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ABSTRACT Intrusion detection is a relevant layer of cybersecurity to prevent hacking and illegal activities

from happening on the assets of corporations. Anomaly-based Intrusion Detection Systems perform an

unsupervised analysis on data collected from the network and end systems, in order to identify singular

events. While this approach may produce many false alarms, it is also capable of identifying new (zero-

day) security threats. In this context, the use of multivariate approaches such as Principal Component

Analysis (PCA) provided promising results in the past. PCA can be used in exploratory mode or in learning

mode. Here, we propose an exploratory intrusion detection that replaces PCA with Group-wise PCA

(GPCA), a recently proposed data analysis technique with additional exploratory characteristics. A main

advantage of GPCA over PCA is that the former yields simple models, easy to understand by security

professionals not trained in multivariate tools. Besides, the workflow in the intrusion detection with GPCA

is more coherent with dominant strategies in intrusion detection. We illustrate the application of GPCA in

two case studies.

INDEX TERMS Principal component analysis, group-wise principal component analysis, anomaly

detection, intrusion detection.

I. INTRODUCTION

The number of cybersecurity incidents, where strategic assets

of corporations get exposed to cybercrime organisations, has

experienced a boost in the last five years [1]. As a result, cor-

porations are devoting more economic and human resources

for incident detection [2]. Due to the shortage of specialised

professionals, there is a need for efficient tools and mecha-

nisms to aid in the detection, triaging and analysis of inci-

dents. As part of this set of tools, anomaly-based Intrusion

Detection Systems (IDS) [3] are paramount to unveil new

attack strategies.

The use of Principal Component Analysis (PCA) for intru-

sion detection was proposed more than a decade ago [4], [5].

PCA yields a data factorisation based on the criterion of

maximising variance [6], [7]. This factorisation makes it pos-

sible to perform anomaly detection in a complex data set,

with almost any number of features. This capability is of

utmost importance for intrusion detection because a high

The associate editor coordinating the review of this article and approving
it for publication was Leandros Maglaras.

number of features from multiple and variate data sources

can be combined in the IDS [8]. An additional benefit in

the use of PCA is that detected anomalies can be interpreted

using the model [9], [10], reducing the time between detec-

tion and response [11], [12]. This is typically referred to as

the diagnosis step.

PCA can be used either in exploratory mode or in learning

mode. In the exploratory mode [13], PCA is applied to a data

block in order to find anomalies in that block. In the learning

mode [14], PCA is calibrated from a data block to build a

normality model, and then applied to a different block with

new, incoming data, to find the anomalous events. While both

approaches present different characteristics, they share amain

advantage over black box models (e.g. neural networks or

kernel methods): PCA is an interpretable model, and besides

detecting anomalies, it can be useful to visualise and under-

stand the patterns in the data collected from a network [15].

Unfortunately, the PCA factorisation is often challenging

to interpret in highly dimensional data. This difficulty may

hamper the practical application of PCA in software for

intrusion detection. To overcome this limitation, PCA can be
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modified to a so-called simple model structure, improving

model interpretability. This improvement can be achieved by

means of rotation [6] or sparse methods like sparse principal

component analysis (SPCA) [16], [17]. These approaches

have been extensively used to simplify the interpretation of

PCA models in several areas of knowledge, in particular in

biological sciences [18]. However, they are not easy to apply

in practice, requiring a certain level of expertise in their use.

In a recent paper, Camacho et al. proposed the Group-wise

PCA (GPCA) algorithm [19]. GPCA follows an alternative

approach than sparse approaches and rotation techniques to

yield a simple model structure. With GPCA, we can identify

anomalies in the data stream following a straightforward

workflow, which is simple to use and understand by security

professionals not trained in multivariate tools. This has the

following additional advantages over the use of PCA:

i. Domain knowledge can be included in the workflow

[15], as an effective means to reduce false positives,

a main problem of IDSs.

ii. Sustained security problems, difficult to find with PCA,

can be unveiled with GPCA.

In this paper, we propose an exploratory intrusion detection

approach based on GPCA. The paper is organised as follows.

