matrix of the structure to be brought into block-diagonal form, facilitating
tests for singularity of the tangent-stiffness matrix [27], or eliminating problems of numerical
ill-conditioning usually associated with the bifurcation analysis of thin shells [28]. These studies
bring out three major attributes of group-theoretic procedures: (i) computational simplification
(such as block-diagonalization of the stiffness matrix), (ii) circumvention of computational prob-
lems (such as numerical ill-conditioning), and (iii) insights on structural behaviour (e.g. prediction
of bifurcation patterns).

Lattice domes and related space structures have been the subject of several recent group-
theoretic investigations [26, 27, 29], owing to the high degree of symmetry they naturally possess.
Of particular interest have been structural configurations belonging to the dihedral groups Dn (i.e.
groups describing the symmetry of regular polygons), which are very common. Elements of a
group Dn are as follows:

Dn ={e,cn, . . . ,cn−1
n ,�,�cn, . . . ,�c

n−1
n } (4)

where c jn ( j=1, . . . ,n−1) represents a clockwise rotation about the z axis through an angle of
2� j/n,� is a reflection relative to the xz plane and �2=cnn =e (identity). Here, a configuration
is assumed to lie in the 3-dimensional Cartesian coordinate system, with the z axis being vertical
and the xy plane being horizontal and containing the plan projection of the configuration. Figure 2
shows space-truss domes with D3 and D6 symmetries.

It is clear that bifurcation patterns of Dn configurations will generally be less symmetric than
the configurations themselves (bifurcation being a process of ‘symmetry breaking’). The patterns
will in general retain only part of the original symmetry, represented by the subgroups of Dn
(which are lower-order dihedral groups) and cyclic groups Cm (whose order m is an integer factor
of n). For instance, the subgroups of the group D3 are:

D3, C3={e,c3,c23}, D j
1 ={e,�c j−1

3 } ( j =1,2,3), C1={e}
Healey [29] has applied group invariance to the global bifurcation problem of symmetric structures,
illustrating the procedure by the example of a lattice dome with hexagonal symmetry (Figure 2(b)).
The basic idea is the formulation of a reduced problem having fewer unknowns than the original
problem; solutions of the reduced problem are exact solutions of the full problem. The paper
demonstrates that a reduced problem does not possess a singularity at a (symmetry-breaking)
bifurcation point of the full problem, circumventing the usual numerical problems near bifurcation
points. The study achieves a considerable reduction in computational effort in the determination
of several global solution branches, enabling the accurate computation of a fairly large number
of singular points. Although only one particular example is considered, this study is an excellent
demonstration of the power of the group-theoretic approach in not only reducing the computations
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Figure 2. Truss domes with Dn symmetry: (a) D3 configuration and (b) D6 configuration [29].

of global bifurcation paths, but also in avoiding possible numerical ‘straying’ (jumping onto the
wrong path).

In tackling the problem of the postbuckling behaviour of an axially compressed cylindrical shell,
Wohlever and Healey [28] note that the main computational difficulty is the severe ill-conditioning
of the tangent-stiffness matrix, owing to the closely spaced symmetry-breaking bifurcation points
on the primary axisymmetric solution branch. They then employ group theory to circumvent this ill-
conditioning, by using symmetry-adapted variables (reflecting the symmetry of the various solution
paths, and hence also referred to as ‘symmetry modes’) as the basis vectors for the k mutually
independent subspaces U (i) of the original vector space V of the problem. The finite element
discretization adopted uses ring elements (to preserve the axisymmetry of the full cylinder), while
the displacement fields of the shell (within each ring) are represented by a finite number of Fourier
terms along the circumference (the number of terms being chosen to match the deformation mode
being investigated). For the vector equilibrium equation

f(u,�)=0 (5)

(where f is a column-vector function, u is a displacement vector and � is a loading parameter),
the tangent-stiffness matrix K=df/du, when thus block-diagonalized, leads to the following form
of the incremental equations of the Newton–Rapson procedure:⎡

⎢⎢⎢⎢⎣
K(1) 0 · 0

0 K(2) · 0

· · · ·
0 0 · K(k)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�u(1)

�u(2)

·
�u(k)

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

−f�
0

·
0

⎤
⎥⎥⎥⎦ (6)
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where u(i) belongs to the subspace U (i). By reducing the full problem to subproblems of a specific
symmetry type within the independent subspaces, a subproblem cannot ‘see’ solutions of a different
symmetry type [28], hence, branch switching due to numerical ill-conditioning is effectively
bypassed. It is also evident from Equation (6) that block-diagonalization of the tangent-stiffness
matrix affords significant savings in computational effort.

Clearly, the problem of the elastic instability of thin shells is an important one, and the group-
theoretic formulation presented by Wohlever and Healey [28] is a major step forward in the pursuit
of more effective computational strategies for shells. However, the formulation is applicable only
to the geometry of the plain (unstiffened) cylindrical shell. Conical shells and the majority of other
shells of revolution, while possessing axisymmetry, will generally lack the additional symmetry of
the circular cylinder about the transverse bisector plane (midway between the cylinder ends and
perpendicular to the axis of rotation). Despite this, it may still be possible to incorporate group-
theoretic adaptations in the associated buckling solution procedures in order to allow exploitation
of the original axisymmetry. This is a possible line of study for future work.

Looking at the global bifurcation problem from a more general perspective, and following Ikeda
and Murota [27], let us suppose that the non-linear equations of a symmetric multi-dimensional
system are represented by an equation of the form of Equation (5). Let us assume the displacement
vector u is an independent variable belonging to an N -dimensional real vector space V =�N .
Let G be the symmetry group describing the overall symmetry of the system, and g any element
belonging to G. If T (g) for g∈G is an N×N orthogonal matrix of a linear representation of G
on �N , then Equation (5) is said to be equivariant under the action of T if

f(T (g)u,�)=T (g)f(u,�) for all g∈G (7)

Equivariance of equations to a group indicates that they are invariant under the transformation by
all elements of the group, and this equivariance is also a property of the tangent-stiffness matrix
K (the Jacobian of f):

K(T (g)u,�)T (g)=T (g)K(u,�) for all g∈G (8)

If u is invariant under G, that is, if T (g)u=u for all g∈G, then Equation (8) becomes

K(u,�)T (g)=T (g)K(u,�) for all g∈G (9)

For structures with the symmetry of regular polygons, the system of Equation (5) is equivariant
to the group Dn (the dihedral group of degree n).

According to group representation theory, the commutativity of K with the operations of
G(=Dn) guarantees the existence of an orthogonal matrixH which transforms the tangent-stiffness
matrix K into a block-diagonal form K̄:

HTKH=K̄=diag[K̄l ] (10)

where K̄l (l=1,2, . . . ,�) represents the diagonal square blocks making up K̄, � is the total number
of these blocks. The K̄l are assembled by performing an orthogonal transformation on K, using
the appropriate column vectors of the H matrix (that is, Hl) as the operator:

K̄l =[Hl ]TKHl (11)

Details of the computation of H may be seen in the paper by Ikeda and Murota [27]. Each block
of K is associated with a subgroup of Dn expressing the symmetry of the corresponding subspace
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spanned by its column vectors. Instead of working with K (which may be very large for large-scale
problems), tests for singularity are performed independently on the basis of these diagonal blocks
K̄l , which are much smaller in size. In addition, these diagonal blocks are generally not all different
from each other, but may feature several pairs of identical matrices, so that one needs only deal
with a certain number of distinct representative blocks, implying even lesser analytical effort. To
reduce the computational inaccuracies that arise in those situations where eigenvalues are equal
or nearly equal to each other, Ikeda and co-workers have subsequently proposed an improved
approach [30], which is particularly suited to structures with axisymmetry or the symmetry of
regular polygons.

