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Group velocity and energy flux in the thermosphere: Limits
on the validity of group velocity in a viscous atmosphere
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Received 31 August 2010; revised 22 February 2011; accepted 8 March 2011; published 16 June 2011.

[1] The response to wave forcing of finite duration comprises a transient forerunner and
the steady state signal (or simply the signal). It is the latter that carries information on
the spectral content of the forcing, and the signal velocity is the velocity at which wave
energy flows. To the extent that group velocity is a good measure of the energy flow
velocity, the ray‐tracing formalism is a valid description of signal propagation. We have
examined vertical group velocities as a measure of vertical energy flow velocity for gravity
and acoustic waves propagating into the dissipative lower thermosphere. We find that
the effects of dissipation on gravity waves can cause group velocity to become a
meaningless measure of the energy flow velocity. When certain terms originating in the
diffusion of heat and momentum are neglected, the validity of group velocity can be
extended to F region altitudes. For acoustic waves, group velocity can be a good measure
of energy flow velocity throughout the lower thermosphere because acoustic waves are
far less subject to dissipation.

Citation: Walterscheid, R. L., and M. P. Hickey (2011), Group velocity and energy flux in the thermosphere: Limits on the
validity of group velocity in a viscous atmosphere, J. Geophys. Res., 116, D12101, doi:10.1029/2010JD014987.

1. Introduction

[2] Ray tracing in the thermosphere is done using the
eikonal equations in which the movement of wave packets
is predicted on the basis of group velocity [Bertin et al.,
1978; Waldock and Jones, 1984; Vadas and Fritts, 2009].
The group velocity is formally the velocity at which the
wave number vector is found to be constant (conserved) in a
homogeneous system [Lighthill, 1978]. It is often identified
as the velocity with which energy flows, but this has to be
shown for the waves in question [Walterscheid and Hecht,
2003]. For many systems of interest, the group velocity is
the same as the energy flow velocity [Lighthill, 1978;
Walterscheid and Hecht, 2003]. For highly dispersive waves
or strongly dissipating waves, however, the association of
group speed can be problematic and, in fact, nonexistent
[Walterscheid and Hecht, 2003; Jackson, 1962; Thau, 1974;
Lighthill, 1965]. When this occurs, ray‐tracing methods
using group velocity have no meaning.

2. Theory

[3] When there is a discrete change in the forcing from
one state to another, the response consists of a transient
forerunner followed by the steady state signal (or simply the
signal) that carries information on the frequency content of

the changed forcing. We consider three measures of wave
energy propagation for the latter response: group velocity,
signal velocity, and energy flow velocity.

2.1. The Dispersion Relation

[4] Let

L y ′½ � ¼ 0 ð1Þ

be a homogeneous linear system of differential equations,
where L is a differential matrix operator, y is the vector of
dependent variables, and primes denote wave quantities.
If 8′ is a waveform solution satisfying (1), then (1) may be
transformed into a linear system of algebraic equations

M � 8′ ¼ 0; ð2Þ

where M is the result of L operating on 8′. We assume
solutions locally of the form

8′ ¼ F exp i !t � kx� ly�
Z

�dz

� �
; ð3Þ

where w is wave frequency, t is time, k, l, m are the x, y, z
components of the wave number vector k, and x, y, z are the
zonal, meridional, and vertical components of the position
vector x. The quantity m is the sum of the vertical wave
number m (which may be complex) plus an exponential
growth term to be discussed below. The wave number
vector exclusive of this growth term is hereafter denoted k.
We assume that the basic state has no dependency on time
or the horizontal spatial coordinates. The form (3) is arrived
at first by means of Fourier transforms over x and y and a
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further transform over t. The form (3) is then obtained by
assuming a waveform solution in terms of the yet undeter-
mined fourth wave parameter m.
[5] The requirement that (2) have nontrivial solutions

requires that ∣M ∣ = 0 and generates the characteristic equation

f !;kð Þ ¼ 0: ð4Þ

When {k, l, w} are determined by the forcing, m(w, k, l) is
determined from (4).
[6] The solution for m has the form m = m + i/2H, where

H = RT/g is scale height and R is the gas constant, T is the
temperature, g is gravity, and where m may be complex. The
second term on the right gives the well‐known growth
proportional to the inverse square root of background air
density [Hines, 1960].
[7] The terms originating in scale‐dependent diffusion in

the momentum and heat equations may be conveniently
grouped with the local time derivatives. Using the viscous
force as an example and ignoring background winds and
horizontal variations, this grouping gives

@

@t
� 1

�

@

@z
�m

@

@z

� �
u′; ð5Þ

where mm is dynamic viscosity, u = _x, r is density, overbars
refer to basic‐state quantities, and primes refer to deviations
there from (perturbations) [Landau and Lifshitz, 1987]. To a
good approximation, mm may be considered constant, and
the grouping of the local time tendency and the viscous
force gives

@

@t
� �m

@2

@z2

� �
u′′ez=2H

� �
;

where nm = mm/� is kinematic viscosity. The exponential
factor is applied to remove the exponential growth of u′ with
altitude, whence u′ = u″ez/2H. Assuming solutions of the
form (3) gives

@

@t
� �m �m2 � i

m

H
þ 1

4H2

� �
¼ i !þ �mm

H

� �
� i�m m2 � 1

4H2

� �� �
;

