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Abstract

It is shown that 3D objects with discrete rotational sym-
metry induce geometric relations in the image. Symmetry
related points on the object are imaged to points which sat-
isfy these image geometric relations. These relations are
unaffected by camera calibration (interior orientation) and
object pose. The relations can be utilised to group features in
the image arising from the object. Furthermore, 3D structure
of the object can be recovered from a single image up to a
specified ambiguity. The paper illustrates these mechanisms
on real image examples.

1 Introduction

A number of classes of 3D structures have been identified
which permit 3D invariants to be measured in a single image
view of the structure, e.g. rotational [6]. An important ex-
ample of such classes is where the 3D object is repeated by
a symmetry operation, for example bi-lateral symmetry [9].
The main theme of the work presented here is the use of
invariant properties of such symmetries for image group-
ing [12].

As is well known, in building any automatic recognition
system working with images of real scenes acquired under
ambient conditions, a significant barrier to successful recog-
nition is the extraction of feature groups which correspond
to individual object boundaries. Outline curves found using
state-of-the art edge detectors will have “drop outs”, incom-
plete and incorrect topology and extraneous segments. To
overcome such problems, a grouping stage is incorporated
that typically involves associating curve segments based on a
combination of proximity,connectivity and “heuristics”. The
key idea here is that a geometric class in 3D defines relations
which must hold in the image between points on the perspec-
tive projection of the object. This class-based grouping can
thus provide a principled basis for such heuristics.

In this paper, we explore the class of 3D objects with
discrete rotational symmetry. The finite rotation group in-
duces strong projective constraints on an image projection of
the object and provides a useful extension as a recognition
primitive for many man-made objects such as a hexagonal
bolt or a triangular truss girder. Prior work is that of Van
Gool et al. [11], who considered planar discrete rotational

symmetries under projective transformations. This paper ex-
tends these ideas to 3D structures. We will demonstrate that
it is possible to recover Euclidean properties, such as angle,
directly from an uncalibrated image of an object taken from
an unknown viewpoint.

2 Discrete Rotational Symmetry

Structures that repeat in a single image of a scene are
equivalent to multiple views of a single instance of the struc-
ture. Thus, for example, a view of two similar cars in a
car park where the cars are parked within translations of one
another, is equivalent to a stereo pair of images of one such
car, with the cameras related by a pure translation. The 3D
shape of the car can be recovered by the familiar techniques
of stereopsis. More formally,
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In many cases the internal calibration parameters of the cam-
era will be unknown. In this case a single image of a repeated
structure is mathematically identical to an uncalibrated stereo
pair where the two cameras are related by the transformation
between

�
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. It has been shown by Faugeras [3] and

Hartley et al. [4] that if one carries out stereo reconstruction
from two uncalibrated perspective images, the reconstruction
can differ from the actual 3D Euclidean geometry of the ob-
ject by a 3D projective transformation. Thus, 3D projective
invariants of this recovered structure have the same value
as projective invariants measured on the actual Euclidean
structure. Here the transformation in 3D is given by the
following:

Definition 1 Discrete Rotational Symmetry The transfor-
mation � which repeats the structure in 3D is � �
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is an � -fold rotation matrix, i.e.
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Figure 1: a) a bolt with sixfold symmetry. The marked point in the center is the computed eigenvector � corresponding to
the center of rotation. The point � is close to that determined by a projectively invariant construction for the center. c) the
vanishing line, � .

3 Image Relations

3.1 Planar Relations

Corresponding symmetrical points on the object lie on
planes perpendicular to the rotation axis. In the image plane,
symmetric points on these planes are related by a cyclic
collineation � of period n. That is, the 3D discrete rotational
symmetry induces a planar symmetry of the same form, � ���
�
, where � is the 3 � 3 homogeneous matrix representing the

transformation. The plane projective transformation, � , has
three fixed points described by its eigenvectors, � , � and
¯� . The eigenvector, � , is real and determines the center of
rotation in the image plane. The other two eigenvectors are
complex conjugates and correspond to the circular points of
the planes perpendicular to the rotation axis [10]. Since these
planes are parallel, their common line of intersection is the
vanishing line for the planes. This line is given by:

� � ��� ¯�
The eigenvalues of � are, up to a single scale factor,
1 ��������� ��!"�#� , where $ is the angle of rotation (i.e. $ �

2 %�&'� ).
Consequently, the rotation angle of the symmetry, which is
a Euclidean invariant, can be recovered directly from the
uncalibrated perspective image.

An example of discrete rotational symmetry in the plane
is shown in figure 1.

In the figure, a projective construction using triangles is
shown which defines the center of rotation. That is, three
symmetric points are joined to form a triangle. Three ad-
ditional symmetric points define a second triangle. The in-
tersection of the edges of the two triangles define two lines
which must intersect at the center of rotation, as shown. The
center constructed from the eigenvectors of � , is very close

to the center constructed from these incidence relations. The
rotation angle, computed from the eigenvalues of � , is 60.17
degrees.

3.2 3D objects

The previous section demonstrated the discrete rotation of
planar structures. More generally, the symmetry constraints
can be derived from a set of 3D points. In this approach,
the symmetrically corresponding points in a single image are
treated as multiple views of a single pointset. The discrete
symmetry of the object constrains the form of the fundamen-
tal matrix ( [2] computed from point correspondences. The
fundamental matrix is defined by the epipolar constraint,

) �+* ( ) �
0 � 1 �

The epipolar constraint expresses the fact that a point in one
image defines a corresponding line in a second image which
is the projection of the point in space as it moves along the
ray through the center of projection of the first camera and its
position in the first image. The line is given by, ( ) , which is
a projective correlation, interpreting the fundamental matrix
as a transformation matrix. We can define an analogous
epipolar geometry in a single view of a repeated structure.

