TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 366, Number 11, November 2014, Pages 5771-5819
S 0002-9947(2014)06008-X

Article electronically published on June 3, 2014

GROUPOIDS AND C*-ALGEBRAS
FOR CATEGORIES OF PATHS

JACK SPIELBERG

Dedicated to the memory of Bill Arveson

ABSTRACT. In this paper we describe a new method of defining C*-algebras
from oriented combinatorial data, thereby generalizing the construction of al-
gebras from directed graphs, higher-rank graphs, and ordered groups. We
show that only the most elementary notions of concatenation and cancellation
of paths are required to define versions of Cuntz-Krieger and Toeplitz-Cuntz-
Krieger algebras, and the presentation by generators and relations follows nat-
urally. We give sufficient conditions for the existence of an AF core, hence of
the nuclearity of the C*-algebras, and for aperiodicity, which is used to prove
the standard uniqueness theorems.

1. INTRODUCTION

In this paper we describe a new method of defining C*-algebras from oriented
combinatorial data, thereby generalizing the construction of algebras from directed
graphs, higher-rank graphs, and ordered groups. The use of directed graphs to an-
alyze C*-algebras goes back to Bratteli’s thesis introducing AF algebras ([5]). The
dual role played by graphs was apparent even then. On the one hand, known C*-
algebras could be described by generators and relations based on suitable graphs.
On the other hand, any graph (in the class being considered) gives rise, by the same
construction, to a C*-algebra. The resulting family of C*-algebras can be studied
as a whole via this class of graphs. The flexibility inherent in the description of
a graph yields a method of great power, especially if the process is functorial (so
that symmetries of a graph determine corresponding symmetries of the associated
C*-algebra). The graphs are combinatorial objects, easy to “turn around in one’s
hands”. Yet their combinatorial properties control the behavior of complicated
analytic objects: the C*-algebras.

The current use of directed graphs in C*-theory originated in the work of Cuntz
and Cuntz-Krieger ([9], [I0]). Here the generators and relations were so clearly
apparent that subsequent work took their imitation as its primary focus (although
it can be argued that the original motivation came from symbolic dynamics). The
treatment of arbitrary directed graphs was developed over a period of some 20 years
(see, e.g., the historical remarks in [27]), with ad hoc devices to deal with each new
aspect of a graph that was considered. In a far-reaching generalization of the graph
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algebra construction, Kumjian and Pask introduced in [I7] the notion of higher-
rank graphs, based on work of Robertson and Steger on C*-algebras associated to
actions of groups on the boundary of an affine building. Kumjian and Pask realized
that for the purposes of the C*-algebra, a graph may be replaced by its space of
paths. The key features of the space of paths are the concatenation of paths and the
unique factorization of a path as a concatenation of subpaths of prescribed lengths.
If “length” is taken to be an element in the positive cone (ZT)* C Z* (instead of
in Z1), one obtains a k-graph. As in the case of 1-graphs, the work of finding the
right generators and relations, and indeed, the right hypotheses, for higher-rank
graphs passed through several phases. The culmination of this difficult process was
the notion of finite alignment, introduced in [28] (based on earlier work of Fowler).
In that paper the authors explicitly laid out their desire to find generators and
relations that shared the most important characteristics of the traditional Cuntz-
Krieger algebras.

In this paper we have quite the opposite motivation. We wish to start with a
suitable combinatorial object and define a C*-algebra directly from what might be
termed the generalized symbolic dynamics that it induces. We give a functorial
procedure that does not make any a priori assumptions about possible presenta-
tions of the algebra. (This approach was used to give a natural derivation of the
presentation of the C*-algebra of a general directed graph in [31I]. The current pa-
per simplifies and generalizes that work.) In this general context, finite alignment
is a natural property, but is not needed to define the algebra. The construction
itself naturally gives rise to a presentation by generators and relations. We then
specialize to the finitely aligned case, where the considerations are much simpler.
In this case, the natural generators and relations turn out to be the same as those
introduced in [28] for higher-rank graphs. Our treatment, however, applies in much
more generality. Following an idea proposed in [I4], we find that a degree functor
is not at all necessary for defining the C*-algebra. Indeed, many different degrees
can exist, giving different decompositions of the algebra (see section [d)).

We briefly describe the idea of our construction. Cuntz and Krieger began with a
shift matrix, i.e. a space of admissible sequences. Equivalently, one can consider the
directed graph having this as an incidence matrix. The finite admissible sequences
correspond to finite directed paths in this graph. The symbolic dynamics can be
represented by the twin notions of concatenation (right shift) and cancellation (left
shift): the right shift by a path « is the map S — af, when § is a path for which
the concatenation is defined, while the left shift by « is the inverse of the right shift.
If we let aE* denote the set of all paths that extend «a, then the collection of all
such sets generates a Boolean ring of sets which is preserved by the shift maps. The
set of ultrafilters in this ring is a compact Hausdorff space on which the shifts then
act as partial homeomorphisms (of course, this is just the space of one-sided infinite
admissible sequences). There are various ways of passing from this to a C*-algebra;
we choose the method of groupoids as being the most natural ([4], [25]). This
produces the usual Cuntz-Krieger algebra, as well as the Toeplitz version. Our point
of departure is the observation that the entire process requires only the operations
of concatenation and cancellation; any collection that behaves roughly like paths
with regard to such operations will permit an analogous construction. We find that
all versions of generators and relations that have been used in previous work follow
from elementary set-theoretic considerations (see Theorem [5.1T]). (Ultrafilters were

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUPOIDS AND C*-ALGEBRAS FOR CATEGORIES OF PATHS 5773

used to define a boundary space, for directed graphs and their generalizations, in
[31], [13], and [6].)

One of our primary motivations is to recover some of the flexibility inherent in the
situation of directed graphs. Any collection of “dots and arrows” is a directed graph,
and so produces a graph algebra. These algebras include some very important
classes: AF algebras, and Kirchberg algebras having a free K group, are the most
notable. Yet it remains a fairly limited class. Already the 2-graphs exhibit much
richer behavior (e.g. [24]). Higher-rank graphs, on the other hand, are quite rigid
objects and are difficult to construct. (It is not clear how to build a k-graph from
a collection of k commuting graphs. See [I8], Example 5.15(ii). The construction
we give treats this example as easily as a finite k-graph.) Although there are as
yet no compelling examples of higher-rank graphs that are not finitely aligned,
we believe that the difficulty of envisioning generators and relations for such has
been a formidable obstacle. Our methods provide a natural, albeit complicated,
definition. Moreover, in some instances the considerations are not so difficult, and
our definition may lead to new and interesting examples. Another of our goals
is to give subcategories a natural place in the theory. One of the successes of the
approach taken in [31] was that each subgraph of a given graph defines a subalgebra
of its graph algebra. For example, the algebra of a graph equals the direct limit
of algebras associated to its finite subgraphs. This result was obtained from the
observation that the algebra of a subgraph depends on the ambient graph; a graph
algebra is properly thought of as the algebra of a pair of nested graphs. We adapt
that idea here, although the considerations are much more difficult and hence our
conclusions more preliminary. For example, even the relative category of paths
defined by a subcategory of a finite category of paths need not be finitely aligned.
We plan to address some of these issues in a subsequent paper.

In section 8 we consider the example of a countable ordered group; the positive
cone is a category of paths. With appropriate hypotheses, it is possible to define a
directed boundary of the group in this situation. We prove that the corresponding
crossed product C*-algebra is Morita equivalent to the C*-algebra of the category
of paths. One unexpected application is to the Wiener-Hopf algebras of Nica ([23],
[19]). This work is concerned with C*-algebras constructed from groups having a
quasi-lattice ordering. In our context, this just means a particularly strict version
of finite alignment. In particular, our treatment relaxes this requirement, as well
as clarifies the role of amenability for these algebras. Our construction generalizes
that of [§] in the quasi-lattice ordered case. In particular, for quasi-lattice ordered
groups, the boundary spectrum of [8], Definition 3.4, is the same as our boundary.
In []] it is Nica’s notion of amenability that is investigated, namely, the coincidence
of full and reduced C*-algebras. We consider amenability in the sense of Renault
([29]). In a separate paper ([33]) we use our methods to describe the structure
of the algebras associated to the Baumslag-Solitar groups. These turn out to be
identical to certain algebras studied by Katsura in his work on topological graphs
([16]). Our method gives a new approach to the description of these algebras by
generators and relations, and also gives the ideal structure of the Toeplitz versions.

Already in [23] it was observed that the algebras obtained from a quasi-lattice
ordered group need not be amenable, in the sense that the spatial and abstract
versions might not coincide. From the point of view of amenability of the underlying
groupoid, the problem is also of the nuclearity of the C*-algebras. In the case of
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graphs and higher-rank graphs, these properties are established by decomposing
the algebra by means of a compact abelian group action, having an AF fixed-point
algebra with a (partial) action of a free abelian group. In general, there may
be many such actions with fixed-point algebras that are not AF. In section [ we
give reasonable hypotheses guaranteeing the existence of an action having an AF
fixed-point algebra. This generalizes the argument for higher-rank graphs given in
[28]. In section [I0] we define aperiodicity for categories of paths and prove that
it is equivalent to topological freeness of the corresponding groupoid. We give a
simple criterion for this property, generalizing recent results of Lewin and Sims
[21]. We also give analogs of the standard uniqueness theorems on the subject, as
well as results on minimality and local contractivity. In section [[I] we define the
amalgamation of a collection of categories of paths. This generalizes and simplifies
the construction in [32] that has proved useful in several applications.

