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Transition metal dichalcogenides (TMDCs) have emerged as a new two-dimensional material’s field since the

monolayer and few-layer limits show different properties when compared to each other and to their respective

bulk materials. For example, in some cases when the bulk material is exfoliated down to a monolayer, an

indirect-to-direct band gap in the visible range is observed. The number of layers N (N even or odd) drives

changes in space-group symmetry that are reflected in the optical properties. The understanding of the space-group

symmetry as a function of the number of layers is therefore important for the correct interpretation of the

experimental data. Here we present a thorough group theory study of the symmetry aspects relevant to optical

and spectroscopic analysis, for the most common polytypes of TMDCs, i.e., 2Ha, 2Hc and 1T , as a function of

the number of layers. Real space symmetries, the group of the wave vectors, the relevance of inversion symmetry,

irreducible representations of the vibrational modes, optical activity, and Raman tensors are discussed.

DOI: 10.1103/PhysRevB.90.115438 PACS number(s): 62.25.Jk, 63.22.Np, 68.35.Gy, 78.20.Ek

I. INTRODUCTION

The interest in two-dimensional (2D) layered materials

increased after the successful isolation of monolayer graphene

(the 2D component of graphite) reported in 2004 [1]. The

monolayer of hexagonally-linked carbon atoms made it pos-

sible to study a brand-new set of magnetic, electric, and

optical phenomena related to the Dirac-like nature of graphene

electrons [2]. The lack of a band gap, however, imposes some

difficulties to graphene’s application in electronics, despite its

high carrier mobility.

Other classes of 2D materials are now also being intensively

studied for many different applications motivated mainly by

the need of a band gap. Perovskite-based oxides, van der Waals

solids such as Bi2Se3, Bi2Te3 [3], hexagonal boron nitride (h-

BN) [4], and transition metal dichalcogenides (TMDCs), such

as MoS2 and WSe2 [5–7], offer a wide range of compounds

and combinations with potential use in the emerging field of

2D heterostructures [8] (for example, tunable optoelectronic

properties are obtained by a suitable choice of component

layers [9,10]). The TMDCs are layered materials of the form

MX2, where M stands for groups 4–10 of transition metals

and X stands for the chalcogen atoms S, Se, or Te [11]. The

M and X atoms are strongly linked through covalent bonds to

form 2D layers. Two adjacent sheets of chalcogen atoms are

separated by a sheet of transition metal atoms in an X-M-X

configuration, and the “monolayer” is actually composed of

an atomic trilayer (TL) structure. The interaction among these

trilayers are weak van der Waals interactions. The difference

in the stacking order gives rise to different polytypes, while

the combination of these different atoms leads to a variety of

*Author to whom correspondence should be addressed: jenainas-

soares2@gmail.com

more than 30 different layered materials, with different optical,

mechanical and electrical properties [11–13].
Some semiconducting TMDCs in this so-called monolayer

form show a direct band gap in the visible range, which does
not exist in their bulk counterparts [5–7,14,15]. These band
gaps open the possibility for flexible and transparent sensor ap-
plications [11,12,16], and the construction of heterostructures
offers the possibility of tuning the TMDC behavior [9,10,16].
The breaking of inversion symmetry in the monolayer, with
the strong spin-orbit interaction coming from the metal d

orbitals, gives rise to the spin splitting of the valence band at
the high-symmetry K points of the Brillouin zone (BZ) [17].
Since the K and K ′ points in the BZ are related to each other
by time reversal symmetry, the spin splitting yields distinct
symmetries from these two valleys, and the manipulation of
this coupling opens the possibility of a variety of valleytronic
applications [17–22].

The dependence on the number of layers (N ) and on the

changes of the symmetry group have already been investigated

in the characterization of the various TMDC optical properties,

by means of Raman spectroscopy and second harmonic gen-

eration (SHG) [21,23–29]. Group theory provides a valuable

theoretical tool that can be used to understand the selection

rules for the optical transitions, to find the eigenvectors for the

lattice vibrations, and to identify the lifting of degeneracies

due to external symmetry-breaking perturbations [30,31].

A detailed study of these symmetry aspects for few-layers

TMDCs is valuable to predict interesting characteristics and

to properly interpret experimental results for these compounds,

since few-layers TMDCs will belong to different space groups

according to the number of layers, and their space groups will

be different from those of their bulk crystal counterparts.

