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Group theory has been used to study various
problems in physics and chemistry for many years.
Relatively recently, applications have emerged in
engineering, where problems of the vibration, bifur-
cation and stability of systems exhibiting symmetry
have been studied. From an engineering perspective,
the main attraction of group-theoretic methods has
been their potential to reduce computational effort in
the analysis of large-scale problems. In this paper, we
focus on vibration problems in structural mechanics
and reveal some of the insights and qualitative
benefits that group theory affords. These include
an appreciation of all the possible symmetries of
modes of vibration, the prediction of the number of
modes of a given symmetry type, the identification
of modes associated with the same frequencies, the
prediction of nodal lines and stationary points of
a vibrating system, and the untangling of clustered
frequencies.

1. Introduction
An object or a system is said to exhibit symmetry if it can
be turned into one or more new configurations physically
indistinguishable from the initial configuration through
the application of one or more symmetry operations,
such as reflections in planes, rotations about axes or
inversions about some centre. For many years, group
theory has provided the mathematical tool for studying
problems involving symmetry in physics and chemistry,
notably within areas such as quantum mechanics,
molecular chemistry and crystallography [1–4].

The last 30 years have also seen applications of
group theory finding their way into various areas
of engineering mechanics. Bifurcation phenomena in
engineering systems have been fruitfully studied using
group theory [5–8]. Group theory has also been applied

2013 The Author(s) Published by the Royal Society. All rights reserved.
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to simplify problems of the vibration of a variety of engineering structures [9–17] as well as of
the statics and kinematics of skeletal systems encompassing space trusses and frames [18–22].
More recently, applications have been extended to numerical methods, such as finite elements and
finite differences [23–28]. Symmetry is central to all group-theoretic formulations, and procedures
for the automatic recognition of symmetry groups are now being developed [29]. Progress on
applications of group theory within solid and structural mechanics over the past 30 years may be
seen in a recent survey [30].

The common feature of all group-theoretic methods is the decomposition of the vector space
of the problem into a number of smaller subspaces spanned by symmetry-adapted variables as
basis vectors. If the formulation involves a stiffness matrix, this is rendered into block-diagonal
form by the procedure, each block being associated with a particular subspace of the problem.
The subspace problems (each of dimension a fraction of that of the original problem) are solved-
for independently of each other, thus achieving considerable simplification of the problem and
overall reductions in computational effort.

Not only does the group-theoretic approach reduce computational effort, but it can also give
other computational benefits. With regard to group-theoretic studies in structural mechanics,
bifurcation problems have probably received the most attention. In this area, several instances
of the qualitative benefits of group-theoretic analyses have been reported in the literature. In
studying the global bifurcation behaviour of symmetric structures, computational problems
are often encountered owing to the existence of multiple critical points, where two or more
eigenvalues vanish simultaneously [31]. The group-theoretic approach has been found to be
naturally suited to untangling the problem and simplifying the extraction of eigenvalues.

An important class of space structures comprises lattice domes, which usually possess a high
degree of symmetry and are thus amenable to study using group theory. Structural configurations
belonging to the dihedral groups Dn (i.e. groups describing the symmetry of regular polygons)
have received particular attention in the past [7,31,32]. Bifurcation patterns of Dn configurations
are generally less symmetric than the configurations themselves, bifurcation being a process of
‘symmetry breaking’. Thus, one may predict that the patterns will in general retain only part
of the original symmetry, represented by the subgroups of Dn (which are lower order dihedral
groups) and cyclic groups Cm (whose order m is an integer factor of n).

Ikeda et al. [31] have studied the bifurcation behaviour of Dn and Cn symmetric structures,
and derived a logical sequence for the symmetry-breaking process of bifurcation. One of their
observations is that the number of bifurcation paths for such systems is equal to 2n/m (twice
the ratio of the order of a group to that of a subgroup). Bifurcation paths can undergo further
progressive symmetry-breaking bifurcation until they reach a completely asymmetric pattern C1,
and the collection of such successive bifurcations makes up what they termed a ‘hierarchy’.

In studying the global bifurcation problem of symmetric structures, Healey [7] considered
the example of a lattice dome with hexagonal symmetry and showed that a reduced problem
(as yielded by the group-theoretic formulation) does not possess a singularity at a (symmetry-
breaking) bifurcation point of the full problem, circumventing the usual numerical problems near
bifurcation points (the possibility of ‘straying’ of solutions onto the wrong paths).

In tackling the problem of the postbuckling behaviour of an axially compressed cylindrical
shell, Wohlever & Healey [33] note that the main computational difficulty is the severe ill-
conditioning of the tangent-stiffness matrix, owing to the closely spaced symmetry-breaking
bifurcation points on the primary axisymmetric solution branch. They then employ group
theory to circumvent this ill-conditioning, by using symmetry-adapted variables (reflecting the
symmetry of the various solution paths, and hence also referred to as ‘symmetry modes’) as the
basis vectors for the independent subspaces of the original vector space of the problem.

Qualitative considerations of the above types have allowed useful insights to be gained in
advance of actual numerical computations. In this paper, we explore further qualitative benefits
and insights of the group-theoretic approach as applied to vibration analysis. These benefits will
be brought out via a number of examples. Before going into these considerations, it is useful to
start off with some definitions and an outline of basic concepts.
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2. Symmetry groups and subspace operators
A set of elements {a, b, c, . . . , g, . . .} constitute a group G with respect to a binary operation (for
example, multiplication) if the following axioms are satisfied [1]:

— the product c of any two elements a and b of the group, denoted by c = ab, must be a
unique element which also belongs to the group;

— among the elements of G, there must exist an identity element e which, when multiplied
with any element a of the group, leaves the element unchanged: ea = ae = a;

— for every element a of G, there must exist another element d also belonging to the group
G, such that ad = da = e; d is referred to as the inverse of a and denoted by a−1; and

— the order of the multiplication of three or more elements of G does not affect the result
(that is, multiplication is associative): (ab)c = a(bc).

When all elements of G are symmetry operations, then the group G is called a symmetry group.
Symmetry operations are transformations which bring an object into coincidence with itself and
leave it indistinguishable from its original configuration. For finite objects, symmetry operations
are typically of the following types:

— reflections in planes of symmetry, denoted by σl, where l is the plane of symmetry;
— rotations about an axis of symmetry, denoted by Cn, if the angle of rotation is 2π/n; and
— rotation–reflections, denoted by Sn; these represent a rotation through an angle 2π/n,

combined with a reflection in the plane perpendicular to the axis of rotation.