The problem with the foregoing approach is that in order to obtain the diagonal blocks K̄l , it
is necessary to obtain the full tangent-stiffness matrix K of the problem first, which in itself may
require substantial computational effort, particularly in the case of very large problems. Instead
of block-diagonalizing K in the manner indicated above, we may follow the approach of Healey
[29], and restrict Equation (5) to the subspace U (i) of G:

f(i)(v,�)=0 (12)

As Healey points out [29], not all solutions of Equation (5) will be solutions of Equations (12),
but rather, the reduced problem as represented by Equation (12) will capture only the solution
points belonging to the subspace U (i). More importantly, all the solutions of Equation (5) can be
generated by solving the subproblem (Equation (12)) for each subspace U (i) (i=1,2, . . . ,k). To
achieve this, Equation (12) must first be expressed relative to a basis for the subspace in question.
Basis vectors are written down using the idempotents (projection operators) of the symmetry group,
and all the usual steps of a bifurcation analysis may then be carried out within the independent
subspaces.

Let us consider further qualitative insights that group theory may yield on the bifurcation
behaviour of a problem. Ikeda and co-workers [26] have studied the bifurcation behaviour of Dn
and Cn symmetric structures, and derived a logical sequence or ‘hierarchy’ for the symmetry-
breaking process of bifurcation. One of their observations is that the number of bifurcation paths
for such systems is equal to 2n/m (twice the ratio of the order of a group to that of a subgroup).
Bifurcation paths can undergo further progressive symmetry-breaking bifurcation until they reach
a completely asymmetric pattern C1, and the collection of such successive bifurcations makes up
what they term a ‘hierarchy’ (Figure 3). These concepts are applied to the specific problem of the
bifurcation analysis of a rectangular plate [31]. Qualitative considerations of this type allow useful
insights to be gained in advance of actual numerical computations.

Aston [32] has considered the problem of symmetry-breaking bifurcation for non-linear equations
defined on a real Hilbert space. This has enabled the decomposition of the Hilbert space into
orthogonal isotypic components, in turn facilitating the detection and computation of bifurcation
points. However, while much of the theoretical treatment is of general applicability and should be
noted, the considerations are applied to the gravity wave problem, which lies outside the scope of
the present review.

Many engineering structures, including those that are symmetric, have some form of imperfection
or another. In their book, Ikeda and Murota [33] consider the bifurcation behaviour of symmetric
structures with initial imperfections, and develop group-theoretic solution strategies for these. This
is an excellent treatment of the subject, mathematically rigorous and well illustrated with structural
examples (truss arches, truss domes, rectangular plates, etc.). The considerations are extended to
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Figure 3. Examples of hierarchies of bifurcation paths of Dn-symmetric structures [26].

the bifurcation behaviour of material test specimens with imperfections (soil, sand and concrete),
a most interesting line of application of group-theoretic bifurcation.

4. VIBRATION PROBLEMS

4.1. Problem formulation

Group theory has been extremely successful in solving numerous problems of the vibration of
atoms, molecules and crystals [2, 3, 7, 8]. Similar procedures have been applied to computational
engineering mechanics, to simplify the vibration analysis of complex mechanical and structural
systems. Early applications of group theory to problems of vibration in structural mechanics may
be seen in the work of Yang [34] and that of Singh and Mishra [35]. These investigators were able
to use concepts of group theory to predict the modes of vibration of symmetric structures.

Large eigenvalue problems (for which the degrees of freedom may be of the order of tens of
thousands or even millions) always pose a special challenge from a computational perspective. It
is in the analysis of such problems that group-theoretic procedures can be of most benefit. With
the eigenvalue analysis of large-scale symmetric skeletal structures in mind, Healey and Treacy
[36] have proposed a computational scheme combining group-theoretic ideas and substructuring
techniques, to block-diagonalize the structural matrix. Instead of working with the full structural
matrix, they use the smaller (and hence more convenient) matrix of the repeating substructure. Let
us consider the well-known eigenvalue problem

Ku=	2Mu (13)

describing the small free vibrations of a structural–mechanical system. Consistent with the usual
notation, K denotes the n×n stiffness matrix, M the n×n mass matrix, 	 a circular frequency
and u the corresponding mode shape. According to Healey and Treacy [36], if the system has
symmetry, then group representation theory can be employed to assemble an n×n orthogonal
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matrix T which transforms M and K into block-diagonal form:

TTMT= M̄ (14a)

TTKT= K̄ (14b)

These transformations effectively reduce Equation (13) to a series of smaller decoupled eigenvalue
problems.

To confirm the validity of Equation (14), let us use the argument of Healey and Treacy [36].
A representation R j ( j =1,2, . . . ,m; m is the order of G) for an n-dimensional symmetric problem

may be decomposed into its k irreducible representations R(i)
j (i=1,2, . . . ,k) of smaller dimension

�(i). This decomposition may be achieved via an orthogonal similarity transformation:

TTR jT=diag[R(1)
j ,R(2)

j , . . . ,R(k)
j ]= R̄ j (15)

where T is an n×n orthogonal matrix, each R(i)
j is an n(i)×n(i) matrix (i=1,2, . . . ,k) and the

sum of the n(i) (i=1,2, . . . ,k) is equal to n. Applying the orthogonal similarity transformation of
Equation (15) upon both M and K, we find that

M̄R̄ j = R̄ jM̄, K̄R̄ j = R̄ j K̄ ( j=1,2, . . . ,m) (16)

This leads us to conclude that M̄ and K̄ must have the same block-diagonal form as the R̄ j :

M̄= diag[M(1),M(2), . . . ,M(k)] (17a)

K̄= diag[K(1),K(2), . . . ,K(k)] (17b)

where M(i) and K(i) (i=1,2, . . . ,k) are each n(i)×n(i) matrices.
The assembly of the orthogonal similarity transformation is equivalent to finding a new system

of coordinates, called symmetry-adapted coordinates or symmetry modes, for which M̄ and K̄
have the above diagonal form. Symmetry-adapted coordinates may be written down using the
respective idempotents. For each subspace U (i) (i=1,2, . . . ,k), there are n(i) symmetry-adapted
coordinates or basis vectors associated with M(i) and K(i). Let T(i) denote the n×n(i) matrix
having the symmetry modes 
(i)

j ( j =1,2, . . . ,n(i)) as columns:

T(i) =[
(i)
1 
(i)

2 · 
(i)
n(i)] (18)

Then

M(i) = [T(i)]TMT(i) (19a)

K(i) = [T(i)]TKT(i) (19b)

In their paper, Healey and Treacy [36] proceed to outline an algorithm based on the repeating
substructure of the full structure, which does away with the need to first assemble the global
matrices M and K in order to evaluate the blocks M(i) and K(i). This improvement is particularly
advantageous for large-scale problems. Numerical examples considered include a dish antenna
with C6v symmetry, and space trusses with D3 and C3h symmetries. Of course one has to be able
to correctly identify the repeating substructure, and one still needs to compute the matrices for the
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substructure. Techniques that completely avoid having to obtain M and K (whether for the full
structure or for a substructure) will shortly be illustrated. These generate M(i) and K(i) directly,
not via transformations of the type shown in Equations (19).

Zlokovic [14] has developed effective group-theoretic procedures for problems of the vibration
analysis of symmetric structural systems (such as lumped-parameter models of beams), among
others. The approach involves the decomposition of the vector space of the normal variables
of a problem into a number of independent subspaces spanned by symmetry-adapted variables,
permitting quantities of interest to be separately obtained for each subspace through the solution of
a system of equations with only a fraction of the number of unknowns in the original problem. The
overall result is a substantial reduction in computational effort, in comparison with conventional
procedures.

Other investigators have adopted similar approaches in formulating the vibration problem for
various symmetric structures. The author has presented specific formulations for the vibration of
high-tension cable nets [37], grid-mass systems [38] and isotropic plates [39]. The same techniques
have also permitted useful insight to be gained on the vibration properties (symmetries of modes,
repeated frequencies, etc.) of space structures of complex symmetry (such as layered space grids)
[40], before any detailed numerical computations are undertaken. Mohan and Pratap [41] use a
group-theoretic formulation to tackle the free vibration problem of engineering ducts of polygonal
cross-section, and also extract useful a priori information on modes and frequencies (clustering
of modes, repeated roots).