Group theory has already been used to describe the structure

of TMDCs in the bulk form for different polytypes [32,33],

in the few-TL 2Hc polytype for zone center phonons (at the

Ŵ BZ point) [23–25] and for the electronic structure at the
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Ŵ and K points [34], and for a more detailed understanding

of some nonlinear optical processes [26]. In this work, group

theory is applied to TMDCs in both the trigonal prismatic (H )

and octahedral (T ) metal atom coordinations, considering the

stacking order for 2Ha and 2Hc for H , and 1T for T , and

the dependence on the number of layers N (even or odd), and

considering the full set of wave vectors in the BZ, i.e., going

beyond the zone center. In Sec. II, the symmetry analysis in real

space is developed for the 2H (Sec. IIA1) and 1T (Sec. IIA2)

polytypes, while the reciprocal space treatment is shown in

Sec. II B. The relevance of inversion symmetry for the different

TMDCs polytypes is discussed in Sec. II C. The irreducible

representations for vibrational modes for few-TL TMDCs

considering the high-symmetry points and lines in the BZ are

presented in Sec. II D, and the Raman and infrared selection

rules are shown in Sec. II E, while Sec. II F gives the Raman

tensors. Finally, Sec. III summarizes the main conclusions

and comments on the cases of lowering of symmetry induced

by strain in MoS2, by engineering heterostructures, and by

breaking the out-of-plane translational symmetry in WSe2.

II. SYMMETRY ANALYSIS

A. Real space symmetry

The family of layered TMDCs is composed of several

polytypes with a different number of TLs, or different metal

atom coordinations that form the primitive unit cell (see Table

I). The main polytypes under experimental and theoretical

consideration nowadays (and analyzed in the present work)

are the trigonal prismatic 2H [two TLs in a trigonal prismatic

coordination (H ) are required to form the bulk primitive

unit cell] and the octahedral 1T [one TL in an octahedral

coordination (T ) is required to form the bulk primitive unit

cell] (see Fig. 1). Each polytype, in turn, has a monolayer

(one TL) as a basic 2D building block unit. The bulk crystal is

made by piling up these monolayer units, namely 1H (trigonal

prismatic or AbA coordination, where upper cases represent

chalcogen atoms and lower cases represent metal atoms) and

1T (octahedral or AbC coordination), as can be observed in

Figs. 1(a) and 1(b), respectively. The blue spheres represent

transition metal atoms, and the orange spheres represent the

chalcogen atoms. For bulk versions of these layered materials,

where the out-of-plane translational symmetry is present,

the lateral views of the unit cells are highlighted with red

rectangles in Figs. 1(c), 1(d), and 1(e).

There are several other polytypes for stacks of more than

two TLs, and at least 11 polytypes were identified in TMDCs

[33]. For example, the unit cell of the 3R-MoS2 (with the

stacking /AbA BcB CaC/)[32,33] comprises nine atoms in

three TLs. The treatment of these polytypes with a high number

of TLs is beyond the scope of this work, but for the 3R case,

Table I summarizes some symmetry considerations and gives

representative TMDC examples.

1. 2H polytype

The 2H bulk polytype can assume two forms with different

stacking symmetries: 2Ha (or /AbA CbC/ stacking) [32,33],

and 2Hc (/CaC AcA/ stacking) [33]. In 2Ha stacking, one

transition metal atom is always on top of another transition
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(e)(d)(c)

(a) (b)

1H (AbA) 1

2Ha (/AbA CbC/) 2Hc (/CaC AcA/) 1T (/AbC/AbC/)

(e)(d)(c)

(a) (b)

1H (AbA) 1

2Ha (/AbA CbC/) 2Hc (/CaC AcA/) 1T (/AbC/AbC/)

FIG. 1. (Color online) Transition metal atom coordination for (a)

trigonal prismatic (H ) and (b) octahedral (T ) TMDCs polytypes.

The blue spheres represent transition metal atoms and orange ones,

chalcogen atoms. In (c), (d), and (e) the top and lateral views (top

and bottom in each figure, respectively) of the primitive unit cells for

bulk TMDCs materials are shown. The black rhombuses show the

top view of the primitive unit cell, and the red rectangles indicate

the lateral view. The primitive unit cell of the (c) 2Ha or the (d)

2Hc polytypes comprise six atoms, two transition metal atoms, and

four chalcogenides (Z = 2) in the trigonal prismatic coordination

illustrated in (a), while the 1T polytype shown in (e) has three atoms,

comprising two chalcogenides, and one transition metal atom (Z = 1)

in the octahedral coordination illustrated in (b).

metal atom of the next layer, as shown in Fig. 1(c). This

polytype is reported to occur in NbSe2, NbS2, TaS2, and TaSe2

crystals [32]. In 2Hc stacking, any transition metal atom is

sitting on top of two chalcogenides atoms of the subsequent

layer, as shown in Fig. 1(d). This polytype occurs in MoS2,

WS2, MoSe2, and WSe2 crystals. Both polytypes belong to the

nonsymmorphic hexagonal space group P 63/mmc [32] (D4
6h

in Schönflies notation, or #194 in the International Tables for

Crystallography Vol. A (ITCA) [35]). The primitive unit cell

for the bulk has six atoms (Z = 2, where Z is the number of

structural MX2 units required to form the primitive unit cell),

and three atoms in each TL, as can be seen in the red rectangles

of Figs. 1(c) and 1(d). The Wyckoff positions for the 2H bulk

polytypes, as well as the number of structural formulas Z are

given in Table I.

