
Group-wise Reinforcement Feature Generation for Optimal and
Explainable Representation Space Reconstruction
Dongjie Wang

University of Central Florida
FL, USA

wangdongjie@knights.ucf.edu

Yanjie Fu†
University of Central Florida

FL, USA
yanjie.fu@ucf.edu

Kunpeng Liu
Portland State University

OR, USA
kunpengliu0827@gmail.com

Xiaolin Li
Nanjing University
Jiangsu, China
lixl@nju.edu.cn

Yan Solihin
University of Central Florida

FL, USA
yan.solihin@ucf.edu

ABSTRACT
Representation (feature) space is an environment where data points
are vectorized, distances are computed, patterns are characterized,
and geometric structures are embedded. Extracting a good repre-
sentation space is critical to address the curse of dimensionality,
improve model generalization, overcome data sparsity, and increase
the availability of classic models. Existing literature, such as feature
engineering and representation learning, is limited in achieving
full automation (e.g., over heavy reliance on intensive labor and
empirical experiences), explainable explicitness (e.g., traceable re-
construction process and explainable new features), and flexible
optimal (e.g., optimal feature space reconstruction is not embed-
ded into downstream tasks). Can we simultaneously address the
automation, explicitness, and optimal challenges in representation
space reconstruction for a machine learning task? To answer this
question, we propose a group-wise reinforcement generation per-
spective. We reformulate representation space reconstruction into
an interactive process of nested feature generation and selection,
where feature generation is to generate newmeaningful and explicit
features, and feature selection is to eliminate redundant features
to control feature sizes. We develop a cascading reinforcement
learning method that leverages three cascading Markov Decision
Processes to learn optimal generation policies to automate the se-
lection of features and operations and the feature crossing. We
design a group-wise generation strategy to cross a feature group,
an operation, and another feature group to generate new features
and find the strategy that can enhance exploration efficiency and
augment reward signals of cascading agents. Finally, we present
extensive experiments to demonstrate the effectiveness, efficiency,
traceability, and explicitness of our system.

1 INTRODUCTION
Classic Machine Learning (ML) mainly includes data prepossessing,
feature extraction, feature engineering, predictive modeling, and
evaluation. The evolution of deep AI, however, has resulted in a new
principled and widely used paradigm: i) collecting data, ii) comput-
ing data representations, and iii) applying ML models. Indeed, the
success of ML algorithms highly depends on data representation [1].
Building a good representation space is critical and fundamental

†Corresponding author.

because it can help to 1) identify and disentangle the underlying ex-
planatory factors hidden in observed data, 2) easy the extraction of
useful information in predictive modeling, 3) reconstruct distance
measures to form discriminative and machine-learnable patterns,
4) embed structure knowledge and priors into representation space
and thus make classic ML algorithms available to complex graph,
spatiotemporal, sequence, multi-media, or even hybrid data.

Feature
Space

Reconstruction
ML Task
Evaluator

Assessment

Feedback

Feature
Space

Optimal
Feature Space

OutputInput

Figure 1: We want to uncover the optimal feature space that
is explainable and performs optimally in a downstream ML

task by iteratively reconstructing the feature space.

In this paper, we study the problem of learning to reconstruct
an optimal and explainable feature representation space to advance
a downstream ML task (Figure 1). Formally, given a set of origi-
nal features, a prediction target, and a downstream ML task (e.g.,
classification, regression, ranking, detection), the objective is to au-
tomatically reconstruct an optimal and explainable set of features
for the ML task.

Prior literature has partially addressed the problem. The first
relevant work is feature engineering, which designs preprocess-
ing, feature extraction, selection [12, 18], and generation [16] to
extract a transformed representation of the data. These techniques
are essential but labor-intensive, showing the low applicability of
current ML practice in the automation of extracting a discrimina-
tive feature representation space. Issue 1 (full automation): how
can we make ML less dependent on feature engineering, construct ML
systems faster, and expand the scope and applicability of ML? The
second relevant work is representation learning, such as factoriza-
tion [9], embedding [10], and deep representation learning [29, 31].
These studies are devoted to learning effective latent features. How-
ever, the learned features are implicit and non-explainable. Such
traits limit the deployment of these approaches in many application
scenarios (e.g., patient and biomedical domains) that require not
just high predictive accuracy but also trusted understanding and
interpretation of underlying drivers. Issue 2 (explainable explic-
itness): how can we assure that the reconstructing representation

ar
X

iv
:2

20
5.

14
52

6v
1

 [
cs

.L
G

]
 2

8
M

ay
 2

02
2

space is traceable and explainable? The third relevant work is learn-
ing based feature transformation, such as principle component
analysis [3], traversal transformation graph based feature gener-
ation [16], sparsity regularization based feature selection [8, 13].
These methods are either deeply embedded into or totally irrelevant
to a specific ML model. For example, LASSO regression extracts
an optimal feature subset for regression, but not for any given ML
model. Issue 3 (flexible optimal): how can we create a framework
to reconstruct a new representation space for any given predictor?
The three issues are well-known challenges. Our goal is to develop
a new perspective to address these issues.

OurContributions: ATraceableGroup-wiseReinforcement
Generation Perspective. We propose a novel principled frame-
work to address the automation, explicitness, optimal issues in rep-
resentation space reconstruction. We view feature generation and
selection from the lens of Reinforcement Learning (RL). We show
that learning to reconstruct representation space can be accom-
plished by an interactive process of nested feature generation and
selection, where feature generation is to generate new meaningful
and explicit features, and feature selection is to remove redundant
features to control feature sizes. We highlight that the human in-
tuition and domain expertise in feature generation and selection
can be formulated as machine-learnable policies. RL is an emerging
technique to automatically generate experiences data and learn
globally optimized policies. Such traits have sparked considerable
interest in recent years.We demonstrate that the iterative sequential
feature generation and selection can be generalized as a RL task. We
find that crossing features of high information distinctness is more
likely to generate meaningful variables in a new representation
space, and, thus, leveraging group-group crossing can accelerate
the learning efficiency.

Summary of Proposed Approach. Based on our findings, we
develop a generic and principled framework: group-wise reinforce-
ment feature generation, for optimal and explainable representation
space reconstruction. This framework learns a representation space
reconstructor that can 1) Goal 1: explainable explicitness: pro-
vide traceable generation process and understand the meanings
of each generated feature. 2) Goal 2: self optimization: automat-
ically generate an optimal feature set for a downstream ML task
without much professional experience and human intervention;
3) Goal 3: enhanced efficiency and reward augmentation: en-
hance the generation and exploration speed in a large feature space
and augment reward incentive signal to learn clear policies.

To achieve Goal 1, we propose an iterative feature generation
and selection strategy, where the generation step is to apply a math-
ematical operation to two features to create a new feature and the
selection step is to control the feature set size. This strategy allows
us to explicitly trace the generation process and extract the semantic
labels of generated features. To achieve Goal 2, we decompose fea-
ture generation into three Markov Decision Processes (MDPs): one
is to select the first meta feature, one is to select an operation, and
one is to select the secondmeta feature.We develop a new cascading
agent structure to coordinate agents to share states and learn better
selection policies for feature generation. To achieve Goal 3, we de-
sign a group-operation-group based generation approach, instead
of intuitive feature-operation-feature based generation, in order to
accelerate representation space reconstruction. In particular, we

first cluster the original features into different feature groups by
maximizing intra-group feature cohesion and inter-group feature
distinctness, where we propose a novel feature-feature information
distance. We then let agents select and cross two feature groups to
generate multiple features each time. The benefits of this strategy
are two folds: i) it explores feature space faster; ii) if we use feature-
operation-feature based generation to add a single feature each
time, the state of a feature set cannot be sufficiently changed, thus,
restricting the agents from gaining enough reward to learn effective
policies. Instead, the group-operation-group based generation can
alleviate this issue by augmenting the reward signal.

2 DEFINITIONS AND PROBLEM STATEMENT
2.1 Important Definitions

Definition 2.1. Feature Group. We aim to reconstruct the fea-
ture space of such datasets D < F , 𝑦 >. Here, F is a feature set,
in which each column denotes a feature and each row denotes a
data sample; 𝑦 is the target label set corresponding to samples. To
effectively and efficiently produce new features, we divide the fea-
ture set F into different feature groups via clustering, denoted by
C. Each feature group is a feature subset of F .