To illustrate the group-theoretic computational steps for obtaining actual frequencies and mode
shapes, we will consider two particular examples: (i) the vibration of a spring–mass system; (ii) the
vibration of a cable net. The first example illustrates how seemingly unsymmetrical physical
systems can be transformed into symmetric configurations amenable to analysis by group-theoretic
techniques. In both examples, we do not require the assembly of the global stiffness matrix K
first (or the global flexibility matrix A in the case of the cable net, where a flexibility formulation
is adopted). Instead, symmetry-adapted stiffness matrices K(i) (or symmetry-adapted flexibility
matrices A(i) in the case of the cable net) are directly computed within the independent subspaces
U (i) of the problem. As the models adopted are lumped-parameter systems, no computations for the
M(i) will actually be necessary; these will simply be written down, but following group-theoretic
rules of course.

4.2. Spring–mass mechanical system

Techniques for simplifying the calculation of eigenvalues of matrices with certain special patterns,
such matrices representing symmetric graph models of various structures, have been demonstrated
by Kaveh and co-investigators [42]. The dynamic behaviour of complex engineering systems is
often modelled by means of spring–mass assemblies of appropriate mass, stiffness and damping
values. Certain configurations of spring–mass systems, while themselves not physically symmetric,
may be transformed into equivalent symmetric models that preserve all the graphical connectivities
between masses and springs, allowing group theory to be employed to simplify the extraction
of eigenvalues for the equivalent system. In more recent considerations of the vibration of such
systems, Kaveh and Nikbakht [43] successfully bring together techniques of graphs and group
theory, and employ the group-theoretic approach to simplify the calculation of eigenvalues. Their
procedure involves assembly of the full stiffness matrix of the entire system, which is then block-
diagonalized via a transformation matrix.
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(a)

(b)

Figure 4. A 6 d.o.f. spring–mass system: (a) original configuration and
(b) transformed configuration with C6v symmetry.

An alternative approach to similar problems has been adopted by the author [44]. This involves
formulating the eigenvalue problem for each subspace directly, without the need for first assembling
the full stiffness matrix for the entire system. This may have computational advantages in the case
of very large problems. The example below (drawn from Reference [44]) illustrates the procedure.

A spring–mass system with six degrees of freedom is shown in Figure 4(a). The masses are all
equal (mi =m for i=1,2, . . . ,6). The equivalent symmetric system is shown in Figure 4(b). This
configuration has a centre of symmetry O , and the symmetry elements: e (identity); c6 and c−1

6
(clockwise and anticlockwise rotations, respectively, of 2�/6 about the centre of symmetry O); c3
and c−1

3 (clockwise and anticlockwise rotations, respectively, of 2�/3 about the centre of symmetry
O); c2 (rotation of � about the centre of symmetry O); �a , �b, �c, �1, �2 and �3 (reflections in the
vertical planes A–A, B–B, C–C , 1–1, 2–2 and 3–3, respectively). The configuration of Figure 4(b)
therefore belongs to the symmetry group C6v of order 12. The positive direction of the freedoms
u1, u2, u3, u4, u5 and u6 maps into the direction towards the centre of symmetry O .

We follow the general approach outlined in Section 2, and begin by writing down the idempotents
of symmetry group C6v , using Equation (3). There are six of these, corresponding to the subspaces
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U (1), U (2), U (3), U (4), U (5) and U (6) of the problem. The results are:

P(1) = 1
12 (e+c6+c−1

6 +c3+c−1
3 +c2+�a+�b+�c+�1+�2+�3) (20a)

P(2) = 1
12 (e+c6+c−1

6 +c3+c−1
3 +c2−�a−�b−�c−�1−�2−�3) (20b)

P(3) = 1
12 (e−c6−c−1

6 +c3+c−1
3 −c2+�a+�b+�c−�1−�2−�3) (20c)

P(4) = 1
12 (e−c6−c−1

6 +c3+c−1
3 −c2−�a−�b−�c+�1+�2+�3) (20d)

P(5) = 1
6 (2e+c6+c−1

6 −c3−c−1
3 −2c2) (20e)

P(6) = 1
6 (2e−c6−c−1

6 −c3−c−1
3 +2c2) (20f)

If we apply the first idempotent P(1) to all the six freedoms ui (i=1,2, . . . ,6) of the configuration
of Figure 4(b), we obtain six symmetry-adapted freedoms for the first subspace, not all of which
are independent. Selecting a set of linearly independent symmetry-adapted freedoms as the basis
vectors for subspace U (1), and repeating the procedure for all the other subspaces (each time using
the correct idempotent for the subspace in question), we obtain the following results for the basis
vectors of the subspaces:

Subspace U (1)

�(1)
1 =u1+u2+u3+u4+u5+u6 (21)

Subspace U (4)

�(4)
1 =u1−u2+u3−u4+u5−u6 (22)

Subspace U (5)

�(5)
1 = u1+ 1

2u2− 1
2u3−u4− 1

2u5+ 1
2u6 (23a)

�(5)
2 = 1

2u1+u2+ 1
2u3− 1

2u4−u5− 1
2u6 (23b)

Subspace U (6)

�(6)
1 = u1− 1

2u2− 1
2u3+u4− 1

2u5− 1
2u6 (24a)

�(6)
2 = − 1

2u1+u2− 1
2u3− 1

2u4+u5− 1
2u6 (24b)

We observe from the above results that subspaces U (1) and U (4) are 1-dimensional (that is, spanned
by one basis vector each), subspaces U (5) and U (6) are 2-dimensional, while subspaces U (2) and
U (3) are null spaces. We have thus decomposed the original 6-dimensional vector space of the
problem into four independent subspaces of smaller dimensions, spanned by the above sets of
symmetry-adapted freedoms. Each subspace is associated with a specific symmetry type.

For subspace U (1), if we apply a unit positive displacement simultaneously on each mass
mi (i=1,2, . . . ,6) in accordance with the coordinates of the basis vector �(1)

1 (Equation (21)), we
see that the ensuing restoring force on each mass is equal to k1. Thus,

K(1) =k(1)
11 =[k1], M(1) =m(1)

11 =[m] (25)
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(a)

(b)

(c)

(d)

Figure 5. Application of displacement components of the basis vectors for the spring–mass model:
(a) subspace U (1); (b) subspace U (4); (c) subspace U (5); and (d) subspace U (6).
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This leads to the first-degree characteristic equation

k1−	2m=0 (26)

and the solution

	2= k1
m

(27)

For subspace U (4), applying a unit displacement simultaneously on each mass, in accordance with
the coordinates of the basis vector �(4)

1 (Equation (22)) as shown in Figure 5(b), results in a
restoring force of (k1+4k2) on each mass. Thus,

K(4) =k(4)
11 =[k1+4k2], M(4) =m(4)

11 =[m] (28)

which leads to the first-degree characteristic equation

(k1+4k2)−	2m=0 (29)

and the solution

	2= k1+4k2
m

(30)

For subspaceU (5), the restoring forces on each of the masses mi (i=1,2, . . . ,6), resulting from the
application of the displacement components making up the basis vectors �(5)

1 and �(5)
2 (Equations

(23)) as shown in Figure 5(c), are summarized in Table II. Similarly, for subspace U (6), the
restoring forces on each of the masses mi , resulting from the application of the displacement
components making up the basis vectors �(6)

1 and �(6)
2 (Equations (24)) as shown in Figure 5(d),

are summarized in Table III.
Consider subspace U (5) first. For the application of either �(5)

1 or �(5)
2 , it is noted (from Table II)

that all restoring forces are proportional to the u value prescribed to the mass in question. Taking
unit positive value of u (i.e. u=+1), the corresponding restoring force is (k1+k2) in either case.
Therefore,

k(5)
11 = (k1+k2), k(5)

12 =0

k(5)
21 = 0, k(5)

22 =(k1+k2)
(31)

Table II. Restoring forces due to the application of the components of �(5)
1

and �(5)
2 for the spring–mass system.

�(5)
1 �(5)

2

Mass Displacement Restoring force Displacement Restoring force

m1=m u1=+1.0 +1.0(k1+k2) u1=+0.5 +0.5(k1+k2)
m2=m u2=+0.5 +0.5(k1+k2) u2=+1.0 +1.0(k1+k2)
m3=m u3=−0.5 −0.5(k1+k2) u3=+0.5 +0.5(k1+k2)
m4=m u4=−1.0 −1.0(k1+k2) u4=−0.5 −0.5(k1+k2)
m5=m u5=−0.5 −0.5(k1+k2) u5=−1.0 −1.0(k1+k2)
m6=m u6=+0.5 +0.5(k1+k2) u6=−0.5 −0.5(k1+k2)
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Table III. Restoring forces due to the application of the components of
�(6)
1 and �(6)

2 for the spring–mass system.

