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Abstract—In this paper, we propose new aggregation functions
for the pairwise comparison of alternatives in fuzzy preference
modeling. More specifically, we introduce the concept of a grouping
function, i.e., a specific type of aggregation function that combines
two degrees of support (weak preference) into a degree of infor-
mation or, say, a degree of comparability between two alternatives,
and we relate this new concept to that of incomparability. Grouping
functions of this type complement the existing concept of overlap
functions in a natural way, since the latter can be used to turn two
degrees of weak preference into a degree of indifference. We also
define the so-called generalized bientropic functions that allow for
a unified representation of overlap and grouping functions. Apart
from analyzing mathematical properties of these types of functions
and exploring relationships between them, we elaborate on their
use in fuzzy preference modeling and decision making. We present
an algorithm to elaborate on an alternative preference ranking
that penalizes those alternatives for which the expert is not sure of
his/her preference.

Index Terms—Decision making, generalized bientropic func-
tion, grouping function, incomparability, overlap function, pair-
wise comparison, preference relations.

I. INTRODUCTION

FORMAL models for dealing with preferences have a long
tradition in diverse research disciplines, ranging from eco-

nomics and philosophy to operations research and statistics [24].
The two approaches prevailing the literature on choice and de-
cision theory are based, respectively, on the two perhaps most
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natural ways for expressing preferences, namely by evaluating
individual alternatives and by comparing (pairs of) compet-
ing alternatives. While the former approach leads to preference
models in the form of (numerical) utility functions, the latter
employs (binary) relations in order to express (comparative)
preferences in a qualitative way.

The relational approach to preference modeling is arguably
more convenient from a knowledge acquisition point of view,
especially since people often find it easier to compare two alter-
natives than to assess single alternatives in terms of numerical
utility degrees. In fact, a number of well-known methods for de-
cision making are based on pairwise comparisons of this type,
including the Saatys analytical hierarchy process [31] and deci-
sion making based on fuzzy preference relations [1], [9], [11],
[12], [16], [29], [35].

In fuzzy preference modeling, an indifference relation is usu-
ally derived from a weak preference relation R by means of
a t-norm combination, i.e., I(A,B) = T (R(A,B),R(B,A)),
and it is a measure of the simultaneous fulfillment of
R(A,B) and R(B,A). Likewise, incomparability is modeled
in terms of a logical expression of the form, i.e., J (A,B) =
T (N(R(A,B)), N(R(B,A))), meaning that A and B cannot
be compared if neither A is (weakly) preferred to B nor if it is
the other way around (N is a negation operator) [17], [30].

However, despite the usefulness and soundness of this ap-
proach, one may argue that, at least in the context of the pair-
wise comparison of alternatives, the use of the standard fuzzy
logical operators to combine weak preference or, say, support
degrees is not compulsory. For example, there is, in principle,
no strong reason to require associativity of the combination
function, since by definition, a pairwise comparison refers to
only two alternatives (and the result of the comparison is not an
alternative).

Taking into account that Fodor and Roubens’ axiomatization
of the preference structures only demands independence, mono-
tonicity, and symmetry and that associativity is not required, in
this study, we aim to present new construction methods for the
concepts of indifference and incomparability that do not forcibly
depend on the use of t-norms.

To this end, we continue the work that was started in [6],
where the concept of an overlap function was introduced. Con-
sider the problem of assigning an object q to either class A
(which corresponds to the event q ∈ A) or class B (correspond-
ing to q ∈ B). Roughly speaking, a degree of overlap between
two support degrees R(A,B) and R(B,A) is the amount of
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simultaneous evidence in favor of q ∈ A and q ∈ B. With re-
gard to the assignment of q to one of the classes A or B, it may
hence serve as a measure of indifference in the sense of [17].
Here, we complement this function by what we call a group-
ing function. The latter is supposed to measure the amount of
evidence in favor of either of the two classes A and B. Thus,
its negation may serve as a measure of incomparability. As a
unifying element, we introduce the concept of a generalized bi-
entropic function for the representation of the uncertainty that
is involved in assigning q to class A or B and show that both
the overlap and the grouping function can be derived from a
generalized bientropic function.

These considerations have led us to pose the following
objectives.

1) Define the concept of grouping function.
2) Define the concept of generalized bientropic function.
3) Analyze the connections of these concepts with overlap

functions.
4) Define the concepts of indifference and incomparability

in the sense of [17] and [30] and in terms of overlap
functions, grouping functions, and bientropic functions.

A problem arises in the pairwise comparison of alternatives
in fuzzy preference modeling when the expert provides a value
for the preference of alternative A over alternative B close to
0.5, i.e., when the expert is not sure of which alternative he
or she prefers. For this situation, we propose an algorithm that
makes use of the concept of a generalized bientropic function,
since these functions allow us to penalize values around 0.5
(just by taking the minimal entropy). In the algorithm that we
propose, we are also going to penalize indifference of the experts
in the preference of alternatives, as well as the incomparability
between them.

This paper is organized as follows. In Section II, we introduce
the basic concepts that we are going to use later. In Section III,
we define grouping functions, and we study their properties. In
Section IV, we introduce the concept of generalized bientropic
functions and study their main properties. In Section V, we
consider connections between generalized bientropic functions,
overlap functions, and grouping functions. In Section VI, we
elaborate on differences and similarities between the concepts
of indifference, incomparability, overlap, grouping, and gen-
eralized bientropic function. We present an algorithm for the
exploitation phase in decision-making problems that allows us
to select the best alternative by minimization of an expression in
terms of generalized bientropic functions, indifference, and in-
comparability. In Section VII, we present some open problems.
Finally, in Section VIII, we present some conclusions.

II. PRELIMINARY DEFINITIONS

We start by recalling some basic concepts that we are going
to use in our subsequent developments.

A. Negations, Automorphisms, and Aggregation Functions

A strict negation (see [34]) is a continuous and strictly de-
creasing mapping, i.e., N : [0, 1] → [0, 1], such that N(0) = 1
and N(1) = 0. A strong negation is an involutive strict nega-

tion, i.e., a strict negation N , such that N(N(x)) = x for all
x ∈ [0, 1].

Given a strong negation N , an equilibrium point e ∈ (0, 1) of
that negation is characterized by the property, i.e., N(e) = e. It
is easy to show that a strong negation has a unique equilibrium
point.

