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Abstract 
 

igating  the behavior of a monopole moving in the field of another monopole we have 
ed energy eigenvalue and eigenfunctions of the system. It has been demonstrated that 
ic harmonic oscillator is (n+1) (n+2)/2 fold degenerate and SU(3) is the algebra to 

be this system. The energy eigenvalue of monopolonium is modified from the usual 
 eigenvalue of hydrogen atom due to the magnetic charge  and Bohr radius of the 
 is very small in comparison to atomic Bohr radius. It has also been demonstrated that 

tonian of the monopolonium is invariant under O(4) and degree of degeneracy is n2 

UCTION 
sicists were fascinated by magnetic monopole since its ingenious idea was put 
 Dirac(1,2) showing that mere existence of magnetic charge implies the 

n of electric charge. Ever since Dirac wrote down the quantization condition 
ic charge, there have been many difficulties(1,2,3) encountered in the scattering 
ic monopole. The theory of magnetic monopole since its inception went 
o significant advancements, the quantum field theory of interacting electric 

tic charges as developed by Schwinger(4) and the local Lagrangian quantum 
etic formulation developed by Zwanziger(5). In his approach Schwinger 
both the Hamiltonian and the commutation rules, which while successful, 
dhoc method of formulating a quantum field theory. The basic variables in his 
re the two transverse potentials 

r
AT  and 

r
BT  which were not canonically 

Zwanziger's formulation begins with a Lagrangian, but the price he pays for 

                                      
ing author 
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locality is the doubling of the number of photon variables. As such the canonical and 
physical structure of his theory requires a great deal of clarifications. We have under 
taken(6, 7, 8) the study of scattering of a photon and a magnetic monopole and  it has been 
shown that photon responsible for compton scattering of magnetic monopole is highly 
energetic. We have also undertaken the study of S-matrix expansion and deduced 
Feynmann rules for different charge particle and photon interactions(6). We have further 
studied the Pauli equation for monopolonium and it has been demonstrated that 
monopolonium is very strongly bounded and energy of the system is very high in 
comparison to bound states of quantum electrodynamics. We have also undertaken the 
study of anti-monopolium(8) (i.e. bound state of monopole and anti monopole ) and have 
demonstrated that this state is very short lived and decays into two or three highly 
energetic photons depending on the spin- statistics of the particles involved. Extending 
this work in the present paper we have undertaken the study of magnetic monopole in 
group theoretical framework. 

 
 
2.  ENERGY SPECTRUM AND DEGENERACIES ASSOCIATED WITH 
     HARMONIC OSCILLATOR : 
 
 In order to study the degeneracy of harmonic oscillator we start with the 
following Hamiltonian  
 

 $ $
H

m
mr

= +
π2

2

2 2

2
ω

)

      ...(1) 

 
where   is the gauge invariant linear momentum operator defined as

r
π (6) 

 

 (r
π = −P gB        ...(2) 

r r

where g is the charge associated with magnetic monopole 
r
V  is the spatial component of 

magnetic four potential { . The Schrocdinger equation for this system may be written 

as  
}

ψ

θ φ

Bµ

         ...(3) $H Eψ =
 
where  is given by equation (1). Separating equation (3) into radial and angular parts 
by defining

$H
(6)

 
        ...(4) ( ) ( )ψ = R r Yg l m, , ,

 

 42



 S.C. Joshi et al./Sri Lankan Journal of Physics, Vol. 2 (2001) 41-52 

where (Yg l m, , ,θ )φ  are monopole harmonics we get the following radial equation 

 

 { } ( )d R
dr R

dR
dr

m E mr
l l

r
R

2

2
2 2

2
2

2
1

0+ + − −
+⎡

⎣
⎢

⎤

⎦
⎥ =ω  ...(5) 

 
 
 
Introduction to the dimensionless quantities 
 

 ξ
ω

= =ar m r
h

       

 
and      ξ ω= E

h  

 
equation (5) gets the following form 
 

 
( ) ( )d R

d

l l
R

2

2
2

2
2

1
0

ξ
ξ ξ

ξ
ξ+ − −

+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=     ...(6) 