ð6Þ

where the operators are applied to doubly primed quantities.
For convenience, we assume that the Prandtl number (Pr)
is unity. Then if the occurrences of w in the inviscid heat and
momentum equations are replaced with the quantity in the
square brackets on the right, this generates the dispersion
relation for viscid waves. If the waves are assumed to be
anelastic (∂r′/∂t = 0) and nm locally constant [Vadas and
Fritts, 2005], the same replacement can be made in the
dispersion relation for all occurrences of w.
[8] To obtain a dispersion relation, kinematic viscosity is

assumed locally constant [Francis, 1973; Pitteway and Hines,
1963; Hickey and Cole, 1987; Vadas and Fritts, 2005]. It can
be shown formally that this is equivalent to assuming that
mH � 1. The density weighting of the dependent variables
generates the second and third terms in the parentheses on
the left side of (6). However, nm goes as �−1 while the den-
sity weighting goes only as �−1/2. Thus, if one ignores the
dependence of nm on density, then, for consistency, one

should also ignore the terms originating in the density
weighting. This means one should neglect im/H and 1/4H2 in
relation to m2.
[9] For later reference, we denote two subcases for the

implementation of (6): full implementation (all terms in
(6) retained) and semi‐Boussinesq implementation (only the
−m2 term in (6) is retained).
[10] The Boussinesq designation refers to the fact that

locally constant nm implies m� 1/H, and this is satisfied for
Boussinesq waves. The designation “semi” refers to the fact
that only (6) is evaluated this way; in all other respects, the
wave is non‐Boussinesq. This somewhat heuristic approach
is justified a posteriori.
[11] For a dissipative system, the vertical wave number

m(w, k, l) is complex with m = mr + imi. The real part gives
the dispersion relation, and the imaginary part gives expo-
nential decay with altitude due to dissipation [Bowman et al.,
1980; Francis, 1973; Hickey and Cole, 1987; Klostermeyer,
1972; Pitteway and Hines, 1963; Volland, 1969; Lindzen,
1981]. For damping due to scale‐dependent dissipation,
wave modes in addition to acoustic‐gravity waves occur
(visco‐thermo waves) [Bowman et al., 1980; Hickey and
Cole, 1987; Klostermeyer, 1972]. For a given mode (e.g.,
gravity waves transferring energy upward), the real part
defines a relation,

mr ¼ M z; !; k; lð Þ; ð7Þ

where the dependency on zmeans we have allowed F to be a
slowly varying function of altitude z [Lighthill, 1978].

2.2. Measures of Energy Propagation

[12] In this section, we briefly describe three measures of
the velocity of energy flow.
[13] 1. Group velocity. The vertical group velocity based

on (7) is

wg ¼ @M=@!ð Þ�1
k;l : ð8Þ

[14] 2. Energy flow velocity. The energy flow velocity is
defined as

U ¼ F=E; ð9Þ

where U = (U, V, W), F = (Fx, Fy, Fz) is the energy flux, and
E is the energy density [Walterscheid and Hecht, 2003;
Lighthill, 1978; Mainardi et al., 1992]. The quantities U, V,
W are the x, y, z components of U.
[15] 3. Signal velocity. The signal velocity is simply the

velocity at which a wave carries information. It is equal to
the “front velocity”, which is the speed at which the first rise
(or any rise or fall) of a pulse travels forward and is nec-
essarily equal to the speed at which energy flows (us = U)
[Nimtz, 2004]. In this section, we develop relations for both
scale‐dependent and scale‐independent dissipation.

2.3. Analysis of Model Systems

[16] For simplicity, we examine relations for a hydrostatic
nonrotating windless Boussinesq system [Dunkerton, 1981].

wzz����′ þ N 2wxx′ ¼ 0; ð10Þ
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where subscripts here denote partial differentiation, N is the
Brunt‐Väisälä frequency, and

@

@��
¼ @

@t
þ �; ð11Þ

@

@��
¼ @

@t
þ �; ð12Þ

and where a and b are dissipation rates defined later.
2.3.1. Scale‐Dependent Dissipation
[17] In this section, we examine the wave modes that

occur with scale‐dependent dissipation and the transforma-
tion that occurs when dissipation is dominant. Scale‐
dependent dissipation may be implemented by replacing a
and b according to

� ¼ � ! ��
@2

@z2
! �m2; ð13Þ

where n is molecular viscosity or thermal diffusivity, assumed
equal (Pr = 1). Consistent with the Boussinesq approxima-
tion, we assume that n may be considered locally constant
[Hickey and Cole, 1987].
[18] Despite the idealized nature of the system defined by

(10) and (13), it is still rather formidable, and a further
simplification is useful. When only viscosity is operating,

!� i�ð Þ !� i�ð Þ ! ! !þ i�
@2

@z2

� �
! ! !� i�m2

� 	
: ð14Þ

This reduces the order of the dispersion relation and gives

i
�

!
m4 � m2 þ m2

0 ¼ 0: ð15Þ

This is quadratic in m2 and admits two pairs of solutions:
one corresponds to gravity waves modified by viscosity and
the other to viscous waves modified by buoyancy [Hickey
and Cole, 1987; Bowman et al., 1980; Klostermeyer,
1972]. Equation (15) is easily solved giving

m2 ¼ m2
0

1� 1� 4i�0=!ð Þ12
2i�0=!

" #
; ð16Þ

where

�0 � �m2
0; ð17Þ

and where m0 is the lossless value of m, namely,

m2
0 ¼

N 2

!2
k2: ð18Þ

For a0/w � 1, (16) gives to first order in a0/w

m2 ¼ m2
0 1þ i

�0

!

h i
ð19Þ

for the gravity wave solution. For large a0/w, the dispersion
relation is radically changed. In the largea0/w limit, (16) gives

m2 ¼ �m2
0 i

!