According to representation theory [1], idempotents P(i) of a symmetry group G are linear
combinations of its elements satisfying the relation P(i)P(i) = P(i) and P(i)P(j) = 0 if i �= j. By
operating on vectors of the space Q, an idempotent P(i) nullifies every vector which does
not belong to the subspace S(i) and selects all vectors belonging to the subspace S(i) (which
will all have a definite symmetry-type characteristic of the subspace). It therefore acts as a
projection operator [1] of the subspace S(i). When applied upon the functions φ1, φ2, . . . , φn of
an n-dimensional physical problem, idempotents generate the symmetry-adapted functions for
their respective subspaces, enabling basis vectors for the various subspaces to be written
down. As examples, idempotents of the groups C2v , C3v , C4v and C6v , describing the symmetry
properties of a rectangle, an equilateral triangle, a square and a regular hexagon, respectively, are
as follows [11,14,18]:

Group C2v

P(1) = 1
4 (e + C2 + σx + σy), (2.1a)

P(2) = 1
4 (e + C2 − σx − σy), (2.1b)

P(3) = 1
4 (e − C2 + σx − σy) (2.1c)

and P(4) = 1
4 (e − C2 − σx + σy). (2.1d)

Group C3v

P(1) = 1
6 (e + C3 + C−1

3 + σ1 + σ2 + σ3), (2.2a)

P(2) = 1
6 (e + C3 + C−1

3 − σ1 − σ2 − σ3) (2.2b)

and P(3) = 1
3 (2e − C3 − C−1

3 ). (2.2c)

Group C4v

P(1) = 1
8 (e + C4 + C−1

4 + C2 + σx + σy + σ1 + σ2), (2.3a)

P(2) = 1
8 (e + C4 + C−1

4 + C2 − σx − σy − σ1 − σ2), (2.3b)
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P(3) = 1
8 (e − C4 − C−1

4 + C2 + σx + σy − σ1 − σ2), (2.3c)

P(4) = 1
8 (e − C4 − C−1

4 + C2 − σx − σy + σ1 + σ2) (2.3d)

and P(5) = 1
2 (e − C2) = P(5,1) + P(5,2), (2.3e)

where for equation (2.3e) either of equations (2.4) or (2.5) below hold

P(5,1) = 1
4 (e − C2 + σ1 − σ2); P(5,2) = 1

4 (e − C2 − σ1 + σ2) (2.4)

or

P(5,1) = 1
4 (e − C2 + σx − σy); P(5,2) = 1

4 (e − C2 − σx + σy). (2.5)

Group C6v

P(1) = 1
12 (e + C6 + C−1

6 + C3 + C−1
3 + C2 + σa + σb + σc + σ1 + σ2 + σ3), (2.6a)

P(2) = 1
12 (e + C6 + C−1

6 + C3 + C−1
3 + C2 − σa − σb − σc − σ1 − σ2 − σ3), (2.6b)

P(3) = 1
12 (e − C6 − C−1

6 + C3 + C−1
3 − C2 + σa + σb + σc − σ1 − σ2 − σ3), (2.6c)

P(4) = 1
12 (e − C6 − C−1

6 + C3 + C−1
3 − C2 − σa − σb − σc + σ1 + σ2 + σ3), (2.6d)

P(5) = 1
6 (2e + C6 + C−1

6 − C3 − C−1
3 − 2C2) (2.6e)

and P(6) = 1
6 (2e − C6 − C−1

6 − C3 − C−1
3 + 2C2). (2.6f )

In the above expressions, e denotes the identity element, while Cn denotes a rotation about the
primary axis of symmetry (assumed perpendicular to the plane of the polygon and passing
through the centre of symmetry) through an angle of 2π/n. Throughout this paper, {σx, σy} for
rectangular (including square) configurations denote reflections in planes containing the x and
y coordinate axes, respectively (these are taken to pass through the mid-sides of the rectangle),
{σ1, σ2} for square configurations denote reflections in the planes of the diagonals, {σ1, σ2, σ3} for
triangular configurations denote reflections in the three planes of symmetry of the equilateral
triangle (these pass through a vertex and the opposite mid-side of the triangle), {σ1, σ2, σ3} for
hexagonal configurations denote reflections in the three planes of symmetry that pass through
opposite vertices of the hexagon, while {σa, σb, σc} denote reflections in the three planes of
symmetry that bisect opposite sides of the hexagon.

For the symmetry group C4v , the conceptual splitting of idempotent P(5) of subspace S(5) into
two independent operators P(5,1) and P(5,2) is not a standard result from representation theory,
but a means for decomposing the subspace S(5) into two identical subspaces S(5,1) and S(5,2)

which are spanned by physically indistinguishable symmetry-adapted functions. For the two
independent operators P(5,1) and P(5,2), we may adopt the pair given as equations (2.4) or (2.5), but
not both. Adopting either pair, it may readily be seen that P(5,1)P(5,1) = P(5,1) and P(5,2)P(5,2) = P(5,2).
Moreover, and more importantly, it is established that P(5,1)P(5,2) = 0 (the operators are mutually
orthogonal) and P(5,1)P(j) = P(5,2)P(j) = 0 for j = {1, 2, 3, 4} (each operator is also orthogonal to the
idempotents of the first four subspaces of the group).

A symmetry group G with k idempotents {P(1), P(2), . . . , P(k)} generally decomposes an
n-dimensional problem (i.e. one with n degrees of freedom in the case of vibration problems)
into k corresponding independent subspaces {S(1), S(2), . . . , S(k)}, each S(i) (i = 1, 2, . . . , k) spanned
by a number ri of symmetry-adapted functions that is typically small in comparison with n, as
r1 + r2 + . . . + rk = n. To illustrate the group-theoretic computational steps for obtaining actual
frequencies and mode shapes, and to show the insights that are gained through such an approach,
we consider a number of vibration problems: spring–mass systems [16], cable nets [11], layered
space grids [14] and continuum plates [28].
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Figure 1. Spring–mass system with six degrees of freedom: (a) actual configuration and (b) equivalent symmetric system.

3. Spring–mass systems
A spring–mass system with six degrees of freedom is shown in figure 1a. The masses are all equal
(mi = m for i = 1, 2, . . . , 6). The topologically equivalent symmetric system is shown in figure 1b. The
systems of figure 1a,b are equivalent in the sense of having the same mass connectivities, and not
in the sense of having the same static and dynamic characteristics, such as stiffness and natural
frequencies. Thus, any given mass mi (i = 1, 2, . . . , 6) in figure 1b is connected to the same values
of adjacent masses and same type of adjacent support, via the same values of spring stiffnesses,
as its counterpart in figure 1a. The symmetric system in figure 1b has a centre of symmetry O,
and the symmetry elements: e (identity); C6 and C−1

6 (clockwise and anticlockwise rotations of
2π/6 about O); C3 and C−1

3 (clockwise and anticlockwise rotations of 2π/3 about O); C2 (rotation
of π about O); and σa, σb, σc, σ1, σ2 and σ3 (reflections in the vertical planes as labelled in the
figure). Note that for the reflection planes labelled as A, B and C in the figure, the corresponding
symmetry elements are denoted by lower case subscripts a, b and c. The configuration therefore
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belongs to the symmetry group C6v of order 12. The positive direction of the rectilinear freedoms
u1, u2, u3, u4, u5 and u6 of the original system (figure 1a) maps into the direction towards the centre
in the equivalent symmetric system (figure 1b).