Definition 2.2. Operation Set.We perform a mathematical op-
eration on existing features in order to generate new ones. The
collection of all operations is an operation set, denoted by O. There
are two types of operations: unary and binary. The unary opera-
tions include “square”, “exp”, “log”, and etc. The binary operations
are “plus”, “multiply”, “divide”, and etc.

Definition 2.3. Cascading Agent. To address the feature gener-
ation challenge, we develop a new cascading agent structure. This
structure is made up of three agents: two feature group agents and
one operation agent. Such cascading agents share state information
and sequentially select feature groups and operations.

2.2 Problem Statement
The research problem is learning to reconstruct an optimal and
explainable feature representation space to advance a downstream
ML task. Formally, given a dataset 𝐷 < F , 𝑦 > that includes an
original feature set F and a target label set𝑦, an operator set O, and
a downstream ML task 𝐴 (e.g., classification, regression, ranking,
detection), our objective is to automatically reconstruct an optimal
and explainable feature set F ∗ that optimizes the performance
indicator 𝑉 of the task 𝐴. The optimization objective is to find a
reconstructed feature set F̂ that maximizes:

F ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 F̂ (𝑉𝐴 (F̂ , 𝑦)), (1)

where F̂ can be viewed as a subset of a combination of the orig-
inal feature set F and the generated new features F 𝑔 , and F 𝑔 is
produced by applying the operations O to the original feature set
F via a certain algorithmic structure.

3 OPTIMAL AND EXPLAINABLE FEATURE
SPACE RECONSTRUCTION

We present an overview, and then detail each technical component
of our framework.

Feature Set

Mutual Information based
Feature-Feature Distance

Similar Feature-Feature
Pair Identification

Clustering via Merging
Point Assignment

Feature
Grouping

Feature
Group 1

Feature
Group 2

Feature
Group K

…

Operation
Set Feature Group Agent 1

Operation Agent

Feature Group Agent 2

Cascading
 Agents

Selected
Feature
Group 1

Selected
Operation

Selected
Feature
Group 2

Is operation unary?

Relevance Prioritized Unary
Feature Generation

Cosine Similarity Prioritized
Feature-Feature Crossing

N

Y

Group-Group
Feature Interaction

New Feature Set

Feature Selection

Downstream Task

Feedback

Iterate

Figure 2: An overview of GRFG. First, we cluster the feature set into feature groups. Second, we employ cascading agents to
select two feature groups and one operation. Next, we conduct group-group feature interaction to generate new features and
combine them with original features to create a new feature set. Then, the updated feature set is fed into a downstream task
to assess the selection process of cascading agents for parameter update. Meanwhile, we adopt feature selection to control
the size of feature set and iterate the process until the best feature set is discovered or the maximum number of iterations

reaches.

3.1 Framework Overview
Figure 2 shows our proposed framework,Group-wiseReinforcement
FeatureGeneration (GRFG). In the first step, we cluster the original
features into different feature groups by maximizing intra-group
feature cohesion and inter-group feature distinctness. In the sec-
ond step, we leverage a group-operation-group strategy to cross
two feature groups to generate multiple features each time. For
this purpose, we develop a novel cascading reinforcement learning
method to learn three agents to select the two most informative
feature groups and the most appropriate operation from the opera-
tion set. As a key enabling technique, the cascading reinforcement
method will coordinate the three agents to share their perceived
states in a cascading fashion, i.e., (agent1, state of the first feature
group), (agent2, fused state of the operation and agent1’s state),
and (agent3, fused state of the second feature group and agent2’s
state), in order to learn better choice policies. After the two feature
groups and operation are selected, we generate new features via
a group-group crossing strategy. In particular, if the operation is
unary, e.g., sqrt, we choose the feature group of higher relevance to
target labels from the two feature groups, and apply the operation
to the more relevant feature group to generate new features. if the
operation is binary, we will choose the K most distinct feature-pairs
from the two feature groups, and apply the binary operation to the
chosen feature pairs to generate new features. In the third step, we
add the newly generated features to the original features to create
a generated feature set. We feed the generated feature set into a
downstream task to collect predictive accuracy as reward feedback
to update policy parameters. Finally, we employ feature selection
to eliminate redundant features and control the dimensonality of
the newly generated feature set, which will be used as the original
feature set to restart the iterations to regenerate new features until
the maximum number of iterations is reached.
Comparison with prior literature. Automated feature engineer-
ing has recently attracted substantial research attention and has

achieved great success. The transformation graph [16] and neu-
ral feature search [4] are two typical methods that are closest to
our task in existing literature. Instead of conducting personalized
feature-feature crossing, the work in [16] generated new features
by applying the selected operation to the entire feature set. This
generation strategy ignores features heterogeneity in a feature set,
resulting in low-quality and sub-optimal features. The study in [4]
trained a single recurrent neural network (RNN) for each feature
to learn its feature transformation sequence for feature generation.
This strategy overlooks the feature distinctness in a feature set,
restricting the method from producing meaningful combined fea-
tures. Meanwhile, as the size of the feature set grows, the number of
RNNs grows accordingly, which makes this work inefficient when
dealing with large datasets. To fill these gaps, our framework itera-
tively generates meaningful features via group-wise feature-feature
interactions, which takes the feature heterogeneity into account.
Moreover, we decompose the feature generation process into three
MDPs and propose a simple cascading agent structure for it. Ad-
ditionally, our approach is a self-learning end-to-end framework,
which can be easily and flexibly applied to many scenarios.

3.2 Generation-oriented Feature Clustering
One of our key findings is that group-wise feature generation can
accelerate the generation and exploration, and, moreover, augment
reward feedback of agents to learn clear policies. Inspired by this
finding, our system starts with generation oriented feature clus-
tering, which aims to create feature groups that are meaningful
for group-group crossing. Our another insight is that crossing fea-
tures of high (low) information distinctness is more (less) likely to
generate meaningful variables in a new representation space. As
a result, unlike classic clustering, we aim to cluster features into
different feature groups, with the optimization objective of maximiz-
ing inter-group feature information distinctness while minimizing
intra-group feature information distinctness. To achieve this goal,

we propose theM-Clustering for feature clustering, which starts
with each feature as a feature group and then merges the closest
feature group pair at each iteration.

DistanceBetweenFeatureGroups:AGroup-levelRelevance-
Redundancy Ratio Perspective. To achieve the goal of minimiz-
ing intra-group feature distinctness and maximizing inter-group
feature distinctness, we develop a new distance measure to quantify
the distance between two feature groups. We highlight two inter-
esting findings: 1) relevance to predictive target: if the relevance
between one feature group and predictive target is similar to the
relevance of another feature group and predictive target, the two
feature groups are similar; 2) mutual information: if the mutual
information between the features of the two groups are large, the
two feature groups are similar. Based on the two insights, we de-
vise a feature group-group distance. The distance can be used to
evaluate the distinctness of two feature groups, and, further, un-
derstand how likely crossing the two feature groups will generate
more meaningful features. Formally, the distance is given by:

𝑑𝑖𝑠 (C𝑖 , C𝑗) =
1

|C𝑖 | · |C𝑗 |
∑︁
𝑓𝑖 ∈C𝑖

∑︁
𝑓𝑗 ∈C𝑗

|𝑀𝐼 (𝑓𝑖 , 𝑦) −𝑀𝐼 (𝑓𝑗 , 𝑦) |
𝑀𝐼 (𝑓𝑖 , 𝑓𝑗) + 𝜖

, (2)

where C𝑖 and C𝑗 denote two feature groups, |C𝑖 | and |C𝑗 | respec-
tively are the numbers of features in C𝑖 and C𝑗 , 𝑓𝑖 and 𝑓𝑗 are two
features in C𝑖 and C𝑗 respectively, 𝑦 is the target label vector. In
particular, |𝑀𝐼 (𝑓𝑖 , 𝑦) − 𝑀𝐼 (𝑓𝑗 , 𝑦) | quantifies the difference in rel-
evance between 𝑦 and 𝑓𝑖 , 𝑓𝑗 . If |𝑀𝐼 (𝑓𝑖 , 𝑦) − 𝑀𝐼 (𝑓𝑗 , 𝑦) | is small, 𝑓𝑖
and 𝑓𝑗 have a more similar influence on classifying 𝑦;𝑀𝐼 (𝑓𝑖 , 𝑓𝑗) + 𝜖
quantifies the redundancy between 𝑓𝑖 and 𝑓𝑗 . 𝜖 is a small value that
is used to prevent the denominator from being zero. If𝑀𝐼 (𝑓𝑖 , 𝑓𝑗) +𝜖
is big, 𝑓𝑖 and 𝑓𝑗 share more information.