�0

� �1
2

" #
; ð20Þ

where the plus sign refers to the solution of the dispersion
relation that is continuous with (19) (gravity waves) and the
minus sign refers to viscous waves. Thus, the gravity wave
solution differs from the viscosity wave solution only by a
constant factor.
[19] The nature of the gravity wave solution is radically

changed depending on whether a0/w is small or large. When
thermal conduction is included, the order of the equations
is raised to third order in m2. The additional solutions cor-
respond to a pair of thermal conduction waves [Bowman
et al., 1980; Hickey and Cole, 1987; Klostermeyer, 1972].
The addition of thermal conduction with Prandtl number
1 changes the exponent in (20) to 1/3. It does not change the
basic result that all modes exhibit similar behavior when a0/
w � 1. The mode of energy transfer is radically different
when a0/w � 1 being primarily by diffusive fluxes rather
than by pressure working.
[20] It seems unlikely that gravity wave packets could be

maintained in the large a0/w limit because of extreme wave
dispersion, and although a dispersion relation is defined for
these waves, it is unlikely that the group velocity calculated
from relations like (20) has any physical significance.
2.3.2. Analysis of Group and Energy Flow Velocities
for Scale‐Independent Dissipation
[21] The simplest implementation of scale‐independent

dissipation is Rayleigh friction and Newtonian cooling with
constant coefficients a and b, respectively. We use this
model to illustrate the difference between the various mea-
sures of energy flux velocity. Equation (10) gives the
complex dispersion relation

m2 ¼ !2

!� i�ð Þ !� i�ð Þm
2
0: ð21Þ

With a = b

m2 ¼ !2

!� i�ð Þ2 m
2
0 ð22Þ

and gives

m ¼ �m0
!

�2 þ !2
!þ i�ð Þ: ð23Þ

The real part of m is

mr ¼ �m0
!2

!2 þ �2
: ð24Þ

The imaginary part is

mi ¼ � mr�=!: ð25Þ

In the limit of large dissipation, both mr and mi tend to zero,
albeit mi more slowly. The vertical wavelength becomes
very long, and the attenuation rate diminishes.
2.3.2.1. Group Velocity
[22] The group velocity is obtained from the real part of

the complex dispersion relation (23) giving

wg ¼ � !

mr

!2 þ �2

!2 � �2
; ð26Þ

which is singular when w = a.
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2.3.2.2. Signal Velocity
[23] We derive the signal velocity ws for the case of scale‐

independent diffusion for a = b. The solution is found using
the saddle‐point method applied to the Laplace transform
inversion. The details are given in Appendix A. The vertical
signal velocity is

ws ¼ � !

mr
ð27Þ

where mr is given by the real part of (16).
[24] Comparing (27) to (26), we see that the two expres-

sions differ markedly as a/w becomes order unity.
2.3.2.3. Energy Flow Velocity
[25] The energy flow velocity W is found following

Lighthill [1978] andWalterscheid and Hecht [2003], whence

W ¼ � !

mr
; ð28Þ

where again mr is the real part of (16). The derivation of (28)
is given in Appendix B. We have confirmed the equality of
the signal and energy flow velocity. Equations (26), (27), and
(28) imply that the group velocity becomes a grossly inac-
curate measure of energy flow when dissipation is large.

2.4. The Transient Forerunner

[26] As mentioned earlier, a discrete change in the forcing
generates a transient forerunner. The transient forerunner
for a Boussinesq system propagates as a dispersed group
covering an ever increasing interval with ever decreasing
amplitude, diminishing as t−3/2 [Thau, 1974; Lighthill,
1965]. With (10) as a model, the saddle‐point method gives
y ∼ e−at ei(wrt−k·x) for the exponential part of the solution for
simple scale‐independent dissipation, where wr = Nk/m and
m is real [Thau, 1974].
[27] Transients differ from the signal in that the dispersive

properties of the wave rather than the frequency content of
the forcing determine wave frequency. Instead of analyzing
with respect to the set {k, l, w} and solving the characteristic
equation for m(w, k, l) with frequency given, one analyzes
an initial disturbance with respect to{k} and solves the
characteristic equation for frequency with k given, whence
w = w(k).
[28] Whereas it is natural to allow m(w, k, l) to be complex

when {k, l, w} are real Fourier coordinates, it is natural to
allow w to be complex when k is real. With complex w, the
model system (10) with a = b gives wi = a0 and wr = Nk/m.
This gives the exponential form of damped transients in the
preceding paragraph. The value of w for every k defining
the initial disturbance y(x, 0) =

R
yk eik·x dk may be

similarly expressed.
[29] A rigorous theory for wave packet propagation for

damped waves is formidable. The propagation of an initial
disturbance where the damping rate is given as the imagi-
nary part of complex frequency has been studied by a
number of authors [Lighthill, 1965; Muschietti and Dum,
1993; Mainardi et al., 1992]. The validity of group veloc-
ity is not affected by a small amount of dissipation. Lighthill
[1965] noted, however, that when the dissipation rate is

comparable to the wave frequency, the theory of group
velocity is greatly affected [Thau, 1974; Stratton, 1941].