The 2Hb polytype is possible and occurs for nonstoichio-

metric compounds with an excess of metal atoms intercalated

in the van der Waals gap [33]. Table I gives symmetry

information and examples for this polytype. Some differences

between the definition of 2Hb and 2Hc are found in the

literature [32,33], and the most recent nomenclature is used

in this work [33,36].

For few-layer systems there is a reduction in symmetry due

to the lack of translational symmetry along the z axis (the z axis

is perpendicular to the basal plane of the TLs). The symmetry

operations are reduced from 24 in the bulk to 12 for both

C2 v

A A

C2

C

v

CC2

B

v

B

d

A

C2

B

d

CC2

A

d

B

C2

C

(a) (b) (c)

(d) (e) (f)

C3

h

i

a1
a2

a1a2

C3

FIG. 2. (Color online) Primitive unit cell and symmetry opera-

tions of the 2Hc polytype. Blue spheres represent transition metal

atoms and orange spheres represent chalcogen atoms. (a) and (d)

show the top view for the 1TL and 2TLs, respectively. �a1 and �a2 are

the primitive unit vectors, indicated in (a), while (b) and (e) represent

the symmetry operations for the 1TL and 2TLs, respectively. The C3

axes are perpendicular to the xy plane in (b) and (e), and they are

represented by black triangles. Three vertical mirror planes σv and

three dihedral mirror planes σd are indicated as red lines in (b) and

(e), respectively, while the black lines are the three C ′
2 rotation axes

in the horizontal mirror σh, represented in (c) and (f) together with

the primitive unit cell. The σh itself is not a symmetry operation for

2TLs, but it is discussed here since it is part of the S6 operation,

which is given as a C6 rotation followed by a σh reflection in this

plane. The red lines in (e) denote the σd mirror planes, and the red dot

in the center of (f) indicates the position of the inversion symmetry

operation.

even and odd numbers of TLs. Therefore, the few-TLs space

groups are different from the bulk space groups and depend on

the parity of the number of layers (even or odd number of TLs).

Figure 2 illustrates the 1TL and 2TL stacking arrangements

for the 2Hc polytype. The hexagonal real space for 1TL and

2TLs are given in Figs. 2(a) and 2(d), respectively.

The 2Hc polytype symmetry operations are illustrated in

Figs. 2(b) and 2(e), which are the top-views of the primitive

unit cells. In Figs. 2(c) and 2(f), the lateral views of the

primitive unit cells are given for 1TL and 2TLs, respectively.

The space groups of few-layer TMDCs can be renamed

according to the “layered subperiodic groups”, from the

International Tables for Crystallography Vol. E (ITCE) [37],

but here we adopt the ITCA nomenclature [35] for comparison

with related literature [38]. The 1TL of the 2H polytype

belongs to the P 6̄m2 (D1
3h or #187) hexagonal symmorphic

space group, as well as to other few-layer compounds with

odd number of layers, whose point symmetry operations are

E (identity), 2C3 [clockwise and anticlockwise rotations of

120◦ about the axis represented as a black triangle in Fig. 2

(b)], 3C ′
2 (two-fold axis in the σh plane), σh (the horizontal

reflection plane that passes through the transition metal atom),

2S3 (C3 clockwise and anticlockwise rotations, followed by a

σh reflection), and 3σv (vertical reflection planes).

115438-3
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The 2TLs of 2H polytype and any other even number of TLs

belong to the D3
3d (P 3̄m1, #164) symmorphic space group,

whose symmetry operations are E, 2C3, 3C ′
2 [rotation axes

placed in between two adjacent TLs, i.e., in the middle of the

van der Waals gap in Fig. 2(f)], inversion i [red dot in the

σh plane of Fig. 2 (f)], 3σd [dihedral vertical mirror planes

represented by red lines in Fig. 2 (e)], and 2S6 (clockwise and

anticlockwise rotations of 60◦ followed by a σh reflection).

For the 3TLs case, when another TL unit is added to the 2TLs

shown in Figs. 2(d), 2(e), and 2(f), the symmetry operations

are the same as those observed for 1TL, since the σh plane is

recovered as a symmetry operation. The addition of subsequent

layers will always show symmetry variations depending on

whether the number of layers is odd or even, and the difference

between these two groups is ultimately given by the presence

of the inversion symmetry in 2TLs (which is absent in 1TL)

and the presence of the σh plane in 1TL (which is absent in

2TLs).