If we apply the first idempotent P(1) of the symmetry group C6v (this is given by
equation (2.6a)) to all the six freedoms ui (i = 1, 2, . . . , 6) of the configuration of figure 1b, we
obtain six symmetry-adapted freedoms for the first subspace, not all of which are independent.
To illustrate this, consider the application of P(1) to the first freedom u1, the relevant steps being
as follows:

P(1)u1 = 1
12 (e + C6 + C−1

6 + C3 + C−1
3 + C2 + σa + σb + σc + σ1 + σ2 + σ3)u1

= 1
12 (u1 + u2 + u6 + u3 + u5 + u4 + u2 + u4 + u6 + u1 + u3 + u5)

= 1
6 (u1 + u2 + u3 + u4 + u5 + u6).

This result (on the last line) is the same result we get by applying P(1) to u2, u3, u4, u5 and u6. Thus,
in this case, there is only one linearly independent symmetry-adapted freedom.

We repeat the procedure for all subspaces, using the correct idempotent for the subspace in
question (that is, we use P(i) for subspace S(i), i = 1, 2, . . . , 6). Selecting a set of linearly independent
symmetry-adapted freedoms as the basis vectors for the subspace, we obtain the following results
for the basis vectors of the subspaces (note that common multipliers, for example 1/6, are not
important and have been dropped off):

Subspace S(1)

Φ(1) = u1 + u2 + u3 + u4 + u5 + u6. (3.1)

Subspace S(4)

Φ(4) = u1 − u2 + u3 − u4 + u5 − u6. (3.2)

Subspace S(5)

Φ
(5)
1 = u1 + 1

2 u2 − 1
2 u3 − u4 − 1

2 u5 + 1
2 u6 (3.3a)

and
Φ

(5)
2 = 1

2 u1 + u2 + 1
2 u3 − 1

2 u4 − u5 − 1
2 u6. (3.3b)

Subspace S(6)

Φ
(6)
1 = u1 − 1

2 u2 − 1
2 u3 + u4 − 1

2 u5 − 1
2 u6 (3.4a)

and
Φ

(6)
2 = − 1

2 u1 + u2 − 1
2 u3 − 1

2 u4 + u5 − 1
2 u6. (3.4b)

From the above results, we see that subspaces S(1) and S(4) are one dimensional (that is, spanned
by one basis vector each), subspaces S(5) and S(6) are two dimensional, while subspaces S(2) and
S(3) are null spaces. We have thus decomposed the original six-dimensional vector space of the
problem into four independent subspaces of smaller dimensions, spanned by the above sets of
symmetry-adapted freedoms. Each subspace is associated with a specific symmetry type.

For subspace S(1), if we apply a unit positive displacement simultaneously on each mass mi
(i = 1, 2, . . . , 6) in accordance with the coordinates of the basis vector Φ(1) (equation (3.1)) as shown
in figure 2a, we see that the ensuing restoring force on each mass is equal to k1. Thus,

K(1) = k(1)
11 = [k1] and M(1) = m(1)

11 = [m]. (3.5)

This leads to the first-degree characteristic equation

k1 − ω2m = 0 (3.6)

and the solution

ω2 = k1

m
. (3.7)

For subspace S(4), applying a unit displacement simultaneously on each mass, in accordance with
the coordinates of the basis vector Φ(4) (equation (3.2)) as shown in figure 2b, results in a restoring
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Figure 2. Spring–mass system: application of displacement components of the basis vectors: (a) subspace S(1); (b) subspace
S(4); (c) subspace S(5); and (d) subspace S(6).

force of (k1 + 4k2) on each mass. Thus,

K(4) = k(4)
11 = [k1 + 4k2] and M(4) = m(4)

11 = [m], (3.8)

which leads to the first-degree characteristic equation

(k1 + 4k2) − ω2m = 0 (3.9)
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Table 1. Restoring forces owing to the application of the components ofΦ (5)
1 andΦ

(5)
2 for the spring–mass system.

Φ
(5)
1 Φ

(5)
2

mass displacement restoring force displacement restoring force

m1 = m u1 = +1.0 +1.0(k1 + k2) u1 = +0.5 +0.5(k1 + k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m2 = m u2 = +0.5 +0.5(k1 + k2) u2 = +1.0 +1.0(k1 + k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m3 = m u3 = −0.5 −0.5(k1 + k2) u3 = +0.5 +0.5(k1 + k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m4 = m u4 = −1.0 −1.0(k1 + k2) u4 = −0.5 −0.5(k1 + k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m5 = m u5 = −0.5 −0.5(k1 + k2) u5 = −1.0 −1.0(k1 + k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m6 = m u6 = +0.5 +0.5(k1 + k2) u6 = −0.5 −0.5(k1 + k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Restoring forces owing to the application of the components ofΦ (6)
1 andΦ

(6)
2 for the spring–mass system.

Φ
(6)
1 Φ

(6)
2

mass displacement restoring force displacement restoring force

m1 = m u1 = +1.0 +1.0(k1 + 3k2) u1 = −0.5 −0.5(k1 + 3k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m2 = m u2 = −0.5 −0.5(k1 + 3k2) u2 = +1.0 +1.0(k1 + 3k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m3 = m u3 = −0.5 −0.5(k1 + 3k2) u3 = −0.5 −0.5(k1 + 3k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m4 = m u4 = +1.0 +1.0(k1 + 3k2) u4 = −0.5 −0.5(k1 + 3k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m5 = m u5 = −0.5 −0.5(k1 + 3k2) u5 = +1.0 +1.0(k1 + 3k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m6 = m u6 = −0.5 −0.5(k1 + 3k2) u6 = −0.5 −0.5(k1 + 3k2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and the solution

ω2 = k1 + 4k2

m
. (3.10)

For subspace S(5), the restoring forces on each of the masses mi (i = 1, 2, . . . , 6), resulting from
the application of the displacement components making up the basis vectors Φ

(5)
1 and Φ

(5)
2

(equations (3.3)) as shown in figure 2c, are summarized in table 1. Similarly for subspace S(6), the
restoring forces on each of the masses mi, resulting from the application of the displacement
components making up the basis vectors Φ

(6)
1 and Φ

(6)
2 (equations (3.4)) as shown in figure 2d,

are summarized in table 2.
Consider subspace S(5) first. For the application of either Φ

(5)
1 or Φ

(5)
2 , it is noted (from table 1)

that all restoring forces are proportional to the u value prescribed to the mass in question. Taking
unit positive value of u (i.e. u = +1), the corresponding restoring force is (k1 + k2) in either
case. Therefore,

k(5)
11 = (k1 + k2); k(5)

12 = 0

k(5)
21 = 0; k(5)

22 = (k1 + k2).