2.5. The Vadas‐Fritts Formalism

[30] Vadas and Fritts [2005] (hereafter denoted VF05)
developed an approach to wave propagation and decay
wherein w rather than m is complex; damping is in time
rather than in height. Solutions damping in time are found
by assuming solutions of the form y = Ae−wit ei(wrt−k·x),
where wr is the real part of complex frequency and wi is the
imaginary part and contains all of the terms originating in
scale‐dependent dissipation that contribute to damping
(these are the real terms on the right of (6)).
[31] The resemblance of the exponential part of the

solution for transients (the solution exclusive of dispersive
attenuation) to the VF05 waveform suggests a strong con-
nection to transients. The discussion in section 2.4 suggests
that the propagation of an initial disturbance may be ana-
lyzable in terms of the VF05 waveforms.

3. Group Velocity and Energy Flow Calculations

[32] In this section, we describe calculations of the vertical
group velocity using dispersion relations and direct calcu-
lations of the energy flow velocity using our full‐wave
model (FW).

3.1. Group Velocity

[33] We now examine group velocity with more general
models. Group velocity calculations were performed using
the dispersion relations of Hines [1960] modified to include
the effects of nonisothermality in the evaluation of the
Brunt‐Väisälä frequency [Einaudi and Hines, 1971, here-
after denoted EH71] and dispersion relations based on the
full‐wave model described below. The EH71 relation is
nondissipative and is used for reference.
3.1.1. The Full‐Wave‐Based Dispersion Relation
[34] The full‐wave model described in more detail below

is a linear, steady state model that describes the vertical
propagation of acoustic‐gravity waves in an atmosphere
with molecular viscosity, thermal conduction, ion drag,
Coriolis force, and realistic basic‐state wind and temperature
profiles. The full‐wave model equations can be put in the
form (2). In this work, we have ignored the ion‐drag and
Coriolis forces, whence the characteristic equation generated
by ∣M ∣ = 0 is a third‐order equation in m2. There are three
pairs of solutions: a pair of upgoing and downgoing
acoustic‐gravity waves, a pair of viscosity waves, and a pair
of thermal conduction waves [Hickey and Cole, 1987;
Bowman et al., 1980; Klostermeyer, 1972]. The gravity
modes are modified by dissipation, and the visco‐thermo
modes are modified by buoyancy effects. These modes are
distinct when dissipation is weak but become similar when
dissipation is very strong.
[35] The full‐wave‐based dispersion equation is solved

numerically for m as follows. An initial guess is made, and
then the characteristic equation is evaluated through suc-
cessive iterations using Newton’s method until convergence
is achieved. The process is started at low altitudes where the
effects of dissipation are negligible and where the acoustic‐
gravity wave roots are given by the adiabatic dispersion
equation of EH71. The solution at successively greater
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heights is found by initialization with the value of m
determined at the previous height.
3.1.2. Group Velocity Calculations
[36] When using the full‐wave‐based dispersion relation,

the group velocity is evaluated by numerical differentiation
by calculating the change in mr with a small change in w.
This approach was validated using the Hickey and Cole
[1987] model. This model generates a characteristic equa-
tion of the same order as the full‐wave‐based model but
otherwise is a simpler model where group velocity can be
calculated semianalytically as well as numerically. The
quantity mr is found by taking the real part of the root
corresponding to upward propagating gravity waves.

3.2. Energy Flow Velocity

[37] The required quantities are the wave energy fluxes
and the wave energy density [Landau and Lifshitz, 1987].
These quantities are calculated from the output from the
full‐wave model.
3.2.1. Full‐Wave Model
[38] The full‐wave model is a linear, steady state model

that describes the vertical propagation of acoustic‐gravity
waves in an atmosphere with molecular viscosity and ther-
mal conduction, ion drag, Coriolis force, and the eddy dif-
fusion of heat and momentum in the mesosphere. Here we
ignore ion drag, the Coriolis force, and eddy diffusion.
The model solves the Navier‐Stokes equations on a high‐
resolution grid subject to boundary conditions and allows
quite generally for propagation in a height‐varying atmo-
sphere (nonisothermal mean state temperature and height‐
varying mean winds and diffusion). For a prescribed mean
state, the wave frequency and horizontal wave number are
input and the amplitudes and phases of the perturbations
(velocity, temperature, and pressure) are output as a function
of height. Other output from the model includes (but is not
limited to) energy, momentum and heat fluxes, and energy
density. The model has been described by Hickey et al.
[1997], Walterscheid and Hickey [2001], and Schubert
et al. [2003]. The basic state is defined by the MSIS‐
90 model [Hedin, 1991] evaluated at the equator for a lon-
gitude of 105°W and for a UT of 0900 and day number 318.
The solar and geomagnetic conditions were assumed to be
low, with the daily F10.7 = 99, the 81 day mean F10.7 = 120,
ap = 38, and year = 1993. For these inputs, the mean exo-
spheric temperature is 877 K. For simplicity, we assume
zero background winds. The profiles of background tem-
perature and viscosity used in the model calculations are
shown in Figure 1.
[39] The source is defined by a Gaussian heating pro-

file over altitude, with a full‐width at half‐maximum of
0.125 km. It is centered at an altitude of 10 km. The shape of
the amplitude profile and the flux velocities are insensitive
to the details of the source. We adjust the source amplitude
to give reasonable peak amplitudes.
[40] A Rayleigh‐Newtonian sponge layer in addition to

natural absorption by viscosity and heat conduction prevents
spurious reflection from the upper boundary [Hickey et al.,
1997; Walterscheid and Hickey, 2001; Schubert et al.,
2003]. To increase the relevance to upward propagating
wave packets launched by the source, we have used a lower
sponge from z = −400 km to z = 0 to prevent reflection from
the lower boundary [Hickey et al., 2000b].