We briefly describe the contents of the first part of the paper. In sections 2] and
Bl we define (relative) categories of paths and introduce the basic facts about homo-
morphisms of Boolean rings of their subsets. In section @l we define the groupoid of
a relative category of paths and describe the simplifications that follow from finite
alignment. In section [0l we prove that x*-homomorphisms from the C*-algebra of
continuous functions vanishing at infinity on the unit space of the groupoid are
characterized in a simple way by homomorphisms from the Boolean ring of subsets
of the category. This is particularly simple in the finitely aligned case, and this
is the reason for the form of the usual presentation of the Toeplitz Cuntz-Krieger
algebra. We derive this presentation in section [ll In section [7] we restrict our at-
tention to the finitely aligned case and give a precise description of the elements
of the unit space of the groupoid — this might be termed the general infinite path
space and consists of the directed hereditary subsets of the category. It is natural
to define the boundary to be the closure of the maximal elements (see also [23], [19],
and [8]). We characterize the elements of this closure using the finite exhaustive
subsets of the category. (We acknowledge our debt to [28] for this.) In the first
part of section [8 we use this to derive the usual presentation of the Cuntz-Krieger
algebra. This generalizes, and gives what we feel is a more natural motivation for,
the presentation given in [2§].

In the following we will always identify the objects of a category with the identity
morphisms in that category, and we use juxtaposition to indicate composition of
morphisms. Morphisms will be referred to as paths, and objects as vertices. We
will use s and r to denote the source and range of morphisms in a category, and
A° for the vertices in the category A. It should be mentioned that the categorical
framework puts us firmly in the Australian convention for the case of graph algebras.
Thus when our method is used to construct a Cuntz-Krieger algebra, we obtain the
algebra associated to the transpose of the matrix.

We thank the referee for giving many valuable suggestions. We also thank Allan
Donsig and David Milan for finding a gap in our earlier proof of Theorem 6.1.

2. DEFINITION OF A CATEGORY OF PATHS

Definition 2.1. A category of paths is a small category satisfying
(1) af = avy implies 8 = v (left-cancellation).
(2) Ba =~ implies B = v (right-cancellation,).
(3) ap = s(B) implies a = 5 = s(8) (no inverses).
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Example 2.2. The following are examples of categories of paths:

(1) Higher-rank graphs.

(2) Arbitrary subcategories of higher-rank graphs.

(3) The categories of (finite) paths of the hybrid objects constructed in [32],
Definition 2.1. The obvious generalizations of this construction are straight-
forward to define in the context of categories of paths (see section [TTI).

(4) The category of paths in examples like [18], 5.15(ii).

(5) The positive cone in a discrete ordered group (and, in particular, the quasi-
lattice ordered groups studied in [23]).

(6) A small category equipped with a degree functor, satisfying unique fac-
torization, taking values in the positive cone of an ordered group ([I7],
Remarks 1.2). The P-graphs of [6] are examples of this kind. (In the case
that the group is totally ordered abelian, one obtains the natural definition
of directed A-graphs, generalizing (directed) A-trees ([7], [I1]).) See Remark
9.9

Definition 2.3. Let A be a category of paths. For any o € A we define the left
shift o* : aA — s(a)A by o%(af) = B (0* is well defined by left-cancellation).
Of course for a subset E of A, 0*(E) = c*(E NaA). (In the case where A is a
higher-rank graph, the difference between the functions ¢® for o € A, and o™ for
n € NF, should be clear from the context. However, we will not have occasion to
use the latter notation.)

Remark 2.4. The right shift maps f € s(a)A — af € r(a)A are one-to-one, by
left-cancellation. It is often useful to think of a category of paths as a category
of injective maps. Since the maps are generally not surjective, the hypothesis of
right-cancellation is somewhat artificial. We will see that much of the theory can
be developed satisfactorily without it. (But see Remark B8] section [[T] and the
proof of Theorem [[T.H])

Definition 2.5. Let A be a category of paths. Let o, 8 € A. We say that
extends « if there exists o’ € A such that 8 = aa’ (we may express this by writing
B € al). If B is an extension of «, we call a an initial segment of 8. The set of
initial segments of 8 is denoted [5]. It follows easily from Definition ZII]) and (8]
that the relation a € [8] is a partial order on A. We follow Exel ([I4]) in using
the notation o @ 3 (o meets ) if AN BA # 0, and o L 3 (« is disjoint from (3)
otherwise. We let a V S denote the set of minimal common extensions of a and
B, i.e. the minimal elements of aA N SA. For a subset FF C A we let \/ F' denote
the set of minimal common extensions of the elements of F. (The context should
suffice to distinguish this use of the symbol V from its use to indicate the join of a
family of projections in a C*-algebra (see section [d]).)

Of course, not every common extension of o and S need extend a minimal com-
mon extension; in fact, a V 8 may be empty even if am 8. If A is a higher-rank
graph, then every common extension does extend a minimal common extension.
Moreover, in the case of a higher-rank graph, distinct elements of oV 3 are disjoint;
generally, this will not be the case in a category of paths.

Let A be a category of paths. The central object of study is the ring of subsets of
A generated by the tail sets {aA : « € A} and the action on it of the left shift maps
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{o% : @ € A}. Much of the analysis rests on the following lemma from elementary
set theory. We use U to indicate a union in which the sets presented are pairwise
disjoint.

Lemma 2.6. Let DO be a collection of sets with the property that the intersection
of two sets from D) is a finite union of sets from D). Let D be the collection of
all nonempty sets of the form A\ (ByU---UB,), where A, By, ..., B, € D), and
B; C A for all i. Let A be the collection of all finite disjoint unions of sets from
D. Then A is the ring of sets generated by D).

Proof. The proof is routine. |

Remark 2.7. The stipulation in the definition of D that B; C A is unnecessary,
since B; can be replaced with B; N A. However, it will be useful later to have this
convention.

In the next section we will introduce the notion of finite alignment for categories
of paths. This is a strong assumption that leads to very significant simplifications in
the structure of the C*-algebras. For example, it implies that the “usual generators
and relations” can be written in a particularly simple form. However, much of the
theory can be developed without this assumption, and one of our goals is to initiate
the study of the nonfinitely aligned theory. In order to motivate the following
definitions, we first present some examples.

Example 2.8. The 2-graph in Figure[Ilis the simplest nonfinitely aligned example.
We have the identifications ay; = 36; for i € N.

S
ST

FIGURE 1

Let us consider the tail sets at the vertex s(«) (we anticipate notation introduced
later; see Remark BH). For v € AY let £, = {pA : r(u) = v}, and let A, be
the ring of sets generated by &,. Note that s(a)A = {v; : i € N} U {s(a)} and
ik = {7i}; these are the elements of £;,). In this example, the rings A, are
not preserved by the shift maps. For example, A = {86; : i« € N} U {f} and
o%BA = {v; i € N} & Ay

Figure [ illustrates the kind of further complication that can arise. Again this is
a nonfinitely aligned 2-graph. In this example, the central diamond represents the
same 2-graph as in Figure [l The edges ¢; are present only for i even, while the
edges 0; are present only when ¢ is divisible by 3. We have additional identifications
Wy2; = veg; and £63; = ;.
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FIGURE 2

Applying shift maps to tail sets allows us to construct

oBA = {~; :i € N},

o*vA = {~,; : i € 2N},

oPactvA = {§; : i € 2N},

o"éoPactvA = {6; - i € 6N},

o®BoéoPact v = {v; i € 6N}.
We see from these examples that sets obtained from tail sets by applying a
sequence of shift maps must be considered if we wish to build a ring of sets that is
preserved by the shift maps (that is, in order to have a setting for the generalized

symbolic dynamics associated to a category of paths). This is the motivation for
the following definition.

Definition 2.9. Let A be a category of paths. A zigzag is an even tuple of the
form

(: (alaﬁlv"'aanaﬁn)7
where a;, 8; € A, r(a;) = r(Bi), 1 < i < n,and s(a;y1) = s(Bi), 1 <i<n. We
might draw a zigzag like this (whence the name):

NYNY N

We let Z) denote the set of all zigzags. We may omit the subscript A when it is
clear from the context. We define the maps s and r on Z by s(¢) = s(8,) and
r(¢) = s(a1), and the reverse of ¢ as

C = (an Anyeeey 617 a1)~
Each zigzag ¢ € Z defines a zigzag map on A that we denote p; = gpé\, given by

b =0 B .

We let A(¢) = Ax(¢) denote the domain of ¢¢c. Thus A(¢) = ¢z(A) € s(¢)A and

the range of ¢ equals A((). We call A(() a zigzag set.
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Remark 2.10. (1) A can be identified with a subset of Z by the pairs (r(«a), o).

Then ©(y(a),a) is the right shift defined by o (Remark 2.4), and aA =
A((a, r())) is a zigzag set.

(2) Z is clearly closed under concatenation and ¢, ¢, = ¢, ©@¢,. For (, £ € Z
we denote by £Z, Z(, and £Z( the obvious subsets of Z.

(3) Since left- and right-shifts are one-to-one, all zigzag maps are one-to-one.
The inverse of ¢, is @z

(4) A(Q) = A(CQ) for ¢ € Z. If (1, (2 € 2v, then A(G1) NA(C2) = A(C1¢C1¢262).

(Thus the collection of zigzag sets is closed under intersection.)
(5) For ¢ € Z and o € A((), we have A C A((). For S € s(a)A, pc(af) =
pc(@)B.

Much of what we wish to do remains valid in the following more general context.

Definition 2.11. Let A be a category of paths, and let Ay be a subcategory. We
call the pair (Ao, A) a relative category of paths.

Definition 2.12. Let (Ao, A) be a relative category of paths. Write
Z(AO,A) = {C S ZA : C = (alaﬁb .. .,Oén,ﬁn), where O‘iuﬁi S AO}

For v € AJ, let ol (or D(Ay, A)q(,o)) denote the collection of all nonempty sets of
the form A, (() for ¢ € Z(, a)v. (Note that while the set A5 (¢) (and the map o)
does not depend on the subcategory Ag, the collection D(Ay, A)q(jo) does depend on

Ag.) Let A, (or A(Ag,A),) denote the ring of sets generated by D). We let D,
denote the collection of nonempty sets of the form E \ |J_, F;, where E, Fi, ...,

F, € DSO), and F; C E. It follows from Lemma and Remark ZT0H) that A,
equals the collection of finite disjoint unions of sets from D,,.

Remark 2.13. The subcategory of a relative category of paths serves to select
a certain subcollection of the zigzag sets in A. When Ay = A, no such selec-
tion is made, and we will omit reference to the subcategory. In general, we have

A(Ao, A)y € A(A),.