When ) � and ) , are related by a discrete symmetry, there
are points in the image which are fixed under the symmetry
mapping. In our case, the image projection of the axis of
rotation is fixed under the image transformation which maps
points between periods of the discrete rotation. In addition,
the line in the image which contains the common vanishing
points of the planes perpendicular to the axis of rotation is
also fixed.

These fixed points are specified by setting ) � �
x [1]. In

this case the epipolar constraint becomes a quadratic form,



Figure 2: a) The pagoda has six-fold symmetry. b) The white dots mark the set of points used to construct the rotational
symmetry. Correspondences among these points are used to compute the fundamental matrix (see text). The lines drawn in
black are the projected rotation (symmetry) axis, and the vanishing line for planes perpendicular to the rotation axis. These
lines are computed from the fundamental matrix.

and the image location of these points is only affected by
the symmetric part of ( . Let ( � (-,/.0(
1 , where (-, is the
symmetric part and (
1 is the anti-symmetric part of ( . Note
that ) * (
1 ) �

0 identically, since ( *1 �32 (
1 . That is,
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Therefore the anti-symmetric part contributes nothing to the
quadratic form. The fundamental matrix is a rank two ma-
trix, but in general the symmetric part, (-, , will be full rank.
However, it can be shown [7] that if the rotation axis is per-
pendicular to the translation direction, or the translation is
zero as it is here, the symmetric part of the essential matrix
drops rank. It follows that ( , is also not of full rank (since
the essential matrix is transformed to the fundamental ma-
trix by full rank intrinsic parameter matrices), and the conic) * ( , ) �

0 degenerates to two distinct lines. One line, � 1 ,
is the image projection of the axis of rotation and the other
line, �65 , is the vanishing line of the planes perpendicular to
the rotation axis. The intersection of these two lines is at the
null vector of (7, .

In principle the fundamental matrix in this case can be
computed from the correspondence of six points, since the
matrix has six degrees of freedom. In general seven corre-
spondences are required to compute one or three solutions
for ( . The homogeneous matrix has eight degrees of freedom
(arising from the ratios of the nine elements), but in this case
the fundamental matrix satisfies two (cubic) constraints. One
arising from det ( �

0, the other from det (-, �
0.

An illustration of the recovery of these symmetry ele-
ments is shown in Figure 2. A number of points are selected
in the image which lie on positions which are equivalent
under the discrete 3D rotation. The fundamental matrix is

computed and defines the projection of the axis of symmetry
in the image, as just discussed. Note that the axis is slightly
perturbed from its ideal value, due to errors in the location
of the original set of image points. The vanishing line of the
planes perpendicular to the rotation axis is also shown.

As has been demonstrated above, in the planar relations,
the 3D geometry of the structure can be reconstructed up to a
similarity transformation on the planes perpendicular to the
axis of rotation. However, the 3D reconstruction ambiguity
is projective along the axis of rotation (i.e. a 1D projective
transformation).

It is possible to form similar constructions to that shown
in Figure 1 in order to define distinguished points on the axis
of rotation. These distinguished points can then be used as
an invariant description of the object, along with the known
discrete rotation angle. Of course, many correspondences
will be eliminated by the self-occlusion inherent in a 3D
object.

4 Grouping

Up to this point we have described the image relation-
ships, and demonstrated that they can be recovered from
real images. We now discuss the issue of what grouping
strategies to adopt in order to best utilise these relationships.
This grouping task has many similarities with the problem of
establishing a correspondence between image features and
model features in a model based recognition system [5].

In model based recognition, two alternative strategies are
used to establish a transformation between the 3D object
model and the image. The first strategy is called hough
or pose clustering, where each image-model correspondence



votes for transformation parameters. The successful transfor-
mation is the one with the most votes. The second strategy,
alignment, hypothesises sufficient image-model correspon-
dences to compute the transformation, perhaps by exhaustive
combination of a sufficient set of features. For both strate-
gies, the resulting transformation is used to map the rest of the
model onto the image, and support for the model hypothesis
is measured against additional image features.

As described in section 3.2, six point correspondences
are required to determine the fundamental matrix, with sym-
metric part rank 2, that models the image relations. Conse-
quently, employing the first strategy of voting on a matrix
has a high complexity of 8/�6� 6 � , where � is the number of
suitable points.

A strategy with potentially far smaller cost is to follow
the alignment approach: groupings are formed of six features
which are likely to be symmetry related points, and a putative
( computed. The support is then measured by counting how
many other features obey this epipolar geometry, i.e. if ) and) � support the matrix, then the distance between the point) � and the epipolar line ( ) must be below a threshold. It is
important that the minimum number of correspondences are
used to estimate the fundamental matrix, as this reduces the
chance that the estimate might be contaminated by outliers
(mis-matches).

5 Conclusions

We have demonstrated that discrete rotational symmetry
provides strong image constraints for feature grouping. The
rotational symmetries also allow the recovery of 3D structure
up to a particular ambiguity from a single perspective image.
The similarity invariants of the objects cross-section will pro-
vide an effective indexing function for object classification.
These results extend the bilateral symmetry example of [9]
to the rotational case, and provide a framework for an imple-
mentation of feature grouping algorithms for recognition.
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