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ABSTRACT

We present a new class of algorithms for edge-preserving restoration of piecewise-smooth images measured in non-
Gaussian noise under shift-variant blur. The algorithms are based on minimizing a regularized objective function, and
are guaranteed to monotonically decrease the objective function. The algorithms are derived by using a combination
of two previously unconnected concepts: A. De Pierro’s convexity technique for optimization transfer, and P. Huber’s
iteration for M-estimation. Convergence to the unique global minimum is guaranteed for strictly convex objective
functions. The convergence rate is very fast relative to conventional gradient-based iterations. The proposed al-
gorithms are flexibly parallelizable, and easily accommodate nonnegativity constraints and arbitrary neighborhood
structures. Implementation in Matlab is remarkably simple, requiring no cumbersome line searches or tolerance
parameters.

Keywords: Image restoration, non-Gaussian noise, deconvolution, Bayesian methods.

I. INTRODUCTION

In a wide variety of inverse problems one attempts to estimate an unknown object (e.g. an image) from a noisy
measurement vector y € R™* under the following linear additive noise model

y = Az + noise, (1)

where z € IRP represents image pixel or voxel values, or a parameterization thereof (e.g. tensor product B-splines [1]
or coefficients of other bases [2,3].) The matrix A represents the system response function, which is usually assumed
known. In practice portions of A may be measured or modeled and therefore may have both deterministic and
random uncertainties.

Since (1) suggests y &~ Az, it is natural to try to estimate z by minimizing a function that encourages the estimate
& to fit to the data. When the measurement errors are independent, a natural cost function is the following:

my

TR(z) = Y w4z — gl), 2)

=1
where
P
[Az — y)i =) iz — i
j=1

In the often-assumed case of zero-mean Gaussian noise with covariance K = 021, , where I, is the n x n identity
matrix, J92%3(.) is usually taken to be the negative log-likelihood of the measurements:

THR(e) = Sy - AV Ky - Az) = Y v((Az - g,

where ¥(1) = %t2/02, and where “” denotes matrix/vector transpose. The latter objective function is not robust
to outliers in the data, i.e., to deviations from the Gaussian noise assumption. In this paper we consider the more
general case (2), which allows for nonquadratic functions, such as the Huber function used in M-estimation [4, p.
177):

_[ t] <6
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In addition, in (2) we allow the data-fit functions %' to depend on %, for both the sake of generality and specifically
to allow for different weights for different measurements, which is important for heteroscedastic data such as in
emission computed tomography and photon-limited optical imaging [5,6].

Solutions based solely on a data-fit measure such as (2) are generally unsatisfactory due to the ill-posed nature of
most inverse problems. A popular remedy is to include in the objective function a penalty term that encourages the
estimate to adhere to prior expectations such as piecewise smoothness. Most objective functions with penalty terms
are special cases of the following general form:

B(z) = J(z) + T PP (O — ). (4)

i=1

where one can think of C. € R™?*? as inducing a collection of my “soft constraints”, namely Cz ~ z. We allow
the dependence on i in (4) both for the sake of generality and specifically to allow for different weights in different
terms (e.g., in imaging problems one often uses a weight 1 for horizontal and vertical neighboring pixels and 1/v2
for diagonal neighbors). This generality is also needed for the shift-variant penalty function described in [7].

A concrete example is the first-order quadratic roughness penalty with a first-order neighborhood, e.g. [5]. In this
case, 2z is just the zero vector, and ;(t) = 8t?/2 for some positive global regularization parameter 8. The matrix C
has the following representation. Let D, denote the (n — 1) x n 1st-order differencing matrix:

1 -1 0 0 0

Then, for the first-order roughness penalty, C is the following my X p matrix, where ms = ny(ng; — 1) + ny(ny — 1):

_ | DPn.® I,
©= [ Inr@D"y:I

where @ denotes Kronecker matrix product. Note that C'C is a Toeplitz-block-Toeplitz matrix with kernel

0 -1 0
-1 4 -1
0 -1 0

The more general formulation (4) easily accommodates arbitrarily large neighborhoods. Also, to avoid oversmoothing
edges, we allow for the ;s to be nonquadratic.