An automorphism (see [3] and [4]) of the unit interval is
a bijective mapping, i.e., ϕ : [0, 1] → [0, 1], which is strictly
increasing (ϕ(0) = 0 and ϕ(1) = 1). Observe that, in particular,
any automorphism is continuous.

For us, an aggregation function (see [2] and [18]) will be
a binary increasing mapping M : [0, 1]2 → [0, 1], such that
M(0, 0) = 0 and M(1, 1) = 1. The well-known instances of
aggregation functions are t-norms (see [25]). An aggregation
function is conjunctive if it is bounded by the minimum, i.e., if
M(x1 , x2) ≤ min(x1 , x2). We say that an aggregation function
does not have divisors of zero if M(x1 , x2) = 0, which implies
that x1 = 0 or that x2 = 0.

B. Fuzzy Relations

Definition 1 [17]: Let X = {x1 , . . . , xn} be a referential set.
A binary fuzzy relation R on X is defined as a fuzzy subset of
X × X , i.e., R : X × X → [0, 1]. The value, i.e., R(xi, xj ) =
Rij , denotes the degree of membership of the element (xi, xj ) ∈
X × X in R (see [10] and [17]).

We will say that the fuzzy relation R satisfies the property
of reciprocity (or that R is reciprocal) if Rij + Rji = 1 for all
i, j ∈ {1, . . . , n}. For this kind of relations, it is common not
to define the main diagonal elements (see [19] and [23]). We
will denote by FR(X × X) the set of all binary fuzzy relations
on X .

C. Overlap Functions

Recall the situation that is outlined in Section I, in which an
object q must be assigned to class A or class B. Moreover, sup-
pose that we are given corresponding degrees of support (weak
preference), x = μA (q) and y = μB (q), respectively, and we
are interested in the degree z to which A and B are supported
simultaneously. More specifically, we are interested in a func-
tion, i.e., F : [0, 1]2 → [0, 1], such that z = F (x, y). A natural
candidate for F is an overlap function as introduced in [6]. An
overlap function is essentially characterized by symmetry and
natural boundary and monotonicity properties.

Definition 2 [6]: An overlap function is a mapping, i.e.,
GO : [0, 1]2 → [0, 1], such that

GO 1) GO (x, y) = GO (y, x) for all x, y ∈ [0, 1];
GO 2) GO (x, y) = 0 if and only if x = 0 or y = 0;
GO 3) GO (x, y) = 1 if and only if x = y = 1;
GO 4) GO is nondecreasing;
GO 5) GO is continuous.

Example 1: For any p > 0, the mapping, i.e., GO (x, y) =
(min(x, y))p , is an overlap function. Note that, for p �= 1, this
overlap function is not associative.



BUSTINCE et al.: GROUPING, OVERLAP, AND GENERALIZED BIENTROPIC FUNCTIONS FOR FUZZY MODELING OF PAIRWISE COMPARISONS 407

A deep study of overlap functions has been developed in
[6]. In particular, the following theorem and some construction
methods were considered, as well as the relation between the
overlap function and the analytic properties, such as migrativity
or homogeneity.

Theorem 1 [6]: If a t-norm T is an overlap function, then T
belongs to one of the following three types.

1) T = TM .
2) T is strict.
3) T is the ordinal sum of the family {([am , bm ], Tm )}, with

all the Tm being continuous Archimedean and such that
if am 0 = 0 for some m0 , then Tm 0 is necessarily a strict
t-norm.

Note that overlap functions form a convex class, whereas
t-norms do not. Moreover, even the convex closure of the class
of continuous t-norms with no zero divisors (which are the
same as associative overlap functions) is a proper subclass of
all overlap functions. Another important fact is that overlap
functions are preserved under outer and inner transformations
by means of automorphisms, i.e., if ϕ1 , ϕ2 : [0, 1] → [0, 1] are
automorphisms, and GO : [0, 1]2 → [0, 1] is an overlap function,
then

HO : [0, 1]2 → [0, 1] given by

HO (x, y) = ϕ1(GO (ϕ2(x), ϕ2(y)))

is also an overlap function.
The possible nonassociativity of overlap functions reflects

the fact that they can combine the knowledge of several experts
aggregating their individual overlap functions, e.g., as a con-
vex sum (weighted arithmetic mean), or their log-convex sum
(weighted geometric mean). The extension of Definition 2 from
the binary case to n-dimensional overlap functions is straight-
forward, modifying (GO 1) into the symmetry of n-ary func-
tions, (GO 2), requiring that GO (x1 , . . . , xn ) = 0 if and only
if xi = 0 for some i ∈ {1, .., n}, and modifying (GO 3) into
GO (x1 , . . . , xn ) = 1 if and only if x1 = · · · = xn = 1. Again,
continuous t-norms (their n-ary forms) and their convex com-
binations are prototypical examples of n-ary overlap functions.
Note that in our contribution we will work with binary overlap
(and related) functions only.

III. GROUPING FUNCTIONS

In this section, we introduce the concept of a grouping func-
tion as a natural complement of an overlap function. Given two
degrees of support, i.e., x = μA (q) and y = μB (q), a grouping
function is supposed to yield a degree z to which the combina-
tion (grouping) of the two classes A and B is supported, i.e.,
either A or B or both.

Definition 3: A mapping GG : [0, 1]2 → [0, 1] is a grouping
function if it satisfies the following conditions.

GG1) GG (x, y) = GG (y, x) for all x, y ∈ [0, 1].
GG2) GG (x, y) = 0 if and only if x = y = 0.
GG3) GG (x, y) = 1 if and only if x = 1 or y = 1.
GG4) GG is nondecreasing.
GG5) GG is continuous.

Remark: Observe that a grouping function is a particular type
of binary aggregation function. Moreover, as in the case of over-
lap functions, the extension of Definition 3 from the binary case
to n-dimensional grouping functions is straightforward, modify-
ing (GG1) into the symmetry of n-ary functions, (GG2) requir-
ing that GG (x1 , . . . , xn ) = 0 if and only if x1 = · · · = xn = 0
and modifying (GG3) into GG (x1 , . . . , xn ) = 1 if and only
if xi = 1 for some i ∈ {1, .., n}. Again, continuous t-conorms
(their n-ary forms) and their convex combinations are prototyp-
ical examples of n-ary grouping functions.

