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Abstract

Stereo matching estimates the disparity between a recti-

fied image pair, which is of great importance to depth sens-

ing, autonomous driving, and other related tasks. Previ-

ous works built cost volumes with cross-correlation or con-

catenation of left and right features across all disparity lev-

els, and then a 2D or 3D convolutional neural network is

utilized to regress the disparity maps. In this paper, we

propose to construct the cost volume by group-wise cor-

relation. The left features and the right features are di-

vided into groups along the channel dimension, and cor-

relation maps are computed among each group to obtain

multiple matching cost proposals, which are then packed

into a cost volume. Group-wise correlation provides effi-

cient representations for measuring feature similarities and

will not lose too much information like full correlation. It

also preserves better performance when reducing param-

eters compared with previous methods. The 3D stacked

hourglass network proposed in previous works is improved

to boost the performance and decrease the inference com-

putational cost. Experiment results show that our method

outperforms previous methods on Scene Flow, KITTI 2012,

and KITTI 2015 datasets. The code is available at https:

//github.com/xy-guo/GwcNet

1. Introduction

Accurate depth sensing plays an important role in many

computer vision applications like odometry, robot naviga-

tion, pose estimation, and object detection [10, 28, 6, 16].

Unlike monocular depth estimation [3, 5] or active depth

sensing [24], stereo matching estimates depth by matching

pixels from rectified image pairs captured by two cameras.

Traditional stereo pipelines usually consist of all or por-

tion of the following four steps, matching cost compu-

tation, cost aggregation, disparity optimization, and post-

processing [23]. Matching cost computation provides ini-

tial similarity measures for left image patches and possi-

ble corresponding right patches, which is a crucial step of

stereo matching. Common matching costs include absolute

difference (SAD), sum of squared difference (SSD), and

normalized cross-correlation (NCC). The cost aggregation

and the optimization steps incorporate contextual matching

costs and priors to obtain more robust disparity predictions.

Learning-based methods explore different feature repre-

sentations and aggregation algorithms for matching costs.

DispNetC [19] computes a correlation volume from the left

and right image features and utilizes a CNN to directly

regress disparity maps. GC-Net [9] and PSMNet [2] con-

struct concatenation-based feature volume and incorporate

a 3D CNN to aggregate contextual features. There are also

works [1, 25] trying to aggregate evidence from multiple

hand-crafted matching cost proposals. However, the above

methods have several drawbacks. The full correlation [19]

provides an efficient way for measuring feature similarities,

but it loses much information because it produces only a

single-channel correlation map for each disparity level. The

concatenation volume [9, 2] requires more parameters in the

following aggregation network to learn the similarity mea-

surement function from scratch. [1, 25] stills utilizes tradi-

tional matching costs and cannot be optimized end-to-end.

In this paper, we propose a simple yet efficient opera-

tion called group-wise correlation to tackle the above draw-

backs. Multi-level unary features are extracted to form

high-dimensional feature representations fl, fr for a left-

right image pair. Then, the features are split into multiple

groups along the channel dimension, and the ith left feature

group is correlated with the corresponding ith right feature

group over all disparity levels to obtain group-wise corre-

lation maps. At last, all the correlation maps are packed to

form a 4D cost volume. The unary features can be treated

as groups of structured vectors [32], so the correlation maps

for a certain group can be seen as a matching cost proposal.

In this way, we can leverage the power of traditional corre-

lation matching cost and provide better similarity measures

for the following 3D aggregation network compared with

[9, 2]. The multiple matching cost proposals also avoid the

information loss like full correlation [19].

The 3D stacked hourglass aggregation network proposed

in PSMNet [2] is modified to further improve the per-

formance and decrease the inference computational cost.
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1×1×1 3D convolutions are employed in the shortcut con-

nections within each hourglass module without increasing

too much computational cost.

Our main contributions can be summarized as follows.

1) We propose group-wise correlation to construct cost vol-

umes to provide better similarity measures. 2) The stacked

3D hourglass refinement network is modified to improve the

performance without increasing the inference time. 3) Our

method achieves better performance than previous methods

on Scene Flow, KITTI 2012, and KITTI 2015 datasets. 4)

Experiment results show that when limiting the computa-

tional cost of the 3D aggregation network, the performance

reduction of our proposed network is much smaller than

previous PSMNet, which makes group-wise correlation a

valuable way to be implemented in real-time stereo net-

works.