Substituting  
 

 ξ = + +⎛
⎝⎜

⎞
⎠⎟

2
1
4

n q        ...(7) 

 ( )l l q q+ = −⎛
⎝⎜

⎞
⎠⎟

1 4
1
2

      ...(8) 

 
introducing the variables 
 
        ...(9) P = =ξ2 dr2

and writing a function  

 ( ) ( )w e Rqρ ρ
ρ

=
− −2 r       ...(10) 

 
equation (5) may be written as 
 

 
( ) ( ) ( )ρ ρ

ρ
ρ

ρ
ρ

ρ
d w

d
q

dw
d

nw
2

2
2

1
2

0+ + −⎛
⎝⎜

⎞
⎠⎟

+ =    ...(11) 

 
which has the form of confluent hypergeometric differential equation. Solution of this 
equation may be written as 
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 ( )W F n qρ = − +⎛
⎝⎜

⎞
⎠⎟

, ;2
1
2

ρ       ...(12) 

 
which is acceptable solution (in the form of a polynomial) for n = 0, 1, 2..... 
Furthermore,  equation (8) gives 
 
 

 (q l= +
1
2

1)        ...(13) 

 
Substituting this value into equation (8) we get 
 
 ε = + +2 3

2n l        ...(14) 
 
which gives the energy eigenvalues as 
  
 (Enl n l= = + +ε ω ωh h 2 3

2)      ...(15) 

 
and corresponding radial wavefunction is then written in the following form by 
substituting equation (12) into equation (10) 
 

 ( )R r Cnle
l F n l= − + − +⎛

⎝⎜
⎞
⎠⎟

ξ ξ
2 2 1 3

2
2, , ξ    ...(16) 

 
where  is the normalization constant. Cnl
 In order to evaluate the energy eigen values of a harmonic oscillator group 
theoretically we shall work with the raising and lowering operators for the eigenvalue of  
H defined by 
 

 
( )

( )

( )
( )

a P i

a P

j j

j j

= −

= ++

r

i r

j

j

1

2

1

2

1 2

1 2

µ ω
ωµ

µ ω
ωµ

h

h

;

;
     ...(17) 

 
Using the commutation relations between ai   and  a j

+ can be found to be 
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       ...(18) 
[ ]
[ ] [ ]
a a

a a a a

i j ij

i j i j

,

, ,

+

+ +

=

= =

δ

0

 
investing the transformation (17) and substituting in to equation (1) the Hamiltonian of 
the system becomes 
 

 { }H a a aj i
j

j i
j

= +⎛
⎝⎜

⎞
⎠⎟

=+∑ ∑h
h

ω
ω1

2 2
, a+

i−hω

   ...(19) 

 
where  denotes the anticommutator of A and B. { }A B AB BA, = +

 The commutators of the raising and the lowering operators with the Hamiltonian 
turn out to be 
 
      ...(20) [ ] [ ]H a a H a ai i i, , ,+ += =hω

 
The occupation number operator ai+ ai has eigenvalues n; where n; can take any 

non-negative integral values. The eigenvalues of the Hamiltonian (19) are therefore 
 

 E nn = +⎛
⎝⎜

⎞
⎠⎟

3
2
hω        ...(21) 

 
where 
 
 n n n n n n n o= + + =1 2 3 1 2 3 1 2; , , , , . . . . . . . . .    ...(22) 

The degeneracy of the level En is then easily seen to be ( ) ( )n n+ +1 2 .2  The 
angular momentum operator can be worked out by using inverse transformation of (17) 
and is found to be 
 

 ( ) (L r P i a a a aj j jkl
k l

k l k l= × = ∈ −
=

+ +∑r r h

2 1
)

3

,
    ...(23) 

 
We can further show that operators of the form a ai j

+  commute with the 

Hamiltonian. The operators  has the effect of transferring a quantum from the ja ai
+

j
th-

direction to the ith- direction and hence leaves the total number of quanta unchanged. 
There are nine such operators and it can be shown that they generate the algebra of U(3) . 
We  see from (19) that the operator for the total quantum number is given by 
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 ai a j
i