Lemma 2.14. Let (Ao, A) be a relative category of paths. If ( € Z, then o¢(Ay )
€ A
Proof. Let £ € Zs(¢). Then
A(8) = pg(A),
hence
Pc(A(8)) = e(A) = pzz(A) = A(§0) € Arg).
([l

Proposition 2.15. Let (Ao, A) be a relative category of paths. For each v € A,
let B, be a Boolean ring of subsets of vA such that

(1) vA € B, for allv e A°.

(2) aBsay € Br(a) for all o € Ag.

(3) 0%Br(a) € Bs(a) for all a € Ag.
Then A, C B, for all v € AY. Moreover, aByoy = {ENal : E € By} and
0By (a) = Bs(a) for all o € Ay.
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Proof. Since aA = a(s(a)A) € aBya) € By(a), We have 'DS,O) C B, for all v € A§.
It now follows from () and (B that A(¢) € By(¢) for all ( € Z, and hence A, C B,
for all v € AJ. Next, we have for E € Br(a), ENal = ao®(E) € aBy,). Hence
{ENal: E € By(a)} € aByq). The reverse containment is clear. Finally,

Bs(a) = O’aaBs(o() = Ua({E NalA : FE € Br(a)}) = UQBT(Q).
O

Corollary 2.16. {A, : v € A} is the family of Boolean rings generated by the
collection {vA : v € A} and the family of left and right shift maps by elements
of Ag. Moreover, aAyy = {ENal : E € Ay} and 0% A, o) = Ag(a) for all
[0S Ao.

3. FINITE ALIGNMENT

The finitely aligned case is particularly important. For example, the generators
of the C*-algebra satisfy a Wick ordering principle. Moreover, the treatment is
significantly simpler in several ways. Therefore we will take special pains to work
out the details of the finitely aligned case, taking it further than the general case.

Definition 3.1. The relative category of paths (Ao, A) is finitely aligned if

(1) For every pair of elements «, 8 € Ag, there is a finite subset G of Ag such
that aA N BA = (J,cq N
(2) For every o € Ag, aA N Ay = alo.

If Ag = A, then () is vacuous. In this case we say that A is finitely aligned.

Lemma 3.2. Let (Ao, A) be a finitely aligned relative category of paths, and let F
be a finite subset of Ag. Let \/ F' denote the set of minimal common extensions of

Frin A. Then \/ F is finite, \| F C Ao, and (e p o = Ugey p BA-

Proof. By Definition B[] and induction, there is a finite set G C Ag such that

(*) N ar= | BA.

acF peG

Replacing G by a subset, if necessary, we may assume that 8 ¢ 8’A when 8, 8’ are
distinct elements of G. We will show that G = \/ F to finish the proof. By (x),
G C Naer@A. Suppose B € G and v € (), @A are such that § € yA. By ()
there is 3’ € G such that v € 8/A. But then 8 € A, so we have 8 = ' = ~.
Hence G C \/ F. Conversely, if § € \/ F, then § € [, @A. By (%) there is 3 € G
such that 6 € BA. Since ¢ is a minimal element of (., aA, we have § = 3 € G.
Thus \V F C G. O

In the next result we will use the following notation. Let {f; : i € I'} be a (finite)
collection of functions. Then | J;.; fi is a function if and only if for all 4, j € I, f;
and f; agree on the intersection of their domains. We will write (J,; f; if and only
if the {f;} satisfy this condition.

Lemma 3.3. If (Ao, A) is finitely aligned, then every zigzag map is a finite union
of maps of the form ~yoo with vy, § € Ag.
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Proof. If a, B € Ay with 7(a) = r(f), then the domain of o« is

o*(BA) =o%(@AnpA) =0 [ | eA] = |J (0.

ecaVp e€aVp

Thus we see that

e€EaVp
It follows from Definition BII@) that o®¢, 0% € A?. Repeated application of this
reduces a zigzag map to the required form. O

Corollary 3.4. Let (Ag,A) be a finitely aligned relative category of paths, and let
¢ € Z. Then A(Q) is a finite union of sets of the form aA with a € Ag.

Proof. For 7, § € Ay, A(yo?) = JA. O

Remark 3.5. Let (Ag, A) be a finitely aligned relative category of paths. For v € A
we let 81(,0) denote the collection of all sets of the form aA for a € vAg, and &, the
collection of nonempty sets of the form aA \ J;_; BiA for o € vAg and §; € al,.

Thus, A, is the collection of finite disjoint unions of sets in &,, by Lemma and
Corollary 3.4l

Proposition 3.6. Let (Ag,A) be a finitely aligned relative category of paths. The
map E — E N Ay from P(A) — P(Ag) restricts to give a ring isomorphism
A(Ao,A)y = A(Ao)y, for each v € A). These isomorphisms are equivariant for
the shift maps defined by elements of Ag.

Proof. Tt follows from the fact that intersection distributes over union and difference
that the given map is a ring homomorphism P(A) — P(Ag). By Remark B3] a
typical (nonempty) set in A(Ag, A), has the form £ = | |;(a; A\ U, Bi;A), where
«;, ﬁij € Ao, Bij € a; Ao, ﬁij # «;, and the unions are finite. Then £ N Ay =
LJ;(aido \ U, BijAo) by Definition BIIZ]). Therefore the restriction of the given
map to A(Ag,A), does have range in A(Ag),. It is clear that if £ # (), then
ENAy # 0, since a; € EN Ag for all ¢, and hence the restriction is one-to-one.
Since every set in A(Ag), is of the above form, the restriction is onto. O

Remark 3.7. Because of Proposition B.6] we need not consider relative categories
of paths in the finitely aligned case.

Remark 3.8. We note that if (Ao, A) is finitely aligned, then the family of Boolean
rings generated by the &50) is already invariant under the shift maps. If (Ag, A)
is not finitely aligned, we have seen that this need not be the case (Example 2.J]).
Even if Ag and A are individually finitely aligned, the relative category of paths
(Ag, A) need not be. For example, let A be the subcategory of Figure [I] generated
by «, B, Y0, 71, 0, 01, and let Ag be the subcategory generated by «, 8, vo, do.
Then aANBA = {ayg, a1}, so that Definition BN fails. It is easy to check that
the ring generated by tail sets is not invariant under left shifts by elements of Ag.

In the above two examples, it was condition () of Definition Bl that failed. We
present an example where condition () fails. For this, let A be the subcategory of
the first example generated by «, 3, Yo, 0, and let Ag = {a, B, a0} U A%, In this
example, Definition B[l holds, but (@2)) fails. In this case, &, is an elementary
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family but is not invariant under left shifts: o*(8A) = {7} is not in the ring
generated by Eg(q)-

4. THE GROUPOID OF A RELATIVE CATEGORY OF PATHS

Recall that a filter in a ring of sets A is a nonempty collection, U, of nonempty
elements of A, which is closed under the formation of intersections and supersets.
An ultrafilter is a maximal filter. Ultrafilters are characterized by the property:
for each E € A, either E € U or there is F € U with ENF = (). A filter base is
a nonempty collection of nonempty subsets of A such that the intersection of any
two of its elements is a superset of a third element. A filter base defines a unique
filter by closing with respect to supersets. An ultrafilter base is a filter base such
that the filter it defines is an ultrafilter. Ultrafilter bases () are characterized by
the property: for each E € A, either there is F' € Uy with E O F or there is ' € Uy
with £ N F = (. Each element « in the set underlying A determines an ultrafilter
U, ={F € A: a € E}, called a fized ultrafilter.

Let (Ao, A) be a relative category of paths. For v € AJ let A, = span{xg : E €
Ay} C £°°(vA), a commutative C*-algebra. As in [3I], p. 250, we identify A, with
the set of ultrafilters in A,: the complex homomorphism w € ;1: corresponds to the
ultrafilter {E € A, : w(xg) = 1}. We will write X, for the spectrum, A,, of A,.
We let U, denote the ultrafilter corresponding to x € X,,. For F € A, let E Cc X,
denote the support of xg. Thus z € E if and only if £ € U,. The collection
{E : E € D,} is a base for the topology of X, consisting of compact-open sets.

In order to define the groupoid associated to a relative category of paths, we have
to study the maps between the spaces {X,} that are induced by concatenation.

Lemma 4.1. Let (Ag, A) be a relative category of paths, and for each v € AY let B,
be a ring of subsets of vA such that conditions (), @) and @) of Proposition
are satisfied. If o € Ag and U is an ultrafilter in By, then old is an ultrafilter
base in By (q)-

Proof. 1t is clear that alf is a filter base. Let E € B,.(4) be such that E 2 oF
for all F € Y. Then ¢*E 2 F for all F' € U. Since U is an ultrafilter, and since
0%E € By(a), there is F' € U with c*ENF = (. Then ENaF = 0. a

Theorem 4.2. Let (Ag,A) be a relative category of paths. Let o € Ag. The map
a: Aga) = Ap(a) induces a continuous one-to-one map & : Xyo) = Xp(a). For
Y € Xy (a), we have y € A(Xy(q)) if and only if ah € U,.

Proof. By Lemma [l « defines a map & as in the statement. Let z1 # 2 in
Xs(a)- Then there are E; € U,, with Ey N Ey = (). Hence aE1 N ks = ), so that
aldy, and ald,, define distinct ultrafilters in A, (). Therefore & is one-to-one. For
continuity, let zo € Xy(,), and let V' be a neighborhood of a(zp). Then there is
B € A, (a) such that a(xg) € B C V. Hence B 2 aFEy for some Ey € Uy,. Then
c®*(B) D Ey, 50 0%(B) € Uy,; i.e. a/“(\B) is a neighborhood of 3. We will show
that a((ff(\B)) CB. Letze Uf(\B). Then 0%(B) € U,, hence aA N B € ally,
hence a(x) € B. Thus @ is continuous.