�(6)
1 �(6)

2

Mass Displacement Restoring force Displacement Restoring force

m1=m u1=+1.0 +1.0(k1+3k2) u1=−0.5 −0.5(k1+3k2)
m2=m u2=−0.5 −0.5(k1+3k2) u2=+1.0 +1.0(k1+3k2)
m3=m u3=−0.5 −0.5(k1+3k2) u3=−0.5 −0.5(k1+3k2)
m4=m u4=+1.0 +1.0(k1+3k2) u4=−0.5 −0.5(k1+3k2)
m5=m u5=−0.5 −0.5(k1+3k2) u5=+1.0 +1.0(k1+3k2)
m6=m u6=−0.5 −0.5(k1+3k2) u6=−0.5 −0.5(k1+3k2)

The symmetry-adapted stiffness matrix K(5) is therefore (corresponding mass matrix also given)

K(5) =
[

(k1+k2) 0

0 (k1+k2)

]
, M(5) =

[
m 0

0 m

]
(32)

This leads to two uncoupled first-degree characteristic equations

(k1+k2)−	2m=0 (twice) (33)

giving the solutions

(	2)
(5)
1 =(	2)

(5)
2 = k1+k2

m
(34)

Similarly, for subspace U (6), for the application of either �(6)
1 or �(6)

2 , it is noted (from Table III)
that all restoring forces are also proportional to the u value prescribed to the mass in question.
Taking unit positive value of u (i.e. u=+1), the corresponding restoring force is (k1+3k2) in
either case. Hence,

k(6)
11 = (k1+3k2), k(6)

12 =0

k(6)
21 = 0, k(6)

22 =(k1+3k2)
(35)

The symmetry-adapted stiffness matrix K(6) is therefore (corresponding mass matrix also given)

K(6) =
[

(k1+3k2) 0

0 (k1+3k2)

]
, M(6) =

[
m 0

0 m

]
(36)

leading to two uncoupled first-degree characteristic equations

(k1+3k2)−	2m=0 (twice) (37)

with the solutions

(	2)
(6)
1 =(	2)

(6)
2 = k1+3k2

m
(38)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 79:253–289
DOI: 10.1002/nme



SYMMETRY IN COMPUTATIONAL SOLID AND STRUCTURAL MECHANICS 271

In summary, subspaces U (1) and U (4) yielded one eigenvalue each; subspaces U (5) and U (6)

each yielded two equal eigenvalues (doubly repeating roots). Putting the solutions together, the six
natural circular frequencies of the original system (in ascending order) are as follows:

	2
1= k1

m
, 	2

2=	2
3= k1+k2

m
, 	2

4=	2
5= k1+3k2

m
, 	2

6= k1+4k2
m

(39)

Instead of having to expand a 6×6 determinant and solve a sixth-degree characteristic polynomial
as yielded by conventional considerations, the group-theoretic approach required the solution of
only four separate first-degree characteristic equations, yielding all six eigenvalues (two distinct
roots and two pairs of repeated roots) of the original problem. Here we see that the computational
effort of the group-theoretic procedure is less than 10% of that associated with conventional
analysis. Spring–mass models of other symmetry groups may be seen in Reference [44].
4.3. High-tension cable net

The previous example was based on the stiffness formulation of the vibration problem. To illustrate
the group-theoretic flexibility formulation, let us consider a shallow non-planar cable net formed by
two families of highly tensioned cables intersecting perpendicularly on the xy horizontal projection
(Figure 6). The net has 16 nodes or cable intersections, numbered as shown in the figure. This
particular example is taken from Reference [37].

Clearly, the configuration has the symmetry of a square, and therefore belongs to the symmetry
group C4v . The four reflection planes are labelled x, y,1 and 2, while the centre of symmetry is
denoted by O . In this example, the horizontal spacing between cables is taken as constant and
equal to a. The horizontal component of the cable prestress force, denoted as T1 or T2 in the

Figure 6. Horizontal projection of 16-node cable net, showing adopted node numbering, vertical planes
of symmetry, and pattern of prestressing.
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figure, is assumed to be constant over the entire length of the cable. The T1 and T2 pattern (that
is, the loading pattern) conforms to the C4v symmetry of the cable layout. We require to evaluate
the free vibration response of the system, where the degrees of freedom are the small transverse
motions of masses lumped at the cable intersections.

4.3.1. Symmetry-adapted functions. The 16-dimensional vector space of the problem can be
decomposed into five independent subspaces spanned by symmetry-adapted variables. The five
idempotents of group C4v , corresponding to subspaces U (1), U (2), U (3), U (4) and U (5) of the
problem, are generated with the help of Equation (3). The results are as follows:

P(1) = 1
8 (e+c4+c−1

4 +c2+�x +�y+�1+�2) (40a)

P(2) = 1
8 (e+c4+c−1

4 +c2−�x −�y−�1−�2) (40b)

P(3) = 1
8 (e−c4−c−1

4 +c2+�x +�y−�1−�2) (40c)

P(4) = 1
8 (e−c4−c−1

4 +c2−�x −�y+�1+�2) (40d)

P(5) = 1
2 (e−c2) (40e)

To obtain the symmetry-adapted positional functions for a given subspace U (i) (i=1,2, . . . ,5), we
first apply the corresponding idempotent P(i) as an operator on each positional function � j ( j=
1,2, . . . ,16) of the problem, and then select a linearly independent set of the symmetry-adapted
functions as the basis vectors spanning the subspace. The results for our problem are as follows:

Subspace U (1)

�(1)
1 = �1+�4+�13+�16 (41a)

�(1)
2 = �2+�3+�5+�8+�9+�12+�14+�15 (41b)

�(1)
3 = �6+�7+�10+�11 (41c)

Subspace U (2)

�(2)
1 =�2−�3−�5+�8+�9−�12−�14+�15 (42)

Subspace U (3)

�(3)
1 =�2+�3−�5−�8−�9−�12+�14+�15 (43)

Subspace U (4)

�(4)
1 = �1−�4−�13+�16 (44a)

�(4)
2 = �2−�3+�5−�8−�9+�12−�14+�15 (44b)

�(4)
3 = �6−�7−�10+�11 (44c)
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Subspace U (5)

�(5)
1 = �1−�16 (45a)

�(5)
2 = �2−�15 (45b)

�(5)
3 = �3−�14 (45c)

�(5)
4 = �4−�13 (45d)

�(5)
5 = �5−�12 (45e)

�(5)
6 = �6−�11 (45f)

�(5)
7 = �7−�10 (45g)

�(5)
8 = �8−�9 (45h)

We can further decompose the 8-dimensional subspace U (5) into two 4-dimensional subspaces
U (51) and U (52), spanned by new basis vectors obtained by linearly combining the vectors of
Equation (45) in such a way as to form two orthogonal sets:

Subspace U (51)

�(51)
1 = �(5)

1 =�1−�16 (46a)

�(51)
2 = �(5)

6 =�6−�11 (46b)

�(51)
3 = �(5)

3 −�(5)
8 =�3−�8+�9−�14 (46c)

�(51)
4 = �(5)

2 +�(5)
5 =�2+�5−�12−�15 (46d)

Subspace U (52)

�(52)
1 = �(5)

4 =�4−�13 (47a)

�(52)
2 = �(5)

7 =�7−�10 (47b)

�(52)
3 = �(5)

3 +�(5)
8 =�3+�8−�9−�14 (47c)

�(52)
4 = �(5)

2 −�(5)
5 =�2−�5+�12−�15 (47d)

The orthogonality of the two vector sets (Equations (46) and (47)) may be seen in Figure 7,
diagrams (e) and (f), in which solid and dashed lines are shown at the centre of the sketches,
to indicate the symmetry and antisymmetry planes, respectively, of the configurations of vector
components. The orientations of symmetry and antisymmetry planes in diagram (e) (corresponding
to subspaceU (51)) are perpendicular to their counterparts in diagram (f) (corresponding to subspace
U (52)), clearly indicating that the two sets of vectors are orthogonal.