2. Related Work

2.1. Traditional methods

Generally, traditional stereo matching consists of all or

portion of the following four steps: matching cost compu-

tation, cost aggregation, disparity optimization, and some

post-processing steps [23]. In the first step, the match-

ing costs of all pixels are computed for all possible dis-

parities. Common matching costs include sum of absolute

difference (SAD), sum of squared difference (SSD), nor-

malized cross-correlation (NCC), and so on. Local meth-

ods [37, 34, 20] explore different strategies to aggregate

matching costs with neighbor pixels and usually utilize the

winner-take-all (WTA) strategy to choose the disparity with

minimum matching cost. In contrast, global methods min-

imize a target function to solve the optimal disparity map,

which usually takes both matching costs and smoothness

priors into consideration, such as belief propagation [30, 13]

and graph cut [15]. Semi-global matching (SGM) [7] ap-

proximates the global optimization with dynamic program-

ming. Local and global methods can be combined to obtain

better performance and robustness.

2.2. Learning based methods

Besides hand-crafted methods, researchers also pro-

posed many learned matching costs [36, 18, 27] and cost

aggregation algorithms [1, 25]. Zbontar and Lecun [36] first

proposed to compute matching costs using neural networks.

The predicted matching costs are then processed with tradi-

tional cross-based cost aggregation and semi-global match-

ing to predict the disparity map. The matching cost com-

putation was accelerated in [18] by correlating unary fea-

tures. Batsos et al. proposed CBMV [1] to combine evi-

dence from multiple basic matching costs. Schonberger et

al. [25] proposed to classify scanline matching cost candi-

dates with a random forest classifier. Seki et al. proposed

SGM-Nets [26] to provide learned penalties for SGM. Kno-

belreiter et al. [14] proposed to combine CNN-predicted

correlation matching costs and CRF to integrate long-range

interactions.

Following DispNetC (Mayer et al. [19]), there are a lot

of works directly regressing disparity maps from correla-

tion cost volumes [22, 17, 29, 33]. Given the left and the

right feature maps fl and fr, the correlation cost volume is

computed for each disparity level d,

Ccorr(d, x, y) =
1

Nc

〈fl(x, y), fr(x− d, y)〉, (1)

where 〈·, ·〉 is the inner product of two feature vectors and

Nc denotes the number of channels. CRL [22] and iRes-

Net [17] followed the idea of DispNetC with stack re-

finement sub-networks to further improve the performance.

There are also works integrating additional information

such as edge features [29] and semantic features [33].

Recent works employed concatenation-based feature

volume and 3D aggregation networks for better context ag-

gregation [9, 2, 35]. Kendall et al. proposed GC-Net [9] and

was the first to use 3D convolution networks to aggregate

context for cost volumes. Instead of directly giving a cost

volume, the left and the right feature fl, fr are concatenated

to form a 4D feature volume,

Cconcat(d, x, y, ·) = Concat {fl(x, y), fr(x− d, y)} . (2)

Context features are aggregated from neighbour pixels and

disparities with 3D convolution networks to predict a dis-

parity probability volume. Following GC-Net, Chang et

al. [2] proposed the pyramid stereo matching network

(PSMNet) with a spatial pyramid pooling module and

stacked 3D hourglass networks for cost volume refinement.

Yu et al. [35] proposed to generate and select multiple cost

aggregation proposals. Zhong et al. [38] proposed a self-

adaptive recurrent stereo model to tackle open-world data.

LRCR [8] utilized left-right consistency check and recur-

rent model to aggregate cost volumes predicted from [27]

and refined unreliable disparity predictions. There are also

other works focusing on real-time stereo matching [11] and

application friendly stereo [31].

3. Group-wise Correlation Network

We propose group-wise correlation stereo network

(GwcNet), which extends PSMNet [2] with group-wise cor-

relation cost volume and improved 3D stacked hourglass

networks.

3.1. Network architecture

The structure of the proposed group-wise correlation net-

work is shown in Figure 1. The network consists of four
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Figure 1: The pipeline of the proposed group-wise correlation network. The whole network consists of four parts, unary

feature extraction, cost volume construction, 3D convolution aggregation, and disparity prediction. The cost volume is

divided into two parts, concatenation volume (Cat) and group-wise correlation volume (Gwc). Concatenation volume is built

by concatenating the compressed left and right features. Group-wise correlation volume is described in Section 3.2.