Section II presents the related work. Section III introduces

the use of PCA in exploratory intrusion detection. Section IV

presents GPCA. Section V and VI compare the performance

of PCA and GPCA in two case studies. Section VII discusses

the results and Section VIII brings conclusions.

II. RELATED WORK

IDS paradigms rely on data analysis to determine the occur-

rence of potentially harmful activities. For that, machine and

network events are usually considered as inputs to extract

behavioural patterns [20]. However, the amount and variety

of data to be processed becomes almost unmanageable in

current networked systems, due to their complexity and high

speed. Authors in [21] and [22] present the overall prob-

lem from different technical perspectives: feature selection,

data reduction, information fusion and processing techniques.

Here, we will focus on the data reduction approaches [23].

Rehman et al. present a review of methods used for data

reduction in [24]. Meng et al. [25] propose to reduce the

data volume for wireless intrusion detection in IoT environ-

ments by sampling traffic, either systematically or at random.

Authors in [26] propose a framework in which two feature

reduction algorithms, Canonical Correlation Analysis (CCA)

and Linear Discriminant Analysis (LDA), are used for reduc-

ing the less important features for fast, efficient and accurate

detection of intrusions in netflow records using Spark.

Principal Component Analysis (PCA) is a processing

technique recurrently used in the literature to reduce

dimensionality [27], [28]. The most referred work on PCA

intrusion detection is that of Lakhina et al. [13], where the

authors propose the use of PCA over link counts of traf-

fic for detecting network-wide anomalies. For this, a PCA

model is fitted from the complete traffic capture, following

the exploratory mode, and anomalies are searched for in

the residuals of this model, using the so-called Q-statistic

or SPE. The underneath assumption is that the structural

correlation captured by PCA represents the normal, free of

anomalies, traffic behaviour. This assumption in fact leads

to the main shortcoming of the approach: anomalies of large

magnitude, and therefore of large variance, can pollute the

normality model. This situation, in turn, makes the approach

very sensitive to calibration settings [29].

In another work, Lakhina et al. [30] also explore the com-

bination of counts of bytes, counts of packets and counts of

IP flows as the input to the monitoring system. They state that

for monitoringmore diverse data, the model subspace should

also be inspected for anomalies. For that, they suggest the use

of the Hotellin’s T 2 statistic, also referred to as the D-statistic

when used with PCA. Thus, the detection is based on both the

Q-statistic and the D-statistic, following standard practices

in PCA anomaly detection in the process industry [31], [32].

Camacho et al. [8] follow this approach and extend the data

parameterisation to combine traffic data with any source of

security data, like traditional IDS logs or firewall logs.

Some contributions on multivariate analysis for security

anomaly detection have opted for combining PCA with other

detection schemes. Thus, Aiello et al. [33] combine PCA

withmutual information for profilingDNS tunnelling attacks.

Fernandes et al. [34] combine PCA with a modified version

of Dynamic Time Warping for network anomaly detection.

They also propose an alternative approach based on Ant

Colony Optimization. Jiang et al. [35] apply PCA over a

wavelet transform of the network traffic for network-wide

anomaly detection. Chen et al. [36] use a similar approach

with Multiscale PCA. Peng et al. propose in [37] a clustering

method based on Mini Batch K-means with PCA (PMBKM).

More recently, authors in [38] combine the approaches of

information gain (IG) and PCA with an ensemble classifier

based on a support vector machine (SVM), Instance-based

learning algorithms (IBK), and a multilayer perceptron

(MLP).

Authors in [14] introduce the Multivariate Statistical

Network Monitoring (MSNM) approach, where the PCA

model is used in learning mode, rather than in the exploratory

mode originally proposed by Lakhina. PCA is first employed

to estimate a normality model for both structural and resid-

ual sub-spaces in the calibration data, and this model is

afterwards contrasted with future data for real-time anomaly

detection. In the first step, calibration data needs to pass

through a cleaning process where the D and Q statistics are

employed to explore data for outliers. The identification and

extraction of outliers are typically performed on an iterative

basis, in which the data are visualised, outliers are isolated

and the model re-calibrated. This is often a challenging

process, which may lead to anomaly detection systems too

sensitive or too insensitive to anomalies.