Now let y € X, (o). If y = a(z) for some x € X,(,), then U, O ald,. Since
ol € ald,, we have aA € U,,. Conversely, suppose that oA € U,. Then aANU, is a
filter base for U,, hence is an ultrafilter base. Since aANU, = {ac®(E) : E € Uy},
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we have aA NU, = aoc®(U,). We claim that o*(U, ) is an ultrafilter in A,(,). To
see that it is a filter (and not merely a filter base), let F' € Ay(,) be such that
F D o“(E), where E € U,. Then aF 2 aANE, so oF € U,. Then F € o™(U,).
We now show that it is an ultrafilter. Let ' € A, be such that F 2 o%(E)
for all E € U,. Then oF 2 E for all E € U,. Since U, is an ultrafilter, there
exists E € U, such that aF N E = (). Then F No®(E) = (. Finally, let 2 € X ()
with U, = 0*(U,). Then old, C U,. Since olf, is an ultrafilter base, we have
a(x) =y. O
Corollary 4.3. With hypotheses as in Theorem 4.2, we have &(X(q)) is a compact-
open subset of X,(q)-

Definition 4.4. Let (Ag,A) be a relative category of paths. Let @ € Ag. In
the sequel we will omit the caret, writing » € X ) — ar € X, (). We define
0% 1 aXpa) = Xs(a) by the equation aoc®(y) = y, for y € X, (o) with aA € U,

It now follows that for each ( € Z there is a homeomorphism ®; : z?(?) — A(Q),
determined by the maps given above, and the formula ®¢, ¢, = ®¢, o ®¢, holds.

We will now define the groupoid of a relative category of paths (Ag, A) (we refer
to [25]; see also []).

Definition 4.5. We let X = |_|U€A8 X,. We define r : X — AJ by r(z) = v if
r € X,. We define a relation ~ on

ZxX = U Zu x X,

vEAY
by: (¢,z) ~ (¢',2') if x = 2/ and ®¢|y = ®¢/|y for some neighborhood U of x.
Remark 4.6. Tt is clear that ~ is an equivalence relation.
Definition 4.7. The groupoid of (Ag, A) is the set
G=GNo,AN)=(ZxX)/ ~.
The set of composable pairs is
G ={([¢,], [¢,2) 12 = ®ea'},

and inversion is given by [¢, 2]~ = [, (z] (where we use square brackets to denote
equivalence classes). Multiplication is given by

[Ca (bC'x] [Clv J?} = [Cclv J?]

It is clear that Definition A7 does not depend on the choices made of represen-
tatives of the equivalence classes. It is elementary to check that the above does in
fact define a groupoid (e.g. the conditions on page 7 of [25]).

Remark 4.8. Tt is immediate that if [r(z), z] = [r(y),y], then = y. Thus the map
r € X — [r(z),z] € GY is bijective. We will often identify X and G via this map.

Definition 4.9. For ( € Z and E € A,((), let
¢, E) = {[¢,2] : = € E}.
Let B = {[C,E] :E e .AS(()}.
We note that since [¢, E] = [¢, E N A({)], we may assume that E C A(().
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Proposition 4.10. B is a base for a locally compact topology on G for which the
elements of B are compact and Hausdorff, and for making G into an ample étale
groupoid.

Proof. Suppose [¢, E] [/, E'] # 0. Then s(¢) = s(¢'). Let [¢,2] € [¢, B]n [¢', E'].

o~ ~

Then z € ENE’, and there is F € As(cy such that ®¢|z = & |z and z € F. Then
¢zl e [(, ENE' NF|C[(,E]N[¢', E).

Therefore B is a base for a topology on G.

Next, we show that multiplication and inversion are continuous. Let
(¢, @erz], [¢'y2]) € G® Let B = A(CC'). Then E € Ay, with o € E. Then
[¢¢’, E]is a basic neighborhood of the product [((’, z]. We have that p¢ (E) € A

and ¢px € @) Then [(, ¢ (E)][¢, E] = [({', E], hence multiplication is con-
tinuous. Since [¢, E]~! = [(, ¢¢(E)], inversion is continuous.

Finally, note that (¢ g) : [¢, %] = ®¢2 is an injective open map, and similarly for
s. Therefore r and s are local homeomorphisms. It follows that [¢, E] is compact
(since E is compact in X ) and that the sets in B are Hausdorff. Therefore G is

ample and étale (cf. [25], Definition 2.2.4). O

In general, G is not a Hausdorff groupoid. We next give an example of this.

FIGURE 3

Example 4.11. In Figure[3 A is a nonfinitely aligned 2-graph (where the subscript
i takes values in Z), with identifications ayy; = B10;, arp; = Brvi, ay; = B20;,
aopt; = PBavit1. (To realize A as a 2-graph, let edges pointing right have degree
(1,0), and let edges pointing left have degree (0,1).) We let (; = (8;,a;) € Zu.
Note that ¢c, (Vi) = 0i, @, (1) = vi, and @¢,(pi) = viy1. Further, note that
Xu = {Uy, Uy, Uy, Uy o0}, where we let Uy, = {E € Ao : a € E} denote the
fixed ultrafilter at a, and U, o the ultrafilter generated by the cofinite subsets of
{7i,pi : i € Z}. Then the domain of ®¢; is X, \ {Uy,}, and we have @, (Uy,00) =
Up oo, O¢,(Uy,) = Us,, O, (Uy,) = Uy, and O, (U,,) = Uy, ,. We note that basic
neighborhoods of U, o, may be taken to be cofinite subsets of {U,, U, : i € Z}.
Thus ®¢, # P, in any neighborhood of Uy, co: [C1,Uu.00] 7 [C2sUu,00]- We claim
that these two points do not have disjoint neighborhoods. To see this, let U be a
basic neighborhood of U, o, say U = E, where E = A(C) \ {vi, i : |i] < n}. Then

[C1, E] N [C2, E] 2 {[C1,Uy,] : |i] > n}.
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In the case where A is finitely aligned, however, G is Hausdorff. Because of its
importance, we will next work out some details of the finitely aligned case.

Let A be finitely aligned. We know from Lemma B3] that every element of G can
be expressed in the form [ac?, y], where o, B € A. In this case, y € m = BXp)-
Thus we may write [ao”,y] = [ac?, Bz] for some z € X (4).

Lemma 4.12. Let A be a finitely aligned category of paths. Let o, o' € A, and let
T € Xy(a), ' € Xy with ax = o'z’'. Then there exist 6 € s(a)A, 0’ € s(a’)A,
and z € Xy such that © = 0z, 2’ = §'z, and ad = &'0". (We refer to z as a
common tail of x and x’.) Moreover, we may assume that ad € aV .

Proof. Since aA € Uy, and &’ A € Uy, the equality ax = o2’ implies that ama’.
Then there is € € aVa' such that eA € Uy, By Theorem A 2]there is z € X such
that ax = ez. Write e = ad = /§’. Then ax = adz, and hence x = 0*(ax) = dz;
similarly 2’ = ¢'z. O

Lemma 4.13. Let A be a finitely aligned category of paths. Let o, 3, o/, B’ € A
and z, ¥’ € X define elements of G as in the remarks before Lemma 12 Then
(ao?, Bz) ~ (/o ,B'z") if and only if there are 8, &' € A and z € X such that
z=10z,2' =082, ad=d'd, and B6 = 3§

Proof. Let (ao?, Bz) ~ (o/0®,8'z"). Then Bz = f'z’ and ao? = o/c” near Su.
By Lemma lL.T2] there are v, 9/, and y such that z = vy, 2’ =+'y, and Sy = p'y".
Let E € A,() be such that fx € E and ao? = o/0® in E. We may assume that

E € & p). Write E = nA\ U;_, 6;A. Since fyy = fx € EC NXs(n), We can write
Byy = nu for some u € X,(,;). We again apply Lemma to obtain &, &', and
z such that y = €z, u = €'z, and Bye = ne’. Then ne’z = nu € E. It follows
that ne’ € E. For if not, there would be an 7 such that ne’ € 6;A, and hence that
ne'z € ;A C E°, a contradiction. Let U,, be the fixed ultrafilter in Ay at ne'.
Then E € Uy, so w € E. Hence acPuw = o/? w, and hence

ave = ao’Bye = acPne’ = o’'o? ne’ = /0P B'y'e = o/ e.

We still have Bve = /7', and moreover x = vy = vez and 2’ = 7'y = v'ez. Thus
we may take § = ye and &' = +'e.

Conversely, suppose that §, ¢’ and z are as in the statement. We must show that
(ac?, Bz) ~ (o/oﬂ/, B'x"). First, we have

Bx =Bz =p62=p72".
Second, let y € X,.(.y. Then
ac?Bsy = ady = /'y = /0P B8y = o' o Boy.
Hence ao? = a’c? on BdX,(2), a neighborhood of 36z = Bz. O

Using Lemma T3] we may redefine the groupoid G' (when A is finitely aligned)
as follows.

Definition 4.14. Let A be a finitely aligned category of paths. We define a relation
~ on
AxAxX = ] Avox Avx X,
veEAO
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by: (o, 8,2) ~ (¢, 8, 2) if there exist z € X, and d, §' € Ar(z), such that
(1) = oz.
(2) ' =4z
(3) ad =¥
(4) po=p'¢"

Lemma 4.15. The relation ~ in Definition [L14] is an equivalence relation.

Proof. Notice that the map (ao?, Bz) € Z% X + (a, B,2) € A* A% X is bijective.
By Lemma [£13], this map carries the equivalence relation on Z % X to the relation
of Definition 14l |

Remark 4.16. The groupoid of A is the set
G=G(A) = ( U Avavav) /N.
IS

The set of composable pairs is

& = {([o, 2], [,6,9]) : Bz = vy},

and inversion is given by [a,3,7]"' = [B,a, 2] (where we use square brackets
to denote equivalence classes). Multiplication G? — G is given as follows. Let
([a,ﬁ,w], [, 0, y]) € G2. Since Bz = vy, Lemma EI2 provides z, &, and 7 such
that ¢ = £z, y = nz, and B = «yn. Then

[a, 8, 2] [v,6,y] = [ag,m,z].
The topology of G is given as follows. Let v € A°. For E € A, and «, 8 € Av,
let
o, 8, B = {[o. B,2] : = € E}.
Thus [ac?, BE] corresponds to [, 8, E]. Then B = {[a, 3, E] : s(a) = s(8), E €
Ag(a)} is the base for the topology of G.