2. 1T polytype

From a symmetry standpoint, the 1T polytype is con-

structed by piling up single 1TL units, where each subsequent

layer is exactly the same as the previous one, with one

transition metal atom (or chalcogen atom) on top of another

transition metal atom (or chalcogen atom), in an octahedral

coordination. In the bulk TMDC, the stacking is /AbC/AbC/

(see Fig. 1). The bulk form belongs to the D3
3d (P 3̄m1, #164)

symmorphic space group. The unit cell comprises three atoms

of one TL [red rectangle in Fig. 1(e)]. The Wyckoff positions

and number of structural formulas (Z) for the 1T polytype

TMDCs are given in Table I. Because all layers are identical,

the symmetry operations do not change by increasing the

number of TLs, no matter if N is even or odd. Figures 3(a)

and 3(d) show the 1TL and 2TLs structures, respectively, of

the 1T polytype. The symmetry operations of 1TL are E, 2C3,

3C ′
2 [the C ′

2 rotation axes are in the reflection plane, between

the two chalcogen atoms, dividing in half the transition metal

atom, as shown in the black lines in Fig. 3 (c)], inversion i

(red dot in the transition metal atom), 3σd [dihedral vertical

mirror planes represented by red lines in Fig. 3(b)], and 2S6

(clockwise and anticlockwise rotations of 60◦ followed by a

σh reflection). In the 2TL case, the same operations are still

valid, but now the inversion and the reflection plane [Fig. 3(f)]

for the S6 operation are located in the van der Waals gap.

B. Group of the wave vector

The reciprocal space high-symmetry points and directions

for the 2H and 1T polytypes are shown in Fig. 4. Here �a1 and

�a2 are the primitive vectors of the real 2D lattice described by

Eq. (1) and are shown in Fig. 2(a). Correspondingly, �b1 and �b2

[described in Eq. (2)] are the reciprocal lattice vectors shown

in Fig. 4.

�a1 = a

2
(
√

3x̂ + ŷ), �a2 = a

2
(−

√
3x̂ + ŷ), (1)

�b1 = 2π

a

(√
3

3
k̂x + k̂y

)
, �b2 = 2π

a

(
−

√
3

3
k̂x + k̂y

)
.

(2)

(a) (b) (c)

(d) (e) (f)

i

d

CC2

A

C3

d

A

C2

B
d

B

C2

C

i

d

CC2

A

C3

d

A

C2

B
d

B

C2

C

a1a2

a1a2

FIG. 3. (Color online) Primitive unit cells and symmetry opera-

tions of the 1T TMDCs polytypes (bulk, 1TL and 2TLs). (a) and (d)

show the 1TL and 2TL top view. In (d), chalcogen atoms are on top of

chalcogen atoms, and transition metal atoms are on top of transition

metal atoms, giving a similar top view to that observed for 1TL. In

(b) and (e), the C3 rotation axes (represented as black triangles) are

perpendicular to the basal plane. The red lines represent σd mirror

planes, while the black lines stand for C ′
2 rotation axes that lie in the

σh plane. The primitive unit cells for 1TL (and bulk) and for 2TLs

are shown in (c) and (f), respectively, and the red dot in their centers

denotes the inversion operations. Notice that σh is not a symmetry

operation for 1TL (or N odd), 2TLs (or N even), or bulk, but the

reflection plane is shown here to indicate the reflection in the two S6

operations.

The differences between the space groups D1
3h and D3

3d

when the number of TLs is odd or even define different

symmetries for the group of the wave vectors (GWV) at

each high-symmetry point or direction of the reciprocal space.

Knowledge of the GWV is important because the invariance

of the Hamiltonian under symmetry operations usually leads

to degeneracies at these high-symmetry points or directions

in the BZ [39–41]. The GWV for the 2H TMDCs is similar

b1b2

FIG. 4. (Color online) The Brillouin Zone (BZ) symmetries: Ŵ,

K , K ′, and M are high-symmetry points; the T , T ′, and � are high-

symmetry lines, and the u denotes the symmetry for a generic point.
�b1 and �b2 denote the in-plane reciprocal lattice vectors.

115438-4



GROUP THEORY ANALYSIS OF PHONONS IN TWO- . . . PHYSICAL REVIEW B 90, 115438 (2014)

to the GWV found for N -layer graphene and bulk graphite

[38], since the space groups for bulk, N even, and N odd

(N � 3) TLs in the TMDC family resemble the corresponding

graphene systems. However, the 1TL case in TMDCs lacks

inversion symmetry and therefore belongs to the same space

group (P 6̄m2) as that for other N -odd layers. Table II shows

the groups that are isomorphic to the GWV for all the BZ

high-symmetry points and axes occurring for bulk and for

both odd or even number of TLs in the 2H polytype.

The 1T polytype has the same GWV regardless the number

of layers in the sample. The bulk is symmorphic, so it has

the same GWV. Table III shows the GWV for different high-

symmetry points and axes within the BZ for this polytype.