In a recent paper [15], we proposed a new tool for intru-

sion detection where we combined the PCA exploratory

approach with visual analytics and GPCA. In it, GPCA takes
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a secondary role, and its potential contribution to the intru-

sion detection paradigm was not determined. In this paper,

we extend that work by defining a clear workflow for the

application of GPCA in intrusion detection, study how the

analyst can use domain knowledge in the analysis, making it

more efficient, and evaluate the performance of GPCA in two

case studies.

III. PCA FOR EXPLORATORY INTRUSION DETECTION

PCA applies to data sets with M features corresponding

to N observations, which can be arranged in a matrix X

of M columns and N rows. For intrusion detection, fea-

tures (columns) correspond to quantitative values obtained

from any security-related source of data, including traffic and

logs of applications and systems. Typically, the observations

(rows) correspond to consecutive time intervals, which is

suitable for real-time monitoring.

PCA aims to find the subspace of maximum variance in

the M -dimensional feature space. The original features are

linearly transformed into the Principal Components (PCs),

using the eigenvectors ofXT
·X, typically for mean centredX

and sometimes also after auto-scaling (normalising to unit

variance). PCA follows the expression:

X = T · P
t
+ E, (1)

where T is the N × A score matrix, for A the number of PCs,

P is theM × A loading matrix and E is the N ×M matrix of

residuals.

In their original publication, Lakhina et al. [13] propose

to monitor only the residual subspace of PCA. For that, they

compute the Q-statistic (Q-st) or SPE:

Qc = ec e
t
c (2)

where ec is the residual vector in the c-th row of E in eq. (1).

To identify anomalies, Lakhina et al. use the expression pro-

posed by Jackson and Mudholkar [39] for the Upper Control

Limit (UCL) at significance level α:

UCL(Q)α = θ1 ·





zα

√

2θ2h
2
0

θ1
+ 1 +

θ2h0(h0 − 1)

θ21





1
h0

(3)

where θn =
∑rank(X)

a=A+1 (λa)
n, with rank(X) the rank of the

matrix of dataX and λa the eigenvalues of matrix 1
N−1

·E
T
·E;

h0 = 1 −
2θ1θ3
3θ22

; and zα is the 100 · (1 − α)% standardised

normal percentile. The most common approach is to set α to

0.01, in order to define a 99% control limit. All observations

with a value of Qc above the control limit are signalled as

anomalies.

As already discussed, the same authors propose later [30]

the combination of the Q-statistic with the D-statistic (D-st):

Dc = tc3
−1t tc (4)

where tc is the score vector in the c-th row of T in eq. (1) and

3 =
1

N−1
· T

t
· T. They also define the corresponding UCL

at significance level α following [7]:

UCL(D)α =
A(N 2

− 1)

N (N − A)
F(A,(N−A)),α (5)

with F(A,(N−A)),α the F-distribution with A and N −A degrees

of freedom at significant level α.

Figure 1(a) illustrates the intrusion detection approach

based on PCA in exploratory mode, using a scatter plot of

the D-st versus the Q-st. There is only one block of obser-

vations, which are used to calibrate the PCA model, and to

compute the statistics and the corresponding control limits.

Then the same observations are contrasted to those limits in

the monitoring chart in order to identify anomalies. In the

figure, we can identify several anomalies, which exceed the

UCL either in the D-st (observations 110, 44, and to a lesser

extent 109) and/or the Q-s (observations 108, 106, and to a

lesser extent 107).

FIGURE 1. Illustration of PCA detection in (a) exploratory and (b) learning
mode.

In learning mode, a new block of observations is projected

on the PCA model, and new Q-st and D-st are computed.

This is illustrated in Figure 1(b), where we use one block

of observations (red dots) for the calibration of model and

control limits, and then the model is used to monitor new

observations, which can be classified as normal (green dots)

or anomalous (blue dots).
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To combine the D-st and the Q-st into a single triaging

score, [11] defines the Tscore according to the following

equation:

Tc = α · Dc/UCL
D
.99 + (1 − α) · Qc/UCL

Q
.99 (6)

Once an anomaly is identified, either with the D-st and Q-st

or the Tscore, the PCA model can also be used to provide a

first diagnosis of the problem, by identifying those features

related to the anomalous value of an observation. There are

several approaches for that, see [10] for a review. The discus-

sion on the performance of different diagnosis methods is out

of the scope of this paper. The interested reader is referred

to [40].