⎫⎬
⎭ (3.11)

The symmetry-adapted stiffness matrix K(5) is therefore (corresponding mass matrix also given)

K(5) =
[

(k1 + k2) 0
0 (k1 + k2)

]
and M(5) =

[
m 0
0 m

]
. (3.12)

This leads to two uncoupled first-degree characteristic equations

(k1 + k2) − ω2m = 0 (twice), (3.13)
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giving the solutions

(ω2)(5)
1 = (ω2)(5)

2 = k1 + k2

m
. (3.14)

Similarly for subspace S(6), for the application of either Φ
(6)
1 or Φ

(6)
2 , it is noted (from table 2)

that all restoring forces are also proportional to the u value prescribed to the mass in question.
Taking unit positive value of u (i.e. u = +1), the corresponding restoring force is (k1 + 3k2) in
either case. Hence,

k(6)
11 = (k1 + 3k2); k(6)

12 = 0

k(6)
21 = 0; k(6)

22 = (k1 + 3k2).

⎫⎬
⎭ (3.15)

The symmetry-adapted stiffness matrix K(6) is therefore (corresponding mass matrix also given)

K(6) =
[

(k1 + 3k2) 0
0 (k1 + 3k2)

]
and M(6) =

[
m 0
0 m

]
, (3.16)

leading to two uncoupled first-degree characteristic equations

(k1 + 3k2) − ω2m = 0 (twice), (3.17)

with the solutions

(ω2)(6)
1 = (ω2)(6)

2 = k1 + 3k2

m
. (3.18)

In summary, subspaces S(1) and S(4) yielded one eigenvalue each; subspaces S(5) and S(6) each
yielded two equal eigenvalues (doubly repeating roots). Putting the solutions together, the six
natural circular frequencies of the original system (in ascending order) are as follows:

ω2
1 = k1

m
; ω2

2 = ω2
3 = k1 + k2

m
; ω2

4 = ω2
5 = k1 + 3k2

m
; and ω2

6 = k1 + 4k2

m
. (3.19)

Instead of having to expand a 6 × 6 determinant and solve a sixth-degree characteristic
polynomial as yielded by conventional considerations, the group-theoretic approach required
the solution of only four separate first-degree characteristic equations, yielding all six eigenvalues
(two distinct roots and two pairs of repeated roots) of the original problem. Here, we see that
the computational effort of the group-theoretic procedure is less than 10% of that associated with
conventional analysis. Spring–mass models of other symmetry groups may be seen in [16].

4. Cable nets
To illustrate the flexibility formulation of the vibration problem, let us consider a three-
dimensional but shallow cable net formed by two families of highly tensioned cables intersecting
perpendicularly on the xy horizontal projection (figure 3). The net has 16 nodes or cable
intersections, numbered as shown in the figure. This particular example is taken from [11]. Clearly,
the configuration has the symmetry of a square, and therefore belongs to the symmetry group
C4v . In this example, the horizontal spacing between cables is taken as constant and equal to
a. The horizontal component of the cable prestress force, denoted as T1 or T2 in the figure, is
assumed to be constant over the entire length of the cable. The T1 and T2 pattern (that is, the
prestressing pattern) conforms to the C4v symmetry of the cable layout. We require to evaluate
the free vibration response of the system, where the degrees of freedom are the small transverse
motions of masses lumped at the cable intersections.

(a) Symmetry-adapted functions
The 16-dimensional vector space of the problem can be decomposed into six independent
subspaces spanned by symmetry-adapted variables. To obtain the symmetry-adapted functions
for a given subspace S(i), we apply the corresponding idempotent P(i) as an operator on each
function φj ( j = 1, 2, . . . , 16) of the problem, and then select a linearly independent set of the
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Figure 3. Horizontal projection of cable net showing cable prestress forces.

symmetry-adapted functions as the basis vectors spanning the subspace. For the present problem,
the relevant P(i) are given by equations (2.3a–d) and equations (2.4). The results are:

Subspace S(1)

Φ
(1)
1 = φ1 + φ4 + φ13 + φ16, (4.1a)

Φ
(1)
2 = φ2 + φ3 + φ5 + φ8 + φ9 + φ12 + φ14 + φ15 (4.1b)

and Φ
(1)
3 = φ6 + φ7 + φ10 + φ11. (4.1c)

Subspace S(2)

Φ
(2)
1 = φ2 − φ3 − φ5 + φ8 + φ9 − φ12 − φ14 + φ15. (4.2)

Subspace S(3)

Φ
(3)
1 = φ2 + φ3 − φ5 − φ8 − φ9 − φ12 + φ14 + φ15. (4.3)

Subspace S(4)

Φ
(4)
1 = φ1 − φ4 − φ13 + φ16, (4.4a)

Φ
(4)
2 = φ2 − φ3 + φ5 − φ8 − φ9 + φ12 − φ14 + φ15 (4.4b)

and Φ
(4)
3 = φ6 − φ7 − φ10 + φ11. (4.4c)

Subspace S(5,1)

Φ
(5,1)
1 = Φ

(5)
1 = φ1 − φ16, (4.5a)

Φ
(5,1)
2 = Φ

(5)
6 = φ6 − φ11, (4.5b)

Φ
(5,1)
3 = Φ

(5)
3 − Φ

(5)
8 = φ3 − φ8 + φ9 − φ14 (4.5c)

and Φ
(5,1)
4 = Φ

(5)
2 + Φ

(5)
5 = φ2 + φ5 − φ12 − φ15. (4.5d)
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Subspace S(5,2)

Φ
(5,2)
1 = Φ

(5)
4 = φ4 − φ13, (4.6a)

Φ
(5,2)
2 = Φ

(5)
7 = φ7 − φ10, (4.6b)

Φ
(5,2)
3 = Φ

(5)
3 + Φ

(5)
8 = φ3 + φ8 − φ9 − φ14 (4.6c)

and Φ
(5,2)
4 = Φ

(5)
2 − Φ

(5)
5 = φ2 − φ5 + φ12 − φ15. (4.6d)

Thus, the 16-dimensional vector space of the original problem is decomposed into a total of six
r-dimensional subspaces, where r = {3, 1, 1, 3, 4, 4} for subspaces S(1), S(2), S(3), S(4), S(5,1) and S(5,2),
respectively. Computations need only be performed in these reduced spaces.