3D conv, stride 2

Shortcut 3D conv, kernel 1

3D conv

3D deconv

Output

Module 0

Output

Module 1

Output

Module 2

Output

Module 3

Figure 2: The structure of our proposed 3D aggregation network. The network consists of a pre-hourglass module (four

convolutions at the beginning) and three stacked 3D hourglass networks. Compared with PSMNet [2], we remove the

shortcut connections between different hourglass modules and output modules, thus output modules 0,1,2 can be removed

during inference to save time. 1×1×1 3D convolutions are added to the shortcut connections within hourglass modules.

parts, unary feature extraction, cost volume construction,

3D aggregation, and disparity prediction (details in Table 1).

For feature extraction, we adopt the ResNet-like network

used in PSMNet [2] with the half dilation settings and with-

out its spatial pyramid pooling module. The last feature

maps of conv2, conv3, and conv4 are concatenated to form

320-channel unary feature maps.

The cost volume is composed of two parts, a concate-

nation volume and a group-wise correlation volume. The

concatenation volume is the same as PSMNet [2] but with

fewer channels, before which the unary features are com-

pressed into 12 channels with two convolutions. The pro-

posed group-wise correlation volume will be described in

details in Section 3.2. The two volumes are then concate-

nated as the input to the 3D aggregation network.

The 3D aggregation network is used to aggregate fea-

tures from neighboring disparities and pixels, which con-

sists of a pre-hourglass module and three stacked 3D hour-

glass networks. As shown in Figure 2, the pre-hourglass

module consists of four 3D convolutions with batch normal-

ization and ReLU. Three stacked 3D hourglass networks

are followed to refine low-texture ambiguities and occlu-

sion parts by encoder-decoder structures. Compared with

3D aggregation network of [2], we have several important

modifications to improve the performance and increase the

inference speed, and details are described in Section 3.3.

The pre-hourglass and three stacked 3D hourglass net-

works are connected to output modules. Each output mod-

ule predicts a disparity map. The structure of the output

module and the loss function are described in Section 3.4.

3.2. Group­wise correlation volume

The left unary features and the right unary features are

denoted by fl and fr with Nc channels and in 1/4 the size

of original images. In previous works [19, 9, 2], the left

and right features are correlated or concatenated at different

disparity levels to form the cost volume. However, both cor-

relation volume and concatenation volume have drawbacks.

The full correlation provides an efficient way for measur-

ing feature similarities, but it loses much information be-

cause it produces only a single-channel correlation map for

each disparity level. The concatenation volume contains no

information about the feature similarities, so more param-

eters are required in the following aggregation network to

learn the similarity measurement function from scratch. To

solve the above issues, we propose group-wise correlation
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by combining advantages of the concatenation volume and

the correlation volume.

The basic idea behind group-wise correlation is splitting

the features into groups and computing correlation maps

group by group. We denote the channels of unary features

as Nc. All the channels are evenly divided into Ng groups

along the channel dimension, and each feature group there-

fore has Nc/Ng channels. The gth feature group f
g
l , f

g
r con-

sists of the gNc

Ng

, gNc

Ng

+ 1, . . . , gNc

Ng

+ (Nc

Ng

− 1)th channels

of the original feature fl, fr. The group-wise correlation is

then computed as

Cgwc(d, x, y, g) =
1

Nc/Ng

〈fgl (x, y), f
g
r (x− d, y)〉, (3)

where 〈·, ·〉 is the inner product. Note that the correlation is

computed for all feature groups g and at all disparity levels

d. Then, all the correlation maps are packed into a matching

cost volume of the shape [Dmax/4, H/4,W/4, Ng], where

Dmax denotes the maximum disparity and Dmax/4 corre-

sponds to the maximum disparity for the feature. When

Ng=1, the group-wise correlation becomes full correlation.

Group-wise correlation volume Cgwc can be treated as

Ng cost volume proposals, and each proposal is com-

puted from the corresponding feature group. The following

3D aggregation network aggregates multiple candidates to

regress disparity maps. The group-wise correlation success-

fully leverages the power of traditional correlation match-

ing costs and provides rich similarity-measure features for

the 3D aggregation network, which alleviates the parame-

ter demand. We will show in Section 4.5 that we explore

to reduce the channels of the 3D aggregation network, and

the performance reduction of our proposed network is much

smaller than [2]. Our proposed group-wise correlation vol-

ume requires less 3D aggregation parameters to achieve fa-

vorable results.