To simplify notation and to enable considerable generality, we unify the notation for the data-fit and penalty terms
in (2) and (4). The remainder of this paper considers objective functions having the following very general form:

®(z) = 3 vi([Bz - c). (5)

The specific case (4) corresponds to m = my + my with

C

B:[A]ElRmxp, gz[%]E]Rm.

Our goal then is to estimate (i.e. reconstruct/restore) an image ¢ € IR? by finding a minimizer of &(-):

Z=argmin®(z) or & =arg m>11(1) B(z).

A very large number of problems are special cases of the above formulation. However, when some or all of the ¥;’s

are non-quadratic it can be challenging to find suitable algorithms for minimizing ®, even in the case considered here
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where @ is convex. Generic optimization methods may be suboptimal for this problem with nonquadratic ;’s since
they do not exploit the structure of (5).

In this paper, we first describe the assumptions on B and the 9;’s that are used throughout the paper, and then
review the successive-substitutions algorithm proposed by Huber [4]. Unfortunately Huber’s algorithm does not
accommodate a nonnegativity constraint and is impractical for imaging problems. Therefore, we propose a simple,
practical, parallelizable algorithm for minimizing (5) that is a generalization of [8]. Convergence issues are discussed.

II. ASSUMPTIONS

In this section we define the restrictions on the 1; functions and the matrix B that are used to ensure that the
algorithms are well defined and to establish global convergence. We conjecture that the algorithms would have local
convergence under weaker conditions.

A. The ¥; functions
We restrict attention to ¢;’s that satisfy the following conditions (cf the conditions of Lemma 8.3 on p. 184 of [4]):

C1. 1 is symmetric,

C2. 9 is everywhere differentiable (and therefore continuous),

C3. ¥(t) = d/dt+(t) is non-decreasing,

C4. wy(t) = (t)/t is non-increasing for ¢ > 0.

C5. wy(0) = lim,_¢4(t)/t is finite and nonzero, i.e. 0 < wy(0) < o,

For edge-preserving reconstruction and for robustness to non-Gaussian noise, one will often choose 1’s for which wy
is in fact strictly decreasing for t > 0. However, we want the proofs to also include the case ¥(t) = %tz, for which
wy(t) = 1. Fortunately, the less-restrictive condition C4 is sufficient for convergence.

C1 is natural for symmetric noise distributions and for roughness penalty functions. C2 is needed for gradient-
based iterations. C3 ensures convexity of ®. Cb5 ensures that the proposed iterations are well defined, and C4 is
central to the convergence proofs.

A large class of ¢ functions satisfy the above conditions. One notable exception is the Generalized Gaussian
class [9] ¥(t) = [t|P for p < 2, due to either C2 (for p < 1) or C5 (for 1 < p < 2). Newton-type methods seem to be
poorly suited to that class, and line-search methods appear necessary. Another exception is the “entropy” functions
of the form ¥(t) = tlogt. Also excluded is 9(t) = [t for p > 2, due to C4.

Note that our assumptions do not require twice-differentiability of 1. Thus the proposed iterations can be applied
to functions such as the Huber function (3) which cannot be used with standard Newton-Raphson iterations since
the Huber function is not everywhere twice differentiable.

The following properties follow immmediately from the above conditions.

P1. From C1 and C2, %(0) = 0.

P2. From C3 and C5, 4(t) # 0 for ¢ # 0. Thus 3 cannot have any “flat segments.”

P3. From C1 and C3, + is convex. (See p. 114 of [10].)

P4. From C1, ¥(—t) = —¢(t). . .

P5. From C3 and P4, if |u} < [v], then [¥(u)] < |[¢(v)].

P6. From C1 and C5, wy(—t) = wy(t).

P7. From C1 and C5, ¢ is twice differentiable at £ = 0, and 1[)(0) = wy(0), where ¥ is the second derivative of 9.

P8. From C3, C5, C4, and P1, 0 < wy(t) < wy(0), Vt.