(b) Symmetry-adapted flexibility matrices
For each subspace of the problem, we apply unit vertical forces upon the cable-net nodes in
accordance with the coordinates of the respective basis vectors, as shown in the diagrams of
figure 4. For a given subspace, each vector Φi has been plotted on a separate diagram, for
clarity. The symbols ⊗ and � in these diagrams denote positive (i.e. downward) and negative
(i.e. upward) unit forces, respectively. To avoid clutter, the numbering of the nodes is not
shown; the diagrams have exactly the same orientation as in figure 3. For the same reason,
the Φi labels are shown without the subspace superscript; the subspace is indicated in the
figure caption.

If all the r basis-vector plots of a given subspace (shown separately in figure 4) are
superimposed on one diagram, any nodes that remain unaffected (that is, not associated with
any one of the r basis vectors of the subspace) imply stationary points. By doing this simple
superposition exercise, we find that subspaces S(2) and S(3) are each associated with eight
stationary nodes (the points lying on either of the two principal diagonals of the net), whereas
subspaces S(5,1) and S(5,2) are each associated with the occurrence of four stationary nodes (the
points lying on one of the two principal diagonals of the net).

From the plots of figure 4, we may make an important observation. The set of basis vectors
for subspace S(5,1) is very similar to that for subspace S(5,2) (compare figure 4e and figure 4f ).
For every vector in S(5,1), there is one exactly identical to it in S(5,2), except for orientation.
Clearly the physical properties of a physical system, such as natural frequencies and modes of
deformation, are not affected by its orientation in space. Therefore, a solution for any required
physical properties based on subspace S(5,1) must be identical to that based on subspace S(5,2).
These subspaces will yield identical sets of eigenvalues, hence we need only consider one of
them. In the present example, subspace S(5,1) will be selected. Thus, eigenvalues which occur
as coincident solutions (doubly repeating roots) in the vector space of the original problem are
automatically separated via the group-theoretic decomposition.

Let us consider any one of the subspaces of the problem, such a subspace being spanned by r
basis vectors. Let us define aij (i = 1, 2, . . . , r; j = 1, 2, . . . , r) as the vertical-displacement magnitude
at any of the nodes of the basis vector Φi, owing to unit vertical forces applied at all the nodes of the
basis vector Φj. The condition of vertical equilibrium at each of the r sets of nodes (corresponding
to the r basis vectors of the subspace) leads to r simultaneous equations in the r deflection
unknowns {a1j, a2j, . . . , arj}, which may be expressed as

⎡
⎢⎢⎢⎣

b11 b12 . b1r

b21 b22 . b2r

. . . .
br1 br2 . brr

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1j
a2j
.

arj

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

δ1j
δ2j
.

δrj

⎤
⎥⎥⎥⎦ (4.7)
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Figure 4. Cable-net system: unit vertical forces applied in accordance with the coordinates of the basis vectors: (a) subspace
S(1); (b) subspace S(2); (c) subspace S(3); (d) subspace S(4); (e) subspace S(5,1); and (f ) subspace S(5,2).

for j = 1, 2, . . . , r. For the right-hand side, δij = 1 if i = j, and δij = 0 if i �= j. We may write this
equation as

B(l)Aj = δj, (4.8)

where B(l) is an r × r matrix corresponding to subspace S(l); δj is an r × 1 column vector consisting
of a ‘1’ at row j and ‘zeros’ everywhere else, and Aj is the r × 1 column vector of the deflections
corresponding to the application of unit vertical forces at each of the nodes of Φj. These deflections
are, by definition, the flexibility coefficients for the subspace. Rearranging equation (4.8) then
yields the column vectors Aj of the flexibility matrix for subspace S(l) (which we can now write as

A(l)
j to denote that they pertain to subspace S(l)); when the A(l)

j are put together, they form the full

flexibility matrix A(l) for subspace S(l),

A(l)
j = [B(l)]−1δj; j = 1, 2, . . . , r (4.9)

and

A(l) =
[
A(l)

1 A(l)
2 . . . A(l)

r

]
. (4.10)
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The B(l) matrices for the various subspaces have been obtained as follows:

Subspace S(1)

B(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

4T1

a
−2T1

a
0

−T1

a
T1 + 2T2

a
−T2

a

0 −2T2

a
2T2

a

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.11a)

Subspaces S(2) and S(3)

B(2) =
[

3T1 + 2T2

a

]
and B(3) =

[
T1 + 2T2

a

]
. (4.11b,c)

Subspace S(4)

B(4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

4T1

a
−2T1

a
0

−T1

a
3T1 + 2T2

a
−T2

a

0 −2T2

a
6T2

a

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.11d)

Subspace S(5,1)

B(5,1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4T1

a
0 0 −2T1

a

0
4T2

a
0 −2T2

a

0 0
2(T1 + T2)

a
−T1

a

−T1

a
−T2

a
−T1

a
2(T1 + T2)

a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.11e)

(c) Subspace mass matrices
Let us assign to the cable net a system of concentrated masses positioned at the nodes (such
masses may be actual, or lumped parameters of a distributed-mass system). Referring to figure 3,
let the values of these masses be m1 at each position of the nodal set {1, 4, 13, 16}, m2 at each
position of the nodal set {2, 3, 5, 8, 9, 12, 14, 15} and m3 at each position of the nodal set {6, 7, 10, 11}.
This pattern of masses conforms to the general symmetry of the cable configuration. The
diagonal mass matrix M(i) for a given subspace S(i) consists of non-zero diagonal elements mii
(i = 1, 2, . . . , r), which are the values of the mass at any of the nodes of basis vector Φi. Thus, the
mass matrices for the various subspaces of our problem are as follows:

M(1) = M(4) =

⎡
⎢⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎥⎦ ; M(2) = M(3) = [m2] (4.12a,b)

M(5,1) = M(5,2) =

⎡
⎢⎢⎢⎣

m1 0 0 0
0 m3 0 0
0 0 m2 0
0 0 0 m2

⎤
⎥⎥⎥⎦. (4.12c)
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(d) Eigenvalues
The system eigenvalues λ (= 1/ω2, where ω is a natural circular frequency of the system) are
obtained separately for each subspace, from the well-known vanishing condition

|A − λM−1| = 0. (4.13)

In this context, the flexibility matrix A is the subspace flexibility matrix consisting of elements
aij (i = 1, 2, . . . , r; j = 1, 2, . . . , r), while the mass matrix M is the subspace mass matrix consisting
of non-zero diagonal elements mii (i = 1, 2, . . . , r). The eigenvalues yielded from the individual
subspaces are the actual eigenvalues of the original problem. Thus, instead of solving an nth-
degree polynomial characteristic equation in λ for the n roots of λ (i.e. eigenvalues), we need only
to solve, independently of each other, a series of lower degree characteristic equations in λ. In
our example of the 16-node cable net, the decomposition results in the following independent
characteristic equations in λ: two third-degree, two first-degree and one fourth-degree (the other
fourth-degree equation being identical to this).