The diagnosis is illustrated in Figure 2 for one of the obser-

vations in blue color in Figure 1(b). The particular method

used is named oMEDA [41], and noted as d2A forA the number

of PCs. It is a bar plot of the features, built to compare two

groups of observations. Each bar represents the contribution

of the feature to the difference between both groups. A pos-

itive bar implies that the first group of observations presents

a higher value in the corresponding feature than the second

group. A negative bar reflects the opposite. A bar close to

zero means that both groups of observations have a similar

value in that feature. From the plot, we can conclude that the

anomalous observation under analysis (first group) showed

larger values than normal observations (second group) in the

two first features.

FIGURE 2. Illustration of PCA diagnosis.

IV. GPCA

GPCA [19] is a recent sparse PCA variant. Every component

contains non-zero loadings for a single group of correlated

features. GPCA starts with the identification of a set of K

(possibly overlapping) groups of correlated features obtained

from a map M, with elements mi,j ∈ [−1, 1] containing

the strength of the relationship between features i and j.

An example of this map is the correlation matrix of X.

In the original formulation of GPCA, the MEDA approach

(Missing-data for Exploratory Data analysis) [42] was imple-

mented to define M. MEDA uses a missing data strategy

to estimate the correlation between any two variables. This

approach has been found to be effective in filtering out noise

when estimating correlations.

Once the groups have been defined, the GPCA algorithm

first computes K candidate loading vectors, one per each of

the groups of features. From these, only the loading vector

with the largest variance is retained, and residuals are com-

puted. The algorithm iterates until a set of sparse components

is extracted.

Figure 3 illustrates the MEDA plot for a simulated data

set. In the plot, the data features cluster in three, clear groups.

Colours in the plot reflect the level and direction (positive,

red, or negative, blue) of the correlation between features. The

Group Identification Algorithm (GIA) was defined in [19] to

automatically identify groups in a MEDA plot.

FIGURE 3. Illustration of the MEDA map.

Once the groups are identified, they can be visualised using

colours with contextual (e.g., security-related) information.

For instance, we can show the level of security relevance of

the group of features. See Figure 4 for an illustration of this

approach. From this figure, the security analyst can focus on

those feature groups with more security-relevant information.

Using GPCA, we compute the temporal evolution of the

observations corresponding to a feature-group of interest.

See Figure 5 for an illustration, where we can identify anoma-

lies in time (those spikes surpassing the control limits).

FIGURE 4. Illustration of GIA grouping with contextual information.

GPCA has two features that make it especially useful for

forensic analysis and interpretation. On the first hand, GPCA
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FIGURE 5. Illustration of scores of a group of features.

performs a separation of sources very similar to Independent

Component Analysis (ICA) and other blind source separation

techniques. Thus, the traffic is decoupled in different types of

traffic, and the analyst can easily understand how these evolve

in time. On the other hand, unlike ICA, GPCA is sparse,

which means that this separation is linked to a reduced subset

of features, simplifying interpretation.

When detecting intrusions with GPCA, we go from fea-

tures to the observations, that is, we identify anomalies in the

(groups of) features, and from them go to the time evolution

of such anomalies. This workflow is complementary to that

of PCA, and presents the advantages commented in the intro-

duction: sustained security-related trends in the data can be

unveiled, and domain knowledge can be used to reduce false

positives.

V. CASE STUDY I: VAST CHALLENGE

This first case of study serves to illustrate the workflow for

exploratory intrusion detection using GPCA and the main

differences with the PCA approach.

A. EXPERIMENTAL FRAMEWORK

The data comes from theVAST 2012 2ndmini-challenge [43]

and contains information captured in a corporate network

during a timeframe of two days. The network infrastructure

is comprised of approximately 1000 servers and 4000 work-

stations and is running 24 hours a day. Most of the com-

pany operations are carried out inside the network. However,

some financial transactions have to go to data centres out-

side the network. During the capture, the users experienced

several technical issues in their systems. Some staff mem-

bers informed that their workstations were infected by spy-

ware and that suspicious messages from a previously unseen

antivirus software started popping up on their computers.