P9. If ¢ is twice differentiable at ¢, then by C4, 0 > wy(t) = (tl/)(t) — 1/')(75))/752. Thus combining with C3, P8, and
C5:0< 1/;(t) < wy(t) wy(0) < co. In particular, if ¢ is everywhere twice differentiable, then the curvature of
1 is bounded.

P10. Since d/dt $(v/7) = ¥ (v1)/(2v1) = wy(V1)/2 is nonincreasing for ¢ > 0 by C4, the function (v/1) is concave
for t > 0. (See p. 114 of [10].)

186

Downloaded from SPIE Digital Library on 25 Jul 2011 to 141.213.32.90. Terms of Use: http://spiedl.org/terms



B. Convezity
We assume that the matrix B (i.e. A and C) has been designed to have full column rank. Equivalently,
B'diag{w;} B > 0, (6)

i.e. is positive definite, for any positive values {w;}2,, where diag{w;} is the m x m diagonal matrix with (¢, )th
entry w;. A necessary condition therefore is that m > p. Assumption (6) is reasonable since eliminating zero and
near-zero eigenvalues of A’ A is one of the main reasons for regularization in the first place. Indeed, typically the null
space of C is simply the space of uniform images, and uniform images are generally not in the null space of A. So
Assumption (6) holds for most inverse problems. The above assumption also ensures that the objective function @
is strictly convex (see (8)) when the ;’s are twice differentiable with positive curvatures and satisfy the conditions
above.

Even if the ¢;’s are not twice differentiable, ® is still convex due to the assumed convexity of the ;’s. The
argument showing ® is convex is simple; for o € [0, 1]:

m m

Sau+(1-a)p) = ) di([Blau+ (1 —a)r) — i) = ) ti(e[Bu— i + (1 — @)[By — i)

i=1 i=1

m
< a(Bu - di) + (1 - a)s((Bu - di) = a(w) + (1 — )2(w).
i=1
We consider convexity to be desirable since non-convex objective functions lead to estimators that are discontinuous
functions of the measurements [9]. Algorithms for the convex case are also of use for problems that are non-convex
since graduated nonconvexity and deterministic annealing methods are often applied.

III. HUBER’S ALGORITHM

In [4] Huber derived an algorithm for minimizing objective functions of the form (5) in the context of robust linear
regression’. The algorithm can be considered both as a form of successive-substitution and as a form of iteratively
reweighted least-squares. The ARTUR algorithm of [11] is essentially the special case of Huber’s algorithm where
T/)?ata(t) — tZ

We derive the algorithm by first identifying a recursive relationship for the stationary point(s) of the gradient of
®, which then suggests a successive-substitution algorithm. Throughout we assume that conditions C1 to C5 and
Assumption (6) hold. We then discuss convergence.

A. Gradients and Convezity

From (5) one can easily verify that (cf equation (8.31) of [4]):
(e) = szm —diy = by i([Be - ) Bz — s
i=1

where ¥; is the derivative of t; (which exists by condition C2) and where w;(t) is any function satisfying tw;(t) = 1/)Z(t)
for all ¢ (which exists by condition C4). Thus in vector form:

&(z) = B'Q(z)(Bz - ¢) = B'Q(z)Bz - B'Q(a)c (7)
where ® denotes the column gradient of ® and

(z) = diag{wi([Bz — cl:)}

is a diagonal matrix of positive values (see condition P8). If the ¢;’s are twice differentiable, then one can also easily
verify that
92 ’" .
o = byibip; ([Bz — cl;).
5e; 008 (z) ;:1; ibiedi([Bz — cli)

1The extension of Huber’s algorithm to the case where the 1;’s depend on 17 is trivial.
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Thus the Hessian of @ is given by the expression
V2®(x) = B'A(z)B where A(z) = diag{{b’i([Bg - _c_]z)} . (8)

It follows immediately from Assumption (6) that if the w, ’s are everywhere positive, then the Hessian of ® is positive
definite, and thus that & is a strictly convex function. Since the Huber function (3) is not twice differentiable and
has zero curvature for [t| > 8, it is desirable not to require these extra conditions.