Proposition 4.17. Let A be a finitely aligned category of paths. Then the topology
of G is Hausdorff.

Proof. Let (o, 8,2) # (o, f',2'). First suppose that ax # o’z’. By continuity
of concatenation (Theorem [2), there are E € A2y and E € Ay (2 such that
aENa'E' = . Then [, B, 2] € [, B, F], [, 0',2'] € [«,0', FE'], and [«, 8, E] N
[@/, B, E'] = 0. A similar argument treats the case where Bz # 3'z’. Suppose now
that ax = o/2' and Sx = 8'2’. Since ax = o/z’, Lemma [£.12] provides z, §, ¢’ such
that = dz, 2’ = §'z, and ad = a’§’. We have

Thus (86 # 8'8’. We claim that
[ad, B8, X, (o] N [/, B'6", X, (] = 0.

For let y, y' € X,.(.) be such that (ad, 30,y) ~ (/0" 8'¢',y’). Then there are w, ¢,
¢’ such that y = ew, ¥’ = e'w, ade = o/§'¢’, and Bde = B'6’c’. Since ad = o', we
have € = ¢/, by left-cancellation. But then right-cancellation implies that 86 = 3¢,
a contradiction. (]
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Remark 4.18. We note that it is only in the last sentence of the above proof that
right-cancellation has been used (cf. Remark [Z4]). If right-cancellation is not
assumed, the groupoid G(A) need not be Hausdorff in the finitely aligned case.
However, it will still be ample and étale, and will define a C*-algebra as in the
general case.

5. BOOLEAN RING HOMOMORPHISMS

We now wish to characterize Boolean ring homomorphisms from A,. Our goal
is the following theorem.

Theorem 5.1. Let (Ao, A) be a relative category of paths, v € AY, and R a Boolean
ring. A map u : Dqgo) — R extends to a Boolean ring homomorphism A, — R if
and only if the following conditions hold:

(1) W(ENF) = u(E) N w(F), for B, F € DY,

(2) w(E) =", W(Fy) for E, Fy, ..., F, € DY) with E = J"_, F;.
In this case, the extension to A, is unique.

This is truly a set-theoretic result: it relies only on Lemma and the fact
that DI()O) is closed under intersection. Before proving the theorem, we will present
several lemmas.

Lemma 5.2. Let (Ag,A), v, R and u be as in the statement of Theorem [B.1], and
suppose that [A) and @) hold. If E, Fy, ..., F, € DY and E C U, F;, then
w(E) € Uiy w(Fy).

Proof. We first note that p is monotone on Dq(,o). Let E, F € Dl()o) with £ C F.
Then E = ENF, so by () we have u(E) = pu(E) N pu(F) C pu(F). Now, from E C
Ui, Fi we have E=J!_,(ENF,;) and ENF; € D). By [@), and monotonicity,

n n

wE) = JuEnFE) | JuF). 0

=1 =1
Corollary 5.3. If By, ..., En, Fy, ..., F, € DY) and U, E: C U)_, Fy, then
Uizy w(Ei) € Uj=y u(Fy).
Proof. By Lemma 5.2 u(E;) € Uj_, p(Fy) for all 4. O

Remark 5.4. Tt follows from Corollary 53] that the analgous result with equalities
in place of containments also holds, and hence that p can be extended to finite

unions of sets in DY) by setting p(UE;) = U, u(E;).
Lemma 5.5. We retain the hypotheses of Lemma B2 Let E;, F; € DY for
0<i<mand0<j<n, and suppose that Ey\ J:~; E; C Fp \ U;'L:1 F;. Then
1(Eo) \ ULy u(E:) € p(Fo) \ Uj—y u(Fy).
Proof. We note the set-theoretic identity:

X\YCZ\Wifandonlyif X CYUZ and X NW CY.
Thus . .

Eo\|JE Cc R\ F

i=1 j=1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUPOIDS AND C*-ALGEBRAS FOR CATEGORIES OF PATHS 5787

hence
EyC|JEUFyand Egn | J F; € |J B

i=1 j=1 i=1

hence
QU@U%M UEMW Um,

i=1 j=1 i=1

hence
w(Epy) C U w(E;) U p(Fp) and U (EoNFj) C U w(E;), by Corollary (.3
i=1 j=1 =1
hence
p(E) \ | w(E:) € p(Fo) \ | w(Fy), by @. O
i=1 j=1

Remark 5.6. It follows from Lemma that u can be extended to D, by setting
w(ENU; Ei) = n(E) \U; n(E;).

Lemma 5.7. We retain the hypotheses of Lemma 5.2l Let p be extended to D, as
in Remark 0.6l Let A, B € D, be disjoint. Then p(A) and u(B) are disjoint.

Proof. We note the set-theoretic identity:
(X\Y)n(Z\W)=0ifandonlyif XNZ CY UW.
Let A= Eo\U;Z, Ei and B = Fy \ Uj_, Fj, with E;, Fj € D). Since ANB =10,

we have
Ecnkc|JEUJF
i=1 j=1
hence
(Eo) N p(Fo) € | m(E:) U | w(Ey)
i=1 j=1
by ([ and Lemma [52} hence
p(E)\ | n(E) | N | in(Fo) \ U =90. O
i=1 j=1

Lemma 5.8. We retain the hypotheses of Lemma 5.2l Let pu be extended to D,
as in Remark G0l Let A, Ay, ..., A, € D, with A = | [i_; Ax. Then p(A) =

UZ:1 N(Ak)-

Proof. The containment “D” follows from Lemma (.5l and the disjointness from
Lemma 5.7 For “C” we first note the set-theoretic identity:

X\Yc|J@\w)
k=1

if and only if for every I C {1,...,p},

Xmﬂﬂ@gYuUZb
kel ra
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Let A= E\U", E; and Ay, = Fy \UJ*, Fiyj, where E, E;, Fy,, Fi; € DY Let
IC{l1,...,p}. We have

EﬂﬂUFk]CUE vl Fe.

kel j=1 og1
Since the left-hand side is a union of intersections, it follows from Corollary 5.3l and
@ that
Nk m
N U wFey) € | nE) o uF).
kel j=1 i=1 0g1
Since this is true for every set I C {1,...,p}, we have
m P ng
wE\ JuE) € | | w@E)\ | wFr) |
i=1 k=1 j=1
that s, u(4) C U, n(Ax). 0

Corollary 5.9. Let {A;,...,An} and {By, ..., B,} be families of pairwise disjoint
elements of Dy, and suppose that | |; A; = ||; Bj. Then | |; u(A:) = |; u(B;).

Proof. Let A; N B; = ||, Cijk, where Cy;, € D, and the union is finite. Since
A = |_|j(Ai NB;) = |_|j’,C Cijk, Lemma 0.8 gives

| | u(Ad) = || | Cisn) = | | #(Ciji)-
i ik ;

Similarly, | |; w(B;) = L; j.x #(Ciji)- U

Definition 5.10. Let (Ag, A), v, R and p be as in the statement of Theorem [(.1]
and suppose that ([{l) and (@) hold. We define p on D,, as in Remark 5.6 and then
on A, by setting u(| |, A;) = |l; #(A;) (which is unambiguous by Corollary [£.9).

Proof of Theorem [5.1l The necessity and uniqueness are clear. For the sufficiency,
first note that it follows from Lemma [5.7] and Definition B0 that if A, B € A, are
disjoint, then u(A) and p(B) are disjoint, and u(A U B) = p(A) U u(B). Now, for
arbitrary A, B € A, we have

w(B) = p(B\ A) U u(AN B),
WA\ B) N (B A) = 0.
It follows that
u(A\ B) = p(A) \ w(B),
and hence that

#(AUB) = p((A\B)UB) = p(A\B)Uu(B) = (u(A)\u(B))Up(B) = M(A)Uu(Bé

In the case that A is finitely aligned, the hypotheses of the theorem may be
relaxed considerably. It is the following result that fundamentally explains why the
(Toeplitz) Cuntz-Krieger relations have their usual form.
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Theorem 5.11. Let A be a finitely aligned category of paths, v € A°, R a Boolean

ring, and [ &SO) — R. Then u extends to a Boolean ring homomorphism A, — R
if and only if the following condition holds:

(8) p(ad) N p(BA) = U.cavp #(EA) for all a, B € vA.
In this case, the extension is unique.

Proof. The necessity and uniqueness are clear. For the sufficiency, first note that
@) implies monotonicity of & on &50). Next, we observe that the sets in &50) have
the following property: if E, Fy, ..., F, € &(,0) and F C Uj F};, then there is jo
such that £ C Fj,. (For, letting E' = oA and F; = §;A, o € E implies o € 5, A for
some jo, and hence aA C §;,A.) It follows that p can be defined unambiguously
on finite unions of sets in &50) and that p remains monotone when so extended.
By Corollary [3.4] it follows that pu is defined on D) and that @) holds. Let A,
B eDY. Wiite A=, E; and B = J}_, F}, with E; = a;A, F; = 3;A in £}".
Then E; NF; =Y Gije, where Gije = €A, € € a; V 3. Then

uw(AN B) Uu ije)

ije

e€a; VB

On the other hand,

u(A) N p(B) = (B 0 =UJ U Gy

ij e€a;V B

by @). Thus (1) holds. By Theorem Bl x4 has an extension to A,. O

6. GENERATORS AND RELATIONS

Let G be the groupoid of a relative category of paths (Ag, A). For { € Z we let
te = X(¢,A(¢))- The collection {t; : ( € Z} is a total set in C.(G) € C*(G). Since
v (A(Q) = 5 (e (V) = wrg(A) = A(GiGe), we see that te,te, = tc. 1t is
clear that ¢tz = tZ. Since A(¢) — X[ce,a(c)) = lzc is a Boolean ring homomorphism,
conditions () and (2] of Theorem 1] hold for this map. In fact, () follows from
the previous two properties and Remark 2. T0(H). Notice also that p¢ = id () if
and only if &, = id A (for the only if, consider the fixed ultrafilter determined

by a path moved by ¢¢). Therefore, if ¢ = id () we have t¢ = tite. These are
enough to characterize representations of C*(G).