From the official solution of the challenge, we know that

a botnet compromised the network, causing the aforemen-

tioned performance problems and the emergence of the

spyware.

The VAST2012 data set contains two semi-structured data

sources: logs from an Intrusion Detection System (IDS)

and logs from a Cisco ASA firewall (FW). A total

of 23,711,341 data records from the FW and 35,948 records

from the IDS are presented in CSV and in raw format.

We parsed the raw data into a total of 265 features, 122 for the

FW and 143 for the IDS. Tables 1 and 2 summarise the list

of features, as well as the kind of information they contain.

The features are computed for 1 minute intervals, yielding a

TABLE 1. Firewall feature overview.

TABLE 2. IDS feature overview.

FIGURE 6. Tscore values for PCA anomaly detection.

2345 × 265 matrix of parsed data. More details can be found

in [12]. After auto-scaling, weights from 1 to 10 are assigned

to each feature according to their security relevance.

Reproducibility of the results in this case study is possible

by downloading the virtual machine at https://nesg.ugr.es/

veritas/index.php/mbda

B. EXPLORATORY INTRUSION DETECTION

The results of applying the PCA methodology in this case

study are summarised in Table 3. Figure 6 shows the time

evolution of the Tscore, Eq. (6), according to which the

anomalies were triaged. For more details on the derivation of

the chart and table, please refer to [12]. The structure of the

table corresponds to the workflow in PCA intrusion detection.

First, a set of observations are triaged as the most relevant

from the security perspective. Five observations are high-

lighted over the rest. In particular, an interval of 20 minutes

around midnight of the second day includes 4 out of these

5 anomalies. To further investigate these anomalies, the PCA

diagnosis points to the features in the fourth column of the

table. Combining both the information in columns 3 and 4,

the specific raw log entries corresponding to the anomalies

can be identified and interpreted, as explained in [12].

The interpretation of the anomalies is listed in the last

column of Table 3. First, several data exfiltration attempts
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TABLE 3. VAST2102: Anomaly Report with PCA [12].

TABLE 4. VAST2102: Anomaly Report with GPCA.

by Telnet and SSH were made. Subsequently, an informa-

tion leakage carried out using SNMP was detected by the

IDS. Multiple vulnerability scans targeting remote desktop

services like VNC and RDP followed. Some 17 hours later,

a coordinated attack from multiple infected systems targeted

the DNS server. All these observations correspond to land-

marks in the killchain of an attack, and were effectively

highlighted by the PCA anomaly detector. However, part of

useful information for diagnosing the problem is missing in

this security report.

In comparison, the security report obtained with GPCA

is shown in Table 4. We extracted 6 Group-wise Principal

Components (GPCs), each of them of decreasing variance

with respect to the previous one, using the correlation map

computed by MEDA and shown in Figure 7. Each GPC

models a group of features identified in the MEDA plot.

These are shown in the third column of the table. By taking

the maximum of the weight of the selected features, with

values between 1 and 10, we can rate the GPCs according

to their security relevance. This is shown in column 4. This

relevance can be made visual as illustrated in Figure 7, so that

a relevance of 10 is shown as a square in red colour, and a

FIGURE 7. MEDA plot.

relevance below 3 is shown as a square in green colour. This

is useful to guide the analyst, who would focus her attention

in GPCs of high relevance.

Following this idea, the most relevant GPC is GPC2,

followed by GPC1, GPC3 and GPC5. These are shown in

red and orange colours in Figure 7. The temporal evolution

113086 VOLUME 7, 2019



J. Camacho et al.: GPCA for Exploratory Intrusion Detection

FIGURE 8. Group-wise Principal Components: variance and relevance between parenthesis.

of the GPCs, obtained with GPCA, is shown in Fig. 8.