3.2.2. Wave Energy Flux
[41] The total vertical energy flux for a windless back-

ground state is

F ¼ p′u′þ v′ � �′þ 	mcpTr T ′=T
� 	2 ð29Þ

and includes the flux due to pressure working (first term on
the right), the diffusive flux of kinetic energy (second term),
and the diffusive flux of available potential plus elastic
energy (third term) [Landau and Lifshitz, 1987; Hickey and
Cole, 1987; Richmond, 1983; Walterscheid and Hecht,
2003]. Overbars refer to mean values over a wave cycle,
and primes refer to deviations there from; u = (u, v, w)
is the velocity vector, � is the stress tensor, r is air density,
cp is the specific heat at constant pressure, and 	m is ther-
mal diffusivity.
[42] As the medium becomes increasingly viscous,

increasingly more of the energy is carried by the conductive
flux of wave energy. At some point, there is a crossover
where the conductive flux exceeds the wave energy flux.
When this happens, the primary wave is better regarded as a
thermo‐visco gravity wave. The dispersion relation based
on the full‐wave model applies to both the high and low
dissipation limits.
3.2.3. Wave Energy Density
[43] The wave energy is

E ¼ 1

2
� u2 þ g2

N2


′




� �2

þ 1

c2s

p′

�

� �2
" #

; ð30Þ

where 
 = T(p0/p)
	 is potential temperature, p is pressure,

cs
2 = gRT is the sound speed, N2 = g ∂ log 
/∂z is the Brunt‐
Väisälä frequency, r is density, 	 = R/cp, and g is gravity‐
and where g = cp/cn; cp and cn are the specific heats at,
respectively, constant pressure and volume; and R is the gas
constant for air. The subscript zero refers to a reference
value. The fist term on the right is the kinetic energy, the
second term is the available potential energy, and the third
term is the elastic potential energy [Walterscheid and
Schubert, 1990].
3.2.4. Calculation of Wave Energy Flux
[44] With Fz and E calculated from the full‐wave results,

the vertical energy flux velocity is calculated from

W ¼ Fz

E
: ð31Þ

4. Results

[45] We show calculations for a gravity wave that is
sufficiently high frequency to propagate well into the lower
thermosphere to E region altitudes without severe attenua-
tion and slow enough so that it does not suffer undue
reflection (i.e., dispersion relations may be applied). This
wave has a horizontal phase speed of 50 m/s, a horizontal
wavelength of 60 km, and a period of 20 min. We also
perform calculations for an acoustic wave to examine waves
where group velocity concepts are likely to remain valid.
For consistency with the theoretical treatment, we assume
Pr = 1 for calculations based on the full‐wave model and the
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full‐wave‐based dispersion relation. Results are similar
when nominal values of Pr are used.

4.1. Contributions to the Wave Energy Flux

[46] Figure 2 shows the vertical wave energy flow
velocity calculated by means of (31) versus altitude for
pressure working alone (pressure working term divided by
E), for diffusive fluxes alone (diffusive fluxes divided by E ),
and for the total flux. The diffusive flux contribution grows
with altitude. To an altitude of ∼130 km, the diffusive flux
is negligible compared to the pressure working flux. Near
220 km, the diffusive flux crosses over and is equal to the
pressure working flux. Other calculations (not shown)
indicate that for slower waves, the diffusive flux can dom-
inate at altitudes well below 200 km, while for faster waves
the diffusive fluxes can be a minor contributor at altitudes
above those shown.

4.2. Vertical Wave Number

[47] In this section, we compare the vertical wave number
based on the full‐wave model to the vertical wave number
derived from full‐wave‐based dispersion relations.
[48] The square of the real part of the vertical wave

number calculated by means of the full‐wave model (FW),
two implementations of the full‐wave‐based dispersion
relation, and EH71 are shown in Figure 3. Results for the
full‐wave‐based dispersion relation are shown for the full‐
implementation of (6) (FWD) and the semi‐Boussinesq
implementation (FWD/SB). The FW vertical wave number

is obtained by calculating the vertical phase gradient. Above
∼130 km, the FW and FWD results begin to diverge from
EH71 and show very good agreement with each other,
and both lie to the left of EH71. Thus, dissipation increases
the vertical scale of the waves. The FWD/SB and EH71
results remain nearly identical until about 170 km where
the FWD/SB curve begins to diverge slightly toward longer
vertical wavelengths. The disagreement near 115 km between
the full‐wave and the full‐wave‐based dispersion relations
is due to reflection near the mr

2 maximum affecting the full‐
wave results. We remark that close agreement between mr

2

derived from the FW model and mr
2 derived from a disper-

sion relation does not guarantee close agreement between the
energy flow velocity W derived from the full‐wave model
and the group velocity wg derived from the dispersion rela-
tion. The accuracy of the group velocity depends on whether
or not the dispersion relation is excessively dispersive.
[49] Also shown is the ratio n(m0

2 + k2)/w relating the
rate of wave dissipation to the wave frequency (hereafter
denoted h0). Note that the FWD and FW results begin to
depart from the adiabatic EH71 results when h0 ∼ 10−1 (near
135 km), while the FWD/SB results begin to depart from the
EH71 results when h0 ∼ 1 (near 170 km), more in keeping
with theory.

4.3. Group Velocity Versus Energy Flow Velocity

[50] In this section, we compare the energy flow velocity
to group velocity for gravity and acoustic waves.