Feature Group Distance based M-Clustering Algorithm:
We develop a group-group distance instead of point-point distance,
and under such a group-level distance, the shape of the feature
cluster could be non-spherical. Therefore, it is not appropriate to
use K-means or density based methods. Inspired by agglomerative
clustering, given a feature set F , we propose a three step method:
1) INITIALIZATION: we regard each feature in F as a small feature
cluster. 2) REPEAT: we calculate the information overlap between
any two feature clusters and determine which cluster pair is the
most closely overlapped. We then merge two clusters into one and
remove the two original clusters. 3) STOP CRITERIA: we iterate
the REPEAT step until the distance between the closest feature
group pair reaches a certain threshold. Although classic stop cri-
teria is to stop when there is only one cluster, using the distance
between the closest feature groups as stop criteria can better help
us to semantically understand, gauge, and identify the information
distinctness among feature groups. It eases the implementation in
practical deployment.

3.3 Cascading Reinforcement Feature Groups
and Operation Selection

To achieve group-wise feature generation, we need to select a fea-
ture group, an operation, and another feature group to perform
group-operation-group based crossing. Two key findings inspire
us to leverage cascading reinforcement. Firstly, we highlight that

Feature Group Agent 1

Explore Exploit

State

Policy
Network

Action
Selected

Feature Group1

Operation Agent

Explore Exploit

State

Policy
Network

Action
Selected
Operation

Feature Group Agent 2

Explore Exploit

State

Policy
Network

Action
Selected

Feature Group2

Final Output
<latexit sha1_base64="N7T48ki+z8H7ZAKUDFO6nJcmRls=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdVkUxGUF+4B2KJk0bUMzmTG5UyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwaj28xvjrk2IlKPOIm5H9KBEn3BKFrJ74QUh4zK9G7axW6p7FbcGcgy8XJShhy1bumr04tYEnKFTFJj2p4bo59SjYJJPi12EsNjykZ0wNuWKhpy46ez0FNyapUe6UfaPoVkpv7eSGlozCQM7GQW0ix6mfif106wf+2nQsUJcsXmh/qJJBiRrAHSE5ozlBNLKNPCZiVsSDVlaHsq2hK8xS8vk8Z5xbuseA8X5epNXkcBjuEEzsCDK6jCPdSgDgye4Ble4c0ZOy/Ou/MxH11x8p0j+APn8wcNApJJ</latexit>Ft

Feature
Set

<latexit sha1_base64="0ThhcZxHO7UMy0i+HQiE8n588pw=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURUZfFblxWsA9oY5hMJ+3QySTMTIQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024waeZ+95FKxWJxr6cJ9SI8EixkBGsj+XZ1EGE9JphnzZmvH1zfrjl1Zw60StyC1KBAy7e/BsOYpBEVmnCsVN91Eu1lWGpGOJ1VBqmiCSYTPKJ9QwWOqPKyefAZOjXKEIWxNE9oNFd/b2Q4UmoaBWYyj6mWvVz8z+unOrz2MiaSVFNBFofClCMdo7wFNGSSEs2nhmAimcmKyBhLTLTpqmJKcJe/vEo653X3su7eXdQaN0UdZTiGEzgDF66gAbfQgjYQSOEZXuHNerJerHfrYzFasoqdI/gD6/MHrc2TGg==</latexit>

C1
t

<latexit sha1_base64="0ThhcZxHO7UMy0i+HQiE8n588pw=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURUZfFblxWsA9oY5hMJ+3QySTMTIQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024waeZ+95FKxWJxr6cJ9SI8EixkBGsj+XZ1EGE9JphnzZmvH1zfrjl1Zw60StyC1KBAy7e/BsOYpBEVmnCsVN91Eu1lWGpGOJ1VBqmiCSYTPKJ9QwWOqPKyefAZOjXKEIWxNE9oNFd/b2Q4UmoaBWYyj6mWvVz8z+unOrz2MiaSVFNBFofClCMdo7wFNGSSEs2nhmAimcmKyBhLTLTpqmJKcJe/vEo653X3su7eXdQaN0UdZTiGEzgDF66gAbfQgjYQSOEZXuHNerJerHfrYzFasoqdI/gD6/MHrc2TGg==</latexit>

C1
t

<latexit sha1_base64="0ThhcZxHO7UMy0i+HQiE8n588pw=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURUZfFblxWsA9oY5hMJ+3QySTMTIQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024waeZ+95FKxWJxr6cJ9SI8EixkBGsj+XZ1EGE9JphnzZmvH1zfrjl1Zw60StyC1KBAy7e/BsOYpBEVmnCsVN91Eu1lWGpGOJ1VBqmiCSYTPKJ9QwWOqPKyefAZOjXKEIWxNE9oNFd/b2Q4UmoaBWYyj6mWvVz8z+unOrz2MiaSVFNBFofClCMdo7wFNGSSEs2nhmAimcmKyBhLTLTpqmJKcJe/vEo653X3su7eXdQaN0UdZTiGEzgDF66gAbfQgjYQSOEZXuHNerJerHfrYzFasoqdI/gD6/MHrc2TGg==</latexit>

C1
t

<latexit sha1_base64="0ThhcZxHO7UMy0i+HQiE8n588pw=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURUZfFblxWsA9oY5hMJ+3QySTMTIQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024waeZ+95FKxWJxr6cJ9SI8EixkBGsj+XZ1EGE9JphnzZmvH1zfrjl1Zw60StyC1KBAy7e/BsOYpBEVmnCsVN91Eu1lWGpGOJ1VBqmiCSYTPKJ9QwWOqPKyefAZOjXKEIWxNE9oNFd/b2Q4UmoaBWYyj6mWvVz8z+unOrz2MiaSVFNBFofClCMdo7wFNGSSEs2nhmAimcmKyBhLTLTpqmJKcJe/vEo653X3su7eXdQaN0UdZTiGEzgDF66gAbfQgjYQSOEZXuHNerJerHfrYzFasoqdI/gD6/MHrc2TGg==</latexit>

C1
t

<latexit sha1_base64="UqSu77NuxFOMt0DPbinkNhQi0/A=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRF1GWxG5cV7APaGCbTSTt0MgkzE6GGfokbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/kHFPjzqqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeYNHO/+0ilYrG419OEehEeCRYygrWRfLsyiLAeE8yz5szXD3Xfrjo1Zw60StyCVKFAy7e/BsOYpBEVmnCsVN91Eu1lWGpGOJ2VB6miCSYTPKJ9QwWOqPKyefAZOjPKEIWxNE9oNFd/b2Q4UmoaBWYyj6mWvVz8z+unOrz2MiaSVFNBFofClCMdo7wFNGSSEs2nhmAimcmKyBhLTLTpqmxKcJe/vEo69Zp7WXPvLqqNm6KOEpzAKZyDC1fQgFtoQRsIpPAMr/BmPVkv1rv1sRhds4qdY/gD6/MHr1GTGw==</latexit>

C2
t

<latexit sha1_base64="UqSu77NuxFOMt0DPbinkNhQi0/A=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRF1GWxG5cV7APaGCbTSTt0MgkzE6GGfokbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/kHFPjzqqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeYNHO/+0ilYrG419OEehEeCRYygrWRfLsyiLAeE8yz5szXD3Xfrjo1Zw60StyCVKFAy7e/BsOYpBEVmnCsVN91Eu1lWGpGOJ2VB6miCSYTPKJ9QwWOqPKyefAZOjPKEIWxNE9oNFd/b2Q4UmoaBWYyj6mWvVz8z+unOrz2MiaSVFNBFofClCMdo7wFNGSSEs2nhmAimcmKyBhLTLTpqmxKcJe/vEo69Zp7WXPvLqqNm6KOEpzAKZyDC1fQgFtoQRsIpPAMr/BmPVkv1rv1sRhds4qdY/gD6/MHr1GTGw==</latexit>