In this example, we have seen the usefulness of the group-theoretic approach in predicting not
only the shape of vibration modes but also the number of modes of vibration of a given symmetry
type. We have also seen its ability to predict the occurrence of degenerate modes (that is, modes
of the same frequency of vibration), and to separate these for ease of computation. The latter are
always associated with irreducible representations of dimension greater than one. The number
of linearly independent modes of a particular frequency is simply given by the dimension of the
corresponding irreducible representation. Now, the fifth irreducible representation of symmetry
group C4v (denoted by R(5)) is two dimensional, so the corresponding subspace S(5) will always be
associated with twice-repeating roots. Yet again, we see group theory shedding important insights
into the properties of a system, even before actual calculations for natural frequencies and exact
mode shapes are performed.

5. Layered space grids

(a) Symmetries of layered space grids
Figure 5 shows some symmetric configurations of typical double-layer space grids [14]. The upper
diagram is the plan view of the grid, with nodes and relevant axes of symmetry labelled as
shown. The lower diagram is a side view of the grid. The z-axis points in the upward vertical
direction, while the h-axis lies in the horizontal plane of the bottom layer of nodes. The patterns of
members, joints and supports all conform, with respect to size and type, to the overall symmetry
of the configuration. Here, we assume that the grids are relatively shallow in relation to their
horizontal dimensions (which is usually the case for long-span roofing applications), implying
that the transverse stiffness of the grids is much lower than the in-plane (horizontal) stiffnesses in
the two lateral directions. Thus, vertical motions dominate. Where this assumption is not valid,
it is necessary to consider all three possible translational motions of the nodes of the space grid,
typically the motions in the three Cartesian directions.

The triangular grid of figure 5a has 10 nodes in the lower layer (three of which are supported
and not numbered in the diagram) and six nodes in the upper layer (whose positions in plan
coincide with the centroids of six of the triangular panels of the lower layer), giving a total of
13 degrees of freedom corresponding to the small vertical motions of the 13 unsupported nodes.
The total number of members making up the grid is 45 (18 in the lower layer, nine in the upper
layer and 18 linking the two layers). The configuration has threefold rotational symmetry about
the central vertical z-axis (which passes through node 4) and three reflection planes, giving it six
symmetry elements forming the group C3v .

The hexagonal grid of figure 5b has 19 nodes in the lower layer, six of which are supported (the
corner nodes in the plan view). The upper layer has 24 nodes whose positions in plan coincide
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Figure 5. Double-layer space grids of various configurations: (a) triangular grid with C3v symmetry; (b) hexagonal grid with
C6v symmetry; (c) rectangular grid with C2v symmetry; and (d) square grid with C4v symmetry.

with the centroids of the 24 triangular panels of the lower layer. There are therefore 37 degrees of
freedom corresponding to the small vertical motions of the unsupported nodes. The total number
of members may easily be seen to be 144. The symmetry possessed by the configuration comprises
sixfold rotational symmetry about the z-axis (which passes through node 7), and six reflections,
giving a total of 12 symmetry elements forming the group C6v .

The rectangular and square grids of figure 5c,d are of the square-on-square offset
configurations, with the panel sizes of the two layers being equal. The rectangular grid (figure 5c)
has 35 free nodes (i.e. 35 degrees of freedom) interconnected by a total of 120 members. The square
grid (figure 5d) has 21 free nodes and 72 members. The freedoms of interest are the small vertical
motions of the unsupported nodes. Clearly, these configurations belong to symmetry groups C2v

and C4v , respectively.
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Figure 6. Triangular space grid: basis vectors of the subspaces: (a) subspace S(1); (b) subspace S(2); and (c) subspace S(3).

(b) Symmetry-adapted freedoms and vibration modes
Let the n degrees of freedom (corresponding to the small vertical motions of the n unsupported
nodes) of the grid be denoted by {v1, v2, . . . , vn}, the numerical subscripts referring to the nodal
numbering in the diagrams in figure 5. For a given problem, we apply in the usual manner an
idempotent P(i) to each of the positions of the n degrees of freedom in turn, to generate a total of n
symmetry-adapted freedoms, from which we can select a set of ri independent symmetry-adapted
freedoms as the basis vectors Φj ( j = 1, 2, . . . , ri) spanning the subspace.

For the triangular grid (symmetry group C3v), the results show that subspaces S(1), S(2) and
S(3) have 4, 1 and 8 basis vectors, respectively. Therefore, the system will have four modes of
vibration (and corresponding four natural frequencies) with symmetry of type S(1), one mode of
vibration of symmetry type S(2) and eight modes of vibration of symmetry type S(3), which all
add up to the 13 degrees of freedom of the grid. The symmetries of the subspaces are evident
when the basis vectors are plotted (figure 6). In these plots, the filled circles (black dots) denote
downward movement of the nodes, whereas the open circles (rings) denote upward movement.
With this knowledge, we may choose to compute the natural frequencies and mode shapes for
modes of vibration of selected symmetry, without having to tackle the entire problem. Because the
irreducible representation associated with the subspace S(3) is two dimensional [1], we expect the
roots of the eigenvalue problem associated with subspace S(3) to be doubly repeating (i.e. only
four distinct natural frequencies of vibration will need to be computed).
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Figure 7. Hexagonal space grid: basis vectors of the first four subspaces: (a) subspace S(1); (b) subspace S(2); (c) subspace S(3);
and (d) subspace S(4).

For the hexagonal grid (symmetry group C6v), the subspaces S(1), S(2), S(3), S(4), S(5) and S(6)

of the problem are found to be of dimensions 6, 1, 4, 2, 12 and 12, respectively. This system
will therefore have six modes of vibration (and corresponding six natural frequencies) with
symmetry of type S(1), one mode of vibration of symmetry type S(2), four modes of vibration
of symmetry type S(3), two modes of vibration of symmetry type S(4), 12 modes of vibration of
symmetry type S(5) and 12 modes of vibration of symmetry type S(6), which all add up to the
37 degrees of freedom of the grid. Figure 7 shows the plots of the basis vectors of the first four
subspaces, allowing the symmetries of these to be visualized. The plots of the basis vectors of
subspaces S(5) and S(6) have not been shown (there are too many), but we note that these last two
subspaces are associated with two-dimensional irreducible representations. Therefore, only six
distinct frequencies (not 12) will need to be computed for each subspace.
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For the rectangular grid (symmetry group C2v), we find that the subspaces S(1), S(2), S(3) and
S(4) of the problem are of dimensions 11, 7, 9 and 8, respectively. The system will therefore have
11 modes of vibration (and corresponding 11 natural frequencies) with symmetry of type S(1),
seven modes of vibration of symmetry type S(2), nine modes of vibration of symmetry type S(3)

and eight modes of vibration of symmetry type S(4), which all add up to the 35 degrees of freedom
of the grid.