Before presenting the characterization, we wish to comment on the last property
mentioned above, as it is special to the non-finitely aligned case. (We thank Allan
Donsig and David Milan for noticing a gap in our earlier proof of Theorem 6.1, which
brought to our attention the need for the relation (4) of the theorem.) We give an
example. In Figure 4, 1 =1, 2, 3, ..., and we have the identifications o;vy; = B;0;
for j =1, 2, and for all i. Letting ¢; = (ay;, 3;), we find that A(¢;) = {0; : i > 1},
and that ¢¢,(d;) = v; for j = 1, 2, and for all i. Thus ®¢, = ®¢,: the groupoid
does not distinguish ¢; and (s.

Theorem 6.1. Let G be the groupoid of a relative category of paths (Mg, A). The
representations of C*(G) are in one-to-one correspondence with the families {T¢ :
¢ € Z} of Hilbert space operators satisfying the relations

(1) Te,Te, = Teyc, -
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Q2 52
o <« ,77, . 62 > o
a1 B1
FIGURE 4

(2) Te =17

(3) TETe = Vi TETe, if A(C) = Uiz A(G)-

(4) Te = T¢I if oc = ida)-
Proof. First, let 7 : C*(G) — B(H) be a representation. Let T = m(X[c,a(¢c)))- As
indicated in the discussion before the statement of the theorem, conditions () - (4)

hold.
Conversely, let {T; : ¢ € 2} C B(H) satisfy () - (4). Since A(¢) = A(C(), we
have
Tee = T¢Te, by (1) and (2),

=T T7, since Tp. = TFT; is self-adjoint,

= Tezer by (1).
Therefore T¢ is a partial isometry. Next we use (4). We claim that
(5) if P¢r = Pes then TC1 = TCz'

To see this, note that if p¢, = ¢¢,, then oz =1da,) = ida) = Yae, = Yoe,-
By (4) we then have T3, T¢, = Tg,, = 17T, = T3, T¢,. We also have . = =
id A(?i) = id A(§) = Yot = ¥ and hence similarly, that Te,T¢ = T, 7 =
T, T¢, = T, 1¢,- Now we have
TCl = TCnglTCl = TCzTngQ = TCQTC*QTC2 = TC27
proving (5).
We define p : DO — B(H) by u(A(()) = T?Te. Since Te o Ty

G617 Gt TECIE(2’
condition () of Theorem Bl holds. Condition () of Theorem 1] holds by ().

Then by Theorem [5.1] we obtain a *-homomorphism g : Co(G°) — B(H) such
that mo(xa()) = T Te.

In order to extend m to all of C*(G), we proceed locally. Let f € C.(G)
be such that there is { € Z with supp (f) C [(, A({)]. Define fe C(z?(?)) by
f(z) = f([¢, x]). To show that f is well defined, suppose that supp (f) C [¢/, A(¢))].
For each w € supp (f), w = [(,z] = [(/, ] for some z € Z(?) N A/(C\’) Therefore
supp (£) € [ A(Q) N AW V¢ AQ) N AW Let B e Awith E = {z € A(() 0
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A/(C\’) : ®¢ = ¢ near z}. Then supp (f) C [(, E]N[(, E]. Thus f doesn’t depend
on the choice of (.

Now we define 7 (f) = Tcwo(f) if supp (f) C [¢, A(¢)]. To see that this is well-
defined, let supp(f) C [C1, A(¢1)]N[C2, A(C2)]. First suppose that f = x[¢, a¢¢)]- Then
A(§) € A(G) N A(C2), and ¢ |ae) = ey j = 1, 2. But then ¢z = @, and

hence T, Ty T = T, T¢Te, by (5). We have f = Xaigg» and hence mo(f) = T¢ T.
But then T¢, 7o (f) = T, TiTe =T, T Te = T, 7o(f). It follows that this also holds
for f in the span of such characteristic functions. By continuity of g, it follows for
all f supported in basic sets [¢, A(C)].

For an arbitrary f € C.(G), we may find ¢; € Z and 4; € A, 1 <i < n, such
that supp (f) C L;[Ci, Ai]. Then f =37, fli¢; 4, If also supp (f) € |;[¢;, Byl
then since [(;, A;] N [§;, B;] =[G, Ai N Bj] = [§;, Ai N Bj], we have

Zf [CisAi] = Zf (¢, AnB;] = Zf\[gj,AimBj] = Zf\[gj,Bj]-
i irj i j

Thus >, 7(flici,a:) = > (flig;.B;))- Therefore this last expression is a well-defined
extension of 7 to all of C,.(G) and is a self-adjoint linear map. We note that 7 is
continuous for the inductive limit topology, since by the above it reduces to uniform

—

convergence on the sets A(¢). Finally, since 7 is multiplicative on the characteristic
functions of the basic sets [¢, A(¢)], the continuity implies that 7 is multiplicative
on C.(G). Therefore 7 extends to all of C*(G) by Renault’s disintegration theorem
([25], Theorem 3.1.1). O

The third relation in Theorem [6.1]is fairly complicated, reflecting the complexity
of general nonfinitely aligned categories of paths. Our use of relative categories of
paths gives a nesting relation for subcategories.

Corollary 6.2. Let A be a category of paths, and let Ag C Ay C A be subcategories.
For ¢ € Aj lettej € C*(G(Aj,A)) be the generators described in the remarks before
Theorem [61l. There is a x-homomorphism C*(G(Ag, A)) — C*(G(A1,A)) given by
teo > tea for ¢ € Z(Ao, A). Moreover, if G(Ao, A) is amenable, then this map is
injective.

Proof. The existence of the map follows from Theorem 6.1l Now let v € AJ. IfU is
an ultrafilter in A(Aq, A)y, let Uy = UNA(Ag, A),. It is easy to see that U is a filter.
Moreover, if E € A(Ag,A), \ Uy, then E ¢ U. But then vA\ E € U N A(Ag, A),.
Therefore Uy is an ultrafilter. Thus we obtain a map X (A1, A), — X (Ao, A), given
by U — UNA(Ag, A),. Tt is easy to check that this is a continuous proper surjection.
It extends to the groupoids as follows. Let ( € Z(Ag, A)v and U € X (A1, A),. Let
Uy = U N A(Ap,A),. Then the map on groupoids is given by [¢,U] — [(,Up]. Tt
follows that the regular representation of G(Ag, A) induced from the point mass
at Uy is the restriction of the regular representation of G(Az, A) induced from the
point mass at U ([25], section 3.1). If G(Ag,A) is amenable, then the norm in
C*(G(Ao,A)) is determined by these regular representations. Therefore in this
case, the map on C*-algebras is isometric. O

We next present the simplification occurring when A is finitely aligned. In the
next result we will use the following notation. Recall the convention on unions of
functions stated before Lemma B3l In a similar way, let {u; : i« € I} be a finite
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collection of partial isometries (in a C*-algebra) whose initial and final projections
form a commuting family. The {u;} determine a partial isometry, with initial
projection \/,.; uju; and final projection \/,.; usuj, if and only if for all 4, j € I,
uiuiu; = uwjuiu;. We will write \/; .y u; for the partial isometry so determined if
and only if the {u;} satisfy this condition.

Theorem 6.3. Let A be a finitely aligned category of paths, and let G = G(A).
The representations of C*(G) are in one-to-one correspondence with the families
{Ts : @ € A} of Hilbert space operators satisfying the relations

(1) TaTo = Ty(a)-

(2) ToTs = Tug, if s(a) =r(B).

(3) T@TQ*TBTE = \/'yEocVﬂ T'YT’:(

Proof. First suppose that we have a representation of C*(G). By Theorem [G.1]
we have a family of Hilbert space operators {I; : ( € Z}. For aw € A we define
To = T(r(a),0)- Note that A(r(a), ) = s(a)A = A(s(a), s(a)). Then

TaTo = Tl (.0 L)) = Tr@rayr(ane) = Lis@)s@) = Tsa):

verifying (Il). Next, let s(a) = 7(5). Then
ToTp = Tir(e).a) T(r(8).8) = Ttr(@).0r(8).8) = T(r(a).0) = Tap)

verifying (). Finally, let o, B€A. Then T,T3TpT; = T(v"(a)7a)(r(a),a)(r(6),6)(r(ﬁ),ﬁ)'
Note that

Pr(a),a)(r(a),a)(r(8),8)(r(B).5)
= Q(r(a).mar(a).r(8).8.8.0(8) = @0 Bo’
B
= U a(o”‘a)a(g €) P
ec€aVvp
«@ (ﬁdﬁf)
= U (ac%e)o
e€caVvp
= U eo*.
ecaVvp
Hence

A((r(@),a)(r(a), a)(r(8), B)(r(8). B) = |J A= | Aler(e).

e€aVp ecaVvp

Therefore T 1(0),0) )2 ((8),8) P BB = Veeavs TeT7, verifying ().

Conversely, let {T}, : @ € A} be given satisfying (), [2)) and (@) of the theorem.
For ( = (a1, B1,...,0n,B,) € Z define Te = T Tp, ---T; Tp,. Then Theorem
EI[) and @) clearly hold. We will verify Theorem [G.TIB]).