Figure 2. Vertical wave energy flow velocity due to pres-
sure working alone (dash‐triple‐dotted curve), diffusive
fluxes alone (dashed curve), and total (solid curve) versus
altitude. Calculations are for wave with a horizontal phase
speed of 50 m/s, horizontal wavelength of 60 km, and period
of 20 min.

Figure 1. The altitude profile of viscosity and background
temperature used for the calculations performed for this
study. The source of the profiles is described in the text.
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4.3.1. Gravity Wave Calculations
[51] Figure 4 shows the group velocity calculated from the

EH71, FWD, and FWD/SB dispersion relations and the
energy flow velocity W calculated from the FW model
output. Also shown is the dissipation ratio h0. All dissipative
results begin to diverge from the adiabatic EH71 results near
130 km. At the same height, the FWD values begin to
rapidly diverge from the FW values. The divergence becomes
extreme a scale height or two above where the divergence
begins. The divergence between the FW and FWD results
commence where h0 ∼ 10−1. In stark contrast, the group
velocity based on FWD/SB is virtually the same as the
energy flow velocity to altitudes near 190 km, where h0 ∼ 1.
A scale height or two above 190 km, the divergence
between the energy flow velocity and the FWD/SB imple-
mentation also becomes extreme.
[52] The curves for all dissipative models are to the right

of the dissipationless EH71 curve. This is consistent with
the corresponding vertical wave numbers and is a reflection
of the fact that longer wavelengths tend to be associated
with faster group speeds. This is consistent with the result
that the semi‐Boussinesq implementation FWD/SB gives
more realistic values of wg than the full implementation
FWD, since the latter predicts longer vertical wavelengths
than the former. Thus, while the full implementation is more

accurate with respect to wavelength, it is less accurate with
respect to dispersion.
[53] The validity of a dispersion relation in an inhomo-

geneous medium depends on the WKB criterion being sat-
isfied. This criterion places a constraint on the variation of m
compared to m itself. We have evaluated the WKB criterion
mr
−2 dm/dz � 1 and find the WKB criterion to be well sat-

isfied [Walterscheid et al., 2000].
4.3.2. Acoustic Wave Calculations
[54] For acoustic waves, the ratio h0 is smaller than for

gravity waves, and the effects of viscosity on group velocity
may be minimal. Figure 5 shows wg calculated from EH71,
FWD, and FWD/SB and the full‐wave dispersion relation
and W calculated from the FW model for an internal
acoustic wave with a 2 min period and a phase speed of
1350 m s−1. (We remark that all internal acoustic waves
have phase speeds in excess of the local sound speed but
satisfy the physical constraint that the group speed is less the
sound speed [Walterscheid andHecht, 2003]). The agreement
between all dissipative results is very close except where
reflection effects in the FW model cause small departures
near 115 km.
[55] Unlike internal gravity waves, faster acoustic waves

have shorter vertical wavelengths than slower ones, or
alternatively, longer vertical wavelengths are associated
with slower speeds. This is reflected in the vertical group
velocity where the effect of viscosity in causing vertical
wavelengths to increase slows the group velocity.

4.4. Wave Amplitude

[56] In this section, we address the wave amplitude where
the group velocity becomes unreliable. Figure 6 shows the
amplitude of the vertical velocity perturbation as a function
of altitude. Also shown is the ratio h0. Wave growth peaks
near 140 km altitude where the wave attains ∼30 m/s. At this
point, the wave is close to its breakdown value u′ ∼ 50 m s−1.
Where the FWD/SB results for wg begin to diverge from the
energy flux velocity W (near 180 km), the wave amplitude
is diminished to approximately one third of its peak value.
A scale height or so above, where the divergence becomes
extreme, the wave is diminished to ∼20% of its peak value
(a few m s−1). While the wave is substantially diminished
in amplitude from its peak value, it should be able to
produce measurable effects. For example, we estimate that
an electron density fluctuation of a few percent is attained
when the F region bottom side scale height is a few tens of
kilometers. We find that the energy and momentum fluxes
at these altitudes are not significant.
[57] The waves that are best able to propagate to great

altitudes are those that are close to evanescence but not
close enough to suffer large wave reflection. These are high‐
frequency gravity waves with large vertical wavelengths.
Figure 7 shows group velocity, energy flux velocity, and the
amplitude of w′ for the same wave as for Figure 6, but with a
15 min period (67 m s−1 phase speed). Group velocity is
shown for EH71, FWD, and FWD/SB. Again, the FWD/SB
results diverge from and remain closer to the FW results until
the FWD and FWD/SB results both become highly inaccu-
rate.Wave growth peaks near 160 km altitude where the wave
attains w′ ∼ 40 m/s (with u′ ∼ 67m s−1). This is near where the
FWD/SB results for wg begin to diverge from the FW value
of W. A scale height or so higher where the divergence is

Figure 3. Real part of the vertical wave number calculated
by means of the full‐wave model (dash‐dotted curve), full‐
wave‐based dispersion relation (long‐dashed curve), semi‐
Boussinesq implementation of the full‐wave‐based relation
(dash‐triple‐dotted curve), and EH71 (short‐dashed curve)
versus altitude. Also shown is the dissipation parameter h0
defined in the text (solid curve). The wave is the same as for
Figure 2.
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extreme wave amplitude is not greatly diminished. This
wave is clearly able to produce large effects in the iono-
sphere at altitudes where the group velocity has become a
poor indicator of the energy flow.
[58] A large divergence between wg and W occurs for

values of h0 < 1 (not shown). The FWD/SB results diverge
initially where h0 ∼ 0.2. A scale height or so higher where
the divergence is extreme, h0 ∼ 0.5. As for the slower wave,
the WKB criterion is satisfied where a large divergence
between wg and W occurs, being ∼0.2. Most likely, the fairly
early divergence of wg from W occurs because the group
velocity calculations are less robust with respect to the effects
of dissipation when the WKB criterion begins to approach a
significant fraction of unity.
[59] We have also examined slower waves (not shown).