For the square grid (symmetry group C4v), the associated subspaces S(1), S(2), S(3), S(4), S(5,1)

and S(5,2) are of dimensions 5, 1, 2, 3, 5 and 5, respectively. The system will therefore have five
modes of vibration (and corresponding five natural frequencies) with symmetry of type S(1), one
mode of vibration of symmetry type S(2), two modes of vibration of symmetry type S(3), three
modes of vibration of symmetry type S(4) and 10 modes of vibration of symmetry type S(5), which
all add up to the 21 degrees of freedom of the grid. We further predict that subspace S(5), being
associated with a two-dimensional irreducible representation, will feature doubly repeating roots
(i.e. only five distinct eigenvalues), and consideration of either subspace S(5,1) or subspace S(5,2)

will generate the five distinct eigenvalues or natural frequencies.

6. Thin elastic plates

(a) Governing equation of motion
The equation of motion for the undamped free vibration of a plate may be written as [34]

∂4w
∂x4 + 2

∂4w
∂x2 ∂y2 + ∂4w

∂y4 + ρ

D
∂2w
∂t2 = 0, (6.1)

where w is the transverse displacement at a point defined by the coordinates {x, y} at any given
time t, D is the flexural rigidity of the plate and ρ is the mass of the plate per unit area of its
surface. Assuming harmonic vibration, we may write

w(x, y, t) = W(x, y) sin ωt, (6.2)

where W(x, y) is a shape function satisfying the boundary conditions and describing the shape of
the deflected middle surface of the vibrating plate, and ω is a natural circular frequency of the
plate. Substituting for w in equation (6.1), we obtain

∂4W
∂x4 + 2

∂4W
∂x2 ∂y2 + ∂4W

∂y4 − ηW = 0, (6.3)

where

η = ρω2

D
. (6.4)

The ordinary finite-difference representation of equation (6.3) at a pivotal point (m, n) of the
mesh, based on central differences and taking equal mesh intervals d = �x = �y (in the x and
y directions), is as follows [34]:

20Wm,n − 8(Wm−1,n + Wm+1,n + Wm,n−1 + Wm,n+1)

+ 2(Wm−1,n−1 + Wm−1,n+1 + Wm+1,n−1 + Wm+1,n+1)

+ Wm−2,n + Wm+2,n + Wm,n−2 + Wm,n+2 − λWm,n = 0, (6.5)

where
λ = ηd4. (6.6)

Figure 8 shows a rectangular plate simply supported on all four edges, with an equispaced grid
of mesh lines in the x and y directions giving a total of 24 mesh points on the plate. Here, we
have chosen to adopt a relatively coarse mesh in order to permit the relevant group-theoretic
calculations to be performed in a manageable manner (the systems of equations needing to be
solved will not be too large), which also makes it easy for the reader to follow the steps. This mesh
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Figure 8. Rectangular plate simply supported along all four edges and divided into a square mesh with 24 mesh points.

is adequate for the purposes of bringing out the key attributes of the group-theoretic procedure,
but clearly if a higher degree of accuracy in the numerical values is required, then a finer mesh
ought to be adopted. The mesh configuration conforms to symmetry group C2v . Mesh points have
been numbered in accordance with group-theoretic rules [28]. Also shown outside the boundary
of the plate (as mirror images of the adjacent nodes on the plate) are the relevant fictitious nodes,
for use in the finite-difference equations for the real nodes.

(b) Basis vectors
Applying the idempotents P(1), P(2), P(3) and P(4) of symmetry group C2v (equations (2.1)), for
subspaces S(1), S(2), S(3) and S(4), respectively, to each of the 24 nodal functions φ1, φ2, . . . , φ24
associated with the mesh points of the plate, we obtain 24 linear combinations of these functions
for each subspace, not all of which are independent. Selecting a set of independent combinations
of functions as the basis vectors for the subspace in question, we find that all four subspaces are six
dimensional (i.e. have six basis vectors each). The sets of basis vectors Φ

(i)
j for all four subspaces

(i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5, 6) may be collected together as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ
(1)
1 Φ

(1)
2 Φ

(1)
3 Φ

(1)
4 Φ

(1)
5 Φ

(1)
6

Φ
(2)
1 Φ

(2)
2 Φ

(2)
3 Φ

(2)
4 Φ

(2)
5 Φ

(2)
6

Φ
(3)
1 Φ

(3)
2 Φ

(3)
3 Φ

(3)
4 Φ

(3)
5 Φ

(3)
6

Φ
(4)
1 Φ

(4)
2 Φ

(4)
3 Φ

(4)
4 Φ

(4)
5 Φ

(4)
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

φ1 φ5 φ9 φ13 φ17 φ21
φ2 φ6 φ10 φ14 φ18 φ22
φ3 φ7 φ11 φ15 φ19 φ23
φ4 φ8 φ12 φ16 φ20 φ24

⎤
⎥⎥⎥⎦. (6.7)

The symmetry types associated with the four subspaces of this problem may be visualized by
reference to figure 9, in which the sixth basis vector of each subspace Φ

(i)
6 (i = 1, 2, 3, 4) has been

plotted. As all basis vectors of a given subspace have the same symmetry type, there is no point
in plotting all of them in order to illustrate the symmetry; one suffices.
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Figure 9. Rectangular plate: symmetry types of the four subspaces illustrated by the sixth basis vector of each subspace:
(a)Φ (1)

6 of subspace S(1); (b)Φ (2)
6 of subspace S(2); (c)Φ (3)

6 of subspace S(3); and (d)Φ (4)
6 of subspace S(4). Filled (black) circles

denote positive coordinates of the basis vectors, while open circles (rings) denote negative coordinates.

(c) Conventional finite-difference equations
In the group-theoretic formulation developed by Zingoni [28], we do not need to write down
the finite-difference equations for all the nodes of the mesh, and then operate on these to reduce
the number of equations. Instead, we need only write down the finite-difference equations for the nodes
corresponding to the first components of the basis vectors of each subspace and operate on this reduced set of
equations in order to generate all the required symmetry-adapted finite-difference equations for the various
subspaces of the problem. For our example, the set of nodes for which finite-difference equations
need to be written down is {1, 5, 9, 13, 17, 21}.