C2
t

<latexit sha1_base64="N7T48ki+z8H7ZAKUDFO6nJcmRls=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdVkUxGUF+4B2KJk0bUMzmTG5UyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwaj28xvjrk2IlKPOIm5H9KBEn3BKFrJ74QUh4zK9G7axW6p7FbcGcgy8XJShhy1bumr04tYEnKFTFJj2p4bo59SjYJJPi12EsNjykZ0wNuWKhpy46ez0FNyapUe6UfaPoVkpv7eSGlozCQM7GQW0ix6mfif106wf+2nQsUJcsXmh/qJJBiRrAHSE5ozlBNLKNPCZiVsSDVlaHsq2hK8xS8vk8Z5xbuseA8X5epNXkcBjuEEzsCDK6jCPdSgDgye4Ble4c0ZOy/Ou/MxH11x8p0j+APn8wcNApJJ</latexit>Ft

<latexit sha1_base64="N7T48ki+z8H7ZAKUDFO6nJcmRls=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkRdVkUxGUF+4B2KJk0bUMzmTG5UyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwaj28xvjrk2IlKPOIm5H9KBEn3BKFrJ74QUh4zK9G7axW6p7FbcGcgy8XJShhy1bumr04tYEnKFTFJj2p4bo59SjYJJPi12EsNjykZ0wNuWKhpy46ez0FNyapUe6UfaPoVkpv7eSGlozCQM7GQW0ix6mfif106wf+2nQsUJcsXmh/qJJBiRrAHSE5ozlBNLKNPCZiVsSDVlaHsq2hK8xS8vk8Z5xbuseA8X5epNXkcBjuEEzsCDK6jCPdSgDgye4Ble4c0ZOy/Ou/MxH11x8p0j+APn8wcNApJJ</latexit>Ft

<latexit sha1_base64="Gp5kzBgWmQcybtNUhEoEcKW7tfE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJoYxnRmEByhL3NXrJkb/fYnRNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvSqWw6PvfXmFldW19o7hZ2tre2d0r7x88Wp0ZxhtMS21aEbVcCsUbKFDyVmo4TSLJm9HwZuo3n7ixQqsHHKU8TGhfiVgwik66113slit+1Z+BLJMgJxXIUe+Wvzo9zbKEK2SSWtsO/BTDMTUomOSTUiezPKVsSPu87aiiCbfheHbqhJw4pUdibVwpJDP198SYJtaOksh1JhQHdtGbiv957Qzjq3AsVJohV2y+KM4kQU2mf5OeMJyhHDlCmRHuVsIG1FCGLp2SCyFYfHmZPJ5Vg4tqcHdeqV3ncRThCI7hFAK4hBrcQh0awKAPz/AKb570Xrx372PeWvDymUP4A+/zB2V+jeA=</latexit>ot

<latexit sha1_base64="Gp5kzBgWmQcybtNUhEoEcKW7tfE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJoYxnRmEByhL3NXrJkb/fYnRNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvSqWw6PvfXmFldW19o7hZ2tre2d0r7x88Wp0ZxhtMS21aEbVcCsUbKFDyVmo4TSLJm9HwZuo3n7ixQqsHHKU8TGhfiVgwik66113slit+1Z+BLJMgJxXIUe+Wvzo9zbKEK2SSWtsO/BTDMTUomOSTUiezPKVsSPu87aiiCbfheHbqhJw4pUdibVwpJDP198SYJtaOksh1JhQHdtGbiv957Qzjq3AsVJohV2y+KM4kQU2mf5OeMJyhHDlCmRHuVsIG1FCGLp2SCyFYfHmZPJ5Vg4tqcHdeqV3ncRThCI7hFAK4hBrcQh0awKAPz/AKb570Xrx372PeWvDymUP4A+/zB2V+jeA=</latexit>ot

<latexit sha1_base64="Gp5kzBgWmQcybtNUhEoEcKW7tfE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJoYxnRmEByhL3NXrJkb/fYnRNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvSqWw6PvfXmFldW19o7hZ2tre2d0r7x88Wp0ZxhtMS21aEbVcCsUbKFDyVmo4TSLJm9HwZuo3n7ixQqsHHKU8TGhfiVgwik66113slit+1Z+BLJMgJxXIUe+Wvzo9zbKEK2SSWtsO/BTDMTUomOSTUiezPKVsSPu87aiiCbfheHbqhJw4pUdibVwpJDP198SYJtaOksh1JhQHdtGbiv957Qzjq3AsVJohV2y+KM4kQU2mf5OeMJyhHDlCmRHuVsIG1FCGLp2SCyFYfHmZPJ5Vg4tqcHdeqV3ncRThCI7hFAK4hBrcQh0awKAPz/AKb570Xrx372PeWvDymUP4A+/zB2V+jeA=</latexit>ot

Figure 3: The cascading agents are comprised of the feature
group agent1, the operation agent, and the feature group
agent2. They collaborate to choose two candidate feature

groups and a single operation.

although it is hard to define and program the optimal selection cri-
teria of feature groups and operation, we can view selection criteria
as a form of machine-learnable policies. We propose three agents
to learn the policies by trials and errors. Secondly, we find that the
three selection agents are cascading in a sequential auto-correlated
decision structure, not independent and separated. Here, “cascading”
refers to the fact that within each iteration agents make decision
sequentially, and downstream agents await for the completion of an
upstream agent. The decision of an upstream agent will change the
environment states of downstream agents. As shown in Figure 3,
the first agent picks the first feature group based on the state of the
entire feature space, the second agent picks the operation based on
the entire feature space and the selection of the first agent, and the
third agent chooses the second feature group based on the entire
feature space and the selections of the first and second agents.

We next propose two generic metrics to quantify the usefulness
(reward) of a feature set, and then form three MDPs to learn three
selection policies.
TwoUtilityMetrics for RewardQuantification. The two utility
metrics are from the supervised and unsupervised perspectives.
Metric 1: Integrated Feature Set Redundancy and Relevance. We
propose a metric to quantify feature set utility from an information
theory perspective: a higher-utility feature set has less redundant
information and is more relevant to prediction targets. Formally,
given a feature set F and a predictive target label 𝑦, such utility
metric can be calculated by

𝑈 (F |𝑦) = − 1
|F |2

∑︁
𝑓𝑖 ,𝑓𝑗 ∈F

𝑀𝐼 (𝑓𝑖 , 𝑓𝑗) +
1
|F |

∑︁
𝑓 ∈F

𝑀𝐼 (𝑓 , 𝑦), (3)

where𝑀𝐼 is the mutual information, 𝑓𝑖 , 𝑓𝑗 , 𝑓 are features in F and
|F | is the size of the feature set F .
Metric 2: Downstream Task Performance. Another utility metric
is whether this feature set can improve a downstream task (e.g.,
regression, classification). We use a downstream predictive task
performance indicator (e.g., 1-RAE, Precision, Recall, F1) as a utility
metric of a feature set.
Learning Selection Agents of Feature Group 1, Operation,
and Feature Group 2. Leveraging the two metrics, we next de-
velop three MDPs to learn three agent policies to select the best
feature group 1, operation, feature group 2.
Learning the Selection Agent of Feature Group 1. The feature group
agent 1 iteratively select the best meta feature group 1. Its learning
system includes: i) Action: its action at the 𝑡-th iteration is the meta

Feature Group

sample 1

sample 2

sample 3

sample 4

sample M

Describe

std

mean

min

max

Q1

Q2

Q3

std meanminmax Q1

std of std

State Vector

std of mean

Q2 Q3

Q3 of Q3

Q2 of Q2

Describe Flatten

⠇

f1f3f6f8f9f1f3f6f8 f9

⠇⠇⠇⠇⠇

std

mean

min

max

Q1

Q2

Q3

Descriptive Statistics Matrix Meta Descriptive Statistics Matrix
(features) (column by column) (row by row)