For the same wave but with a period of 40 min (phase speed
of 25 m s−1), the wave peaks near 110 km and essentially
expires by 140 km, about where group velocity has become
meaningless. Waves that are this slow have no significance
above the lowest few scale heights of the thermosphere.
[60] For all cases discussed above, the FWD/SB imple-

mentation is significantly more accurate than the FWD
implementation over a large range of altitudes.

5. Summary and Conclusions

[61] The transient response to sinusoidal forcing of finite
duration is a transient forerunner excited by the onset of
forcing followed by an upward moving steady state signal in
the form of a wave train excited by the forcing over the
course of the event. The steady state signal is the dominant

component of the response for t > z/ws, where ws is the
signal (energy flow) speed. Steady state refers to disturbance
amplitude at fixed locations; in viscous regions, wave
amplitude (energy density) diminishes in time following the
signal velocity. For nonsinusoidal forcing, the steady state
disturbance may comprise a rich spectrum of waves. The
leading edge of the disturbance is determined by the waves
with the fastest vertical signal velocity, followed by con-
tributions from slower waves in varying degrees, depending
on the spectral content of the forcing.
[62] We have examined the vertical group velocities as a

measure of energy flow velocity (signal velocity) for gravity
waves propagating into the dissipative lower thermosphere.
We find that the effects of dissipation can cause group
velocity to become a meaningless measure of energy flow
velocity in the lower thermosphere.
[63] We have examined the group velocity for two

implementations of wave dissipation: one where all terms
are retained and one where only the terms that are con-
sistent with assuming kinematic viscosity locally constant
are retained. We denote the latter as the semi‐Boussinesq
implementation. We find that with the full implementation,
the group velocity departs from the energy flow (signal)
velocity when the dissipation rate is still small. However, with
the semi‐Boussinesq implementation, the group velocity can
remain a valid measure of energy flow to altitudes where the
dissipation rate is very significant and the wave amplitude is
greatly diminished.

Figure 4. Same as Figure 3 but for the group velocity and
the full‐wave energy flow velocity.

Figure 5. Group velocities for EH71 (short‐dashed curve),
full‐wave‐based dispersion relation (dashed curve), full‐
wave‐based dispersion relation with the semi‐Boussinesq
implementation (dash‐triple‐dotted curve), and the full‐
wave energy flow velocity (dash‐dotted curve) for an
internal acoustic wave with a 2 min period and a phase speed
of 1350 m s−1.
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[64] We have also calculated group velocity for slower
and faster waves. For a 40 min period, the wave expires a
few scale heights above the mesopause, about where group
velocity is a meaningless measure of the energy flow
velocity. Such slow waves are not apt to be significant more
than a few scale heights above the mesopause. For a 15 min
period, significant wave amplitudes are possible well above
where group velocity is meaningless. We conclude that
whether group velocity remains valid to altitudes where
wave amplitudes are significant can depend sensitively on
wave frequency. We find that for all waves considered, the
semi‐Boussinesq implementation of diffusion is more
accurate than the full implementation.
[65] We have noted a resemblance between solutions for

the transient forerunner and the form of the solutions
assumed by VF05 wherein waves decay locally in time and
suggest that the VF05 formalism is suited to the treatment of
transients. We have compared our results for the signal to
results obtained by Vadas and Fritts [2005], Vadas [2007],
and Fritts and Vadas [2008]. Whereas our results show m
decreasing and wg andW increasing with height, the windless
results for an isothermal atmosphere shown by these authors
show m increasing and wg decreasing (wg is deduced from
plots of wave packet height versus time). We have calcu-
lated m and wg following VF05, where m is found using
their (26) and wg is found using their (C3). The results (not
shown) for the wave used for Figure 2 (m) and Figure 3 (wg,
W) show that at altitudes where dissipation is significant, in
contrast to the signal, m is on the high side of the dis-

sipationless EH71 results and wg is on the low side. The
diminishment of the group velocity for the VF05 formalism
leads to a turning altitude that is absent from the results for
the signal.
[66] We find that for acoustic waves, group velocity can

be good measure of energy flow velocity throughout the
lower thermosphere. This is because in the lower thermo-
sphere the rate of dissipation compared to wave frequency
can be small for acoustic waves.
[67] Our use of steady state theory in the form of the full‐

wave model is an extension of the use of steady state theory
for deriving dispersion relations and group velocities. Full‐
wave solutions are found by assuming waveform solutions
of the form Aw,k,l (z) exp i (wt − kx − ly) for each dependent
variable and solving for Aw,k,l(z); thus, the full‐wave solu-
tion is a generalization of solutions where waves of the form
Aw,k,l,m exp i(wt − kx − ly − mz) are assumed: in the full‐
wave model, the assumption that locally the solutions have
the form of plane waves in all three dimensions is relaxed.
The full‐wave model uses fewer assumptions than WKB‐
based ray‐tracing methods. For example, one does not have
to resort to assuming that winds, static stability, and vis-
cosity are locally constant. The term “full wave” refers to
the fact that full‐wave models account for local reflection
due to inhomogeneities in the medium (due to, say, thermal
gradients and height variable dissipation). This is distinct

Figure 6. Vertical velocity perturbation (dashed curve) and
dissipation ratio h0 defined in the text (solid curve). The
wave is the same as for Figure 2.