The decomposition of subspace U (5) into U (51) and U (52) may be achieved directly by
splitting idempotent P(5) (Equation (40e)) into two components P(51) and P(52), such that
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Figure 7. Unit vertical forces applied in accordance with the coordinates of the basis vectors for
the 16-node cable net: (a) subspace U (1); (b) subspace U (2); (c) subspace U (3); (d) subspace

U (4); (e) subspace U (51); and (f) subspace U (52).

P(51)+P(52) = P(5), P(51)P(51)=P(51), P(52)P(52) = P(52) and P(51)P(52) =0. These conditions
are satisfied by the operators

P(51) = 1
4 (e−c2+�1−�2) (48a)

P(52) = 1
4 (e−c2−�1+�2) (48b)

which may also be seen to be each orthogonal to the idempotents p(i) (i=1,2,3,4) given by
Equations (40a)–(40d). Thus, in our example, applying P(51) and P(52) in turn as operators on
each positional function � j ( j=1,2, . . . ,16) generates the basis vectors for subspaces U (51) and
U52 automatically.

At this stage, we note that the 16-dimensional vector space of the original problem has been
decomposed into a total of six r -dimensional subspaces, where r ={3,1,1,3,4,4} for subspaces
U (1), U (2), U (3), U (4), U (51) and U (52), respectively. We already have a good sense of the compu-
tational gains to be reaped, even before the real calculations begin.
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4.3.2. Symmetry-adapted flexibility matrices. For each subspace of the problem, we apply unit
vertical forces upon the cable-net nodes in accordance with the coordinates of the respective basis
vectors, as shown in Figure 7. For a given subspace, each basis vector (with its set of unit vertical
forces) is plotted on a separate diagram, for clarity. The notations ⊗ and � in these diagrams
denote positive (i.e. downward) and negative (i.e. upward) unit forces, respectively. The numbering
of the nodes is not shown (to avoid cluttering the diagrams), but the diagrams have been drawn
with exactly the same orientation as in Figure 6, to which reference may be made for the node
numbering.

When all the r basis-vector plots of a given subspace (shown in separate diagrams in Figure 7)
are superimposed on one diagram, any nodes that remain ‘unaffiliated’ (that is, not associated
with any one of the r basis vectors of the subspace) imply stationary points. Thus, subspaces
U (2) and U (3) are each associated with eight stationary nodes (the points lying on either principal
diagonals of the net), while subspaces U (51) and U (52) are each associated with the occurrence of
4 stationary nodes (the points on one of the two principal diagonals of the net).

From the plots of Figure 7, we make an important observation. The set of basis vectors for
subspace U (51) is physically indistinguishable from that for subspace U (52). For every vector in
U (51), there is one exactly identical to it in U (52), except for orientation (compare Figures 7(e)
and 7(f)). Now the physical properties of a physical system, such as natural frequencies and
modes of deformation, are clearly not affected by its orientation in space. Therefore, a solution
for any required physical properties based on subspace U (51) must be identical to that based on
subspace U (52). These subspaces will yield identical sets of eigenvalues (doubly repeating roots of
the original problem). Hence, we need only consider one of them. In the present example, subspace
U (51) will be selected.

Consider any one of the subspaces of the problem, such a subspace being spanned by r basis
vectors. Let ai j (i=1,2, . . . ,r; j =1,2, . . . ,r) be the vertical-displacement magnitude at any of
the nodes of the basis vector �i , due to unit vertical forces applied at all the nodes of the basis
vector � j . The condition of vertical equilibrium at each of the r sets of nodes (corresponding to
the r basis vectors of the subspace) leads to r simultaneous equations in the r deflection unknowns
{a1 j ,a2 j , . . . ,ar j }, which may be expressed as

⎡
⎢⎢⎢⎢⎣
b11 b12 · b1r

b21 b22 · b2r

· · · ·
br1 br2 · brr

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
a1 j

a2 j

·
ar j

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

�1 j

�2 j

·
�r j

⎤
⎥⎥⎥⎥⎦ (49)

for j =1,2, . . . ,r;. For the right-hand side, �i j =1 if i= j , and �i j =0 if i �= j . We may write this
equation as

B(l)A j =d j (50)

where B(l) is an r×r matrix corresponding to subspaceU (l), d j is an r×1 column vector consisting
of a ‘1’ at row j and ‘zeros’ everywhere else, A j is the r×1 column vector of the deflections
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corresponding to the application of unit vertical forces at each of the nodes of � j . These deflections
are, in fact, the flexibility coefficients for the subspace.

Rearranging Equation (50) then yields the column vectors A j of the flexibility matrix for

subspace U (l) (which we can now write as A(l)
j to denote that they pertain to subspace U (l)); when

the A(l)
j are put together, they form the full flexibility matrix A(l) for subspace U (l):

A(l)
j = [B(l)]−1d j , j =1,2, . . . ,r (51a)

A(l) = [A(l)
1 |A(l)

2 | . . . |A(l)
r ] (51b)

The B(l) matrices corresponding to the various subspaces of the problem may readily be evaluated.
The results are as follows:

Subspace U (1)

B(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

4T1
a

−2T1
a

0

−T1
a

T1+2T2
a

−T2
a

0 −2T2
a

2T2
a

⎤
⎥⎥⎥⎥⎥⎥⎦

(52)

Subspace U (2) and U (3)

B(2) =
[
3T1+2T2

a

]
(53)

B(3) =
[
T1+2T2

a

]
(54)

Subspace U (4)

B(4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

4T1
a

−2T1
a

0

−T1
a

3T1+2T2
a

−T2
a

0 −2T2
a

6T2
a

⎤
⎥⎥⎥⎥⎥⎥⎦

(55)

Subspace U (51)

B(51) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4T1
a

0 0 −2T1
a

0
4T2
a

0 −2T2
a

0 0
2(T1+T2)

a
−T1

a

−T1
a

−T2
a

−T1
a

2(T1+T2)

a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)
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4.3.3. Subspace mass matrices. We adopt a system of concentrated masses positioned at the
nodes of the cable net—such masses may be actual or lumped parameters of a distributed-mass
system—and arranged consistently with the general symmetry of the cable configuration. Referring
to Figure 6, let the values of these masses be: m1 at each position of the nodal set {1,4,13,16};
m2 at each position of the nodal set {2,3,5,8,9,12,14,15}; m3 at each position of the nodal set
{6,7,10,11}.

The diagonal mass matrix M(i) for a given subspace U (i) consists of non-zero diagonal
elements mii (i=1,2, . . . ,r), which are the values of the mass at each of the nodes of
basis vector �i . Thus, the mass matrices {M(1),M(2),M(3),M(4),M(51),M(52)} for subspaces
{U (1),U (2),U (3),U (4),U (51),U (52)}, respectively, are:

M(1) =M(4) =
⎡
⎢⎣
m1 0 0

0 m2 0

0 0 m3

⎤
⎥⎦ (57)

M(2) =M(3) =[m2] (58)

M(51) =M(52) =

⎡
⎢⎢⎢⎣
m1 0 0 0

0 m3 0 0

0 0 m2 0

0 0 0 m2

⎤
⎥⎥⎥⎦ (59)

4.3.4. Eigenvalues and eigenvectors. The system eigenvalues � (=1/	2, where 	 is a natural
circular frequency of the system) are obtained separately for each subspace, from the well-known
condition

|A−�M−1|=0 (60)

in which the flexibility matrix A must now be taken as the subspace flexibility matrix, consisting of
elements ai j (i=1,2, . . . ,r; j =1,2, . . . ,r); the mass matrix M must now be taken as the subspace
mass matrix, consisting of non-zero diagonal elements mii (i=1,2, . . . ,r). The eigenvalues yielded
from the individual subspaces are the actual eigenvalues of the original problem.