B. Successive Substitutions

If one disregards any hard constraints on z such as nonnegativity, then minimizers of ®(z) must satisfy 0 = ®(&),
so from (7):
[B'2(2)Bli = B'Q(2)c

This relationship is similar to the “normal equations” for linear least-squares estimation, except that iterative methods
are required here because of the nonlinear dependence on . The above equality suggests the following natural

successive-substitutions iteration, which we refer to as Huber’s algorithm:

x'n.+1

[B'Q(z")B]™ B'Q(2")c = 2" ~ [B'Q(z")B]™ B'Q(")(Bz - ¢)
2"~ (B0 B 6. ©)

(Note that B'Q2(z"™)B is mvertible by (6).) Clearly if z> is a fixed point of the iteration (9), then z* satisfies
0 = &(£*). Since @ is globally convex, any z for which ®(z) is zero is a minimizer of ®. Furthermore, when ® is
strictly convex its minimizer is unique, and thus 2™ = Z. However, these facts alone do not ensure convergence.

C. Reweighted Least-Squares Interpretation

If we define the following estimate-weighted least-squares objective function
= 1 1
6V (@) = wi((Ba" — i) 5([Bz - di)? = 5(Bz — ¢y (") (Bz — o), (10)
i=1

then one can easily show that the successive substitutions iteration (9) can also be expressed as follows:

z" = arg minqﬁWLS(g;g"). (11)

This type of iteration is known as iteratively reweighted least-squares [12]. There is a subtle but important difference
here though; in conventional reweighted least-squares iterations, the weights are usually the second derivatives of the
1;’s, which would lead to the iteration:

£ = o — [B'A")BI (") = o - [V2(e")] T d(2™), (12)

(cf (9)) where A(z) was defined in (8). The iteration (12) is identical to the Newton-Raphson iteration for minimizing
®. Unfortunately the Newton-Raphson iteration is not guaranteed to converge (or even to monotonically decrease
®) for the type of functions #; of interest here. Surprisingly, the small change of replacing the second derivatives in
(12) with the w;’s in (9) is enough of a difference to ensure monotonicity. Furthermore, Huber’s iteration does not
require the ¥;’s to be twice differentiable! Note that Huber’s iteration is identical to Newton-Raphson when all of
the ;s are quadratic functions.

When the 1;’s are twice differentiable, then from P7 and P9 the second derivatives of each ¢; are bounded above
by ¥(0) = w;(0). Thus one could make the Newton-Raphson iteration convergent by replacing A above with the
diagonal matrix containing those upper bounds on the curvatures. However, this modified Newton-Raphson iteration
will have a slower convergence rate than Huber’s iteration, since by P8 the weights used in Huber’s iteration have
smaller values than the curvature upper bounds.
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D. Convergence Proof Sketch

In discussing the convergence of (9) or equivalently (11), Huber {4, p. 187] first showed that the iteration mono-
tonically decreases the objective function, i.e. ®(z**!) < ®(z"), by showing that ¢"15 is a “comparison function”
that satisfies

¢V (z;2") — ¢V (25 2) > B(z) - @) (13)

This is precisely the property used to establish monotonicity of EM-type algorithms that can be written in the form
(11) [13-15].

The monotonicity property ensures that the sequence {®(z")} converges (since ® is bounded below by 37~ ¥;(0)).
However, Huber did not proceed to prove that the sequence of iterates {z™} converges. Instead he established
convergence of a somewhat different algorithm called the modified residuals method [4].

Using arguments very similar to those in [15,16], we have shown that if ® has a unique minimizer z, then {z"}
converges globally to 2. (Strict convexity of ® is sufficient but certainly not necessary to ensure ® has a unique
minimizer.) The details will be provided elsewhere, hopefully after resolving whether the sequence convergences to
a minimizer even when there are multiple minima.