To further improve the performance, the group correla-

tion cost volume can be combined with the concatenation

volume. Experiment results show that the group-wise cor-

relation volume and the concatenation volume are comple-

mentary to each other.

3.3. Improved 3D aggregation module

In PSMNet [2], a stacked hourglass architecture was pro-

posed to learn better context features. Based on the net-

work, we apply several important modifications to make it

suitable for our proposed group-wise correlation and im-

prove the inference speed. The structure of the proposed

3D aggregation is shown in Figure 2 and Table 1.

1) First, we add one more auxiliary output module (see

output module 0 in Figure 2) after the pre-hourglass mod-

ule. The extra auxiliary loss makes the network learn bet-

ter features at lower layers, which benefits the final predic-

tion. 2) The residual connections between different out-

Name Layer properties Output size

Cost Volume

unary l/r N/A, S2 H/4×W/4×320
volume g group-wise cost volume D/4×H/4×W/4×40
volume c concatenation cost volume D/4×H/4×W/4×24
volume volume g,volume c: Concat D/4×H/4×W/4×64

Pre-hourglass

conv1 [32×32, 3×3×3, S1] ×2 D/4×H/4×W/4×32
conv2 [32×32, 3×3×3, S1] ×2 D/4×H/4×W/4×32
output conv1,conv2: Add D/4×H/4×W/4×32

Hourglass Module 1, 2, 3

input N/A D/4×H/4×W/4×32
conv1a 32×64, 3×3×3, S2 D/8×H/8×W/8×64
conv1b 64×64, 3×3×3, S1 D/8×H/8×W/8×64
conv2a 64×128, 3×3×3, S2 D/16×H/16×W/16×128
conv2b 128×128, 3×3×3, S1 D/16×H/16×W/16×128
deconv1* 128×64, 3×3×3, S2, deconv D/8×H/8×W/8×64
shortcut1* conv1b: 64×64, 1×1×1, S1 D/8×H/8×W/8×64
plus1 deconv1,shortcut1: Add&ReLU D/8×H/8×W/8×64
deconv0* 64×32, 3×3×3, S2, deconv D/4×H/4×W/4×32
shortcut0* input: 32×32, 1×1×1, S1 D/4×H/4×W/4×32
output deconv0,shortcut0: Add&ReLU D/4×H/4×W/4×32

Output Module 0, 1, 2, 3

input N/A D/4×H/4×W/4×32
conv1 32×32, 3×3×3, S1 D/4×H/4×W/4×32
conv2** 32×1, 3×3×3, S1 D/4×H/4×W/4×1
score Upsample D×H×W×1
prob Softmax (at disparity dimension) D×H×W×1
disparity Soft Argmin (Equ. 4) H×W×1

Table 1: Structure details of the modules. H,W represents

the height and the width of the input image. S1/2 denotes

the convolution stride. If not specified, each 3D convolu-

tion is with a batch normalization and ReLU. * denotes the

ReLU is not included. ** denotes convolution only.

put modules are removed, thus auxiliary output modules

(output module 0, 1, 2) can be removed during inference

to save computational cost. 3) 1×1×1 3D convolutions

are added to the shortcut connections within each hourglass

module (see dashed lines in Figure 2) to improve the perfor-

mance without increasing much computational cost. Since

the 1×1×1 3D convolution only has 1/27 multiplication op-

erations compared with 3×3×3 convolutions, it runs very

fast and the time can be neglected.

3.4. Output module and loss function

For each output module, two 3D convolutions are em-

ployed to generate a 1-channel 4D volume, and then the

volume is upsampled and converted into a probability vol-

ume with softmax function along the disparity dimension.