Example 2: The following binary aggregation functions are
examples of grouping functions:

GG (x, y) = (max(x, y))k with k > 0 (1)

GG (x, y) =
max(x, y)

max(x, y) +
√

(1 − x)(1 − y)
. (2)

In the following sections, we establish some connections be-
tween grouping functions and overlap functions.

The following theorem shows the relation between grouping
functions and overlap functions.

Theorem 2: Let GO be an overlap function, and let N be a
strict negation. Then

GG (x, y) = N(GO (N(x), N(y))) (3)

is a grouping function. Reciprocally, if GG is a grouping func-
tion, then

GO (x, y) = N(GG (N(x), N(y))) (4)

is an overlap function.
Proof: (GG1) The proof is di-

rect. (GG2), GG (x, y) = 0 = N(GO (N(x),
N(y))) if and only if GO (N(x), N(y)) = 1 if and only
if N(x) = N(y) = 1 if and only if x = y = 0. (GG3),
GG (x, y) = 1 = N(GO (N(x), N(y))) if and only if
GO (N(x), N(y)) = 0 if and only if N(x) = 0 or N(y) = 0 if
and only if x = 1 or y = 1. (GG4) and (GG5) are direct. �

Corollary 1: Let

GSup
G (x, y) =

{
0 if x = y = 0

1 in other case

and

GInf
G (x, y) =

{
1 if max(x, y) = 1

0 in other case.
(5)

Then, the pointwise supremum of all grouping functions is
given by GSup

G and the pointwise infimum is given by GInf
G . In

particular

GInf
G (x, y) ≤ GG (x, y) ≤ GSup

G (x, y) for all x, y ∈ [0, 1].
(6)

Proof: The proof is direct. �
Comment 1: Let GO be an overlap function and GG be

a grouping function. Then, it never happens that GG (x, y) ≤
GO (x, y) for all x, y ∈ [0, 1]. Just observe that, evidently, for
any GG and GO , it holds that GG (1, 0) = 1 > 0 = GO (1, 0),
excluding the possibility that GG ≤ GO .
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Theorem 3: Let GG be an associative grouping function.
Then, GG is a t-conorm.

Proof: We only need to see that 0 is the neutral element of
GG . From the continuity of GG and the fact that GG (1, 0) = 1,
GG (0, 0) = 0, it follows that, for any x ∈ ]0, 1[, there exists
y ∈ ]0, 1[, such that x = GG (y, 0). However, then, GG (x, 0) =
GG (GG (y, 0), 0) = GG (y,GG (0, 0)) = GG (y, 0) = x, and
similarly, GG (0, x) = x. �

To see that the converse of Theorem 3 does not hold, it is
enough to consider discontinuous t-conorms.

Note that, like in the case of overlap functions, grouping func-
tions form a convex class, which is closed under outer and inner
automorphism transformations. Moreover, there exist functions
other than t-conorms that are grouping functions; see (1) and (2).

IV. GENERALIZED BIENTROPIC FUNCTIONS

Since overlap and grouping both measure specific types of
uncertainty with regard to the class assignment of an object q,
one may wonder whether these concepts can be unified in one
way or the other. As will be shown later on, this is indeed possi-
ble, thanks to the concept of generalized bientropic functions as
introduced in this section. The definition of this type of function
builds on the normal EN -functions that are introduced in [7].

Definition 4 [7]: A function EN : [0, 1] → [0, 1] is called a
normal EN -function that is associated with the strong negation
N if it satisfies the following conditions.

1) EN (x) = 0 if and only if x = 0 or x = 1.
2) EN (x) = 1 if and only if x = e, where e is the equilibrium

point of N .
3) EN (x) = EN (N(x)) for all x ∈ [0, 1].
4) If y ≥ x when x ≥ e, and y ≤ x when x ≤ e, then

EN (x) ≥ EN (y).
Example 3:

EN (x)

=

⎧
⎨

⎩

xlog(x) + (1 − x)log(1 − x)
log(0.5)

, if x �= 0 and x �= 1

0, if x = 0 or x = 1

Evidently, in this case, N(x) = 1 − x, and e = 1/2.
Based on Definition 4, we propose the following definition.
Definition 5: A function H : [0, 1]2 → [0, 1] is called a bien-

tropic function that is associated with the strong negation N , if
it satisfies the following conditions.

H1) H(x, y) = H(y, x) for all x, y ∈ [0, 1].
H2) H(x, y) = 0 if and only if {0, 1} ∩ {x, y} �= ∅.
H3) H(x, y) = 1 if and only if x = y = e, where e is the

equilibrium point of N .
H4) H(x, y) = H(N(x), N(y)).
H5) H is increasing on [0, e]2 and decreasing on [e, 1]2 .

Here, e ∈ ]0, 1[ is the only point, such that N(e) = e.
Proposition 1: If EN is a normal EN -function that is as-

sociated with the strong negation N , and C is a conjunctive
aggregation function with no zero divisors, then

H(x, y) = C(EN (x), EN (y)) for all x, y ∈ [0, 1]

is a bientropic function.

Proof: The proof is direct. �
Proposition 2: Let ϕ1 and ϕ2 be two automorphisms of the

unit interval; N be any strong negation, such that N(e) = e; and
C be a conjunctive aggregation function with no zero divisors.
Under these conditions

H(x, y) = C(ϕ−1
1 (1 − |ϕ2(x) − ϕ2(N(x))|)

ϕ−1
1 (1 − |ϕ2(y) − ϕ2(N(y))|)

is a bientropic function.
Proof: The proof is direct. �
Example 4: 1) If ϕ1(x) = x

1
d with d ≥ 1, ϕ2(x) = x,

and N(x) = 1 − x for all x ∈ [0, 1], then EN (x) = ϕ−1
1 (1 −

|2x − 1|) = ϕ−1
1 (1 − max(2x − 1, 1 − 2x)) = ϕ−1

1 (2min(1 −
x, x)) = 2d(min(1 − x, x))d is Kaufmans’ normal EN -
function. Under these conditions, if we take C = min, we
obtain

H(x, y) = min(2d(min(1 − x, x))d , 2d(min(1 − y, y))d).