H+

=
∑ = −

1

3 3
2hω

         ...(24) 

 
and hence it commutes with all the operators ai a j

+ . Eight other linear combinations of 

the operator a  can be constructed which generate the algebra of  SU(3). There are i a j
+

    

 

λ λ

λ λ

λ λ

λ λ

1 1 2 2 1 2 1 2 2 1

3 1 1 2 2 1 3 3 1

5 1 3 3 1 6 2 3 3 2

7 2 3 3 2 8
1
3 1 1 2 2 2 3 3

= + + + = − + − +⎛
⎝⎜

⎞
⎠⎟

= + − +⎛
⎝⎜

⎞
⎠⎟ = + + +

= − + − +⎛
⎝⎜

⎞
⎠⎟ = + + +

= − + − +⎛
⎝⎜

⎞
⎠⎟ = + + + − +⎛

⎝⎜
⎞
⎠⎟

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

a a a a i a a a a

a a a a y a a a a

i a a a a a a a a

i a a a a a a a a a a

,

,

,

,

...(25) 

 
These operator satisfy the following relation 
 
         ...(26) [ ]λ λ λj k

l
i f jkl l, = ∑2

 
The  dynamical symmetry group of a three dimensional harmonic oscillator of monopole 
is therefore SU(3). 
 
 
3.  BOUND STATES OF MONOPOLES   
 
 In order to understand the behavior of a monopole moving in the field of another 
monopole we start with the following Schrodinger equation 
 
         ...(27) $H Eψ = ψ
 
where   is the Hamiltonian given as  $H
 

 ( )$
$

H P
m

V r=
2

2
       ...(28) 

 
( )V r  is the interaction potential in central field approximation given as  
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 ( )V r g
r

= −
2

       ...(29)  

 
Substituting equation (3.3) and (3.2) to equation (3.1) we get 

 ( ){ }$π
ψ

2

2
0

m
V r E+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=      ...(30) 

 
Assuming the wave function as a product of radial and angular wave function 
 
        ...(31) ( ) ( )ψ = R r Yl

m ,θ φ
 
we obtain 
 

 
( ) ( ) ( ) ( )

( )
r

rR r
d

dr
rR m E V

Yl
m

Yl
m

2 1 2

2
2+ − = −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Λ θ φ

θ φ

,

,   
 
where   

 ( )Λ = ⎛
⎝⎜

⎞
⎠⎟

+ =
1 1

2
+

2

2
1

Sin
Sin

Sin
l l

θ
∂

∂θ
θ

∂
∂θ θ

∂

∂φ
 

 
which on solving as hydrogen atom problem yields the energy eigenvalue of a 
monopolonium (i.e. bound state of two monopoles) system in the nth eigen state, as 
follows 

 E mg
n

n = −
4

2
       ...(32) 

  
where m is the reduced mass. 

The distance between the two generalized charges in unified space may be 
written as 

 a
mg

o =
2

2
           ...(33) 

 
This ao is the Bohr radius for a monopolonium. This is very small in comparison 

to atomic Bohr radius as the value of magnetic charge is very large in comparison to 
electric charge(9,10,11,12). The corresponding eigenfunctions are related to the associated 
Legendre polynomials and the complete solution is 
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        ...(34) ( ) ( ) ( )ψ θnlm nl
mr R r Y= 1 , φ

 
with first few  are given by R nl
 
 

( )

( )

( )

R r
a

r
a

R r
a

r
a

r
a

R r
a

r
a

r
a

o o

o o

o o o

10

3 2

20

3 2

21

3 2

2
1

1
2

2
2

1
2 3 2

=
⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

=
⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

=
⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

exp

exp

exp

o
…..(35)

           
 
The normalization constants are such that 
 

 …...(36) ( )R r r drno
∞

∫ =
2

2 1

         
For the ground state, the Spherically symmetric wave function is given by 
 

 ψ
π100

3 2
1
4

1
2=

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟

a
r

ao o
exp     ...(37) 

 
and the probability of finding two dyons at a distance r apart, is given by 
 

 ( )P r r
a

r
ao o

= −
⎛
⎝
⎜

⎞
⎠
⎟

4 22

3
exp       ...(38) 