Starting with GPC2, in both the plot and the table we can

see that there was an attack to the DNS server right at

the beginning of the capture, at 05/04 18:07, much before

than when it was noticed with PCA. GPC1 and GPC3 show

the data exfiltration and scanning attempts also highlighted

by PCA. However, GPC4, GPC5 and GPC6 show a sus-

tained behaviour, not anomalous but present during the

entire capture, that went unnoticed by the PCA anomaly

detector. In particular, GPC5 and GPC6 reflect the use

of IRC traffic, something which is not permitted accord-

ing to the security policies of a bank network, and that

shows the command and control communication of the

botnet.

VI. CASE STUDY II: ISP NETWORK

In this second test case, we are interested in the analysis of

data coming from a real network scenario, so that we can test

the usefulness of GPCA for security analysts when applied to

real traffic.

A. EXPERIMENTAL FRAMEWORK

For our purpose, we select the UGR’16 dataset [44]. This is a

dataset obtained from a Tier-3 ISP where traffic is generated

by hosted of companies, web and email servers, recursive

DNS servers, virtualisation environments, etc. In this net-

work, a set of sensors were deployed in the border routers

TABLE 5. Features of the calibration and the test sets in the
UGR’16 dataset.

so that ingress and egress network traffic flows were mon-

itored. The dataset consists of Netflow traces corresponding

to more than 16,000M connections for more than four months

in 2016. It is divided into two sets: a calibration set for

building models from ‘‘normal’’ traffic and a test set, where

attacks using real hacking tools were generated from a set

of 25 virtual machines. Details about the dataset are shown

in Table 5.

We are interested in evaluating the differences in the work-

flows of GPCA and PCA when an exploratory analysis is

applied to a subset of the dataset. For this purpose, we choose

a 3 hours trace from t0 = [08/06/2016 18:00h] to tf =

[08/06/2016 20:59h]. In the first hour of the trace, DoS and

scan attacks are executed in the following manner (see details

in [44]):

• At t0: DoS11. A low rate DoS attack from one machine

to another (one-to-one) is performed for 3 minutes.
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The attack consists in sending SYN packets directed to

port 80 (HTTP) in the victim machine.

• At t0+10m:DoS53s. The same low rate DoS attack as in

DoS11 is performed for 3minutes, but now it is launched

from 5machines and directed to 3 machines. The attacks

are all synchronized in time. This attack generates five

times more traffic than the DoS11 attack.

• At t0 + 20m: DoS53a. This attack is similar to DoS53s,

but now the attack is spread out during 10 minutes so

that during the first 3 minutes two machines attack a

given victim. Then, after one minute with no attacks,

a new attack burst is struck during 3 minutes (two

machines against one). Finally, after anotherminutewith

no attacks, the last burst is started from a single machine

to a victim. Note that these three bursts last 10 minutes.

In the first two bursts, the traffic volume is higher than

in DoS11 but lower than DoS53s. For the third burst,

the amount of traffic is similar to DoS11.

• At t0+40m: Scan11. A port scan attack is performed for

3 minutes from an attacker machine to a victim.

• At t0 + 50m: Scan44. During 3 minutes, four machines

are scanning four different victims.

During the second hour in this trace, a Neris botnet [45]

is communicating with 20 infected machines in the network.

Finally, the third hour is free of attacks (background traffic

only).

In order to analyse the trace with PCA and GPCA, we first

pre-process it and obtain 134 numeric features for every

minute of traffic. These features are calculated following the

feature-as-a-counter approach [14]. For example, the feature

sport_http accounts for the number of flows in a minute

that have the source port equal to 80. A summary of the

features collected is shown in Table 6. Thus, for the three

hours trace, our dataset is a matrix of 180 rows (observations,

in minutes) for 134 features.

TABLE 6. Variable values considered as features in our detection system.

B. EXPLORATORY INTRUSION DETECTION

Beginning with the PCA analysis, a security analyst would

first obtain the Tscore values for the different observa-

tions (minutes) as shown in Fig. 9. Then, for the main anoma-

lies pointed out by the Tscore (signalled with red circles

in Fig. 9), he/she would proceed with a detailed analysis

FIGURE 9. T-score values for PCA anomaly detection UGR’16 trace
scenario.

i) identifying the features responsible for the anomaly

(oMEDA analysis), ii) selecting those raw traces (connec-

tions) involved in the anomaly, and iii) interpreting them.