Figure 7. Vertical velocity perturbation (thin solid curve),
real part of the vertical wave number calculated by means of
the full‐wave model (dash‐dotted curve), full‐wave‐based
dispersion relation (thick solid curve), semi‐Boussinesq
implementation of the full‐wave‐based dispersion relation
(dash‐triple‐dotted curve), and EH71 (dashed curve) versus
altitude. The wave is the same as for Figure 2 except that the
wave period is 15 min (horizontal phase speed of 67 m s−1).
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from partial wave solutions such as WKB‐based ray tracing
where the wave form is purely progressive.
[68] Full‐wave models, apart from their usefulness as an

extension of WKB theory, can exhibit a remarkable amount
of realism despite, except perhaps in singular cases, a lack of
sustained forcing for long periods of time. This is related
first to the fact that the complete linear solution of the
response to time‐dependent forcing comprises a sum over
steady state solutions. This provides the basis for analyzing
complex behavior in terms of steady state solutions. Second,
the transient response to time‐dependent forcing includes
finite pulses that satisfy steady state solutions behind the
upward propagating wavefront [Thau, 1974; Hickey et al.,
2000a; Walterscheid, 1997]. Steady state relations are
found to provide a good description of dissipating waves
seen in observations and simulated by time‐dependent
models. In particular, observations and models generally
agree with increasing vertical wavelength for dissipating
waves for a variety of wind conditions, including weak
winds when Doppler effects that might give a similar effect
are minimal or nonexistent [Hines, 1968; Kirchengast et al.,
1996; Hocke and Schlegel, 1996; Hocke et al., 1996; Oliver
et al. 1997; Walterscheid et al., 2001; Vadas and Fritts,
2004; Yu and Hickey, 2007; Miyoshi and Fujiwara, 2008].
It is also possible that indications of increasing vertical
wavelength with height might result from a spectrum of
waves that decay locally in time following VF05, or from
observational biases arising from the partial sampling of
such waves [Vadas, 2007].

Appendix A: The Saddle‐Point Derivation for
Signal Speed for the Model Boussinesq System

[69] A Laplace transform of the time dependency of (10)
for a wave of the form

w′ x; z; tð Þ ¼ ŵ z; tð Þ exp �ikxð Þ ðA1Þ

forced at the lower boundary gives the solution

ŵ z; tð Þ ¼ 1

2�i

Z�þi∞

��i∞

ew sð Þ exp zh sð Þð Þds; ðA2Þ

where g lies to the right of all the singularities of the Laplace
transform of ŵ(0, t) (denoted ew) and the singularities of
h [Thau, 1974]. The function h(s) obtained from trans-
forming (10) is

h sð Þ ¼ s

l
� kN

sþ �
; ðA3Þ

where l = x/t. Cols (s0) are found where h′(s) = 0 or where

h′ sð Þ ¼ 0 ¼ 1

l
þ kN

sþ �ð Þ2 ðA4Þ

whence

s0 ¼ ��� i lkNð Þ12: ðA5Þ

The path of integration (steepest descent path) is deformed so
that the path through the cols satisfies Im(h(s)) = constant.
For s = s0

h s0ð Þ ¼ ��

l
ðA6Þ

and thus

Im h s0ð Þð Þ ¼ 0: ðA7Þ

Setting s0 = iw0, evaluating h(iw0), and applying (A7) gives

l ¼ �!0
!2
0 þ �2

!0kN
ðA8Þ

and with (26)

l ¼ � !0

mr
; ðA9Þ

which agrees with (27).

Appendix B: Vertical Energy Flow Velocity for the
Model Boussinesq System

[70] The model hydrostatic Boussinesq system is given by

@

@t
þ �

� �
u′ ¼ @

@x
�′; ðB1Þ

g
�′

�
¼ � @

@z
�′; ðB2Þ

@

@t
þ �

� �
g
�′

�
� w′N 2 ¼ 0; ðB3Þ

@

@x
u′þ @

@z
w′ ¼ 0; ðB4Þ

where

�′ ¼ p′

�
: ðB5Þ

The wave energy derived from this set is

E ¼ 1

2
u′2 þ g2

N 2

�′

�

� �2
" #

; ðB6Þ

where the first term is kinetic energy and the second is
available potential energy. The Brunt‐Väisälä frequency
(assumed constant) for this system is

N 2 ¼ �g
@ log �

@z
: ðB7Þ

Following Walterscheid and Hecht [2003], each term in
(B6) may be related to p′. Multiplying (B1) by u′and (B2)
by r′/� and evaluating (B6) gives

E ¼ 1

2

mj j2
N 2

�̂j j2; ðB8Þ
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where �̂ is the complex amplitude of p′. The vertical wave
energy flux for this system is

Fz ¼ �′w′: ðB9Þ

Using (B2) and (B3), it is found that

w′ ¼ 1

N2
i!þ �ð Þim�′: ðB10Þ

Multiplication by p′and averaging gives

Fz ¼ 1

2

k

N
�̂j j2 ðB11Þ

with the use of (23) and (24). Evaluation of

W ¼ Fz

E
ðB12Þ

gives

W ¼ � !

mr
: ðB13Þ
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