2) If we take ϕ1(x) = 1 − (1 − x)d with d ≥ 1, N(x) = 1 − x
and ϕ2(x) = x for all x ∈ [0, 1], the normal EN -function that
we obtain is from Yager, i.e., EN (x) = ϕ−1

1 (1 − |2x − 1|) =
1 − |2x − 1|d . Under these conditions, if we take C = min, we
obtain

H(x, y) = min(1 − |2x − 1|d , 1 − |2y − 1|d).
As mentioned earlier, we seek to establish a connection be-

tween generalized bientropic functions and overlap/grouping
functions. In order to guarantee desirable properties of the lat-
ter, it makes sense to restrict the class of generalized bientropic
functions, as in the following definition.

Definition 6: A generalized bientropic function is a mapping,
i.e., GE : [0, 1]2 → [0, 1], for which there exists e ∈ ]0, 1[, such
that

GE 1) GE (x, y) = GE (y, x) for all x, y ∈ [0, 1];
GE 2) GE (x, y) = 0 if x = 1 or y = 1;
GE 3) GE (x, y) = 1 if and only if x = y = e;
GE 4) GE is decreasing in [e, 1]2 ;
GE 5) GE is increasing in [0, e]2 .
Theorem 4: Every continuous bientropic function that is as-

sociated with the strong negation N is a generalized bientropic
function with e given by the equilibrium point of N .

Proof: The proof is direct. �
Observe that the converse of Theorem 4 does not hold.

V. CONNECTION BETWEEN GROUPING FUNCTIONS, OVERLAP

FUNCTIONS, AND GENERALIZED BIENTROPIC FUNCTIONS

In this section, we connect the concepts of grouping and
overlap functions with that of generalized bientropic functions.

First of all observe that the classes of generalized bientropic
functions, overlap functions, and grouping functions are dis-
joint. Note that, if GO is an overlap function, GG is a group-
ing function and GE is a generalized bientropic function; it
follows that G0(0, 1) = GE (0, 1) = 0, whereas GG (0, 1) = 1;
therefore, a grouping function can never be an overlap func-
tion or a generalized bientropic function. On the other side,
by definition, there exists e ∈]0, 1[, such that GE (e, e) = 1 but



BUSTINCE et al.: GROUPING, OVERLAP, AND GENERALIZED BIENTROPIC FUNCTIONS FOR FUZZY MODELING OF PAIRWISE COMPARISONS 409

Fig. 1. Example of the generalized bientropic function which satisfies (8).

G0(e, e) �= 1 (since e �= 1); therefore, in addition, the classes
of overlap functions and generalized bientropic functions are
disjoint. Nevertheless, we have the following result.

Proposition 3: Let GE be a generalized bientropic function
and GO be an overlap function. Then, the function

P (x, y) = GO (GE (x, y), GE (x, y))

is also a generalized bientropic function.
Proof: Continuity is clear since we are dealing with

a composite of continuous functions. Symmetry of P is
also obvious. Now, if x = 1 or y = 1, then GE (x, y) =
0; therefore, P (x, y) = GE (x, y) = 0. Moreover, P (e, e) =
GO (GE (e, e), GE (e, e)) = GO (1, 1) = 1. If P (x, y) = 1 =
GO (GE (x, y), GE (x, y)), we have GE (x, y) = 1 if and only
if x = y = e. Finally, the monotonicity conditions follow
from the fact that they hold for GE , and GO is monotone
nondecreasing. �

There is a very close relation between generalized bientropic
functions and overlap functions, as the following results show.

Theorem 5: Let GE be a generalized bientropic function, such
that

GE (x, y) = 0 if and only if x = 1 or y = 1. (7)

Then, for any strong negation, N : [0, 1] → [0, 1], such that
N(0.5) = 0.5, the mapping

GO (x, y) = GE (N (0.5 · x) , N (0.5 · y)) (8)

is an overlap function. In addition, reciprocally, let GO be an
overlap function, and let N : [0, 1] → [0, 1] be a strong negation.
Then, the mapping

GE (x, y) = GO (N(|2x − 1|), N(|2y − 1|)) (9)

is a generalized bientropic function.
Proof: It follows from a straight calculation. �
Example 5: The mapping (see Fig. 1)

GE (x, y) = min (2(1 − x), 2(1 − y),max(2x, ε),max(2y, ε))
(10)

with ε > 0 and ε < 1/4 is a generalized bientropic function that
satisfies (7).

Take N(x) = 1 − x for all x ∈ [0, 1]. Then, from (8)

GO (x, y) = min(x, y,max(2 − x, ε)

max(2 − y, ε)) = min(x, y).

Corollary 2: Let GE be a generalized bientropic function,
such that

GE (x, y) = 0 if and only if x = 1 or y = 1. (11)

Then, for any strong negation, i.e., N : [0, 1] → [0, 1], such that
N(0.5) = 0.5, the mapping

GG (x, y) = N (GE (N(0.5 · N(x)), N(0.5 · N(y)))) (12)

is a grouping function. Reciprocally, let GG be a grouping func-
tion. Then, the mapping

GE (x, y) = N(GG (|2x − 1|, |2y − 1)) (13)

is a generalized bientropic function.
Proof: Direct. �

VI. CONNECTION BETWEEN INCOMPARABILITY, OVERLAP,
GROUPING, AND GENERALIZED BIENTROPIC FUNCTIONS

IN PREFERENCE RELATIONS

A. Fuzzy Preference Relations

Let R ∈ FR(X × X) be a fuzzy preference relation over a
set of alternatives, i.e., X = {x1 , . . . , xn} (see [10], [13], [17],
[19], [26], and [28]); for each pair of alternatives xi and xj ,
Rij = R(xi, xj ) represents a degree of preference of xi over
xj , namely the degree to which xi is considered as least as good
as xj (by definition, Rii = 1 or Rii are not considered).

From a weak preference relation R, in [17] (see also [10]
and [30]), the authors derive the following relations.

1) Strict preference, i.e., Pij = P(xi, xj ), is a measure of
strict preference of xi over xj , indicating that xi is
(weakly) preferred to xj , but xj is not (weakly) preferred
to xi .

2) Indifference, i.e., Iij = I(xi, xj ), is a measure of the si-
multaneous fulfillment ofRij andRj i . Roughly speaking,
xi and xj are considered equal in the sense that both xi is
as good as xj and the other way around.