C. Relevance of inversion symmetry

The presence or absence of inversion symmetry is an

important aspect of TMDCs since it opens the possibility of

coupled spin and valley physics [17]. The strong spin-orbit

coupling in TMDC materials is due to the d orbitals in their

heavy metal atoms. The absence of inversion symmetry lifts

the degeneracy of the same energy at the same �k value, at the

K point of the BZ, and spin splitting values on the order of

0.4 eV have been observed in WSe2 [21].

The inversion symmetry is also important for optics,

e.g., the second-harmonic generation (SHG) technique, which

has been routinely used to probe not only the presence of

inversion symmetry, but also the crystal orientation [26,27]

and, recently, the effect on SHG of two artificially stacked

TMDCs layers [42]. For centrosymmetric crystals, the χ (2)

nonlinear susceptibility vanishes [43], and no SHG signal is

observed. The 2H TMDCs polytype (and in this case, also

including the 1TL) belong to the noncentrosymmetric space

group D1
3h and then it is possible to observe a SHG signal

[21,26–28,42–44]. The N -even TLs for 2H TMDCs do not

show SHG since their space groups are centrosymmetric.

For the 1T TMDCs polytype, both N -even and N -odd TLs

have the same centrosymmetric space group D3
3d , and the

SHG signal is not expected. In this sense, the SHG mapping

(together with other characterization tools) could be used to

detect different polytypes in the same sample since the 2H

polytype with an odd number of layers shows SHG, while the

layered 1T polytype does not.

D. Irreducible representations for vibrational modes

The irreducible representations for the lattice vibrations

(Ŵvib) are given by the direct product Ŵvib = Ŵeq ⊕ Ŵvec,

where Ŵeq denotes the equivalence representation for the

atomic sites, and Ŵvec is the representation for the x, y and

z real space vectors [40]. The Ŵvec representation can be

written as Ŵvec = Ŵx ⊕ Ŵy ⊕ Ŵz, or Ŵvec = Ŵx,y ⊕ Ŵz when

x and y have the same irreducible representation. The Ŵvib

representations for the 2Ha, 2Hc, and 1T polytypes are

given in Tables IV, V, and VI, respectively, for all the BZ

high-symmetry points and lines (shown in Fig. 4), and for

odd or even numbers of TLs. It is worth noting that for

the 2Hc polytype, the Ŵvib for the K ′ point is the complex

conjugated form of the Ŵvib for the K point, while for the

2Ha polytype the atomic sites are different (due to different

Wyckoff positions) and the Ŵvib of the K and K ′ points are the
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TABLE III. Space group and group of the wave vector (GWV) for the high-symmetry points and directions in the BZ for 1T polytype in

TMDCs, valid for N -layer (even or odd) and bulk.

Space group Ŵ K(K ′) M T (T ′) � u

D3
3d (P 3̄m1, #164) D3

3d (P 3̄m1, #164) D2
3 (P 321, #150) C3

2h (C2/m, #12) C3
2 (C2, #5) Cxz

s (or C3
s , Cm, #8)a C1

1 (P 1, #1)

a“xz” denotes the σ ’s mirror plane.

same. In the 1T polytype, the Ŵvib for the K and K ′ points is

also the same. The conversion from the space group (SG) to the

point group (PG) notation for the irreducible representations is

indicated in each character table of the Supplemental Material

[45]. The irreducible representations for vibrations for each

high-symmetry point and line of the BZ for the bulk polytypes

are also given in Tables SI, SII, and SIII of the Supplemental

Material [45].

E. Raman and infrared activity

For bulk 2H polytypes (1T polytype), the lattice vibration

irreducible representations Ŵvib for the 18 (9) zone center

phonons are reproduced in the first line of Table VII (see

also Tables SI and SII from the Supplemental Material) [45].

The classification of the modes as Raman active, infrared (IR)

active, acoustic, and silent are given in Table VII.

For the 2D polytypes, the Raman and IR active modes

show symmetry variations depending on the number of layers

since the high-symmetry Ŵ points have different GWV. The

GWV at the Ŵ point is D1
3h for N -odd 2H polytypes, D3

3d

for N -even 2H polytypes, and D3
3d for the N -even and

N -odd 1T polytype. The total number of modes for N even

or N odd layers in the 2H and 1T polytypes, including their

classification as Raman active, IR active, acoustic, and silent

modes are given in Tables VIII and IX, respectively.

In the 1T polytype, since the space group is the same in both

N -even and N -odd, the representations for the few-TL films

of this polytype refer to the same irreducible representations

of the group of the wave vector D3
3d at the Ŵ point, which in

turn are the same as those found for its bulk counterpart.

F. Raman tensors

To define whether or not a specific vibrational mode will

be experimentally observed in a given Raman scattering

geometry, we use here the Porto notation [46,47], which

indicates the crystal orientation with respect to the polarization

and propagation directions of the laser. Four letters are used

in the Porto notation to describe the scattering process in

the a(bc)d form: while “a” and “d” are the propagation

directions of the incident and scattered light, respectively,

“b” and “c” represent the polarization directions for the

incident and scattered light, respectively. One common Raman

experimental geometry is the backscattering configuration,

where the incident and scattered light have an opposite sense.