We first prove the following claim. If v;, d;, §;, n; € A are finite collections such
that |, vio% = U; &o™, then V, T, T3 = V,; T¢, T, . To prove this claim, first
fix 49. Since d;, is in the domain of | J; v;0%, there exists jo such that n;, € [0,].
Similarly, there is ¢; such that §;, € [n;,]. Therefore é;, € [0;,]. Let &;, = &;, p.
Since any two terms of |J, v;0% must agree on the intersection of their domains,
we have

Yio = %006% (61'0) = 7i106i1 (620) = Vi, K-
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Therefore ~;,0 oo = ; 0% |ua- Thus the i term may be deleted from [J; vio®
We repeat this process until we have that §; & [0;/] for all ¢ # ¢’. Moreover, we have
T’Y'LlTéi T%0 T% + T, (TS(’M) + 1,1, )T&il. Therefore T, Ty , can be deleted
from \/z ~: T5. . Repeating this for the other map and operator, we may also assume
that n; & [Uj’] for all j # j'. Now for each ¢ there is j such that n; € [§;]. Then
there is ¢’ such that 6 € [n;]. Hence d; € [d;], so we must have §; = §; = n;.
Applying both maps to §; = 7; we find that v; = &;. Thus the two presentations
of the map are identical, and thus so are the operators. This finishes the proof of
the claim.

Next we claim that if ( € Z and ¢ = |, v;0% is a finite union, then T =
V,; T,,T5 . We prove this by induction on the length of (. First suppose that

¢ =(a,p). Then o*p = UEE&VIB(UQS)U(JBE). Moreover,
TiTy =TT TSI T Ty = \) TiLTiTs = \/ TooeTls.
e€EaVp e€aVvp

By the previous claim, we know that this doesn’t depend on the decomposition
chosen for ¢-. Now suppose that the current claim is true for zigzags of length
at most n. Let ¢ = (a1, 81, ..., Qnt1, Pny1). Let (o = (a1, b1,y ..., an, Br). Write
v =U; 70 and Plant1,8n41) = Uj pjo7. Then

PC = P60 © Plansn b = (0% 50" = | vibho™ a7 = | yiotim.
ij i,k ig,k

Then the inductive hypothesis gives

T = TCOTan+1,5n+1) \/T T5 TMJT; \/ T%Tng;;kT: \/ view Ly, ”Ik

4,5,k 0,5,k
Again, the first claim shows that this is independent of the choice of decomposition
of p¢.
It is clear that Theorem B.II[@]) follows from the last claim. Finally, Theorem
6.1(4) also follows from the last claim. O

Remark 6.4. Because of the importance of the finitely aligned case, we formally
present some simple consequences of the relations in Theorem (some of these
were used in the proof of the theorem). Let {1, : & € A} be as in the statement of
Theorem 6.3

(1) From Theorem [G3|[I) we see that T, is a self-adjoint projection when u €
AY. Hence T, is a partial isometry.

(2) From Theorem B3|, letting o = r(8), we see that TTj < T, (s).

(3) From Theorem B3IB]) we see that T, T, = 0 if u # v, for u, v € A, It
follows that T,,Tp = 0 if s(a) # r(5).

(4) From Theorem [6.3|[3) (or its proof), we see that TyTs =\ 5 TooeT s,
Thus if the elements of oV § are pairwise disjoint, for example, in the case
of a higher-rank graph, we recover formula (iii), Definition 2.5, of [28].

(5) From Theorem [B3|[3]) we see that {T,T : a € A} is commutative.

We end this section with some elementary algebraic consequences of Theorem
Because distinct minimal common extensions need not be disjoint in general,
the monomials of the form T, Tj; do not necessarily span a dense *-subalgebra of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5794 JACK SPIELBERG

the Toeplitz algebra. However, there is a total set that is not too far from such
monomials.

In the following three results, we assume that A is a finitely aligned category of
paths. Let P = {T,T :a€ A and P={py---px :ps € Py, 1 <i <k, k€ N}.
Let B =span{T,T;q: p,v €A, q€ P}.

Lemma 6.5. For o, B € A, T} T3 € B.
Proof. Let aV 3 = {e1,...,ex}. For each i, write &; = a; = Bv;. Let p; = T, T, €
Py. Then

Hi~v;

k
T:Ts = \/ T,.T;
=1
=T, T; +T,,T,,(1 —p1)+Tu,T,,(1 —p1 —p2+ pip2)

+oee Tt TMkT:k (1 - Z Diy + Z DiPip — -+ (_1)k71p1p2 e 'pk—l)
1<k i1 <iz<k

€ B.
]

Lemma 6.6. Let « € A and g € P. Then there is ¢’ € P such that ¢T2 =T2q' .

Proof. Note that if p =T, T5 € Py, then Tp = Ty, T}, Ts,. Iterating this produces
¢’ € P such that T,q = ¢'T,. The lemma follows by taking adjoints. O

Proposition 6.7. B equals the x-algebra generated by {T, : o € A}.

Proof. 1t is clear that B is contained in the x-algebra. The x-algebra is spanned by
monomials of the form T, T, - - - Ty, T}, , so it suffices to prove that such monomials
are in B. This is clear for monomials of length one. We consider Ty, T3 T,,Tj,. By
Lemma [6.5 we know that T Ty, € B. So it is enough to consider Ty, (7,7, q)T}3,,
with ¢ € P. By Lemma we know that there is ¢’ € P such that ¢Tj, =T} ¢
Thus Ty, (T, T q)Tﬁ*2 =Ta, uTﬁ*ZVq’ € B. Finally, assume inductively that the result
holds for monomials of length less than k. Given TOQTE1 Ty, Tgk, we then know
that 74,75, -+ Ta, T, € B. Therefore it suffices to show that (T, T3 ) (1,17 q) €
B. This follows from the case of length two, which was already proved. (]

7. THE BOUNDARY OF A FINITELY ALIGNED CATEGORY OF PATHS

Our next task is to identify the ultrafilters in the ring A,, for v € A%. We have
not carried this out in the general case, so for the rest of the paper (except for the
first part of section [IT]), we assume that all categories of paths are finitely aligned.

Definition 7.1. Let A be a category of paths. A subset C' C A is directed if
the partial order it inherits from A (Definition 23] is directed: for all o, 8 € C,
aANBANC #0. C is hereditary if [y] € C whenever v € C (recall from Definition
25 that [v] is the set of initial segments of 7). A directed set C'is finite if it contains
a maximal element; otherwise it is infinite.

Remark 7.2. We note that if C' is a directed set, then C' = Uasecla] is directed
and hereditary and contains C'. We also note that the set of all directed subsets of
A, partially ordered by inclusion, satisfies the hypotheses of Zorn’s lemma, so that
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every directed set is contained in a maximal directed set. Any maximal directed
set is necessarily hereditary.

For the next few results we assume that A is a countable category. We do not
know if this is necessary (other than for our proofs).

Lemma 7.3. Let A be a countable finitely aligned category of paths, and let C be
a directed subset of A. Suppose that 8 € A is such that BMa for all o € C. Then
there exists a directed set C' containing both C and (3.

Proof. Fix o € C. We claim that there exists ¢, € SA N aA such that ¢, M~ for
all v € C N aA. For suppose not. By finite alignment, SA N aA = Useﬁ\/a el.
The assumption means that for all € € 5V «, there exists 7. € C' N aA such that
YeANeA = 0. Since C is directed there exists v € CN[\_cgy, VA We have S,
so let n € BAN~A. Since n € aA we have n € SA N aA, so there is € € §V a with
n € eA. Since n € YA C v A, we have n € v.A NeA, a contradiction.

Now let C = {&;, &, ...}. Let a3 = &1, and choose €4, as in the previous claim.
Let as € a1 AN&ANC. Note that since oy, ay € C we have a;ANasANC # (. If
v € anANae ANC, then €,, M7, and hence €4, Mae. We now claim that there exists
€, 88 in the previous claim such that €, € €4, A. Again, suppose not. Then since
€ay € BA, we have that for each § € asA Ney, A, there exists ns € C N agA such
that 6 1L ns. Let p € C'N ﬂ&eazwal ns/A, which is possible because C' is directed.
Now we have

NANeq, A =nANasANey, A= U nANSsA C U nsA N GA = 0.
d€azVean, d€azVea,
But since 7, a; € C, there is '’ € C NnA NayA. But then ey, M7, so e,, M7, a
contradiction, and the current claim is proved.
Inductively, we let a; € a;—1ANEA N C and choose g4, (as in the first claim
above) so that e4, € £q, ,A. Then C = C' U {e,, : i € N} U {8} is directed. O

The definitions of filters and ultrafilters were recalled at the beginning of section

2]

Definition 7.4. Let A be a finitely aligned category of paths, and let v € A°. For
a hereditary directed set C' C vA, let
Uco={F € A, : E 2 aA for some o € C},
Uc ={E € A, : ED CnNaA for some a € C}.

It is clear that Uc o and U are filters in A, and that Uc o C Uc.

Definition 7.5. Let A be a finitely aligned category of paths, and let v € A?. We
let vA* denote the collection of all hereditary directed subsets of vA, and vA** the

collection of all maximal directed subsets of vA. We write A* = [J,c 0 vA* and
A = U'UEAO vA*

Theorem 7.6. Let A be a countable finitely aligned category of paths, let v € AP,
and let C € vA*. Then:

(1) Uc,o is an ultrafilter if and only if C € vA**.
(2) Ue is an ultrafilter, fixed if and only if C is finite.
(3) Ewery ultrafilter in A, is of the form Uc for a unique C' € vA*.
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Proof. @) (=) Let C, C" € A* with C C C’". Let 8 € C'\ C. If A € Uc, then
there exists a € C such that SA O aA. But then o € SA, so that g € C, since C'
is hereditary. From this contradiction we see that Uc o C Ucr 0, and hence Uc g is
not an ultrafilter.

(<) Let C € vA**. Let E € &, \Ucy. Write E = SA\ U, %A with v; € BA.
We must find a set in Uc o disjoint from E. If there exists @ € C with ao L S,
then aA is such a set. So let us suppose that a @ 3 for all & € C. Then since C' is
maximal, Lemma [3] implies that 8 € C. Now suppose that v; ¢ C for all i. Again
by the maximality of C' and Lemma [[33] for each ¢ there is a; € C with a; L ;.
Let « € CN()_, AN BA. Then a L ~; for all 4, so aA C E, contradicting
the assumption that £ ¢ Uc,o. Therefore there exists 49 such that ~;, € C. Then
Vi A € Uop and v;, ANE = . Finally, if E € A, with E ¢ Uc o, then E = | |7_, Ej,
where E; € &,. Since Uc is a filter, E; € Uc o for all j. By the above, there is
Fj € Uc o with Ej ij = (. Then F = ﬂj Fj €Ucpand ENF = 0.