All edges are simply supported, implying that W = 0 for all nodes lying on the edges of the
plate. For the fictitious nodes of the finite-difference mesh (figure 8), the deflections W are equal
in magnitude but opposite in sign to those of the corresponding real nodes. The central finite-
difference equations for nodes {1, 5, 9, 13, 17, 21} (in that order) become

(20 − λ)W1 + 2W2 − 8W3 − 8W4 − 8W5 + 2W7 + W8 + W9 − 8W13

+ W15 + 2W16 + 2W17 = 0, (6.8a)

− 8W1 + 2W3 + W4 + (20 − λ)W5 − 8W7 − 8W9 + 2W11 + 2W13

− 8W17 + W19 + 2W21 = 0, (6.8b)

W1 − 8W5 + 2W7 + (19 − λ)W9 − 8W11 + 2W17 − 8W21 + W23 = 0, (6.8c)

− 8W1 + W3 + 2W4 + 2W5 + (19 − λ)W13 − 8W16 − 8W17 + W20 + W21 = 0, (6.8d)

2W1 − 8W5 + W7 + 2W9 − 8W13 + W16 + (19 − λ)W17 − 8W21 = 0 (6.8e)

and 2W5 − 8W9 + W11 + W13 − 8W17 + (18 − λ)W21 = 0. (6.8f )
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(d) Symmetry-adapted finite-difference equations and system eigenvalues
For any given basis vector Φ

(i)
j of subspace S(i), the coefficients of the components φ are either +1

or −1 for all subspaces. These coefficients give the relative values of the transverse displacements
associated with the nodes of Φj. For a given r-dimensional subspace, we will denote the amplitude
of the displacements associated with the nodes of Φj ( j = 1, 2, . . . , r) by the parameter fj. This
amplitude will be the same for all nodes of Φj. This formulation results in an r-dimensional
eigenvalue problem within the subspace S(i), which upon solving yields the r eigenvalues (natural
circular frequencies) for that subspace. As stated earlier, these subspace eigenvalues are also
eigenvalues of the full space of the problem, and no further computations are required. Consider
subspace S(1). From the coefficients of Φ

(1)
j ( j = 1, 2, . . . , 6), let

W1 = W2 = W3 = W4 = f1, (6.9a)

W5 = W6 = W7 = W8 = f2, (6.9b)

W9 = W10 = W11 = W12 = f3, (6.9c)

W13 = W14 = W15 = W16 = f4, (6.9d)

W17 = W18 = W19 = W20 = f5 (6.9e)

and W21 = W22 = W23 = W24 = f6. (6.9f )

Making the above substitutions into each of equations (6.8), we obtain six equations in
{f1, f2, f3, f4, f5, f6}:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(6 − λ) −5 1 −5 2 0
−5 (12 − λ) −6 2 −7 2
1 −6 (11 − λ) 0 2 −7

−5 2 0 (11 − λ) −7 1
2 −7 2 −7 (19 − λ) −8
0 2 −7 1 −8 (18 − λ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
f4
f5
f6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (6.10)

The vanishing condition for the determinant of the above 6 × 6 matrix yields a sixth-degree
polynomial equation in λ, whose roots (the required eigenvalues) are obtained as

λ1 = 0.336; λ2 = 3.752; λ3 = 7.930; λ4 = 13.169; λ5 = 17.414; and λ6 = 34.398.

Considering subspace S(2) next, from the coefficients of the Φ
(2)
j ( j = 1, 2, . . . , 6), let

W1 = W2 = −W3 = −W4 = f1, (6.11a)

W5 = W6 = −W7 = −W8 = f2, (6.11b)

W9 = W10 = −W11 = −W12 = f3, (6.11c)

W13 = W14 = −W15 = −W16 = f4, (6.11d)

W17 = W18 = −W19 = −W20 = f5 (6.11e)

and W21 = W22 = −W23 = −W24 = f6. (6.11f )

Making the above substitutions into each of equations (6.8), we obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(38 − λ) −11 1 −11 2 0
−11 (28 − λ) −10 2 −9 2

1 −10 (27 − λ) 0 2 −9
−11 2 0 (27 − λ) −9 1

2 −9 2 −9 (19 − λ) −8
0 2 −9 1 −8 (18 − λ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
f4
f5
f6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6.12)

 on January 4, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/
http://rsta.royalsocietypublishing.org/


22

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20120037

.........................................................

Table 3. Natural circular frequenciesω (in rad s−1) for the rectangular plate.

subspace S(1) subspace S(2) subspace S(3) subspace S(4)

(1) 22.20a (5) 81.73a (2) 43.45a (3) 60.48a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4) 74.15a (12) 146.50 (7) 108.22 (8) 112.43
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(6) 107.80 (15) 167.33 (9) 129.05 (11) 146.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(10) 138.92 (19) 198.45 (14) 160.16 (16) 177.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(13) 159.74 (21) 232.10 (17) 193.82 (18) 198.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(20) 224.52 (24) 284.05 (22) 245.77 (23) 262.80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aFirst five modes.

leading to the results

λ1 = 4.558; λ2 = 14.646; λ3 = 19.106; λ4 = 26.873; λ5 = 36.761; and λ6 = 55.056.

Proceeding in the same way for the remaining two subspaces, we obtain the results

Subspace S(3)

λ1 = 1.288; λ2 = 7.992; λ3 = 11.364; λ4 = 17.505; λ5 = 25.635; and λ6 = 41.216.

Subspace S(4)

λ1 = 2.496; λ2 = 8.626; λ3 = 14.563; λ4 = 21.427; λ5 = 26.760; and λ6 = 47.128.

(e) Numerical results
Natural circular frequencies were evaluated for a rectangular steel plate of dimensions 7 m × 5 m,
assuming all edges are simply supported [28]. The thickness h of the plate was given as 25 mm.
The density γ of the steel was taken as 7800 kg m−3, the modulus of elasticity E as 200 × 109 N m−2

and Poisson’s ratio ν as 0.3. Table 3 shows values of ω obtained on the basis of a finite-difference
mesh of spacing 1 m × 1 m in the x and y directions. The numbers in brackets (mode numbers)
denote the ascending order of the frequencies, from 1 up to 24.

From the results, we observe yet another attribute of the group-theoretic formulation. Apart
from the property of breaking up the original problem into smaller problems which are much
easier to solve, we see that the group-theoretic decomposition also separates modes whose
frequencies are very close to each other, eliminating the numerical problems usually associated
with the computation of frequencies that are nearly coincident. For instance, modes 6, 7 and 8
have closely spaced circular frequencies of {107.80; 108.22; 112.43} rad s−1, respectively, but these
frequencies are extracted separately within subspaces S(1), S(3) and S(4).

7. Concluding remarks
In this paper, we have shown how the group-theoretic procedure, besides its more obvious
merits of reducing computational effort, affords useful insights into the vibration properties of
a structural system without the necessity of first performing detailed numerical computations.
Such qualitative benefits have included a prior appreciation of all the possible symmetries of
the modes of vibration, the prediction of the number of modes of a given symmetry type, the
identification of modes associated with the same frequencies, the prediction of nodal lines and
stationary points of a vibrating system, and the untangling of clustered frequencies.

Information of this type greatly helps in understanding why certain phenomena occur in
particular physical systems, depending on the types of symmetries they possess. In turn, this
allows us to design structural systems to be less susceptible to detrimental phenomena, for
example resonance. It is believed that group theory has the potential to reveal new as yet
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undiscovered phenomena with regard to the static, kinematic, stability and dynamic behaviour
of complex structural systems which are rich in symmetry.
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