        ...(39) ( )P r dr
o
∞

∫ = 1

 
which shows part that P(r) is zero at r = o and r = ∞  and has a maximum value at r = . 
To analyze this system group theoretically we define the following Runge-lenz vector, 

ao

 

 ( )′ = × − × −M P L L P q r
r

1
2

2
µ

r r r r r

    ...(40) 
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which is a constant of motion i.e. it commutes with the Hamiltotian (1).  is the orbital 
angular momentum in equation (40) this angular momentum operator which is normal to 
the plane of orbit commute with Runge-Lenz vector i.e. 

$L

 
 M' . L = 0        ...(41) 
 
so that M' is a vector in the plane of the orbit. The orbital angular momentum also 
commutes with the Hamiltonian and is a constant of motion. We thus have 
 
 [M', H] = 0, [L, H] = 0      ...(42) 
We get from equation (40) with the help of these commutation relations 
 

 ( )r r
h′ = + +M H L z2 2 22

µ
g2 2      ...(43) 

 
We now have six operators which correspond to the invariants of the problem at 

hand an can be used to generate unitary transformations under which the Hamiltonian 
would be invariant. There will be fifteen commutators which are given below in five 
equations each standing for three equations obtainable from it by cyclic permutation of  
x, y, and z : 
 

[ ] [ ] [ ]
[ ] [ ]

L L i L M L o M L i M

M L i M M M i HL

x y z x x x y z

x z y x y z

, , , , ,

, , ,

= ′ = ′ = ′

′ = − ′ ′ ′ = −

⎫

⎬
⎪

⎭
⎪

h h

h
h2

µ

...(44) 

                                                                                       
 

The components of  L  themselves constitute a closed algebra can be used to 
generate the lie group O(3). Let us restrict ourselves to a particulars bound state energy 
level (E < 0) of the monopolonium and confine ourselves to the invariant subspace ( of 
the full space) which corresponds to the eigenvalue E. In this subspace, we can replace H 
by E and define a new operator by 
 
 ( )

r r
M E= − ′µ 2 1 2 M        ...(45) 

 
In the first commutators of (44) the components of 

r
M  simply replace those of 

.  The last commutator, however, takes the form 
r

′M
 
        ...(46) [ ]M M i Lx y, = h z
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Now these can be used to generate a six parameter Lie group which will be the 
dynamical symmetry of the monopolonium. 
 To show that this group is O(4), we define six operators by writing 
 
               ...(47) J L for i j k xij ijk

k
k= ∈ =∑      , , , ,y z

Mi

= h

and 
        ...(48) J Ji i  ω ω= − =
 

Here, is the fully antisymmetric tensor of rank three. The commutation 
relations between these operators can be worked out and are found to be 

∈ijk

 

     ...(49) 

[ ] [ ]
[ ] [ ]

[ ]

J J i J J J o

J J i J J J i J

J J i J

xy yz zx x yz

x zx z x y xy

x yx y

, , ,

, , ,

,

= =

=

=

⎫

⎬

⎪
⎪

⎭

⎪
⎪

h

h

h

ω

ω ω ω ω

ω ω

 
where, again, each equation stands for three equations obtained from it by cyclic 
permutation of  x, y, and z. The six operators ( )J x yρσ zρ σ ω, , , ,= are infinitesimal 

generators of a group whose operation leaves the quadratic form x y z2 2 2 2+ + + ω  
invariant i.e. the group of all real orthogonal transformations in a four-dimensional 
vector space or O(4). We have one operator each for generating rotations in the six 
coordinate plane. 
 Let us construct the following Linear combination of 

r r
L and M     

 