E. Computational Complexity

Even when Huber’s algorithm is globally convergent, it is impractical for imaging problems since it requires “inver-
sion” of the matrix B'Q(z")B. Charbonnier et al. addressed this problem by applying iterative algorithms such as
conjugate-gradient and Gauss-Siedel iterations to find an approximate minimum of the quadratic form in (11) {11].
Such use of iterative linear-equation solvers as subiterations within the main iterations is fairly expensive computa-
tionally, and may therefore be suboptimal for imaging problems. Furthermore the Huber iteration does not easily
accommodate nonnegativity constraints for &, which are often important in imaging problems. An additional minor
consideration is that the use of approximate solutions to (11) raises questions about the guarantee of convergence.
(The convergence proofs in [11] assume that {11) is exactly minimized each iteration, even though this is not achiev-
able in practice.) Therefore, for imaging problems it is desirable to find new algorithms that are globally convergent
but that require less expensive subiterations.

IV. GROUPED COORDINATE DESCENT ALGORITHM

In [8] we presented a new algorithm for penalized-likelihood tomographic image reconstruction from Poisson
transmission measurements. The basic principles of the algorithm apply much more broadly than to the specific
problem addressed in [8]. Here we use those principles to derive a general algorithm suitable for finding a minimizer
of objective functions of the form (5).

The basic idea is that since minimizing ® over all elements of z is a difficult problem, we instead select a subset of
the pixels and first (partially) minimize ® over those pixels and then move onto another group of pixels. Let § be a
subset of the pixels {1,...,p}, let S be its complement, and let |S| be the cardinality of S. In a grouped-coordinate
descent (GCD) algorithm?, we update zg while holding z7% fixed at the nth update [8,14]. Unfortunately it is even

too difficult to minimize ®(z¢, _:gg-) over zg directly, so we will settle for finding a method for choosing §§+1 that will

at least monotonically decrease the objective function®:
@(z"t) = @(zst', £5) < B(25, 23) = 8(z").

Instead of trying to find %! to minimize ®(zg, ), we minimize a surrogate function ¢(zg;z™) that we must
choose to satisfy the condition (13). The GCD update (cf SAGE algorithm [14,15]) is then:

ggtt = argming(zs;z”), (14)
s
1:;-”1 = zj, ]ES

2In a GCD method, S varies with n. To simplify notation, we leave this dependence implicit. Also note the notation abuse: D(zg,zs) =
®(z).

3To simplify notation, in the presentation we increment n every time a group of pixels is updated. We reserve the term “iteration” to
mean a complete update of all pixels.
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The condition (13) is sufficient to ensure that the iterates produced by the above generic update will monotonically
decrease the objective: ®(z"+1) < &(2").

A. Choosing Surrogate Functions
We restrict attention here to additively separable* surrogate functions ¢(-; ™) satisfying
$(zs;z*) =D ¢i(z5;2"). (15)
jes
To choose these ¢;’s, we use modifications of De Pierro’s convexity method [17,18]. The key step is to note that if
r(z) = Bz — ¢, then

rilzs 22) = 3 o [”—( C o)) (16)

jes %
for any choice® of a;; > 0 that satisfies the constraint
dwi=1, Vi (17)
jes
We discussed specific choices for «;; in [8]. One particularly useful choice is
aij = [bil/ Y lbixl- (18)
kes
Since 1; is convex over all of IR by P3, it follows directly from (16) that:
lries, 231) < D v (2223 = o) + (e ) (19)
J€s 4

It follows from (19) that we have:

B([zs, 2%]) = Z i(ri(zs, 22]) < D ¢ (25;2")

jES

for all z5, where using (16) and (19):

¢;(z;2") = Z o5 Y (-b—l—(fv —x})+ Ti(&")) , (20)

Py
i€Z; Y

and where

The surrogate function defined by (15) with (20) will satisfy the monotonicity condition (13). Each ¢; only
depends on one z;, so the minimization step in (14) reduces to |S| separate 1D minimizations. Thus (14) becomes
the parallelizable operations:

:v?“ = argn;inqﬁj(:c;g”), jEeSs. (21)

Note that because the minimization is separable, it is trivial to incorporate nonnegativity constraints [8]. Borrow-
ing from the expectation-maximization algorithm [13,14], we refer to these minimizations as the “M-step” of the
algorithm. (Computing r;(z™) can be considered the “E-step.”)