Now we explain the analysis we have done for these

anomalies. A summary is given in Table 7.

• Observation 11: The involved features indicate that the

anomaly is triggered by HTTP traffic (dport_http,

sport_http), with connections that transport a

low number of bytes in the range [150, 1000)

(nbytes_low), that use ports which are in the

range [0, 1024] (sport_reserved (in this case only

port 80 – HTTP is used), and are failed connections

(tcpflags_RST). Our interpretation of this traffic is

that the anomaly is generated by a DoS attack struck

with HTTP traffic. This attack pattern corresponds to

the DoS53s attack in the UGR’16 trace.

• Observation 28: The involved features point out to ICMP

traffic (protocol_icmp, sport_zero) and Tel-

net traffic (sport_telnet). After observing the raw

traces for Telnet and ICMP, we conclude that, while we

do not appreciate any odd behaviour in Telnet traffic,

an anomaly in ICMP traffic is actually present. It is an

ICMP Scan from the IP 224.231.46.145 to the whole

range of addresses in the ISP.

• Observation 51: The number of features involved in

this anomaly is large, and all of them are related to

different ports, both as source and destination. This is

a clear indication of a Port Scanning attack. It actually

corresponds to the UGR’16 Scan44 attack.

• Observation 80: Now the features are clearly pointing

out to an anomaly in the DNS traffic (sport_dns,

dport_dns, protocol_udp). After exploring the

raw traces in this minute we find that infected bots (Neris

botnet) are the responsible nodes for this anomaly.

• Observation 101: The features are indicating that the

anomaly is caused by HTTPS traffic (dport_https)

with the URGENT flag activated (tcpflags_URG).

We explore the values of these two features (see Fig. 10),

and find out that the amount of packets with URG flag
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TABLE 7. UGR’16: Anomaly Report with PCA using the Multivariate Big Data Analysis (MBDA) approach [12] for the UGR’16 trace.

FIGURE 10. Time evolution of features tcpflags_URG and dport_https

in the UGR’16 trace.

is very reduced (around 80) and the IP addresses from

where this traffic is generated do not follow a clear

pattern. Thus, we conclude that this anomaly is not an

actual attack.

Now we are interested in showing how the GPCA work-

flow would simplify the security analyst goal of interpreting

the different anomalies. Following the GPCA methodology,

an analyst would first obtain theMEDAplot shown in Fig. 11,

revealing the groups of variables that exhibit a minimum

correlation level. Then, from this set of groups, the analyst

can prioritise the most important GPCs, mainly according to

the amount of variance captured and the relevance of features

included in the groups according to her expert knowledge.

Like in the previous example, we have introduced the expert

knowledge by establishing a weighted score (in the interval

[1, 10]) to every possible feature as shown in Table 8. In this

example, we are specially concerned about IRC (relevance 8),

Emule (relevance 8) and Metasploit traffic (relevance 10),

as these types of traffic should not normally exist in this net-

work.We also want to prioritise somehow anomalies in which

the amount of traffic is very high or very low (relevance 5).

In Table 9, we show the analysis for the six most relevant

GPCs. First, the analyst would give an interpretation of every

TABLE 8. Weights assigned to the features in the UGR’16 dataset as
expert knowledge from the security analyst.

group of features. Our interpretation (last column of Table 9)

is obtained as follows:

• GPC1. This group is formed by a large number of fea-

tures related to different ports (source or destination).

Anomalies within this group will have the characteristic

of being traffic that uses many different ports. Thus,

we interpret that this group represents port scan anoma-

lies. The relevance of group 1 is given by the most

relevant feature included in this group, being in this case

equal to 8 (dport_emule).

• GPC2. Here, the features are indicating that the

abnormality is given by an unusual number of con-

nections with very low number of packets (< 4)

(npackets_verylow), which are TCP flows

with SYN flag activated from public IP addresses

(ip_public, protocol_tcp, tcpflags_SYN).

Our interpretation is that this is generated when abnor-

mal bursts of traffic occur. The relevance of this group is

determined by the npackets_verylow feature, thus

adopting a value of 5.

