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GROUP VELOCITY OF DIELECTRIC
WAVEGUIDE MODES

The group velocity and dispersion of surface-wave riodes
propagating aleng a circular dielectric rod are computed and
presented graphically in normalised form. The group velocity
as cach mode approaches the cutoff frequency is calculated
approximatcly.

Interest in circular dielectric surface-wave guides has been.

reawakened by recent proposals! to use the cladded glass
fibre as a transmission line for laser communication systems.
The cladded glass fibre can support nonradiative surface
waves when the refractive index of the core, n, is greater than
the refractive index of the cladding, n,.

The solution of Maxwell’s equations in the core and
cladding permits the formulation of a boundary equation?3
when tangential field components are equated at the core—
cladding boundary:
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where N = azimuthal mode number
r; = boundary radius
f = Bry = normalised guide phase constant
o = koriy/€ = normalised free-space phase con-
stant
€ = n? = relative permittivity of core
€; = n? = relative permittivity of cladding
f’ = €I €]
wt=k3 — B2
W= ﬁz — k3fe
Fy = I5)/{ud @)}
My = K (W){wKy(w)} ,
Jy and K are first kind and modified Bessel functions* of
order N; Jy and Ky are differentiated with respect to the
argument.

Eqn. 1 has been solved numerically for lossless dielectrics.
For each azimuthal mode number N, there is a family of
radial modes. When N = 0, the modes are circularly sym-
metrical, and occur in pairs of TE and TM modes. When
N > 0, pairs of modes still occur, except for the lowest-
order mode of each family; however, the modes are hybrid,
with both H and E field components in the axial direction.
The first mode in the family, N = 1, the HE;; mode, has a
zero-frequency cutoff. One of a pair of modes is designated?
HE y(ar +1y Of HEyy,, depending on whether the H or E
axial field dominates. The numerical solution of eqn. 1 for
ko and B produces the mode plots of Fig. 1, where some low-
order modes are shown. The normalised phase velocity 7, is
given by
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Fig. 1 Phase velocily against frequency generalised for small
refractive-index difference, for lowest-order modes

Fig. 1 is essentially a graph of phase velocity against fre-
quency, normalised for small refractive-index difference
Anfn, where An = n — n,. The graph applies when An/n
< 10~2; for Anfn> 10"2, the boundary equation must
be solved using the particular value of Anfn required.

The normalised group velocity, 7, is defined as

T, =, " where v, is the group velocity and ¢ is the
¢ velocity of light
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By differentiation of eqn. 1 with respect to ky, an expression
is obtained for the normalised group velocity of the surface-
wave modes:
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Insertion of solutions of eqn. 1 for ko and § into eqn. 2
gives dko/dB directly. Fig. 2 shows group velocity as a function
of frequency, in a generalised form, for Anfn < 1072,

Eqn. 2 may be differentiated with respect to ky to obtain
an expression for dvg/dko, which is a normalised form of
dispersion or rate of variation of group velocity with fre-
quency. Fig. 3 shows generalised dispersion curves for low-
order modes, for Anfn small.

Near the cutoff frequency of a particular mode, the group
velocity cannot be determined by the computer program used
to solve the boundary equation, since some quantities tend
to infinity. For example, w is zero on the asymptote to which
the phase velocity tends near cutoff, and 1/w is infinite. -
Consequently -an approximate solution® of the boundary
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equation for the case when w is small has been applied to
eqn. 2, the expression for normalised group velocity.
In this case,
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There are two sets of solutions for the boundary condition,
giving the pairs of modes. For N > 1, they occur because
Jn(u) tends to a zero at cutoff for one of the pair, the HE
mode, and does not for the other, the EH mode. The lone
HEy; modes behave like EH modes, since Jy(#) does not
tend to zero at cutoff.
For J (1) — O near cutoff, eqn. 1 tends to
€+1N
Fn= € w2

For J () finite at cutoff,
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When N = 1, the cutoff frequencies occur for all modes at

zeros of J;(u); the HE; (s, 1y and EH,,, become degenerate.?

However, there are two distinct orders of magnitude that

J () can have as w tends to zero.’ If J («) is very small, of

order w2, eqn. 1 reduces to
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If J,(u) is of order In ;—v , then near cutoff
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The appropriate expressions for Fy and My can be inserted
in eqn. 2 to obtain the group velocity near cutoff:
(i) HE modes:

m

The numerator and denominator of eqn. 2 contain terms in
1/w8, 1/w* and 1/w?. Since w is very small, terms of order less
than 1/w® may be ignored; hence
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If An/nis small, ie. € = 1 + §,
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(ii) EH modes and HE y; modes:
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Terms in 1/w% cancel in the numerator and denominator of

¥,. Ignoring terms of order less than 1 /w#, the group velocity
is given by

N
(a)N>1:FN:—;‘—2+

== §,, the phase velocity, at cutoff
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Ignoring terms of order less than 1/w*, the group velocity is
again

T, = /€

= 7, at cutoff.
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Fig. 3 Variation of group velocity with frequency, _An_n small
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Fig. 4 Group velocity at cutoff against refractive-index difference
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Thus the group velocity of all EH and HE 5, modes tends to
the phase velocity as cutoff is approached. Removing the
normalising factors gives

¢
=9y, = — at cutoff
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¢/n, is the plane-wave velocity in the cladding material.
The group velocity at cutoff of the remaining HE modes
is given oy :
5 = 1 N+ 1) 4 2¢
8 € N@E+1)+2
Fig. 4 shows 7, plotted against An/n. When N = 1, b, is
approximately unity for Anfn < 10~!. As the azimuthal

mode number N increases, the group velocity at cutoff tends
to the curve for N = o0, where
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The -calculations that have been made of group velocity and
dispersion do not take account of the variation of permittivity
with frequency of the guide materials, since no gereral
assumptions can be made about such variations. In a glass-
fibre system, the bulk glass dispersion might typically be
10-3m/cycle, which corresponds to a bandwidth of 5GHz,
allowing for a group delay of 30° over a 10km path. To
calculate the dispersion of a single mode, the normalised
dispersion (Fig. 3) may be multiplied by the factor

An\32 . . .
7d, (7) , where d, is the core diameter. For a fibre with

5pum diameter core and refractive-index difference of 19,
this factoris 1-6 x 10~8m/cycle. The reduction in bandwidth
because of multimode propagation may be estimated from
the normalised group-velocity curves of Fig. 2.

P. J. R. LAYBOURN 24th October 1968
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