Eigenvectors w are also obtained separately for each subspace, by substituting the now-known
r eigenvalues of the subspace, one at a time, into the well-known relation

(A−�M−1)w=0 (61)

Writing this in expanded form for a given subspace, we obtain⎡
⎢⎢⎢⎣

(a11−(�/m11)) a12 · a1r
a21 (a22−(�/m22)) · a2r
· · · ·

ar1 ar2 · (arr −(�/mrr ))

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣


1


2

·

r

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
0

0

·
0

⎤
⎥⎥⎥⎦ (62)

If we substitute a particular eigenvalue of the subspace into Equation (62), and solve for the
components 
1,
2, . . . ,
r , we will obtain the eigenvector [
1 
2 · 
r ]T corresponding to that
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eigenvalue, which is an eigenvector in the r -dimensional subspace. Noting that the components

1,
2, . . . ,
r of such an eigenvector correspond to the basis vectors�1,�2, . . . ,�r , respectively, of
the subspace in question, the eigenvector in the original n-dimensional vector space of the problem
(associated with a particular natural frequency of the system) would then be given by allocating
the calculated value of a subspace–eigenvector component to all the cable nodes associated with
the corresponding basis vector, with the signs (positive or negative) of the allocations being in
accordance with those of the basis-vector coordinates (Equations (41)–(47)).

In summary, we note that instead of solving an nth-degree polynomial characteristic equation
in � for the n roots of � (i.e. eigenvalues), we needed only solve, independently of each other,
a series of lower-degree characteristic equations in �. For the example of the 16-node cable net, the
decomposition led to the following mutually-independent characteristic equations in �: two 3rd-
degree, two 1st-degree, and one 4th-degree (the other 4th degree equation being identical to this).

An attribute of the group-theoretic approach is its ability to predict the shape of vibration modes,
and of the number of modes of vibration of a given symmetry type. The occurrence of degenerate
modes (that is, modes of the same frequency of vibration) is also predicted. The latter are always
associated with irreducible representations of dimension greater than one. The number of linearly
independent modes of a particular frequency is simply given by the dimension of the corresponding
irreducible representation. For the C4v symmetry group, the fifth irreducible representation R(5) is
2-dimensional; hence, the corresponding subspace U (5) is always associated with doubly repeating
roots. Here we see again the ability of the group-theoretic approach to reveal important qualitative
insights about the nature of the problem, before actual calculations for natural frequencies and
exact mode shapes are performed.

5. STATIC ANALYSIS

Computational problems of the static analysis of indeterminate structures fall into one or the
other of two broad categories: those based on a stiffness formulation of the generalized force-
displacement relations (where generalized displacements are the unknowns to be solved for), and
those based on a flexibility formulation (where generalized forces are the unknowns of the problem).
Group-theoretic flexibility formulations for the analysis of symmetric plane and space frames have
been given by Zlokovic [14] and by Zingoni et al. [45, 46]. Stiffness formulations have also been
developed, particularly for the direct-stiffness method [14, 47]. Unlike eigenvalue problems, where
the eigenvalues calculated within the independent subspaces of the problem are in fact the exact
eigenvalues of the original problem, superposition of the obtained subspace results is necessary in
problems of the static analysis of symmetric structures, in order to come up with the final effects.

It is well known that any non-symmetric arrangement of loading acting on a symmetric structure
(for example, a beam or a portal frame) can be split into symmetric and anti-symmetric components,
allowing advantage to be taken of the ensuing symmetry. Group theory offers the opportunity to
extend this idea to more complex symmetric structures. As long as the structure itself (i.e. member
and support configuration) is symmetric, the applied loading need not have this symmetry; group-
theory can be used to decompose any arbitrary loading into symmetry-adapted components for
allocation to the various subspaces of the problem [48].

Focussing their attention on the equilibrium matrix of a symmetric structure, Kangwai and
Guest [49] employ group representation theory to cast this into block-diagonal form. Instead of

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 79:253–289
DOI: 10.1002/nme



SYMMETRY IN COMPUTATIONAL SOLID AND STRUCTURAL MECHANICS 279

using the idempotents of a group to generate the symmetry-adapted variables of the problem
(as was done in the illustrative examples of the previous section), these investigators directly
use the irreducible representations of the group. Such an approach has a particular advantage in
dealing with subspaces associated with irreducible representations of dimension 2 (such as the
third irreducible representation of the triangular group C3v , or the fifth irreducible representation
of the square group C4v), since the subspace is decomposed directly into two smaller subspaces,
without the additional considerations of the type that were necessary in Section 4.3.1. However,
for problems involving only one-dimensional irreducible representations (e.g. problems of the
rectangular group C2v), the idempotent approach seems much simpler and quicker.

Kangwai and Guest are also able to extract other benefits from their group-theoretic formulation,
such as simplification of the identification of states of self-stress and of mechanisms. Yet again
we see the merits of group theory in providing insights into the mechanics of a problem.

Overall, the same type of group-theoretic simplifications noted for eigenvalue problems are also
evident in the static analysis of structures, but for relatively small problems with low-order
symmetry, the costs of decomposition and final superposition may not justify the approach.
Compared with the areas of bifurcation and vibration analysis, research activity in applying group
theory to the static analysis of structures has been rather limited, because the computational rewards
are generally not as attractive.

6. FINITE ELEMENT ANALYSIS

6.1. Symmetry in finite elements

We have already seen some group-theoretic finite element formulations in the context of bifurcation
analysis of cylindrical shells [28]. One of the earliest demonstrations of the applicability of group-
theoretic methods to finite element analysis is due to Andersen and Noor [50], who used a
group-theoretic approach jointly with symbolic integration for the finite element formulation for
geometrically non-linear, anisotropic shallow shells, with effects of shear deformation taken into
account. The dihedral symmetry groups D4 (with the symmetry of the square) and D3 (with the
symmetry of the equilateral triangle) reduce the number of symbolic integrations (of shape-function
quantities) required for quadrilateral and triangular elements, respectively.

In finite element problems, the variables of interest are the degrees of freedom associated with
a given finite element, but what requires to be determined at the elemental level are usually the
element matrices such as stiffness and mass matrices. The numerical integration associated with the
evaluation of these matrices can involve the expenditure of huge computational effort, particularly
in the case of new finite element proposals with large numbers of nodes and degrees of freedom.
This is where a group-theoretic formulation can be most advantageous in reducing computational
effort, when deliberate choice is made of symmetric finite elements.

As long as the shape of the element and the configuration of its nodes conform to a known
symmetry type, group theory may be used to decompose the displacement field of the element,
leading to symmetry-adapted shape functions within the independent subspaces, on the basis of
which simpler integrations are performed to obtain subspace matrices. Straightforward additive
combination of these subspace matrices, followed by a simple coordinate transformation, allows
the conversion of the results to conventional form. Detailed features of a group-theoretic finite
element formulation may be seen in the work of Zlokovic [51]. Elsewhere, displacement field
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decomposition has been illustrated, and consistent-mass matrices computed, for truss and beam
finite elements [52], plate-bending elements [53] and rectangular solid elements [54].

Almost 10 years ago, Wohlever [55] noted that while the development of group-theoretic formu-
lations for the bifurcation analysis of symmetric structures has progressed considerably, there is a
lack of general finite element programmes that exploit group-theoretic concepts. In the formulation
that he goes on to propose, he transforms the variables of the problem to a symmetry-adapted
basis, enabling a decoupling of the incremental equations of the non-linear formulation, which
can readily be solved. The procedure is applied to the buckling analysis of plates and shells of
revolution. Mohan and Pratap [56] follow a similar procedure in their finite element analysis of
the free vibration of shells with dihedral symmetry.

In both the approaches of Wohlever [55] and of Mohan and Pratap [56], the symmetry-adapted
coordinates are used in only one stage of the finite element analysis (that is, in the solution of the
incremental equations or solution for the eigenvalues), with the other stages of the process being
standard. Thus, in modular finite element programmes, only this stage needs to be formulated in
a group-theoretic manner, and incorporated within the whole.

Let us consider rectangular hexahedral elements with three degrees of freedom (u,v,w) per
node (these being translations in the x, y, z directions, respectively), and having any number and
arrangement of nodes consistent with the symmetry group D2h . The symmetry group D2h has
eight symmetry elements: e (identity), cz2 (rotation of � about the z axis), cy2 (rotation of � about
the y axis), cx2 (rotation of � about the x axis), i (inversion through the centre of symmetry),
�xy (reflection in the xy plane), �xz (reflection in the xz plane) and �yz (reflection in the yz
plane). Typical elements conforming to this group are the 8-node 24 d.o.f. linear-displacement,
20-node 60 d.o.f. quadratic-displacement and 32-node 96 d.o.f. cubic-displacement brick
elements.