 ( ) (r )r r r r r
A L M B L= =

1
2

M1
2

  +      −;     ...(50) 

so that commutation relations between the components of  
r r
A and    Β  are 

 
 

r r
h
r r r

h
r

A A i A B B i B× = × =,   
      ...(51) [ ]A B o for i j x y zi j, ,= =    , ,

 
Moreover, since 

r r
L and M     both commute with H, it follows that  

r r
A and    Β  also do. The 

above equation shows that the Lie algebra of 
r r
A and    Β  are separately closed, so that 

each of them can be used to generate the SU(2) group. This tells that O(4) is 
homomorphic to SU(2) SU(2). ×
 We may choose the two commutating generator to be any one component of  
r
A and   any one component of  Β

r
. There are therefore two Casimir operators which 

commute with all the six generators. There are obviously 
r r
A and    Β2 2  or any two 
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independent linear combination of these. Their eigenvalues in analogy with the theory of  
SU(2) may be written as  
 
 ( ) ( )

r
h

r
hA a a b b =  ;      Β2 2 2 2+ =1 + 1     ...(52) 

 
where a and b take all non-negative integral or half odd integral values. Taking the sum 
and the difference of  

r r
A and    Β2 2 , we find that 

 ( )C A L C A L M≡ ≡
r r

= ⋅
r r r r

  +  Β  + Μ    −  Β2 2 2 2 2 21
2

,   ...(53) 

Using (41) and (45) the second of the above equation shows that C' = 0 that our 
physical system (i.e. monopolonium) corresponds only to that part of O(4) for which r r
A2 =  Β2  or a (a + 1) = b (b + 1). This gives the two solutions a = b and a = -(b + 1); the 
second solution must, however, be discarded since a and b are restricted to non-negative 
values. This tells us that only those representation of  O(4) represents the state of 
monopolonium for which a = b i.e. representation of the form (a, a). 
 The eigenvalues of Casimir operator C then becomes 
        ...(54) ( )C a a= +2 1 h2

Using (43), (45) and (53), we than have that  

 ( )C L
E

E L g= −
⎧
⎨
⎩

⎫
⎬
⎭

+ +
⎡

⎣
⎢

⎤

⎦
⎥

1
2 2

22 2 2r
h

µ
µ

2  

        = − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2 2

2
4

h
µg

E
 

Using (51) in the above equation, this finally gives 

 
( )

E g

a
= −

+

µ 4

2 22 2 1h
      ...(55) 

where is the reduced mass. µ
 If we make identification n = 2a + 1, so that n takes all positive integral values 
(52) agrees with energy eigenvalues the energy eigen values of monopolnium as obtained 
in the previous section. Since the dimension of the irreducible representation (a , a) of 
O(4) is (2a + 1)2 = n2 this also explains the n2 fold degeneracy of the levels. 
 
 
4. CONCLUSION 
 
 Equation (1) is the Hamiltonian operator for harmonic oscillator and equation (3) 
is the Schrodinger equation for this oscillator. Solving  this equation we obtained the 
energy eigenvalue for this system given by equation (15) and equation (16) is the radial 
wave function for this system. Equation (17) describe the raising and lowering operator 
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for this system which leads to Hamiltonian of the system given by equation (19). The 
energy eigenvalue of the system are given by equation (21)  which are obtained group 
theoretically. The degeneracy of the system is (n + 1) (n + 2)/2. Equation (23) is the 
angular momentum operator for this system. Equation (24) and (25) are the operators 
which generate the algebra of SU(3). Equation (26) is the relation satisfied by these 
operator showing that dynamical symmetry group of a three dimensional harmonic 
oscillator is SU(3). 
 Equation (27) is the Schrodinger equation describing the motion of a monopole 
moving in the field of another monopole in central field approximation. This equation 
yields the energy eigen value for monopolonium given by equation (32). Equation (33) is 
the Bohr radius of this system which is very small in comparison to atomic Bohr radius 
and energy of this system is very high because of magnetic charge. Equation (35) gives 
the radial wave function of the system. Equation (40) is the Runge-Lenz vector for the 
system. Casimir operator for the system is given by equation (53). The energy eigen 
value of the system obtained group theoretically are given by equation (54) this also 
explains the n2 fold degeneracy of the levels. 
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