3) Incomparability, i.e.,Jij = J (xi, xj ), is a measure of the
incomparability of xi and xj , which occurs if neither Rij

nor Rj i .
Fodor and Roubens axiomatically define these concepts. The

three axioms that they present are: independence, monotonicity,
and symmetry. In particular, they propose to express the afore-
mentioned relations in terms of t-norms T1 and T and a strict
negation N :

Pij = T1(Rij , N(Rj i))

Iij = T (Rij ,Rj i)

Jij = T (N(Rij ), N(Rj i)) for all i, j ∈ {1, . . . , n}. (14)
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TABLE I
EXAMPLES OF INDIFFERENCE AND INCOMPARABILITY

Note that, according to the authors’ axiomatization, the expres-
sions in (14) are not the only possibilities, even more since
associativity is not required; in fact, every monotone, symmet-
ric bivariate function would do, in principle. These considera-
tions lead us to consider the overlap and grouping of two (weak)
preference degrees as alternative operations for deriving, respec-
tively, a degree of indifference and a degree of incomparability
since they also satisfy the three axioms of Fodor and Roubens.
That is, we propose to define indifference and incomparability
by

Iij = GO (Rij ,Rj i)

Jij = 1 − GG (Rij ,Rj i). (15)

Observe that expressions in (15) fulfill the independence, mono-
tonicity, and symmetry axioms of Fodor and Roubens, but they
are not forcibly obtained from t-norms, since we have not im-
posed associativity in the definition of overlap functions. There
exist hence indifferences in the sense of (14) that are not in-
differences in our sense; it is enough to consider any t-norm
with divisors of zero. Conversely, there exist indifferences in
our sense that are not indifferences in the sense of (14), just
by considering any overlap function that is not a t-norm. See
Table I.

Taking into account the constructions in Sections III–V, it
turns out that the concepts of indifference (overlap) and incom-
parability (negation of grouping) can be written in terms of
generalized bientropic functions. More concretely, we can show
the following result.

Corollary 3: Let R ∈ FR(X × X), N be a strong negation,
such that N(0.5) = 0.5, and let GE be a generalized bientropic
function, such that

GE (x, y) = 0 if and only if x = 1 or y = 1. (16)

Then, if the overlap function GO that is associated with GE by
Theorem 5 is such that GO (x, 1 − x) ≤ 1/2 for all x ∈ [0, 1],
the following holds.

1) Iij = GO (Rij ,Rj i) = GE (1 − Ri j

2 , 1 − Rj i

2 ).
2) Jij = 1 − GG (Rij ,Rj i) = GE ( 1+Ri j

2 ,
1+Rj i

2 ).
Proof: Just recall Corollary 5. �
Note that, from the condition, i.e., GO (x, 1 − x) ≤ 1/2, that

is imposed on the overlap function, it follows thatIij + Jij ≤ 1.

B. Grouping and Overlap Functions in Fuzzy Decision Making
Using General Relations

In this section, we are going to consider the decision-making
problem in a setting in which an expert expresses his or her
preferences over a set of alternatives. It is assumed that the set
of alternatives is finite:

X = {x1 , . . . , xn} with n ≥ 2.

Depending on the nature of alternatives and of the knowledge
of the experts about those alternatives, preferences can be ex-
pressed in different ways. In this paper, we consider that this
expression is done using fuzzy sets (see [8]).

We assume that the starting point is a fuzzy binary preference
relation, which is not necessarily normalized:

R =

⎛

⎜
⎝

− R12 . . . R1n

R21 − . . . R2n

. . . . . . − . . .
Rn1 . . . . . . −

⎞

⎟
⎠ . (17)

We want to act upon the fuzzy relation R to obtain an ordering
of the alternatives that allows us to make a decision (to choose
one of them). Moreover, we want to penalize

1) values of preferences that are close to 0.5, i.e., situations
in which an expert is not sure of whether he/she prefers
an alternative against another;

2) possible indifference of the expert in his/her preference of
one alternative against another;

3) possible incomparability between two alternatives.
These considerations have led us to propose an algorithm for

the construction of the ranking of preference of alternatives,
such that it minimizes an expression that is associated with
each alternative xi and made up of three terms: the generalized
bientropy that is associated with Pij , the indifference between
Rij and Rji , and the incomparability between both.

Given a fuzzy preference relation, i.e., R ∈ FS(X × X), we
build the strict preference relationP that is associated withR by
means of the expression that is proposed by Fodor and Roubens
as follows:

Pij = TL (Rij , N(Rj i)) (18)

with TL (x, y) = max(0, x + y − 1) (Łukasiewicz t-norm) and
N being the standard negation. It is easy to see that in this setting
the strict preference relation is given by

Pij =
{

Rij − Rji, if Rij > Rji

0, otherwise.
(19)
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The algorithm that we propose to choose the best alternative is
the following (see Algorithm 1).

C. Justification of Steps in Algorithm 1

1) The transformation from Pij to P∗
ij in Step 2 allows us to

ensure that 0.5 ≤ P∗
ij ≤ 1. Then, by Theorem 5, we have

GE (P∗
ij ,P∗

ij ) = 0 if and only if P∗
ij = 1.

That is, the minimum of the generalized bientropic func-
tion is obtained forP∗

ij = 1. Moreover, we do not consider
the case, i.e., P∗

ij = 0. Since f is an increasing bijection,
if P∗

ij = 1, from (20), it follows that Rij = 1 and that
Rji = 0.

2) In GE , we take both arguments equal: GE (P∗
ij ,P∗

ij ). This
is so since in case Rij < Rji , it holds that GE (P∗

ij ,P∗
ij ) =

1, i.e., we penalize alternative xi if the preference of xi

over xj is less than the preference of xj over xi .
3) The minimum of

Si =
n∑

j=1

S(Rij ) =
n∑

j=1

GE (P∗
ij ,P∗

ij ) + Iij + Jij

is attained when all the summands are minimal, i.e., when
GE (P∗

ij ,P∗
ij ), indifference and incomparability between

Rij and Rji are minimal.
4) In step 5, we select the alternative that is associated with

the row of the relation R, such that each of its elements
is closer to 1, and such that indifference and incompara-
bility between the considered element in the relation and

its opposite with respect to the main diagonal are also
minimal.