For example, in the z(xy)z configuration the z and z are the

directions of the incident and scattered light, with the opposite

sense, x is the polarization direction of the incident light, and

y is the polarization direction of the scattered light.

The Raman scattering intensity given by the Hamiltonian

perturbation term is proportional to |̂es · ←→α êi |2, where ês is

the unit vector along the polarization direction of the scattered

light, êi is the unit vector along the polarization direction

of the incident light, and ←→α is the Raman tensor. The

quadratic functions (xx, xy, xz, yz, ...,) indicate the irreducible

representations for the Raman-active modes. Following this

procedure, the Raman tensors for all the Raman active modes

of N -layer thin films can be found. For the 2H polytype with

N -odd few layers (D1
3h group of the wave vector for the Ŵ

point), the Raman tensors are [48]

Ŵ+
1 (A′

1) :

⎛
⎝

a 0 0

0 a 0

0 0 b

⎞
⎠,

Ŵ+
3 (E′)(x) :

⎛
⎝

0 d 0

d 0 0

0 0 0

⎞
⎠, Ŵ+

3 (E′)(y) :

⎛
⎝

d 0 0

0 −d 0

0 0 0

⎞
⎠,

Ŵ−
3 (E′′) :

⎛
⎝

0 0 0

0 0 c

0 c 0

⎞
⎠,

⎛
⎝

0 0 −c

0 0 0

−c 0 0

⎞
⎠.

For the N -even 2H polytype, and for the N even or odd

for the 1T polytype, as well as for the 1T bulk crystal (D3
3d

TABLE IV. Normal vibrational mode irreducible representations (Ŵvib) for the N -layer TMDCs 2Ha-polytype (/AbA CbC/), considering

all the high-symmetry points and lines in the BZ.

2Ha-polytype (/AbA CbC/)

N odd N even

Ŵ
(

3N−1

2

)
(Ŵ+

1 ⊕ Ŵ−
3 ) ⊕

(
3N+1

2

)
(Ŵ+

3 ⊕ Ŵ−
2 )

(
3N

2

)
(Ŵ+

1 ⊕ Ŵ+
3 ⊕ Ŵ−

2 ⊕ Ŵ−
3 )

K(K ′)
(

3N−1

2

)
(K+

1 ⊕ K−
2 ⊕ K−∗

2 ) ⊕
(

3N+1

2

)
(K+

2 ⊕ K+∗
2 ⊕ K−

1 )
(

3N

2

)
(K1 ⊕ K2) ⊕ 3NK3

M 3N (M1 ⊕ M4) ⊕
(

3N−1

2

)
M2 ⊕

(
3N+1

2

)
M3 3N (M+

1 ⊕ M−
2 ) ⊕

(
3N

2

)
(M+

2 ⊕ M−
1 )

� 3N (�1 ⊕ �4) ⊕
(

3N−1

2

)
�2 ⊕

(
3N+1

2

)
�3 6N�1 ⊕ 3N�2

T (T ′)
(

9N+1

2

)
T + ⊕

(
9N−1

2

)
T − (

9N

2

)
(T1 ⊕ T2)

u
(

9N+1

2

)
u+ ⊕

(
9N−1

2

)
u− 9Nu
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TABLE V. Normal vibrational mode irreducible representations (Ŵvib) for the N -layer TMDCs 2Hc-polytype (/CaC AcA/), considering

all the high-symmetry points and lines in the BZ.

2Hc-polytype (/CaC AcA/)

N odd N even

Ŵ
(

3N−1

2

)
(Ŵ+

1 ⊕ Ŵ−
3 ) ⊕

(
3N+1

2

)
(Ŵ+

3 ⊕ Ŵ−
2 )

(
3N

2

)
(Ŵ+

1 ⊕ Ŵ+
3 ⊕ Ŵ−

2 ⊕ Ŵ−
3 )

K(K ′∗)
(

3N+1

2

)
(K+

1 ⊕ K+
2 ⊕ K−∗

2 ) ⊕
(

3N−1

2

)
(K−

1 ⊕ K−
2 ⊕ K+∗

2 )
(

3N

2

)
(K1 ⊕ K2) ⊕ 3NK3

M 3N (M1 ⊕ M4) ⊕
(

3N−1

2

)
M2 ⊕

(
3N+1

2

)
M3 3N (M+

1 ⊕ M−
2 ) ⊕

(
3N

2

)(
M+

2 ⊕ M−
1 )

� 3N (�1 ⊕ �4) ⊕
(

3N−1

2

)
�2 ⊕

(
3N+1

2

)
�3 6N�1 ⊕ 3N�2

T (T ′)
(

9N+1

2

)
T + ⊕

(
9N−1

2

)
T − (

9N

2

)
(T1 ⊕ T2)

u
(

9N+1

2

)
u+ ⊕

(
9N−1

2

)
u− 9Nu

TABLE VI. Normal vibrational mode irreducible representations (Ŵvib) for the N -layer TMDCs 1T -polytype (/AbC/AbC/), considering

all the high-symmetry points and lines in the BZ.