4Separable surrogate functions are very convenient for enforcing the nonnegativity constraint. There may be alternatives that lead to
faster convergence though.

5We assume «;; = 0 if and only if b;; = 0 so that (16) is well defined, which is satisfied by the choice (18).
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B. The Minimization Step

The surrogate functions ¢; defined by (20) for fixed 2 are themselves a special case of the general form (5). Thus
we can apply the successive-substitutions method described by (9) in Section 3 to the minimization required in (21).
This new approach is a significant improvement over the M-step methods described in [8].

To simplify notation, consider the update of a particular pixel j for a particular iteration n, so that we can drop
the dependence on j and n. Specifically, define

¢(z) = ¢;j(z;2") and ii(t)=aiﬂ/’i<b;j.t)

Qg5

so that from (20): 3
o(z) = Z ¥i(z — 2;) (22)

I€Z;

where o
L — n Ly (T
zi = —x] + ri(z").

by;
The natural sub-iteration for updating x; is thus to initialize with ¢ = z7, and then iterate
ZeW — ]\/‘,—(zold)7 (23)
where, applying (9) to (22), the mapping for the Huber iteration is:
$(x)
Ziezj ‘%,-(33 — %)

M@)y=2- (24)
After a few sub-iterations of this mapping, we assign x?"’l to the current value of z™¢V.

The overall algorithm is summarized in Table I, where [z]y = @ for z > 0 and is 0 otherwise. This [-]; operator
enforces the nonnegativity constraint, which is optional. The symbol “:=” denotes assignment.

C. Convergence

We have extended the proof given in [15] to establish convergence of the grouped coordinate descent algorithm
described above, provided that the minimizer of & is unique and that the groups S are chosen such that every
pixel is updated periodically, as discussed in [15]. The extension of the proof accommodates the fact that the
surrogate functions ¢;(-;2") are not exactly minimized by a finite number of subiterations of the form (24). The
proofs also include the case where the nonnegativity constraint is included by modifying the mapping to be z™*" =
max{M (2°'¢), 0}. Details will be provided elsewhere; interested readers can check the author’s web site.

It is of interest to specifically examine the convergence behavior of the 1-D subiteration (24). The next section
analyzes this iteration.

V. THE 1-D SUBITERATION

A key component of several algorithms for image reconstruction and restoration (often part of the so-called M-step)
is the minimization of a scalar functional of the form

$(a) =) vi(z — z).
i=1

Examples include [8,19,20] and (22) above. Ignoring any nonnegativity constraint on z (although this constraint
could be included in the analysis), we would like to minimize ¢(z) by zeroing its derivative:

$(@) =Y vz — z).

i=1
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Initialize Z.  Precompute r := BZ — c.

for each iteration:
for each S:
for each j € S:

k . 4.
z =
for a couple subiterations:
m
ZbZ] ’l/)< ij ( work __ j) +7'z)
k . k i=1
7O = 2 - b (25)
Z OJ‘< ij (xwork :f?j) +7’i)
—
i=1 +
end
ri =1y + by (2] — &;), Vist. by #£0 (26)
&y = m}vork
end
end
end
TABLE I

THE GENERAL GROUPED COORDINATE DESCENT ALGORITHM. NOTE THAT THE UPDATES OF !f]' ARE DONE “IN PLACE.”

Here we are specifically interested in a “modified” Newton-Raphson iteration of the form 2"°" = M (2°'9), where
M) has the following form:

e P@® ) Tlidie- =)
M@ = ) = T S =) - S wi(e =) @7)

The standard Newton-Raphson method uses w;(¢) = b; (t), but this choice does not guarantee convergence in general.
One could ensure convergence by using w;(t) = max; ¥;(t) = ¥(0) (see P9 and P7) when 1 is twice differentiable
with bounded curvature. But this choice leads to very slow convergence rates. Instead, we focus here on the special

case where w;(f) = ¢i(t)/t, as defined by C4. That choice has its origins in Huber’s iteration, as well as in the
“half-quadratic” method for nonquadratic penalty functions [11,21,22].