Proposition 4: If, in Steps 2 and 3 of Algorithm 1, we take
f(x) = 1

2 x + 1
2 and GE that is given by (9), respectively, then

GE (P∗
ij ,P∗

ij ) =
{

GO (N(Rij − Rji), N(Rij − Rji)), if Rij > Rji

1, otherwise.
(22)

Proof: The proof is direct. �
Proposition 5: The following items hold.
1)

Iij + Jij = GO (Rij , Rji) + 1 − GG (Rij , Rji) = 0

if and only if
⎧
⎪⎨

⎪⎩

Rij = 0 and Rji = 1

or

Rij = 1 and Rji = 0.

(23)

2) If Rij = Rji = 1, then Iij + Jij = GO (Rij , Rji) + 1 −
GG (Rij , Rji) = 1.

3) If Rij = Rji = 0, then Iij + Jij = GO (Rij , Rji) + 1 −
GG (Rij , Rji) = 1.

Proof: The proof is direct. �
Note that, from Item 1, in Proposition 5, if R is a crisp

relation, such that for every i �= j, we have Rij + Rji = 1, then
the sum of the indifference and the incomparability is equal to
zero. However, from Items 2 and 3, we have that if the relation
is crisp and nonadditive, then the sum of the indifference and
the incomparability for the elements not fulfilling the additivity
property is equal to 1.

Corollary 4: In the setting of Algorithm 1, the following items
hold.

1) If Rij = 1 and Rji = 0, then S(Rij ) = 0 + 0 + 0 = 0.
2) If Rij = 0 and Rji = 1, then S(Rij ) = 1 + 0 + 0 = 1.
Proof: The proof is direct. �
Note that Items 1 and 2 of Corollary 4 correspond to the ideal

(crisp) case, i.e., our algorithm makes sense when reduced to
the crisp case.

Corollary 5: In the setting of Corollary 3

S(Rij ) = GE (P∗
ij ,P∗

ij ) + GE

(
1 − Rij

2
, 1 − Rj i

2

)

+ GE

(
1 + Rij

2
,
1 + Rj i

2

)
. (24)

This corollary shows that solving a decision-making problem
with our algorithm is equivalent to minimizing a function of the
generalized bientropy. This fact fully agrees with what happens
in most of the image thresholding fuzzy algorithms in image
processing [20].

Proof: The proof is direct. �
Proposition 6: For the elements of the relationR ∈ FR(X ×

X), such that Rij + Rji = 1, with the constructions from (15)
and N(x) = 1 − x, we have that Iij = Jij .

Proof: The proof is direct. �
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In fact, we can settle a stronger result for reciprocal additive
relations that links our developments with the concept of a weak
ignorance function that is given in [32] and [33].

Theorem 6: If R ∈ FR(X × X) is the reciprocal additive
and GO (0.5, 0.5) = 0.5, then the mapping

g(Rij ) = Iij + Jij = 2GO (Rij , 1 − Rij )

satisfies the following items.
1) g(Rij ) = g(1 − Rij ).
2) g(Rij ) = 0 if and only if Rij = 0 or Rij = 1.
3) if Rij = Rji = 1

2 , then g(Rij ) = 1.
Proof: The proof is direct. �
We should stress that in the setting of Theorem 6, the proper-

ties of the function g(Rij ) coincide with those demanded for the
weak ignorance function (see [5], [32], and [33]) evaluated in
Rij . Such a function must be understood as the ignorance that is
associated with the value Rij , which is provided by the expert.
It must not be confused with the idea of ignorance that is associ-
ated with an event as considered in possibility theory [14]. In our
case, it is a function that associates with each of the values that
are given by the expert a degree of ignorance that only depends
of the value itself. That is, we are not speaking of ignorance that
is associated with a proposition.

The following example shows how our algorithm penalizes
the preference values close to 0.5.

Example 6: Let X = {x1 , x2 , x3 , x4 , x5} be a set of alterna-
tives. Consider the fuzzy preference relation

R =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

x1 x2 x3 x4 x5

x1 − 0.82 0.4 0.26 0.72

x2 0.18 − 0.19 0.53 0.46

x3 0.78 0.43 − 0.53 0.5

x4 0.6 0.47 0.58 − 0.59

x5 0.43 0.28 0.15 0.08 −

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

. (25)

We take f(x) = 1
2 x + 1

2 , N(x) = 1 − x, and GE (P∗
ij ,P∗

ij ) =
(1 − (Rij − Rji)) · (1 − (Rij − Rji)). We analyze the follow-
ing cases.

1) GO (x, y) = min(x, y). Then, we have Iij = min(Rij ,
Rji) and Jij = min(1 − Rij , 1 − Rji). From Step 5 in
Algorithm 1

x1 = arg min
i∈{1,...,5}

{x1 = 3.525, x2 = 4.32, x3 = 4.47

x4 = 4.56, x5 = 4.005} .

2) GO (x, y) =
√

x · y. Then, Iij =
√

Rij · Rji and Jij =√
(1 − Rij ) · (1 − Rji). From Step 5 in Algorithm 1

x3 = arg min
i∈{1,...,5}

{x1 = 4.7602, x2 = 5.1543, x3 = 5.3017

x4 = 5.2874, x5 = 5.0305} .

3) Voting method [15]

x3 = x4 = arg min
i∈{1,...,5}

{x1 = 2.2, x2 = 1.36, x3 = 2.24

x4 = 2.26, x5 = 0.94} .

4) Nondominance method [27]

x3 = arg min
i∈{1,...,5}

{x1 = 0.6047, x2 = 0.36, x3 = 0.9550

x4 = 0.94, x5 = 0.2388} .

Remark:
1) Note that, in Example 6, the voting method chooses the

fourth alternative, and the nondominance method chooses
the third one. However, our methods pick up the first alter-
native. The reason for this is that in the fuzzy preference
relations, the values in the third and the fourth rows are
close to 0.5; therefore, we penalize both.

2) Note that for the first two cases, it holds thatIij + Jij ≤ 1.