1T -polytype (/AbC/AbC/)

N odd N even

Ŵ
(

3N−1

2

)
(Ŵ+

1 ⊕ Ŵ+
3 ) ⊕

(
3N+1

2

)
(Ŵ−

2 ⊕ Ŵ−
3 )

(
3N

2

)
(Ŵ+

1 ⊕ Ŵ+
3 ⊕ Ŵ−

2 ⊕ Ŵ−
3 )

K(K ′)
(

3N−1

2

)
K1 ⊕

(
3N+1

2

)
K2 ⊕ 3NK3

(
3N

2

)
(K1 ⊕ K2) ⊕ 3NK3

M (3N − 1)(M+
1 ⊕ M−

1 ) ⊕
(

3N−1

2

)
M+

2 ⊕ (3N + 1)M−
2 3N (M+

1 ⊕ M−
2 ) ⊕

(
3N

2

)
(M+

2 ⊕ M−
1 )

� 6N�1 ⊕ 3N�2 6N�1 ⊕ 3N�2

T (T ′)
(

9N−1

2

)
T1 ⊕

(
9N+1

2

)
T2

(
9N

2

)
(T1 ⊕ T2)

u 9Nu 9Nu

TABLE VII. Normal vibrational mode irreducible representations (Ŵvib) for bulk TMDCs at the Ŵ point within the 2Ha, 2Hc, and 1T

polytypes. The Raman active, infrared active, acoustic, and silent mode irreducible representations are identified.

2Ha and 2Hc polytypes 1T polytype

Ŵvib Ŵ+
1 ⊕ 2Ŵ+

3 ⊕ Ŵ+
5 ⊕ 2Ŵ+

6 ⊕ 2Ŵ−
2 ⊕ Ŵ−

4 ⊕ 2Ŵ−
5 ⊕ Ŵ−

6 Ŵ+
1 ⊕ Ŵ+

3 ⊕ 2Ŵ−
2 ⊕ 2Ŵ−

3

Raman Ŵ+
1 ⊕ Ŵ+

5 ⊕ 2Ŵ+
6 Ŵ+

1 ⊕ Ŵ+
3

Infrared Ŵ−
2 ⊕ Ŵ−

5 Ŵ−
2 ⊕ Ŵ−

3

Acoustic Ŵ−
2 ⊕ Ŵ−

5 Ŵ−
2 ⊕ Ŵ−

3

Silent 2Ŵ+
3 ⊕ Ŵ−

4 ⊕ 1Ŵ−
6 -

TABLE VIII. Normal vibrational mode irreducible representations (Ŵvib) for the N -layer TMDCs at the Ŵ point within the 2Ha and 2Hc

polytypes. Raman active, infrared active, acoustic, and silent mode irreducible representations are identified.

2Ha and 2Hc polytypes

N odd N even

Ŵvib
(

3N−1

2

)
(Ŵ+

1 ⊕ Ŵ−
3 ) ⊕

(
3N+1

2

)
(Ŵ+

3 ⊕ Ŵ−
2 )

(
3N

2

)
(Ŵ+

1 ⊕ Ŵ+
3 ⊕ Ŵ−

2 ⊕ Ŵ−
3 )

Raman (3N−1)

2
(Ŵ+

1 ⊕ Ŵ−
3 ⊕ Ŵ+

3 ) 3N

2
(Ŵ+

1 ⊕ Ŵ+
3 )

Infrared (3N−1)

2
(Ŵ+

3 ⊕ Ŵ−
2 ) (3N−2)

2
(Ŵ−

2 ⊕ Ŵ−
3 )

Acoustic Ŵ+
3 ⊕ Ŵ−

2 Ŵ−
2 ⊕ Ŵ−

3

Silent – –
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TABLE IX. Normal vibrational mode irreducible representations (Ŵvib) for the N -layer TMDCs at the Ŵ point within the 1T -polytype.

Raman active, infrared active, acoustic, and silent mode irreducible representations are identified.