Detailed structures are shown in Table 1. For each pixel, we

have a Dmax-length vector which contains the probability

p for all disparity levels. Then, the disparity estimation d̃ is

3276



Model Concat

Volume

Group

Corr

Volume

Stack

Hour-

glass

Groups

×
Channels

Init

Volume

Channel

>1px

(%)

>2px

(%)

>3px

(%)

EPE (px) Time

(ms)

Cat64-Base X - 64 12.78 8.05 6.33 1.308 117.1

Gwc1-Base X 1×320 1 13.32 8.37 6.62 1.369 104.0

Gwc10-Base X 10×32 10 11.82 7.31 5.70 1.230 112.8

Gwc20-Base X 20×16 20 11.84 7.29 5.67 1.216 116.3

Gwc40-Base X 40×8 40 11.68 7.18 5.58 1.212 122.2

Gwc80-Base X 80×4 80 11.69 7.17 5.57 1.214 133.3

Gwc160-Base X 160×2 160 11.58 7.08 5.49 1.188 157.3

Gwc40-Cat24-Base X X 40×8 40+24 11.26 6.87 5.31 1.127 135.1

PSMNet [2] X [2] - 64 9.46 5.19 3.80 0.887 246.1

Cat64-original-hg X [2] - 64 9.47 5.13 3.74 0.876 241.0

Cat64 X Ours - 64 8.41 4.63 3.41 0.808 198.3

Gwc40 (GwcNet-g) X Ours 40×8 40 8.18 4.57 3.39 0.792 200.3

Gwc40-Cat24 (GwcNet-gc) X X Ours 40×8 40+24 8.03 4.47 3.30 0.765 210.7

Table 2: Ablation study results of proposed networks on the Finalpass of Scene Flow datasets [19]. Cat, Gwc, Gwc-Cat

represent only concatenation volume, only group-wise correlation volume, or the both. Base denotes the network variants

without stacked hourglass networks. The time is the inference time for 480×640 inputs on a single Nvidia TITAN Xp GPU.

The result of PSMNet [2] is trained with published code with our batch size, evaluation settings for fair comparison.

Model KITTI 12

EPE (px)

KITTI 12

D1-all(%)

KITTI 15

EPE (px)

KITTI 15

D1-all (%)

PSMNet [2] 0.713 2.53 0.639 1.50

Cat64-original-hg 0.740 2.72 0.652 1.76

Cat64 0.691 2.41 0.615 1.55

Gwc40 0.662 2.30 0.602 1.41

Gwc40-Cat24 0.659 2.10 0.613 1.49

Table 3: Ablation study results of our networks on KITTI

2012 validation and KITTI 2015 validation sets.

given by the soft argmin function [9],

d̃ =

Dmax−1∑

k=0

k · pk, (4)

where k and pk denote a possible disparity level and the cor-

responding probability. The predicted disparity maps from

the four output modules are denoted as d̃0, d̃1, d̃2, d̃3. The

final loss is given by,

L =

i=3∑

i=0

λi · SmoothL1
(d̃i − d

∗), (5)

where λi denotes the coefficients for the ith disparity pre-

diction and d
∗ represents the ground-truth disparity map.

The smooth L1 loss is computed as follows,

SmoothL1
(x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise
(6)

4. Experiment

In this section, we evaluate our proposed stereo models

on Scene Flow datasets [19] and the KITTI dataset [4, 21].

Datasets and implementation details are described in Sec-

tion 4.1 and Section 4.2. The effectiveness and the best set-

tings of group-wise correlation are explored in Section 4.3.

The performance improvement of the new stacked hour-

glass module is discussed in Section 4.4. We also explore

the performance of group-wise correlation when the com-

putational cost is limited in Section 4.5.

4.1. Datasets and evaluation metrics

Scene Flow datasets are a dataset collection of synthetic

stereo datasets, consisting of Flyingthings3D, Driving, and

Monkaa. The datasets provide 35,454 training and 4,370

testing images of size 960×540 with accurate ground-truth

disparity maps. We use the Finalpass of the Scene Flow

datasets, since it contains more motion blur and defocus and

is more like real-world images than the Cleanpass. KITTI

2012 and KITTI 2015 are driving scene datasets. KITTI

2012 provides 194 training and 195 testing images pairs,

and KITTI 2015 provides 200 training and 200 testing im-

age pairs. Both datasets provide sparse LIDAR ground-

truth disparity for the training images.

For Scene Flow datasets, the evaluation metrics is usu-

ally the end-point error (EPE), which is the mean average

disparity error in pixels. For KITTI 2012, percentages of

erroneous pixels and average end-point errors for both non-

occluded (Noc) and all (All) pixels are reported. For KITTI

2015, the percentage of disparity outliers D1 is evaluated

3277



for background, foreground, and all pixels. The outliers are

defined as the pixels whose disparity errors are larger than

max(3px, 0.05d∗), where d∗ denotes the ground-truth dis-

parity.