6.2. Choice of origin, node numbering and positive directions

To achieve the best possible performance of the group-theoretic procedure in the computation
of element properties, it is necessary to adopt a choice of origin, sequence of node numbering,
and positive directions for freedoms that reflect the intrinsic symmetry of the element. The origin
of the local coordinate system of the element should be chosen at the centre of symmetry of
the configuration. Having done this, one may then proceed to assign a numbering for nodes and
freedoms in accordance with the following procedure (details may be seen in Reference [57]).

Node 1 is chosen in the positive–positive–positive octant of the Cartesian coordinate system.
Defining a nodal set as the collection of all the nodal positions of the element that are permuted or
interchanged among themselves by symmetry operations of the associated symmetry group, the rest
of the nodes belonging to the same nodal set as node 1 are numbered consecutively in the order
generated by permuting node 1 through each symmetry operation of the group D2h , such symmetry
operations being performed in the same order as appears across the top of the character table of
the symmetry group (that is, in the order e, cz2, c

y
2 , c

x
2 , i , �xy , �xz and �yz). This sequence of node

numbering is illustrated for the 8-node 24 d.o.f. element in Figure 8(a). For elements with more than
8 nodes (e.g. 32 nodes), the procedure is repeated for all nodal sets of the element’s nodal positions
until all the n individual nodes of the element have been numbered consecutively from 1 to n.

Having numbered all the nodes of the finite element, the positive directions of the freedoms
and loads at node 1 may be chosen arbitrarily, but having fixed these, the positive directions for
the rest of the nodal freedoms and nodal loads of the element should be chosen such that the
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Figure 8. Symmetry-adapted conventions for the 8-node 24 d.o.f. rectangular solid element: (a) node
numbering and (b) positive directions for nodal freedoms.

ensuing overall pattern of directions of nodal quantities preserves the full symmetry of the pattern
of nodes. This convention is illustrated for the 8-node 24 d.o.f. element in Figure 8(b).

6.3. Symmetry-adapted shape functions

Let us consider a rectangular hexahedral element with n nodes (n being typically 8, 20, 32 or
64). The set {ui ,vi ,wi } of the three translational degrees of freedom at node i (i=1, . . . ,n) may
be denoted by F(i). The symmetry group D2h is associated with eight idempotents P( j) ( j=
1,2, . . . ,8) corresponding to its eight irreducible representations R( j) ( j =1,2, . . . ,8). These idem-
potents are as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(1)

P(2)

P(3)

P(4)

P(5)

P(6)

P(7)

P(8)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

cz2
cy2
cx2
i

�xy

�xz

�yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(63)

Applying the first idempotent P(1) to each of the nodal-freedom sets F(i) (i=1, . . . ,n) of the
rectangular hexahedral element in question, we obtain n linear combinations of the F(i) (with up
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to eight different F(i) per linear combination), from which we can identify a set of r (1) (r (1)<n)

independent linear combinations, namely �(1)
1 ,�(1)

2 , . . . ,�(1)
r (1) , as the basis vectors or symmetry-

adapted nodal-freedom sets for subspace U (1). Similarly, the second idempotent P(2) yields
r (2) symmetry-adapted nodal-freedom sets for subspace U (2), namely �(2)

1 ,�(2)
2 , . . . ,�(2)

r (2) , and so

on. The r ( j) ( j =1,2, . . . ,8) symmetry-adapted nodal-freedom sets for subspace U ( j), namely
�( j)
1 ,�( j)

2 , . . . ,�( j)
r ( j) , may be collected together as the column vector U( j). Thus, the dimensions

of subspaces U (1),U (2), . . . ,U (8) are r (1),r (2), . . . ,r (8), respectively, and r (1)+r (2)+·· ·+r (8) =n.
For the 8-node 24 d.o.f. element, we obtain (noting that each subspace for this very simple element
is one-dimensional, that is, r ( j) =1 for j =1,2, . . . ,8):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U(1)

U(2)

U(3)

U(4)

U(5)

U(6)

U(7)

U(8)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)

F(8)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

The assumed displacement polynomial for u,v,w is usually of the same form. Therefore, we need
only consider one displacement component, say u, and allocate the terms of the displacement
polynomial to the subspaces of the symmetry group D2h , in accordance with the symmetry types
of the displacement fields associated with these terms. The resulting eight internal-displacement
allocations u(1),u(2), . . . ,u(8), corresponding to subspaces U (1),U (2), . . . ,U (8), respectively, are
functions of the coordinate variables x, y, z and the polynomial coefficients (say �1,�2, . . . ,�) of
the problem. For the 8-node 24 d.o.f. element, if we adopt the displacement polynomial:

u(x, y, z)=�1+�2x+�3y+�4z+�5xy+�6yz+�7xz+�8xyz (65)

then the subspace allocations of terms of the polynomial are as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(1)(x, y, z)

u(2)(x, y, z)

u(3)(x, y, z)

u(4)(x, y, z)

u(5)(x, y, z)

u(6)(x, y, z)

u(7)(x, y, z)

u(8)(x, y, z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z

xyz

yz

xz

xy

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2

�3

�4

�8

�6

�7

�5

�1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)
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If we substitute the nodal coordinates of the first nodes of the nodal sets of the element into
the decomposed polynomial, we automatically obtain the sets U( j)

u of the symmetry-adapted nodal
displacements for subspace U ( j), in terms of the polynomial coefficients. Rearrangement then
yields the polynomial coefficients in terms of the symmetry-adapted nodal displacements U( j)

u ,
enabling the symmetry-adapted internal displacements u( j) to be written down in terms of the
symmetry-adapted nodal displacements U( j)

u :

u( j) =S( j)(x, y, z)U( j)
u (67)

By definition, S( j)(x, y, z) must be the symmetry-adapted shape functions for subspace U ( j). The
S( j)(x, y, z) for the 8-node 24 d.o.f. element happen to be 1×1 matrices:

S(1) = x

a
(68a)

S(2) = y

b
(68b)

S(3) = z

c
(68c)

S(4) = xyz

abc
(68d)

S(5) = yz

bc
(68e)

S(6) = xz

ac
(68f)

S(7) = xy

ab
(68g)

S(8) = 1 (68h)

6.4. Symmetry-adapted element matrices

Similar to the procedure followed in conventional considerations, we obtain the symmetry-adapted
element matrices for subspace U ( j) by integrating the associated symmetry-adapted shape func-
tions, but owing to the decomposition feature inherent in the group-theoretic approach, this inte-
gration is performed over only the positive–positive–positive octant of the element. For instance,
the symmetry-adapted element stiffness and consistent-mass matrices, K( j) and M( j) for subspace
U ( j), are obtained as

K( j) =
∫
V
[B( j)]TXB( j) dV (69a)

M( j) =
∫
V

�[S( j)]TS( j) dV (69b)

where B( j) and S( j) are the subspace strain–displacement and shape-function matrices, X is a
matrix of material stiffnesses and � is the material mass density. For the 8-node 24 d.o.f. element,
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the consistent-mass matrices for the eight subspaces are obtained as follows:

M(1) = �
∫ c

0

∫ b

0

∫ a

0
S(1)S(1) dx dy dz= �abc

3
(70a)

M(2) = �
∫ c

0

∫ b

0

∫ a

0
S(2)S(2) dx dy dz= �abc

3
(70b)

M(3) = �
∫ c

0

∫ b

0

∫ a

0
S(3)S(3) dx dy dz= �abc

3
(70c)

M(4) = �
∫ c

0

∫ b

0

∫ a

0
S(4)S(4) dx dy dz= �abc

27
(70d)

M(5) = �
∫ c

0

∫ b

0

∫ a

0
S(5)S(5) dx dy dz= �abc

9
(70e)

M(6) = �
∫ c

0

∫ b

0

∫ a

0
S(6)S(6) dx dy dz= �abc

9
(70f)

M(7) = �
∫ c

0

∫ b

0

∫ a

0
S(7)S(7) dx dy dz= �abc

9
(70g)