1T polytype

N odd N even

Ŵvib
(

3N−1

2

)
(Ŵ+

1 ⊕ Ŵ+
3 ) ⊕

(
3N+1

2

)
(Ŵ−

2 ⊕ Ŵ−
3 )

(
3N

2

)
(Ŵ+

1 ⊕ Ŵ+
3 ⊕ Ŵ−

2 ⊕ Ŵ−
3 )

Raman (3N−1)

2
(Ŵ+

1 ⊕ Ŵ+
3 ) 3N

2
(Ŵ+

1 ⊕ Ŵ+
3 )

Infrared (3N−1)

2
(Ŵ−

2 ⊕ Ŵ−
3 ) (3N−2)

2
(Ŵ−

2 ⊕ Ŵ−
3 )

Acoustic Ŵ−
2 ⊕ Ŵ−

3 Ŵ−
2 ⊕ Ŵ−

3

Silent - -

group of the wave vector for the Ŵ point), the Raman tensors

are [48]

Ŵ+
1

(
A1g

)
:

(
a 0 0
0 a 0
0 0 b

)
,

Ŵ+
3 (Eg)(1) :

(
c 0 0
0 −c d
0 d 0

)
, Ŵ+

3 (Eg)(2) :

(
0 −c −d
−c 0 0
−d 0 0

)
.

For the nonsymmorphic space group for the bulk 2H

polytype, the Raman tensors are [48]

Ŵ+
1 (A1g) :

(
a 0 0
0 a 0
0 0 b

)
,

Ŵ+
5

(
E1g

)
:

(
0 0 0
0 0 c
0 c 0

)
,

(
0 0 −c
0 0 0
−c 0 0

)
,

Ŵ+
6

(
E2g

)
:

(
0 d 0
d 0 0
0 0 0

)
,

(
d 0 0
0 −d 0
0 0 0

)
.

III. SUMMARY AND DISCUSSIONS

In this work, symmetry-related aspects of bulk and N -layer

2Ha, 2Hc and 1T TMDCs polytypes were discussed from

a group theory perspective. The analysis of the presence of

inversion symmetry gives different behaviors (in the case of

odd number of TLs) for the same number of layers in a given

material, with different polytypes. Therefore, it is possible to

design experiments to probe, for example, the presence of

different polytypes within the same sample, with the same

number of layers. The breaking of inversion symmetry is

crucial in materials suitable for specific applications, like

the development of valleytronic devices, and group theory

predictions give directions to researches on how to design

their devices to achieve their desired symmetry-related goals.

Some perturbations can lower the symmetry of these thin

films and this approach has been used to tune some charac-

teristics of these materials. In a strained MoS2 monolayer,

where the doubly degenerate Raman active mode E′ splits

into E′− and E′+ peaks (depending on the magnitude and

symmetry of the strain), an optical band gap was found and

its magnitude is approximately linear with strain for both

monolayer and bilayer MoS2 [30,31,49]. By using different

TMDCs, it is possible to engineer the optical band gap of

interest to the researcher. Another possibility is the piling

of different TMDCs to engineer new heterostructures, where

the inversion symmetry is broken with more options made

available by using multiple materials. Such heterostructures

are expected, for example, to give rise to tunable band gaps

from 0.79 to 1.16 eV [9].

The symmetry properties of the vibrational modes were

found for the high-symmetry points and lines in the BZ, ex-

tending previous knowledge beyond the zone center phonons

in TMDCs. One important aspect of this symmetry analysis

is that, from symmetry variations, it is possible to predict

the difference in phonon modes in these structures. N new

Raman-active modes have been observed in few layers TMDCs

like in WSe2 [24]. Density functional theory (DFT) combined

with polarization-dependent Raman measurements and group

theory were used to understand the first-order Raman spectra.

For example, the appearance of the inactive mode B1
2g in

bulk WSe2 and only for specific laser lines is still not well

understood and is usually attributed to resonance effects [24].

However, for N even and N odd few layers, A1g (for N even

TLs) and A′
1 (for N odd TLs) are both observed at 310 cm−1.

Furthermore, the E1g mode at around 175 cm−1 in bulk WSe2

(2Hc polytype) is not measurable under the backscattering

configuration along the z direction of light propagation, as

well as the E′′ mode for 1TL of the same polytype (see the

Raman tensors in Sec. II F). In films with N � 2, the E′′ mode

develops into Eg symmetry, for N -even TLs, and into E′ modes

for N -odd layers, which are both detectable under z(xx)z and

z(xy)z polarizations (these different behaviors are not related

to substrate effects, since these modes are also detected in

suspended samples) [24]. The mode at 260 cm−1 in bulk WSe2

was previously attributed to the Raman-active out-of-plane

A1g mode, but polarization measurements have shown that

even for z(xy)z configuration this mode is observed, in

contrast with the group theoretical prediction and the previous

symmetry assignment. This mode was consequently attributed

to second-order Raman scattering [24]. Similar results were

observed for MoTe2 [25] and are expected for other TMDCs.

The extended group theory analysis described here should be

used to guide researchers in making correct mode assignments

using the tables and discussion given in the present work.
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(Kluwer, Dordrecht, The Netherlands, 2002).

[38] L. M. Malard, M. H. D. Guimarães, D. L. Mafra, M.
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