D. Learning Fuzzy Preferences From Data

The idea of using fuzzy preference relations for represent-
ing different types of uncertainty in machine learning, or more
specifically, in pairwise classification, was recently put forward
in [22]. In this paper, it is settled that given an instance x to be
classified and two candidate classes Ci and Cj , classification
knowledge is expressed in terms of a degree of strict preference
for Ci , a degree of strict preference for Cj , the so-called de-
gree of conflict between Ci and Cj , and the so-called degree of
ignorance between classes. Roughly speaking, this concept of
conflict in classification corresponds to the concept of indiffer-
ence in decision making; a positive degree of conflict suggests
that the data provide evidence in favor of both classes Ci and
Cj , simultaneously. This concept of ignorance between classes,
on the other hand, corresponds to the concept of incomparabil-
ity; a positive degree of ignorance suggests that the data neither
provide evidence in favor of Ci nor in favor of Cj . In this sec-
tion, we consider a generic approach that allows one to derive
such degrees from estimated lower and upper bounds on the
conditional probability of Ci given Ci or Cj .

Consider two classes, i.e., Ci and Cj , and suppose incomplete
probabilistic information to be given, namely information about
the probability of Ci in the form of an interval [a, b] ⊂ [0, 1];
more precisely, this means that

a ≤ Pr(q ∈ Ci | q ∈ Ci ∪ Cj ) ≤ b.

In this case, the weak preference for Ci and Cj , respectively,
should of course depend on a and b, and a possible definition is

Rij =
a

max(a, 1 − b, 1/2)
, Rj i =

1 − b

max(a, 1 − b, 1/2)
.

Regarding the modeling of indifference and incomparability in
terms of (15), the following cases can be distinguished.

1a) a + b ≤ 1, and a ≤ b < 1/2 (interval [a, b] to the left of
1/2).

1b) a + b ≤ 1, and a < 1/2 < b (interval [a, b] overlapping
1/2 in favor of Cj ).

2a) a + b ≥ 1, and a < 1/2 < b (interval [a, b] overlapping
1/2 in favor of Ci).

2b) a + b ≥ 1, and 1/2 < a ≤ b (interval [a, b] to the right
of 1/2).
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For the weak preferences and, consequently, for the indiffer-
ence and incomparability relation, we then have

1a) Rij < 1, Rj i = 1, Iij ≥ 0, Jij = 0;
1b) Rij < 1, Rj i < 1, Iij ≥ 0, Jij ≥ 0;
2a) Rij < 1, Rj i < 1, Iij ≥ 0, Jij ≥ 0,
2b) Rij = 1, Rj i < 1, Iij ≥ 0, Jij = 0.

Roughly speaking, the degree of indifference will depend on
how close the interval [a, b] is to the boundary points. The closer
it is to 0 or to 1, the smaller the indifference. Incomparability
increases with the length of the interval but is strictly positive
only in the cases, where the interval overlaps the middle point
1/2. The interpretation is that, as long as the interval is either
fully to the left of 1/2 or fully to the right, there is no doubt
about the best decision, since in the first case, one should decide
in favor of Cj , and in the second case, in favor of Ci .

More concretely, let GO (x, y) =
√

xy/(
√

xy + 1 − xy) and
GG (x, y) = 1 − GO (1 − x, 1 − y). We then obtain Iij = 0 and
Jij = 1 for [a, b] = [0, 1] (the case of maximal incomparabil-
ity), Iij = 1 and Jij = 0 for [a, b] = [1/2, 1/2] (the case of
maximal indifference), Iij = 0.55 and Jij = 0.27 for [a, b] =
[1/3, 2/3] (interval overlapping 1/2 leads to partial indifference
and ignorance), Iij = 0.5 and Jij = 0 for [a, b] = [1/4, 1/3]
(interval to the left of 1/2, no incomparability but still some
degree of indifference).

Based on this preference structure, predictions can be derived
using Algorithm 1 (or the decision rule given in [21] and [22]).
As future work, we plan to elaborate on this alternative more
closely. In particular, we are interested in the idea of adapting the
overlap and grouping functions to the problem at hand, i.e., to
learn a most suitable bientropic function from the data. Roughly,
the idea is to select one such function from a parametrized
family to maximize the predictive performance of the classifier.
In this regard, an important advantage of grouping and overlap
functions (in comparison to t-norms and t-conorms) deserves
mentioning, namely, the convexity of these classes of functions.
From a learning point of view, this is a very appealing property,
e.g., as it allows one to represent an aggregation function as a
convex combination of a class of basis (aggregation) functions.
In fact, many machine learning methods make use of this kind
of representation.

VII. OPEN PROBLEMS

In this section, we present a set of interesting open problems
that we seek to address in future work.

1) In Algorithm 1, we have introduced the following expres-
sion:

S(Rij ) = GE (P∗
ij ,P∗

ij ) + Iij + Jij .

The problem that we pose is to analyze the behavior of the
algorithm when we take

S(Rij ) = GE (P∗
ij ,P∗

ij ) + αIij + βJij

with α and β being two positive real parameters.
2) Since convex combinations of overlap functions are again

overlap functions, we propose to study the advantages

of using such combinations in the aggregation phase of
multicriteria decision-making problems.

3) Make an exhaustive comparative study of the advan-
tages/disadvantages of Algorithm 1 against other methods
that are developed for the exploitation phase in multiex-
pert decision-making problems, apart from those that are
already considered in Section VI after Algorithm 1.

VIII. CONCLUSION

The main contributions and results of this paper can be sum-
marized as follows.

1) The concept of grouping functions, which is a specific
type of aggregation function, has been introduced and
studied. Roughly speaking, a grouping function measures
the degree of excedance of the support of two (mutually
exclusive) decision alternatives. In specific cases, its nega-
tion can be used to model the notion of incomparability in
fuzzy preference structures.

2) Grouping functions complement the existing concept of
overlap functions. Because of their properties, the latter
naturally qualify for the measurement of the degree of
indifference between decision alternatives.

3) Generalized bientropic functions have been introduced
as a unifying concept. These functions can be seen as
an extension of an entropy function. As such, they pro-
vide a measure of noninformation or, say, of the lack of
knowledge in connection with the selection between two
alternatives.

4) The concepts of overlap and grouping can be built, un-
der suitable conditions, by means of generalized entropy
functions.