Since ¢ is convex but not necessarily strictly convex, the set of minimizers is either a single point or an interval of
finite length. (Conditions C1 to C5 do not ensure that the minimizer of ¢ is unique.) From (27), the set of minimizers
of ¢ equals the set of fixed points of M, i.e., where M (&) = #. Huber’s convergence theorems [4] established that
the mapping M (-) monotonically decreases ¢, but did not establish convergence to a fixed point of M(-).

A. Nonezpansive

The following result shows that the iteration M is nonexpansive, i.e., the sequence of iterates “gets closer” to a
minimizer each iteration. This is a somewhat stronger result than the fact that M provides a sequence of iterates
for which ¢ is monotonically non-increasing.

Theorem.

If the v;’s satisfy the conditions C1 to C5, then for any z;’s M(-) is globally nonezpansive, i.e. |M(z)— 2| < |z — Z|
where £ is any fixed-point of M (-}, for any = # 2.

Proof:
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First note that

d(2) — $(&) _ ST, dilx — =) — il — =) szx—m i@ — 2)

r— i xr—Z z—z;— (& — %)

Z)\¢ (z = 2:,% — 2;)

where

b(w) = d(v)
w(u,v):{ T UE (28)

wy (u), u="v

Thus for z # &:

@_l ‘x_ﬁ_aw)—q‘s(@)

_ d(z) _ $(z) — $(2)
T P e P L O[OS
Dimi My — iy & —z)| i wile = z)[L = Ay (2 — 2, & — ) [wi(e — z)]]
=1 L = iz . . (29)
Yz wil® — z) Yz wile — z)
Thus since w;(z — z;) > 0, for M(-) to be nonexpansive it is sufficient to have

11— Ay (u,v)/wy(u)] < 1 (30)
for all u # v and for all % satisfying C1 to C5. This condition is established by the following lemma. |

We conjecture that one can also show that M is a contraction, i.e., |[M(z) — &| < |[M(z) — 2| provided M (z) # «,
i.e.  is not a minimizer of ¢.

Lemma 1: For v satisfying conditions C1 to C5:

0 < Mu,v)
= w(u)
where A was defined by (28) and for notational simplicity we drop the dependence on ¢ here.
Proof:

For u = v, both equalities are clearly satisfied, since A(u, u)/w(u) = 1. For u # v, the left-hand inequality follows
immediately from C3. We now focus on the right-hand equality in the case u # v.

Case I: v = 0 # u. From (28) it is clear that A(w,0)/w(u) = 1.
Case I u=0# v. A0,v)/w(0) = w(v)/w(0) <1 by P8.
Case III: v = —u # 0. AM(u,—u)/w(u) = 1.
Case IV: 0 < |v| < |u|. In this case, establishing the right-hand inequality is equivalent to showing
_ w(u) = Y(v)/u
) = LI o)
or equivalently that ‘
() — () < 2ow)(1 - v/w)

since |v| < ju| implies 1 — v/u is positive. Dividing through by w(u) and simplifying, we must show

2u <1 ¢( ) (31)

0}

If u and v have the same sign, then by first using the fact that |v|/|u| < 1 in this case, and then that w(u) < w(v)
(by C4 and P6), we have

(w)

22 =2l <14 |2 <142 ‘w(v) 1+‘M =1+

(u) ()
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which confirms (31). Now if u and v have opposite signs, then 2v/u < 0, but 1+ (v)/¥(u) > 0 since [1(v)/v(u)] < 1
by P5 for |v| < |u|. Thus (31) holds regardless of the signs of u and wv.

Case V: 0 < |u| < |v|. Using the symmetry of A(u,v) for v # v, and since w(v) < w(u) for [u| < |v| by C4 and P6,
Ay, v)fw(u) = Mo, w)/w(u) < Mv,uw)/w(v) < 2 by Case IV.

Thus we have shown 0 < A(u, v)/w(u) < 2 for any u, v pair. o
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