<latexit sha1_base64="wxPCA5+RWNMj6D8rVQT2di10fK4=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIqMeiIB4rWFtIQ9lst+3SzSbsvggl9Gd48aCIV3+NN/+NmzYHbR1YGGbeY+dNmEhh0HW/ndLK6tr6RnmzsrW9s7tX3T94NHGqGW+xWMa6E1LDpVC8hQIl7ySa0yiUvB2Ob3K//cS1EbF6wEnCg4gOlRgIRtFKfjeiOGJUZrfTXrXm1t0ZyDLxClKDAs1e9avbj1kacYVMUmN8z00wyKhGwSSfVrqp4QllYzrkvqWKRtwE2SzylJxYpU8GsbZPIZmpvzcyGhkziUI7mUc0i14u/uf5KQ6ugkyoJEWu2PyjQSoJxiS/n/SF5gzlxBLKtLBZCRtRTRnaliq2BG/x5GXyeFb3Lure/XmtcV3UUYYjOIZT8OASGnAHTWgBgxie4RXeHHRenHfnYz5acoqdQ/gD5/MHed+RYg==</latexit>F
<latexit sha1_base64="n+QJXXYXlU3saosZudy5LTcmli8=">AAAB+XicbVDLSgNBEOz1GeNr1aOXwSDES9gVUY9BQTxGMQ9IQpid9CZDZh/MzAbCkj/x4kERr/6JN//G2WQPmlgwUFR10zXlxYIr7Tjf1srq2vrGZmGruL2zu7dvHxw2VJRIhnUWiUi2PKpQ8BDrmmuBrVgiDTyBTW90m/nNMUrFo/BJT2LsBnQQcp8zqo3Us+1HjMudgOohoyK9m5717JJTcWYgy8TNSQly1Hr2V6cfsSTAUDNBlWq7Tqy7KZWaM4HTYidRGFM2ogNsGxrSAFU3nSWfklOj9IkfSfNCTWbq742UBkpNAs9MZhnVopeJ/3ntRPvX3ZSHcaIxZPNDfiKIjkhWA+lziUyLiSGUSW6yEjakkjJtyiqaEtzFLy+TxnnFvay4Dxel6k1eRwGO4QTK4MIVVOEealAHBmN4hld4s1LrxXq3PuajK1a+cwR/YH3+APsEkz0=</latexit>

Rep(F)

Figure 4: State Representation. Given a feature group F
consisting of several features, we calculate the descriptive
statistics of F column-by-column, then row-by-row to get a
meta descriptive statistics matrix. Then, we flat the matrix

to obtain the state representation vector 𝑅𝑒𝑝 (F).

feature group 1 selected from the feature groups of the previous
iteration, denoted group 𝑎1

𝑡 = C1
𝑡−1. ii) State: its state at the 𝑡-th

iteration is a vectorized representation of the generated feature set
of the previous iteration. Let 𝑅𝑒𝑝 be a state representation method,
the state can be denoted by 𝑠1

𝑡 = 𝑅𝑒𝑝 (F𝑡−1). We will discuss the
state representation method in the next section. iii) Reward: its
reward at the 𝑡-th iteration is the utility score the selected feature
group 1, denoted by R(𝑠1

𝑡 , 𝑎
1
𝑡) = 𝑈 (F𝑡−1 |𝑦).

Learning the Selection Agent of Operation. The operation agent will
iteratively select the best operation (e.g. +, -) from an operation
set as a feature crossing tool for feature generation. Its learning
system includes: i) Action: its action at the 𝑡-th iteration is the
selected operation, denoted by 𝑎𝑜𝑡 = 𝑜𝑡 . ii) State: its state at the 𝑡-th
iteration is the combination of 𝑅𝑒𝑝 (F𝑡−1) and the representation
of the feature group selected by the previous agent, denoted by
𝑠𝑜𝑡 = 𝑅𝑒𝑝 (F𝑡−1) ⊕ 𝑅𝑒𝑝 (C1

𝑡−1), where ⊕ indicates the concatenation
operation. iii) Reward: The selected operation will be used to
generate new features by feature crossing. We combine such new
features with the original feature set to form a new feature set.
Thus, the feature set at the 𝑡-th iteration is F𝑡 = F𝑡−1 ∪ 𝑔𝑡 , where
𝑔𝑡 is the generated new features. The reward of this iteration is the
improvement in the utility score of the feature set compared with
the previous iteration, denoted byR(𝑠𝑜𝑡 , 𝑎𝑜𝑡) = 𝑈 (F𝑡 |𝑦)−𝑈 (F𝑡−1 |𝑦).
Learning the Selection Agent of Feature Group 2. The feature group
agent 2 will iteratively select the best meta feature group 2 for
feature generation. Its learning system includes: i) Action: its
action at the 𝑡-th iteration is the meta feature group 2 selected
from the clustered feature groups of the previous iteration, de-
noted by 𝑎2

𝑡 = C2
𝑡 . ii) State: its state at the 𝑡-th iteration is com-

bination of 𝑅𝑒𝑝 (F𝑡−1), 𝑅𝑒𝑝 (C1
𝑡−1) and the vectorized representa-

tion of the operation selected by the operation agent, denoted
by 𝑠2

𝑡 = 𝑅𝑒𝑝 (F𝑡−1) ⊕ 𝑅𝑒𝑝 (C𝑡−1) ⊕ 𝑅𝑒𝑝 (𝑜𝑡). iii) Reward: its re-
ward at the 𝑡-th iteration is improvement of the feature set utility
and the feedback of the downstream task, denoted by R(𝑠2

𝑡 , 𝑎
2
𝑡) =

𝑈 (F𝑡 |𝑦) −𝑈 (F𝑡−1 |𝑦) +𝑉𝐴𝑡
, where 𝑉𝐴 is the performance (e.g., F1)

of a downstream predictive task.
State Representation of a Feature Group and an Operation.
We propose to map a feature group to a vector that characterizes
the State of the given feature group. In detail, given a feature
group F , we first calculate the descriptive statistics (i.e. count,

standard deviation, minimum, maximum, first , second , and third
quartile) column by column. Then, row by row, we calculate the
descriptive statistics of the outcome of the previous step to obtain
the descriptive matrix that shape is R7×7. After that, we obtain
the feature feature’s representation 𝑅𝑒𝑝 (F) ∈ R1×49 by flatting
the descriptive matrix. A fixed-size state vector is produced by the
representationmethod, which accommodates the varying size of the
feature set at each generation iteration. Second, for the operation,
we use the one-hot encoding as its representation 𝑅𝑒𝑝 (𝑜).
Solving the Optimization Problem. We train the three agents
by maximizing the discounted and cumulative reward during the
iterative feature generation process. In other words, we encourage
the cascading agents to collaborate to generate a feature set that
is independent, informative, and performs well in the downstream
task. To accomplish this goal, we minimize the temporal difference
error L converted from the Bellman equation, given by:

L = 𝑄 (𝑠𝑡 , 𝑎𝑡) − (R(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∗max𝑎𝑡+1𝑄 (𝑠𝑡+1, 𝑎𝑡+1)), (4)

where𝛾 ∈ [0 ∼ 1] is the discounted factor;𝑄 denotes the𝑄 function
estimated by deep neural networks. After agents converge, we
expect to discover the optimal policy 𝜋∗ that can choose the most
appropriate action (i.e. feature group or operation) based on the
state via the Q-value, which can be formulated as follows:

𝜋∗ (𝑎𝑡 |𝑠𝑡) = argmax𝑎𝑄 (𝑠𝑡 , 𝑎) . (5)

3.4 Group-wise Feature Generation
We found that using group-level crossing can generate more fea-
tures each time, and, thus, accelerate exploration speed, augment
reward feedback by adding significant amount of features, and ef-
fectively learn policies. The selection results of our reinforcement
learning system include two generation scenarios: (1) selected
are a binary operation and two feature groups; (2) selected are
a unary operation and two feature groups. However, a challenge
arises: what are the most effective generation strategy for the two
scenarios? We next propose two strategies for the two scenarios.

Scenario 1: Cosine Similarity Prioritized Feature-Feature
Crossing. We highlight that it is more likely to generate an infor-
mative features by crossing two features that are less overlapped
in terms of information. We propose a simple yet efficient strategy,
that is, to select the top K dissimilar feature pairs between two fea-
ture groups. Specifically, we first cross two selected feature groups
to prepare feature pairs. We then compute the cosine similarities
of all feature pairs. Later, we rank and select the top K dissimilar
feature pairs. Finally, we apply the operation to the top K selected
feature pairs to generate K new features.