• GPC3. Observing the features included by GPCA in

this group, we deduce that the anomalies detected are

related to connections with a reduced number of bytes

(nbytes_low), using HTTP port and RST flag. Our

interpretation, in this case, is that this group represents

HTTP DoS attacks. The relevance of this group is 1.

• GPC4. This group represents anomalies in DNS traffic

(port_dns), using UDP (protocol_udp) traffic.

• GPC5. In this case, the features selected by the algo-

rithm are not pointing us to an intuitive interpretation
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FIGURE 11. MEDA plot for the UGR’16 trace in the GPCA analysis.

TABLE 9. UGR’16: Anomaly Report with GPCA for the UGR’16 trace.

of any type of anomaly. Thus, we leave this group with

no interpretation for further inspection of the anoma-

lies signalled by the group of features. It is important

to recognise that even using GPCA, which eases the

interpretability of the information, it is possible to find

groups that are not meaninful in terms of security.

• GPC6. This group is directly related to ICMP anomalies

(sport_zero, protocol_icmp).

The final step in the workflow followed by the analyst

is the evaluation of the evolution of the scores associated

to every GPC. This is represented in Fig. 12, where we see

the anomalies identified by labels in every GPCA group.

Let us analyse these results following a per attack type

classification:

• Scan attacks. These attacks are directly revealed by

GPC1 (Port Scan Anomalies), but also GPC2 (burst of

traffic anomalies) is able to reveal the amount of traffic

generated in Scan44. Yet, GPC2 is not able to signal

Scan11 as an anomaly, while GPC1 is.

• DoS attacks.We can check howDoS attacks are detected

by GPC2 (bursts of traffic anomalies) and GPC3 (HTTP

DoS), and they are struck with HTTP traffic. We are also
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FIGURE 12. Evolution of scores in the different GPCA Groups for the UGR’16 trace.

able to see that DoS53s is detected with a higher level of

scores, as the traffic volume generated in this attack is

higher than in DoS11 and DoS53a.

• DNS anomaly generated by the Neris Botnet. This

anomaly is directly pointed out at observation #80 by

GPC3 (DNS anomalies), but it is also detected by GPC2

(bursts of traffic anomalies). Yet, the detection level in

the case of GPC2 is more reduced than in GPC3, mainly

because GPC2 only considers TCP traffic.

• ICMP anomaly. This anomaly is detected by GPC6 at

observation #28.

VII. DISCUSSION

Through the previous two examples, we observe how both

workflows (PCA and GPCA) can detect anomalies. We claim

that the GPCA workflow is a good candidate to complement

PCA, mainly because it is more natural for security analysts

for the following reasons:

a) It allows incorporating expert knowledge in the model.

We have done it with a weight associated with every

feature, but alternative models can be used.

b) It allows prioritising the analysis by selecting specific

groups based on the amount of variance of the com-

ponents and/or expert knowledge. In the case of PCA,

note that the analyst can only prioritise the anomalies

to be studied according to the Tscore level (e.g., Fig. 9),

which could not be the best indicator of the real rele-

vance of incidents.

c) Once the interpretation of groups is done in GPCA,

the analysis of additional anomalies is straightforward,

while in PCA a new (diagnosis) analysis is needed per

any new anomaly that appears.

d) In some cases, GPCAwill be able to detect new anoma-

lies that remain hidden to PCA because they are small

and/or sustained. If these anomalies fall in the groups

prioritised in GPCA, they will be signalled with a

higher probability. This is the case of IRC traffic in case
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study I and Scan11 in case study II, which remained

hidden in PCA, while it can be identified in GPCA.

VIII. CONCLUSION

In this paper, we propose an exploratory anomaly detection

methodology based on the Group-wise Principal Component

Analysis (GPCA) method. This methodology has shown to

be powerful and easy to understand by security practitioners

without strong knowledge onmultivariate analysis. It can also

be combined with expert knowledge, allowing the analyst

to tune the system according to her experience. The appli-

cation of the approach is illustrated with two case studies.

We believe this method is a useful addition to the security

analyst toolbox.
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