M(8) = �
∫ c

0

∫ b

0

∫ a

0
S(8)S(8) dx dy dz=�abc (70h)

Notice how astonishingly simple the above results are. The subspace matrices are all single terms
(i.e. 1×1 matrices). The conventional mass matrix for this element is 8×8 in size. The above
group-theoretic results can be converted to conventional form through a superposition of the
subspace matrices, and simple coordinate transformations [51–54].
6.5. Some numerical studies

The following example is taken from Reference [57]. Consider a 64-node 192 d.o.f solid hexahedral
element with an arrangement of nodes conforming to the symmetry of the group D2h . A 64-term
polynomial may be assumed for the displacement field, as follows:

u(x, y, z) = �1+�2x+�3y+�4z+�5x
2+�6xy+�7xz+�8y

2+�9yz+�10z
2+�11x

3+�12x
2y

+�13x
2z+�14xy

2+�15xyz+�16y
3+�17y

2z+�18z
2x+�19z

2y+�20z
3

+�21x
3y+�22x

3z+�23x
2y2+�24x

2yz+�25x
2z2+�26xy

3+�27xy
2z

+�28xyz
2+�29xz

3+�30y
3z+�31y

2z2+�32yz
3+�33x

3y2

+�34x
3yz+�35x

3z2+�36x
2y3+�37x

2y2z+�38x
2yz2+�39x

2z3

+�40xy
3z+�41xy

2z2+�42xyz
3+�43y

3z2+�44y
2z3+�45x

3y3+�46x
3y2z

+�47x
3yz2+�48x

3z3+�49x
2y3z+�50x

2y2z2+�51x
2yz3+�52xy

3z2

+�53xy
2z3+�54y

3z3+�55x
3y3z+�56x

3y2z2+�57x
3yz3+�58x

2y3z2

+�59x
2y2z3+�60xy

3z3+�61x
3y3z2+�62x

3y2z3+�63x
2y3z3+�64x

3y3z3 (71)
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We may allocate the terms of the above displacement field to the respective subspaces U ( j)

( j =1,2, . . . ,8) associated with the symmetry group D2h , to obtain

u(1)(x, y, z) = �1+�5x
2+�8y

2+�10z
2+�23x

2y2+�25x
2z2+�31y

2z2+�50x
2y2z2 (72a)

u(2)(x, y, z) = �6xy+�21x
3y+�26xy

3+�28xyz
2+�45x

3y3+�47x
3yz2

+�52xy
3z2+�61x

3y3z2 (72b)

u(3)(x, y, z) = �7xz+�22x
3z+�27xy

2z+�29xz
3+�46x

3y2z

+�48x
3z3+�53xy

2z3+�62x
3y2z3 (72c)

u(4)(x, y, z) = �9yz+�24x
2yz+�30y

3z+�32yz
3+�49x

2y3z

+�51x
2yz3+�54y

3z3+�63x
2y3z3 (72d)

u(5)(x, y, z) = �15xyz+�34x
3yz+�40xy

3z+�42xyz
3+�55x

3y3z

+�57x
3yz3+�60xy

3z3+�64x
3y3z3 (72e)

u(6)(x, y, z) = �4z+�13x
2z+�17y

2z+�20z
3+�37x

2y2z

+�39x
2z3+�44y

2z3+�59x
2y2z3 (72f)

u(7)(x, y, z) = �3y+�12x
2y+�16y

3+�19yz
2+�36x

2y3

+�38x
2yz2+�43y

3z2+�58x
2y3z2 (72g)

u(8)(x, y, z) = �2x+�11x
3+�14xy

2+�18xz
2+�33x

3y2+�35x
3z2

+�41xy
2z2+�56x

3y2z2 (72h)

Proceeding as in the previous example, we can generate any required element matrices. Taking
the computation of the element mass matrix, for instance, we note that the conventional method
requires the computation of 64 constants {�1,�2, . . . ,�64} first, followed by the integration of 2080
distinct terms Ni N j (i=1,2, . . . ,64; j =1,2, . . . ,64; mi j =m ji for i �= j). On the other hand, the
group-theoretic decomposition requires the computation of only eight constants for each subspace,
followed by the integration of 36 distinct terms Ni N j (i=1,2, . . . ,8; j =1,2, . . . ,8; mi j =
m ji for i �= j) for each subspace, which amount to 288 terms for the eight subspaces.
A numerical study of the 64-node rectangular hexahedral element showed that the group-theoretic
method is 11 times faster than the conventional approach in generating the elements of the mass
matrix [57].

The extension of the group-theoretic finite element formulation to non-symmetric isoparametric
shapes (the quadrilateral and hexahedron) has been demonstrated by Zlokovic and co-workers [58].
In a numerical study of the 4-noded quadrilateral element and the 8-noded hexahedral element, they
show that computations based on the group-theoretic formulation are 4 times faster for quadrilateral
elements and 2.5 times faster for hexahedral elements, in comparison with computations based
on the conventional formulation. This more generalized formulation represents a significant step
forward, as it opens the way to possible wider application of group theory in finite element
computations. It allows the benefits of symmetry (i.e. group-theoretic simplifications) to be realized
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where no physical symmetry is actually present, provided an arbitrary non-symmetric element
geometry can be linearly mapped onto a symmetric one.

Overall, group-theoretic formulations for finite elements result in considerable reductions in
computational effort in comparison with conventional computations. However, it would appear
that the formulations only become really advantageous in the case of finite elements with a high
degree of symmetry and a large number of nodes and nodal degrees of freedom.

In a recent paper, Kaveh and Fazli [59] have combined group-theoretic techniques and graph
theory to factorize the global mass and stiffness matrices of symmetric finite element models,
thereby achieving considerable simplification in the analysis of the dynamic problem. Here, the
implementation of the group-theoretic simplification is at the level of the assembled structure,
rather than element level. While a considerable amount of research has already been reported on
group-theoretic formulations of computations at the element level, relatively less has been reported
on FEM formulations at the structure level, thus, this line of work is a good development. A fully
group-theoretic FEM procedure would be one that employs group-theoretic formulations both at
the element level (computations of element matrices) and at the structure level (assembly of global
matrices), with final output quantities (displacements, stresses, eigenvalues, modes, etc.) available
in conventional form.

7. SUMMARY AND CONCLUSIONS

While physicists and chemists have long recognized and exploited group theory in the analysis
of various problems involving symmetry, significant efforts towards application of the same ideas
to engineering problems only started in the past 40 years or so, with problems of bifurcation,
vibration and finite element modelling having received the most attention.

This paper has reviewed applications of group theory in solid and structural mechanics. The
key features of the approach in the contexts of these different problems have been identified,
and illustrated by reference to some recent studies of the author. In all cases, group theory has
been shown to be highly effective and systematic in exploiting the symmetry of a structural
system, leading to simplifications in the analysis and considerable reductions in computational
effort.

The next line of research in this area could be the extension of group-theoretic formulations
to symmetry-deficient structures (corrections for ‘lack of symmetry’), which would open up vast
opportunities for application of group theory, as many structures belong to this category. Some
investigators have already taken the lead in this direction [13]. Also, for group-theoretic formu-
lations to enter into mainstream engineering calculations, it is clear that effective and efficient
computer algorithms need to be developed, to handle steps like:

• automatic recognition of symmetry in a structure
• identification of the most appropriate symmetry group for the problem
• creation of the relevant subspaces for the decomposed problem
• generation of symmetry-adapted variables within these subspaces
• identification of the basis vectors for the various subspaces
• calculations of the relevant quantities of interest within the independent subspaces
• superposition of subspace results to give quantities of interest in conventional form.
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On the FEM front, an integrated group-theoretic procedure is required, capable of taking into
account the existence of symmetry (and correcting for the lack of it) at both the element and the
structure level. The observation on the lack of general group-theoretic finite element programmes,
noted by Wohlever [55] almost a decade ago, is still as true today as it was then. For large-
scale numerical problems, the decomposition feature of the group-theoretic approach allows the
possible use of parallel processors in computations, which would result in further reductions in
computational time.

8. FINAL NOTE

The author previously reviewed this subject 7 years ago [60]. Since then, some new developments
have occurred in the field, necessitating an expanded treatment of the subject, and a re-appraisal
of the field in the light of these new developments. This is a steadily growing area, and the next
review of the subject will probably reflect significant progress on some of the aspects identified
for future research in the last section.
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