Scenario 2: Relevance Prioritized Unary Feature Genera-
tion. When selected are an unary operation and two feature groups,
we directly apply the operation to the feature group that is more rel-
evant to target labels. Given a feature group 𝐶 , we use the average
mutual information between all the features in𝐶 and the prediction
target 𝑦 to quantify the relevance between the feature group and
the prediction targets, which is given by: 𝑟𝑒𝑙 = 1

|C |
∑

𝑓𝑖 ∈C 𝑀𝐼 (𝑓𝑖 , 𝑦),
where𝑀𝐼 is a function of mutual information. After the more rele-
vant feature group is identified, we apply the unary operation to
each feature of the feature group to generate new features.

Post-generationProcessing.After feature generation, we com-
bine the newly generated features with the original feature set
to form an updated feature set, which will be fed into a down-
stream task to evaluate predictive performance. Such performance
is exploited as reward feedback to update the policies of the three
cascading agents in order to optimize the next round of feature
generation. To prevent feature number explosion during the itera-
tive generation process, we use a feature selection step to control
feature size. When the size of the new feature set exceeds a feature
size tolerance threshold, we leverage the K-best feature selection
method to reduce the feature size. Otherwise, we don’t perform
feature selection. We use the tailored new feature set as the original
feature set of the next iteration.

Finally, when the maximum number of iterations is reached,
the algorithm returns the optimal feature set F ∗ that has the best
downstream performance over the entire exploration.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Data Description. We used 24 publicly available datasets
from UCI [22], LibSVM [6], Kaggle [15], and OpenML [21] to con-
duct experiments. The 24 datasets involves 14 classification tasks
and 10 regression tasks. Table 1 shows the statistics of the data.

4.1.2 Evaluation Metrics. We used the F1-score to evaluate the re-
call and precision of classification tasks. We used 1-relative absolute
error (RAE) to evaluate the accuracy of regression tasks. Specif-
ically, 1-RAE = 1 −

∑𝑛
𝑖=1 |𝑦𝑖−�̌�𝑖 |∑𝑛
𝑖=1 |𝑦𝑖−𝑦𝑖 | , where 𝑛 is the number of data

points, 𝑦𝑖 , 𝑦𝑖 , 𝑦𝑖 respectively denote golden standard target values,
predicted target values, and the mean of golden standard targets.

4.1.3 Baseline Algorithms. We compared our method with five
widely-used feature generation methods: (1)RDG randomly selects
feature-operation-feature pairs for feature generation; (2) ERT is a
expansion-reduction method, that applies operations to each fea-
ture to expand the feature space and selects significant features
from the larger space as new features. (3) LDA [2] extracts latent
features via matrix factorization. (4) AFT [14] is an enhanced ERT
implementation that iteratively explores feature space and adopts
a multi-step feature selection relying on L1-regularized linear mod-
els. (5) NFS [4] mimics feature transformation trajectory for each
feature and optimizes the entire feature generation process through
reinforcement learning. (6) TTG [16] records the feature genera-
tion process using a transformation graph, then uses reinforcement
learning to explore the graph to determine the best feature set.

Besides, we developed four variants of GRFG to validate the
impact of each technical component: (i) GRFG−𝑐 removes the clus-
tering step of GRFG and generate features by feature-operation-
feature based crossing, instead of group-operation-group based
crossing. (ii) GRFG−𝑑 utilizes the euclidean distance as the mea-
surement of M-Clustering. (iii) GRFG−𝑢 selects a feature group at
random from the feature group set, when the operation is unary. (iv)
GRFG−𝑏 randomly selects features from the larger feature group to
align two feature groups when the operation is binary. We adopted
random forest, a robust ensemble predictor, as the downstream ML
model, in order to ensure the changes of results are mainly caused
by the feature space reconstruction, not randomness or variance of

the predictor. We performed 5-fold stratified cross-validation in all
experiments, instead of a simple 70%-30% split.

4.1.4 Hyperparameters, Source Code and Reproducibility. The op-
eration set consists of square root, square, cosine, sine, tangent, exp,
cube, log, reciprocal, sigmoid, plus, subtract, multiply, divide. We
limited iterations (epochs) to 30, with each iteration consisting of
15 exploration steps. When the number of generated features is
twice of the original feature set size, we performed feature selec-
tion to control feature size. In GRFG, all agents were constructed
using a DQN network with two linear layers activated by the RELU
function. We optimized DQN using the Adam optimizer with a 0.01
learning rate, and set the limit of the experience replay memory as
32 and the batch size as 8. The parameters of all the baseline mod-
els are defined based on the recommendations of corresponding
papers. For other detailed experimental settings, please check the
code released in the Abstract section.

4.1.5 Environmental Settings. All experiments were conducted on
the Ubuntu 18.04.5 LTS operating system, Intel(R) Core(TM) i9-
10900X CPU@ 3.70GHz, and 1 way SLI RTX 3090 and 128GB of
RAM, with the framework of Python 3.8.5 and PyTorch 1.8.1.

4.2 Experimental Results
4.2.1 Overall Comparison. This experiment aims to answer: Can
our method effectively construct quality feature space and improve
a downstream task? Table 1 shows the comparison of our method
with six baseline models on the 24 datasets in terms of F1 score or 1-
RAE.We observed that GRFG ranks first on most datasets and ranks
second on “Credit Default” and “SpamBase”. The underlying driver
is that the personalized feature crossing strategy in GRFG considers
feature-feature distinctions when generating new features. Besides,
the observation that GRFG outperforms random-based (RDG) and
expansion-reduction-based (ERG, AFT) methods shows that the
agents can share states and rewards in a cascading fashion, and,
thus learn an effective policy to select optimal crossing features
and operations. Moreover, because our method is a self-learning
end-to-end framework, users can treat it as a tool and easily apply
it to different datasets regardless of implementation details. Thus,
compared with state-of-the-art baselines (NFS, TTG), our method
is more practical and automated in real application scenarios.

4.2.2 Study of the impact of each technical component. This exper-
iment aims to answer: How does each component in GRFG impact its
performance? We developed four variants of GRFG (Section 4.1.3).
Figure 5 shows the comparison results in terms of F1 score or 1-RAE
on two classification datasests (i.e. PimaIndian, German Credit) and
two regression datasets (i.e. Housing Boston, Openml_589). First,
we developed GRFG−𝑐 by removing the feature clustering step of
GRFG. But, GRFG−𝑐 performs poorer than GRFG on all datasets.
This shows the idea of group-level generation can augment reward
feedback to help cascading agents learn better policies. Second, we
developed GRFG−𝑑 by using euclidean distance as feature distance
metric in the M-clustering of GRFG. The superiority of GRFG over
GRFG−𝑑 suggests that our distance describes group-level informa-
tion relevance and redundancy ratio in order to maximize infor-
mation distinctness across feature groups and minimize it within
a feature group. Such a distance can help GRFG generate more

Table 1: Overall performance comparison. ‘C’ for classification and ‘R’ for regression.