4.2. Implementation details

Our network is implemented with PyTorch. We use

Adam [12] optimizer, with β1 = 0.9, β2 = 0.999. The

batch size is fixed to 16, and we train all the networks with

8 Nvidia TITAN Xp GPUs with 2 training samples on each

GPU. The coefficients of four outputs are set as λ0 = 0.5,

λ1 = 0.5, λ2 = 0.7, λ3 = 1.0.

For Scene Flow datasets, we train the stereo networks

for 16 epochs. The learning rate is set to 0.001 and down-

scaled by 2 after epoch 10, 12, and 14. To test on Scene

Flow datasets, the full images of size 960×540 are input to

the network for disparity prediction. We set the maximum

disparity value as Dmax = 192 following PSMNet [2] for

Scene Flow datasets. To evaluate our networks, we remove

all the images with less than 10% valid pixels (0≤d<Dmax)

in the test set. For each valid image, the evaluation metrics

are computed with only valid pixels.

For KITTI 2015 and KITTI 2012, we fine-tune the net-

work pre-trained on Scene Flow datasets for another 300

epochs. The initial learning rate is 0.001 and is down-scaled

by 10 after epoch 200. For testing on KITTI datasets, we

first pad zeros on the top and the right side of the images to

make the inputs in size 1248×384.

4.3. The effectiveness of Group­wise correlation

In this section, we explore the effectiveness and the best

settings for the group-wise correlation. In order to prove the

effectiveness of the proposed group-wise correlation vol-

ume, we conduct several experiments on the Base model,

which removes the stacked hourglass networks and only

preserves the pre-hourglass module and the output module

0. Cat-Base, Gwc-Base, and Gwc-Cat-Base are the base

models with only concatenation volume, only group-wise

correlation volume, or both volumes.

Experiment results in Table 2 show that the performance

of the Gwc-Base network increases as the group number in-

creases. When the group number is larger than 40, the per-

formance improvement becomes minor and the end-point

error stays around 1.2px. Considering the memory usage

and the computational cost, we choose 40 groups with each

group having 8 channels as our network structure, which

corresponds to the Gwc40-Base model in Table 2.

All the Gwc-Base models except Gwc1-Base outperform

the Cat-Base model which utilizes concatenation volume,

which shows the effectiveness of the group-wise correla-

tion. The Gwc40 model reduces the end-point error by

0.1px and the 3-pixel error rate by 0.75%, and the time con-

sumption is almost the same. The performance can be fur-

32(ori) 16 8 4 2

Base #Channel of 3D Network

0.8

1.0

1.2

1.4

1.6

1.8

E
P
E
/
p
x

Cat (Concat Volume)

Gwc-Cat (Groupwise-corr & Concat)

Figure 3: Our model Gwc-Cat achieves much better per-

formance than Cat when the number of channels decreases.

The models with 32 base channels correspond to the Cat64

model (concatenation volume) and the Gwc40-Cat24 model

(group-wise correlation and concatenation volume). The

channels of the cost volume and all 3D convolutions de-

crease by the same factor as the base channel.

ther improved by combining group-wise correlation volume

with concatenation volume (see Gwc40-Cat24-Base model

in Table 2). The group-wise correlation could provide accu-

rate matching features, and the concatenation volume pro-

vides complementary semantic information.

4.4. Improved stacked hourglass

In this paper, we applied several modifications to the

stacked hourglass networks proposed in [2] to improve the

performance of cost volume aggregation. From Table 2 and

Table 3, we can see that the model with the proposed hour-

glass networks (Cat64) increases EPE by 7.8% on Scene

Flow datasets and 5.8% on KITTI 2015 compared with

the model Cat64-original-hg (with the hourglass module in

[2]). The inference time for 640×480 inputs on a single

Nvidia TITAN Xp GPU also decreases by 42.7ms, because

the auxiliary output modules can be removed during infer-

ence to save time.

4.5. Limit the computational cost of 3D network

We explore to limit the computational cost by decreasing

channels in the 3D aggregation network to verify the effec-

tiveness of the proposed group-wise group correlation. The

results are shown in Figure 3. The base number of chan-

nels are modified from the original 32 to 2, and the chan-

nels of the cost volume and all 3D convolutions are reduced

with the same factor. As the number of channels decreasing,

our models with group-wise correlation volume (Gwc-Cat)

perform much better than the models with only concatena-

tion volume (Cat). The performance gain enlarges as more

channels reduced. The reason for this is that the group-wise
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(a) Visualization results on the Scene Flow datasets.