5) We have advocated the use of grouping and overlap func-
tions in the context of decision making. We propose an
algorithm for the exploitation phase that penalizes values
close to 0.5 that are given by experts when evaluating their
preference of one alternative over another. That is, it pe-
nalizes those cases in which experts are not sure of their
preferences.
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[22] E. Hüllermeier and K. Brinker, “Learning valued preference structures
for solving classification problems,” Fuzzy Sets Syst., vol. 159, no. 18,
pp. 337–2352, 2008.

[23] J. Kacprzyk, “Group decision making with a fuzzy linguistic majority,”
Fuzzy Sets Syst., vol. 18, pp. 105–118, 1986.

[24] R. L. Keene and H. Raiffa, Decisions With Multiple Objectives—
Preferences and Value Tradeoffs. New York: Wiley, 1976.

[25] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms, Trends in Logic
(Studia Logica Library Series 8). Dordrecht, The Netherlands: Kluwer,
2000.

[26] J. M. Mendel, J. Lawry, and L. A. Zadeh, “Foreword to the special section
on computing with words,” IEEE Trans. Fuzzy Syst., vol. 18, no. 3,
pp. 437–440, Jun. 2010.

[27] S. A. Orlovsky, “Decision-making with a fuzzy preference relation,”
Fuzzy Sets Syst., vol. 1, no. 3, pp. 155–167, 1978.

[28] S. V. Ovchinnikov and M. Roubens, “On strict preference relations,”
Fuzzy Sets Syst., vol. 43, pp. 319–326, 1991.

[29] W. Pedrycz and M. Song, “Analytic hierarchy process (AHP) in group
decision making and its optimization with an allocation of information
granularity,” IEEE Trans. Fuzzy Syst., vol. 19, no. 3, pp. 527–539, Jun.
2011.

[30] M. Roubens and P. Vincke, Preference Modellin (Lecture Notes in Eco-
nomics and Mathematical Systems Series 250). Berlin, Germany:
Springer-Verlag, 1985.

[31] T. L. Saaty, The Analytical Hierarchy Process. New York: McGraw-
Hill, 1980.

[32] J. A. Sanz, A. Fernandez, H. Bustince, and F. Herrera, “Improving the per-
formance of fuzzy rule-based classification systems with interval-valued
fuzzy sets and genetic amplitude tuning,” Inf. Sci., vol. 180, no. 19,
pp. 3674–3685, 2010.

[33] J. A. Sanz, A. Fernandez, H. Bustince, and F. Herrera, “A genetic tuning to
improve the performance of fuzzy rule-based classification systems with
interval-valued fuzzy sets: Degree of ignorance and lateral position,” Int.
J. Approx. Reason. vol. 52, no. 6, pp. 751—766, 2011.

[34] E. Trillas, “Sobre funciones de negación en la teorı́a de conjuntos difusos,”
Stochastica, III-1, pp. 47–59, 1979 (in Spanish) [Reprinted (English ver-
sion) in Advances of Fuzzy Logic, S. Barro et al., Eds. Univ. de Santiago
de Compostela, 1998, pp. 31–43].

[35] Z. Xu and R. R. Yager, “Power-geometric operators and their use in group
decision making,” IEEE Trans. Fuzzy Syst., vol. 18, no. 1, pp. 94–105,
Feb. 2010.

Humberto Bustince (M’08) received the Ph.D. de-
gree in mathematics from the Public University of
Navarra, Pamplona, Spain, in 1994.

He is currently a Full Professor with the Depart-
ment of Automatics and Computation, Public Uni-
versity of Navarra. He is the author of more than 65
published original articles and is involved in teach-
ing artificial intelligence for students of computer
sciences. His research interests include fuzzy logic
theory, extensions of fuzzy sets (type-2 fuzzy sets,
interval-valued fuzzy sets, Atanassovs intuitionistic

fuzzy sets), fuzzy measures, aggregation functions, and fuzzy techniques for
image processing.

Dr. Bustince is a board member of the European Society for Fuzzy Logic
and Technology. He is the Editor-in-Chief of the Mathware and Soft Computing
Magazine.

Miguel Pagola received the M.Sc. degree in indus-
trial engineering and the Ph.D. degree, both from
the Public University of Navarra (UPNa), Pamplona,
Spain, in 2000 and 2008, respectively.

He is currently an Associate Lecturer with the
Department of Automatics and Computation, UPNa.
He is the author of more than 20 published origi-
nal articles in the Web of Science and is involved in
teaching artificial intelligence for students of com-
puter sciences. His research interests include fuzzy
techniques for image processing, fuzzy set theory,

medical image segmentation, and medical data mining.
Dr. Pagola is the member of the European Society for Fuzzy Logic and

Technology.

Radko Mesiar received the graduate degree in math-
emathics and the Ph.D. degree from the Faculty of
Mathematics and Physics, Comenius University, in
1974 and 1979, respectively, with a Ph.D. disserta-
tion on “subadditive martingale processes.”

He is currently the Head of the Depart-
ment of Mathematics, Faculty of Civil Engineering,
Slovak University of Technology (STU), Bratislava,
Slovakia. Since 1978, he has been a Member of the
Department of Mathematics, Faculty of Civil Engi-
neering, STU, and has been the Doctor of Science

since 1996 (with the Czech Academy of Sciences, Prague, Czech Republic). He
has been an Associate Professor since 1983 and a Full Professor since 1998.
He has been a Fellow of the Institute of Information and Automation, Czech
Academy of Sciences, since 1995, and of the Institute for Research and Ap-
plications of Fuzzy Modeling, University of Ostrava, Czech Republic, since
2006. He is the co-author of two scientific monographs, i.e., Triangular Norms
(Kluwer, 2000), Aggregation Functions (Cambridge University Press, 2009),
and five edited volumes. He is the author of more than 200 papers in WOS in
journals, e.g., Fuzzy Sets and Systems, Information Sciences, the IEEE TRANS-
ACTIONS ON FUZZY SYSTEMS, THE International Journal of General Systems,
the Journal of Mathematical Analysis, the International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, Kybernetika, the European Journal
of Operational Research, Applied Mathematics Letters, Nonlinear Analysis, etc.

Dr. Mesiar is the Founder and organizer of the Fuzzy Set Theory and Appli-
cations and Aggregation Operators Conferences.



BUSTINCE et al.: GROUPING, OVERLAP, AND GENERALIZED BIENTROPIC FUNCTIONS FOR FUZZY MODELING OF PAIRWISE COMPARISONS 415
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