Dataset Source C/R Samples Features RDG ERG LDA AFT NFS TTG GRFG
Higgs Boson UCIrvine C 50000 28 0.683 0.674 0.509 0.711 0.715 0.705 0.719

Amazon Employee Kaggle C 32769 9 0.744 0.740 0.920 0.943 0.935 0.806 0.946
PimaIndian UCIrvine C 768 8 0.693 0.703 0.676 0.736 0.762 0.747 0.776
SpectF UCIrvine C 267 44 0.790 0.748 0.774 0.775 0.876 0.788 0.878

SVMGuide3 LibSVM C 1243 21 0.703 0.747 0.683 0.829 0.831 0.766 0.850
German Credit UCIrvine C 1001 24 0.695 0.661 0.627 0.751 0.765 0.731 0.772
Credit Default UCIrvine C 30000 25 0.798 0.752 0.744 0.799 0.799 0.809 0.800

Messidor_features UCIrvine C 1150 19 0.673 0.635 0.580 0.678 0.746 0.726 0.757
Wine Quality Red UCIrvine C 999 12 0.599 0.611 0.600 0.658 0.666 0.647 0.686
Wine Quality White UCIrvine C 4900 12 0.552 0.587 0.571 0.673 0.679 0.638 0.685

SpamBase UCIrvine C 4601 57 0.951 0.931 0.908 0.951 0.955 0.961 0.958
AP-omentum-ovary OpenML C 275 10936 0.711 0.705 0.117 0.783 0.804 0.795 0.818
Lymphography UCIrvine C 148 18 0.654 0.638 0.737 0.833 0.859 0.846 0.866
Ionosphere UCIrvine C 351 34 0.919 0.926 0.730 0.827 0.949 0.938 0.960

Bikeshare DC Kaggle R 10886 11 0.483 0.571 0.494 0.670 0.675 0.659 0.681
Housing Boston UCIrvine R 506 13 0.605 0.617 0.174 0.641 0.665 0.658 0.684

Airfoil UCIrvine R 1503 5 0.737 0.732 0.463 0.774 0.771 0.783 0.797
Openml_618 OpenML R 1000 50 0.415 0.427 0.372 0.665 0.640 0.587 0.672
Openml_589 OpenML R 1000 25 0.638 0.560 0.331 0.672 0.711 0.682 0.753
Openml_616 OpenML R 500 50 0.448 0.372 0.385 0.585 0.593 0.559 0.603
Openml_607 OpenML R 1000 50 0.579 0.406 0.376 0.658 0.675 0.639 0.680
Openml_620 OpenML R 1000 25 0.575 0.584 0.425 0.663 0.698 0.656 0.714
Openml_637 OpenML R 500 50 0.561 0.497 0.494 0.564 0.581 0.575 0.589
Openml_586 OpenML R 1000 25 0.595 0.546 0.472 0.687 0.748 0.704 0.783

GRFG
GRFG-c

GRFG-d

GRFG-u

GRFG-b

epochs

F1

0.73

0.74

0.75

0.76

0.77

0.78

0.79

5 10 15 20 25 30

(a) PimaIndian

GRFG
GRFG-c

GRFG-d

GRFG-u

GRFG-b

epochs

F1

0.74

0.75

0.76

0.77

0.78

5 10 15 20 25 30

(b) German Credit

GRFG
GRFG-c

GRFG-d

GRFG-u

GRFG-b

epochs

1-
R
AE

0.64

0.65

0.66

0.67

0.68

0.69

0.70

5 10 15 20 25 30

(c) Housing Boston

GRFG
GRFG-c

GRFG-d

GRFG-u

GRFG-b

epochs

1-
R
AE

0.66

0.68

0.70

0.72

0.74

0.76

0.78

5 10 15 20 25 30

(d) Openml_589

Figure 5: Comparison of different GRFG variants in terms of F1 or 1-RAE.

useful dimensions. Third, we developed GRFG−𝑢 and GRFG−𝑏 by
using random in the two feature generation scenarios (Section 3.4)
of GRFG. We observed that GRFG−𝑢 and GRFG−𝑏 perform poorer
than GRFG. This validates that crossing two distinct features and
relevance prioritized generation can generate better features.

4.2.3 Study of the impact of M-Clustering. This experiment aims
to answer: Is M-Clustering more effective in improving feature gener-
ation than classical clustering algorithms? We replaced the feature
clustering algorithm in GRFG with KMeans, Hierarchical Cluster-
ing, DBSCAN, and Spectral Clustering respectively. We reported
the comparison results in terms of F1 score or 1-RAE on the datasets
used in Section 4.2.2. Figure 6 shows M-Clustering beats classical
clustering algorithms on all datasets. The underlying driver is that
when feature sets change during generation, M-Clustering is more
effective in minimizing information overlap of intra-group features
and maximizing information distinctness of inter-group features.

So, crossing the feature groups with distinct information is easier
to generate meaningful dimensions.

4.2.4 Robustness check of GRFG under different machine learning
(ML) models. This experiment is to answer: Is GRFG robust when
different MLmodels are used as a downstream task? We examined the
robustness of GRFG by changing the ML model of a downstream
task to Random Forest (RF), Xgboost (XGB), SVM, KNN, and Ridge
Regression, respectively. Figure 7 shows the comparison results in
terms of F1 score or 1-RAE on the datasets used in the Section 4.2.2.
We observed that GRFG robustly improves model performances
regardless of the ML model used. This observation indicates that
GRFG can generalize well to various benchmark applications and
ML models. We found that RF and XGB are the two most powerful
and robust predictors over the four datasets, which is consistent
with the finding in Kaggle.COM competition community. Intuitively,
the accuracy of RF and XGB usually represent the performance

M−Clustering KMeans Hierarchical DBSCAN Spectral

F
1

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

M−Clustering
KMeans
Hierarchical

DBSCAN
Spectral

(a) PimaIndian
M−Clustering KMeans Hierarchical DBSCAN Spectral

F
1

0.75

0.76

0.77

0.78

0.79

M−Clustering
KMeans
Hierarchical

DBSCAN
Spectral

(b) German Credit
M−Clustering KMeans Hierarchical DBSCAN Spectral

1−
R

A
E

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

M−Clustering
KMeans
Hierarchical

DBSCAN
Spectral

(c) Housing Boston
M−Clustering KMeans Hierarchical DBSCAN Spectral

1−
R

A
E

0.65

0.70

0.75

0.80

M−Clustering
KMeans
Hierarchical

DBSCAN
Spectral

(d) Openml_589

Figure 6: Comparison of different clustering algorithms in terms of F1 or 1-RAE.

Original GRFG

F1

0.70

0.72

0.74

0.76

0.78

0.80

RF XGB SVM KNN Ridge

(a) PimaIndian

Original GRFG

F1

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

RF XGB SVM KNN Ridge

(b) German Credit

Original GRFG

1-
R
AE

0.35

0.42

0.49

0.56

0.63

0.70

RF XGB SVM KNN Ridge

(c) Housing Boston

Original GRFG

1-
R
AE

0.22

0.33

0.44

0.55

0.66

0.77

0.88

RF XGB SVM KNN Ridge

(d) Openml 589

Figure 7: Comparison of different machine learning models in terms of F1 or 1-RAE.

1-RAE: 0.566

indus
black

age

tax

pratio nox

crim

dis

rm

lstat
Housing Boston

(a) Original Feature Space

1-RAE: 0.684

lstat*age
crim

dis*nox

tax*nox

dis*dis dis

lstat

rm

rm*rm

lstat*lstat
Housing Boston

(b) GRFG-reconstructed Feature Space

Figure 8: Top10 features for prediction in the original and
GRFG-reconstructed feature space.

ceiling on modeling a dataset. It is hard to break the performance
ceiling. But, after using our method to reconstruct the data, we
continue to significantly improve the accuracy of RF and XGB
and break through the performance ceiling. This finding clearly
validates the strong robustness of our method.

4.2.5 Study of the traceability and explainability of GRFG. This
experiment aims to answer: Can GRFG generate an explainable fea-
ture space? Is this generation process traceable? We identified the top
10 essential features for prediction in both the original and recon-
structed feature space using the Housing Boston dataset to predict
housing prices with random forest regression. Figure 8 shows the
model performances in the central parts of each sub-figure. The
texts associated with each pie chart describe the feature name. If
the feature name does not include an operation, the corresponding
feature is original; otherwise, it is a generated feature. The larger
the pie area is, the more essential the corresponding feature is. We

observed that the GRFG-reconstructed feature space greatly en-
hances the model performance by 20.9% and the generated features
cover 60% of the top 10 features. This indicates that GRFG generates
informative features to refine the feature space. Moreover, we can
explicitly trace and explain the source and effect of a feature by
checking its name. For instance, the feature “lstat” measures the
percentage of the lower status populations in a house, which is
negatively related to housing prices. The most essential feature in
the reconstructed feature space is “lstat*lstat” that is generated by
applying a “multiply” operation to “lstat”. This shows the genera-
tion process is traceable and the relationship between “lstat” and
housing prices is non-linear.