(b) Visualization results on the KITTI 2012 dataset.

(c) Visualization results on the KITTI 2015 dataset.

Figure 4: Depth visualization results on the test sets of Scene Flow [19], KITTI 2012 [4] and KITTI 2015 [21] datasets. From

left to right, input left images, predicted disparity maps, and error maps.
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All (%) Noc (%) Time

D1-bg D1-fg D1-all D1-bg D1-fg D1-all (s)

DispNetC [19] 4.32 4.41 4.34 4.11 3.72 4.05 0.06

GC-Net [9] 2.21 6.16 2.87 2.02 5.58 2.61 0.9

CRL [22] 2.48 3.59 2.67 2.32 3.12 2.45 0.47

iResNet-i2e2 [17] 2.14 3.45 2.36 1.94 3.20 2.15 0.22

PSMNet [9] 1.86 4.62 2.32 1.71 4.31 2.14 0.41

SegStereo [33] 1.88 4.07 2.25 1.76 3.70 2.08 0.6

GwcNet-g (Gwc40) 1.74 3.93 2.11 1.61 3.49 1.92 0.32

Table 4: KITTI 2015 test set results. The dataset contains 200 images for training and 200 images for testing.

>2px (%) >3px (%) >5px (%) Mean Error (px) Time

Noc All Noc All Noc All Noc All (s)

DispNetC [19] 7.38 8.11 4.11 4.65 2.05 2.39 0.9 1.0 0.06

MC-CNN-acrt [36] 3.90 5.45 2.43 3.63 1.64 2.39 0.7 0.9 67

GC-Net [9] 2.71 3.46 1.77 2.30 1.12 1.46 0.6 0.7 0.9

iResNet-i2 [17] 2.69 3.34 1.71 2.16 1.06 1.32 0.5 0.6 0.12

SegStereo [33] 2.66 3.19 1.68 2.03 1.00 1.21 0.5 0.6 0.6

PSMNet [9] 2.44 3.01 1.49 1.89 0.90 1.15 0.5 0.6 0.41

GwcNet-gc (Gwc40-Cat24) 2.16 2.71 1.32 1.70 0.80 1.03 0.5 0.5 0.32

Table 5: KITTI 2012 test set results. The dataset contains 194 images for training and 195 images for testing.

correlation provides good matching cost representations for

the 3D aggregation network, while the aggregation network

with only concatenation volume as inputs needs to learn

the matching similarity function from scratch, which usu-

ally requires more parameters and computational cost. As a

result, the proposed group-wise correlation could be a valu-

able method to be implemented in real-time stereo networks

where the computational costs are limited.

4.6. KITTI 2012 and KITTI 2015

For KITTI stereo 2015 [21], we split the training set

into 180 training image pairs and 20 validation image pairs.

Since the results on the validation set are not stable, we fine-

tune the pretrained model for 3 times and choose the model

with the best validation performance. From Table 3, the per-

formance of both Gwc40-Cat24 and Gwc40 is better than

the models without group-wise correlation (Cat64, Cat64-

original-hg). We submit the Gwc40 model (without con-

catenation volume) with the lowest validation error to the

evaluation server, and the results on the test set are shown

in Table 4. Our model surpasses the PSMNet [2] by 0.21%

and SegStereo [33] by 0.14% on D1-all.

For KITTI 2012 [4], we split the training set into 180

training images and 14 validation image pairs. The results

on the validation set are shown in Table 3. We submit the

best Gwc40-Cat24 model on the validation set to the evalu-

ation server. The evaluation results on the test set are shown

in Table 5. Our method surpasses PSMNet [2] by 0.19% on

3-pixel-error and 0.1px on mean disparity error.

5. Conclusion

In this paper, we proposed GwcNet to estimate dispar-

ity maps for stereo matching, which incorporates group-

wise correlation to build up the cost volumes. The group-

wise correlation volumes provide good matching features

for the 3D aggregation network, which improves the per-

formance and reduces the parameter requirements of the

aggregation network. We showed that when the computa-

tional cost is limited, our model achieves larger gain than

previous concatenation-volume based stereo networks. We

also improved the stacked hourglass networks to further im-

prove the performance and reduce the inference time. Ex-

periments demonstrated the effectiveness of our proposed

method on the Scene Flow datasets and the KITTI dataset.
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