5 RELATEDWORKS
Reinforcement Learning (RL) is the study of how intelligent
agents should act in a given environment in order to maximize the
expectation of cumulative rewards [25]. According to the learned
policy, we may classify reinforcement learning algorithms into two
categories: value-based and policy-based. Value-based algorithms
(e.g. DQN [20], Double DQN [28]) estimate the value of the state or
state-action pair for action selection. Policy-based algorithms (e.g.
PG [26]) learn a probability distribution to map state to action for
action selection. Additionally, an actor-critic reinforcement learning
framework is proposed to incorporate the advantages of value-
based and policy-based algorithms [23]. In recent years, RL has
been applied to many domains (e.g. spatial-temporal data mining,
recommended systems) and achieves great achievements [30, 32].
In this paper, we formulate the selection of feature groups and
operation as MDPs and propose a new cascading agent structure
to resolve these MDPs.

Automated Feature Engineering aims to enhance the feature
space through feature generation and feature selection in order to
improve the performance of machine learning models [5]. Feature
selection is to remove redundant features and retain important ones,
whereas feature generation is to create and add meaningful vari-
ables. Feature Selection approaches include: (i) filter methods (e.g.,
univariate selection [7], correlation based selection [33]), in which
features are ranked by a specific score like redundancy, relevance;
(ii) wrapper methods (e.g., Reinforcement Learning [19], Branch and
Bound [17]), in which the optimized feature subset is identified by a
search strategy under a predictive task; (iii) embedded methods (e.g.,
LASSO [27], decision tree [24]), in which selection is part of the opti-
mization objective of a predictive task. Feature Generation methods
include: (i) latent representation learning based methods, e.g. latent
dirichlet allocation [2], deep factorization machine [11], deep rep-
resentation learning [1]. Due to the latent feature space generated
by these methods, it is hard to trace and explain the feature extrac-
tion process. (ii) feature transformation based methods, which use
arithmetic or aggregate operations to generate new features [4, 16].
These approaches have two weaknesses: (a) ignore feature-feature
heterogeneity among different feature pairs; (b) grow exponentially
when the number of exploration steps increases. Compared with
prior literature, our personalized feature crossing strategy captures
the feature distinctness, cascading agents learn effective feature
interaction policies, and group-wise generation manner accelerates
feature generation.

6 CONCLUSION REMARKS
We present a group-wise reinforcement feature generation (GRFG)
framework for optimal and explainable representation space recon-
struction to improve the performances of predictive models. This
framework nests feature generation and selection in order to itera-
tively reconstruct a recognizable and size-controllable feature space
via feature-crossing. Specifically, first, we decompose the process
of selecting crossing features and operations into three MDPs and
develop a new cascading agent structure for it. Second, we provide
two feature generation strategies based on cosine similarity and
mutual information to deal with two generation scenarios follow-
ing cascading selection. Third, we suggest a group-wise feature
generation manner to efficiently generate features and augment
the rewards of cascading agents. To accomplish this, we propose a
new feature clustering algorithm (M-Clustering) to produce robust
feature groups from an information theory perspective. Through
extensive experiments, we can find that GRFG is effective at refining
the feature space and shows competitive results compared to other
baselines. Moreover, GRFG can provide traceable routes for feature
generation, which improves the explainability of the refined feature
space. In the future, we aim to include the pre-training technique
into GRFG to further enhance feature generation.

REFERENCES
[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[2] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
the Journal of machine Learning research 3 (2003), 993–1022.

[3] Emmanuel J Candès, Xiaodong Li, Yi Ma, and JohnWright. 2011. Robust principal
component analysis? Journal of the ACM (JACM) 58, 3 (2011), 1–37.

[4] Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong
Xu, Yingnong Dang, Kaixin Sui, Xu Zhang, Bo Qiao, et al. 2019. Neural feature
search: A neural architecture for automated feature engineering. In 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 71–80.

[5] Yi-Wei Chen, Qingquan Song, and Xia Hu. 2021. Techniques for automated
machine learning. ACM SIGKDD Explorations Newsletter 22, 2 (2021), 35–50.

[6] Lin Chih-Jen. 2022. LibSVM Dataset Download. [EB/OL]. https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/.

[7] George Forman et al. 2003. An extensive empirical study of feature selection
metrics for text classification. J. Mach. Learn. Res. 3, Mar (2003), 1289–1305.

[8] Jerome H Friedman. 2012. Fast sparse regression and classification. International
Journal of Forecasting 28, 3 (2012), 722–738.

[9] Nicolo Fusi, Rishit Sheth, andMelih Elibol. 2018. Probabilistic matrix factorization
for automated machine learning. Advances in neural information processing
systems 31 (2018), 3348–3357.

[10] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.

[11] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[12] I. Guyon and A. Elisseeff. 2003. An introduction to variable and feature selection.
The Journal of Machine Learning Research 3 (2003), 1157–1182.

[13] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. 2019. Statistical learn-
ing with sparsity: the lasso and generalizations. Chapman and Hall/CRC.

[14] Franziska Horn, Robert Pack, and Michael Rieger. 2019. The autofeat python
library for automated feature engineering and selection. arXiv preprint
arXiv:1901.07329 (2019).

[15] Jeremy Howard. 2022. Kaggle Dataset Download. [EB/OL]. https://www.kaggle.
com/datasets.

[16] Udayan Khurana, Horst Samulowitz, and Deepak Turaga. 2018. Feature engi-
neering for predictive modeling using reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 32.

[17] Ron Kohavi and George H John. 1997. Wrappers for feature subset selection.
Artificial intelligence 97, 1-2 (1997), 273–324.

[18] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino,
Jiliang Tang, and Huan Liu. 2017. Feature selection: A data perspective. ACM
Computing Surveys (CSUR) 50, 6 (2017), 1–45.

[19] Kunpeng Liu, Pengfei Wang, Dongjie Wang, Wan Du, Dapeng Oliver Wu, and
Yanjie Fu. 2021. Efficient Reinforced Feature Selection via Early Stopping Traverse
Strategy. In 2021 IEEE International Conference on Data Mining (ICDM). IEEE,
399–408.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[21] Public. 2022. Openml Dataset Download. [EB/OL]. https://www.openml.org.
[22] Public. 2022. UCI Dataset Download. [EB/OL]. https://archive.ics.uci.edu/.
[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[24] V Sugumaran, V Muralidharan, and KI Ramachandran. 2007. Feature selection
using decision tree and classification through proximal support vector machine
for fault diagnostics of roller bearing. Mechanical systems and signal processing
21, 2 (2007), 930–942.

[25] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[26] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems. 1057–1063.

[27] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[28] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 30.

[29] Dongjie Wang, Kunpeng Liu, David Mohaisen, Pengyang Wang, Chang-Tien
Lu, and Yanjie Fu. 2021. Automated Feature-Topic Pairing: Aligning Semantic
and Embedding Spaces in Spatial Representation Learning. In Proceedings of the
29th International Conference on Advances in Geographic Information Systems.
450–453.

[30] Dongjie Wang, Pengyang Wang, Yanjie Fu, Kunpeng Liu, Hui Xiong, and
Charles E Hughes. 2022. Reinforced Imitative Graph Learning for Mobile User
Profiling. arXiv preprint arXiv:2203.06550 (2022).

[31] DongjieWang, PengyangWang, Kunpeng Liu, YuanchunZhou, Charles EHughes,
and Yanjie Fu. 2021. Reinforced Imitative Graph Representation Learning for
Mobile User Profiling: An Adversarial Training Perspective. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 4410–4417.

[32] Xiting Wang, Kunpeng Liu, Dongjie Wang, Le Wu, Yanjie Fu, and Xing Xie.
2022. Multi-level Recommendation Reasoning over Knowledge Graphs with

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.openml.org
https://archive.ics.uci.edu/

Reinforcement Learning. In Proceedings of the ACM Web Conference 2022. 2098–
2108.

[33] Lei Yu and Huan Liu. 2003. Feature selection for high-dimensional data: A fast
correlation-based filter solution. In Proceedings of the 20th international conference
on machine learning (ICML-03). 856–863.

	Abstract
	1 Introduction
	2 Definitions and Problem Statement
	2.1 Important Definitions
	2.2 Problem Statement

	3 Optimal and Explainable Feature Space Reconstruction
	3.1 Framework Overview
	3.2 Generation-oriented Feature Clustering
	3.3 Cascading Reinforcement Feature Groups and Operation Selection
	3.4 Group-wise Feature Generation

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Works
	6 Conclusion Remarks
	References