@) As in the proof of part (), it suffices to consider E € &, with E & Uco. Write
E = BA\ U, %A with v; € BA. If C N BA # 0, let « € C'N BA. Then aA C SA.
Since E € Uc, there is o/ € C' N aA such that o/ ¢ E. Then there is ¢ such that
o' € v A. Then &’ A C ;A C E° and o/ A € Ug. Now suppose that C N GA = 0.
Then vA \ BA € Ue and (vA\ BA)NE =0.

If C has a maximal element o, then {ag} € Ue, so that Uc is fixed. Conversely,
if U is fixed there is g € vA such that {ag} € Uo. From the definition of Ue it
follows that ap € C and must be the maximal element of C.

@) For the uniqueness, let C', C’ be distinct elements of vA*. Then, say, there
exists a € C'\ C". Since C” is hereditary, C' N oA = (). But then oA € Uc \ Ue.

Now let I/ be an ultrafilter in A,. Let

S={CeN Uy CU}

S is partially ordered by inclusion and satisfies the hypotheses of Zorn’s lemma
(note that S # @ since {v} € S). Let C be a maximal element of S. Then C is
hereditary. (Of course, C need not be maximal as a directed set.) Suppose U # Uc.
Let E € U\ Uc. We write E = | |/_) E; with E; € £,. Since U is an ultrafilter,
one of the F; is in U. Since U is a filter, none of the F; is in Uc. Thus we may
assume that E € &,. Write E = SA\ J!_, %A with v; € BA. Since E € U we have
that A € U. Then BANaA € U, and hence SMa, for all o € C. We give a variant
of the argument in Lemma [[3l For each o € C,

U eA=pBAnareu.
eEBVa
Thus there exists ¢, € BA N aA with e, A € U.

Now let C = {&, &, ...}. Let ay = &, and choose g, € SBA N ayA with
€y A €U. Let s € an ANEANC. We claim there exists €4, € €4, A N agA such
that €,,A € U. For suppose not. Then for each § € asA Ney, A, we have 0A ¢ U.
By finite alignment we have

awAne, A=) oAU,

5€a2Vsa1

since U is an ultrafilter, contradicting the fact that asA, €4, A € U. This verifies
the claim. Inductively, there are a1, ag, ... € C and e, € SAN;A, such that {a;}
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is cofinal in C' (in the sense of a directed set), e, A € U for all 4, and e,,,, € €, A
for all i. Then €' = C U {8} U{eq : a € C} is a directed set, and C’ € S (see
Remark 7.2). By maximality, = C, so that § € C. Since F ¢ Uc there is
n € CNPA withn ¢ E. Then n € v;A for some ¢, and hence nA C ;A C E€. But
then @ = nA N E € U, a contradiction. Therefore U = Uc. O

By this result we may identify X, = vA*. In the next theorem we describe the
closure (in X,) of vA**. The next definition was discovered in [28].

Definition 7.7. Let A be a category of paths and v € A®. A subset F' C vA is
exhaustive (at v) if for every a € vA there exists f € F with am 8. F' is trivially
exhaustive if v € F. We let FE(v) denote the collection of finite exhaustive sets at
V.

Theorem 7.8. Let A be a countable finitely aligned category of paths, and let
C € vA*. Then C is in the closure of vA** if and only if the following condition
holds: for every a € C, there exists o' € CNal such that for every finite exhaustive
set F C s(a/)A, we have 6 CNF # 0.

Proof. (<) Let E € A, with C € E,ie. E € Uo. Writing E as a disjoint union
from &,, only one of these sets is in Uo. Thus we may assume E € &,. Write
E = BA\ U, %A with 7; € BA. Let @ € C with CNaA C E. By hypothesis
there is o’ € C' N aA such that for every F € FE(s(a)), we have o CNF #0.
Since CN /A C E, we may replace E by o/ A\ |J;; A, and we may rewrite it so
that v; € o’A.

Now, for each i, v;A C E*, so v; € CNa’A; hence 0 v; € 0 C. By hypothesis,
{o%y1,...,0% v, } is not exhaustive. Hence there is § € s(o/)A such that § L o ~;
for all 4. Then /0 L ~; for all i. Let C" € vA** with o’d € C’. Then v;A & Uc: for
all i. But o/A € Upr, so E € Ugr, ie. C' € E.

We present a slight sharpening of the forward direction as a sublemma.

Lemma 7.9. Suppose that the condition in the statement of Theorem [[Y fails.
There are ag € C and A € FE(s(ay)) such that if we let E = agA\ Usea 00N,

then C € E C vA* \ vA**.

Proof. The failure of the condition implies in particular (with o’ = a) that there are
ao €Cand A € FE( (a )) such that ANo®C = (. Then aoAﬂCﬁaoA (0. Let

= aOA\U(;GA apdA. Then CNagA C E, hence E € U, hence C € E. We claim
that £ NvA** = (), which will finish the proof. For suppose that C’ € E N vA**.
Then E € Ucr, so there is £ € €' such that ¢’ NEA C E. Then £ € E, and
hence £ € agA. We claim that there exists dg € A such that oc“n m §y for all
n € C'NEA. For if not, then for each § € A there is ns € C' NEA with o®ns L 6.
Let n € C"'NN5ca nsA. Then n € C'NEA, and 0%°n € o*nsA for all 0. Therefore
o%n L § for all § € A, contradicting exhaustiveness of A. Thus such a Jp exists.
But then n M apdy for all n € C’. By Lemma [Z.3] we have agdy € C’, since C’ is
maximal. Then C’ N apdpA NEA # . But (C'NEA) NagdoA C ENEC =10, a
contradiction. O

(=) (of Theorem [T]) This follows immediately from Lemma O
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Definition 7.10. Let A be a countable finitely aligned category of paths. The
boundary of A, denoted OA, is the closure in X of the set A** of maximal directed
sets. We will write vOA for OA NvA*.

8. RESTRICTION TO THE BOUNDARY

Lemma 8.1. Let A be a countable finitely aligned category of paths, v € A°, and
A C oA a finite set. Then A is exhaustive if and only if

vOA C U al*.

aEA

Proof. First suppose that vOA Z |J,ca aA*. Since each aA* is a clopen set, there
is ¢ € vA**\J,en @A*. Then CNA = (). Since C is a maximal directed hereditary
set, Lemma [7.3] implies that for each a € A there is 1, € C such that n, L a. Let
n € CNyea Mo Then n L A. Therefore A is not exhaustive.

Now suppose that A is not exhaustive. Then there is 5 € vA such that g L A.
Let C' € vOA with 8 € C. We claim that C' & [, @OA. For otherwise, there is
a € A such that C € adA. Then a € C. Since g € C, it follows that a @ 3, a
contradiction. |

Theorem 8.2. Let A be a countable finitely aligned category of paths. Let G =
G(A), and assume that G is amenable. The representations of C*(Glaa) are in
one-to-one correspondence with the families {S, : a € A} of Hilbert space operators
satisfying the relations

(1) S%Sa = Ss(a)-

(2) SaSp = Sags, if s(a) =r(B).

(3) SQS:;SﬁSE} = \/’YEOC\/,B S"/S:;

(4) So =\ ger SpS; if F € FE(v). (Equivalently, 0 = [[5c (S, — S555).)
Proof. Suppose that {S,} satisfy (1) — (4). By (1) — (3) and Theorem [6:3] there is
a unique representation 7 : C*(G) — B(H) with W(X[Q)S(a))xs(a)]) = S,. We claim

that 7|c,oac) = 0. Let C € vA* \ vOA. Let ag, A and E be as in Lemma [0
Then

Tr(XE) = S 0 \/ Saoésaoé = 04() ( s(ag) — \/ S(SS§>

seA SEA

by (4). Thus W‘CO(BAC = 0. By amenability, and I1.4.5 of [29], 7 factors through
C’*(G|6A).

Conversely, let m be a representation of C*(G|0A) Let S, = ’R’(X[O( 5(), X o) ])

Composing 7 with the quotient map gives a representation of C*(G), so (1) — (3)

hold. We prove (4). Let v € A” and F' € FE(v). Let E = vA \ Uzep SA. Lemma

BXimplies that £NvdA = 0. Thus w(yz) = 0. But 7(xp) = Sy — Vgep 5555 O

)

Definition 8.3. Let A be a countable finitely aligned category of paths, and let
G = G(A). We denote by TC*(A) the C*-algebra C*(G), and by C*(A) the algebra
C*(Glan)-

Remark 8.4. If A is a (finitely aligned) higher-rank graph, then the elements of
a 'V ( are pairwise disjont. In this case, the join of projections in Theorem [R2|[3) is
a sum. Thus we recover the generators and relations obtained in [28].
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We next describe a family of examples arising from ordered groups. If this is
applied to a free group, with the order determined by the usual presentation, the
result is the well-known Morita equivalence between the Cuntz algebra O, and
the crossed product algebra associated to the action of the group on the boundary
of its directed Cayley graph (this boundary can also be viewed as an unstable
equivalence class of the Bernoulli shift; see [10]). A more complicated example,
that of the Baumslag-Solitar groups, is worked out in [33].

Example 8.5. Let Y be a countable group, and let A be a submonoid of Y such
that ANA™! = {e}. Then (Y, A) is an ordered group. We note that this assumption
implies that A has no inverses. Since cancellation follows from the group law, it
follows that A is a category of paths.

Nica studied this situation in the special case that he termed a quasi-lattice order
([23]). We generalize this definition as follows.

Definition 8.6. The ordered group (Y, A) is finitely aligned if for every finite set
D CY there is a finite set F' C [, p tA such that (), ptA = U, cp uA.

Remark 8.7. As in [23], it is easy to see that finite alignment can be checked two
elements at a time: if it holds whenever D contains two elements, then it holds for
all finite D. Moreover, it is enough to verify when one of the two elements is the
identity e.

Remark 8.8. Nica’s definition of a quasi-lattice ordered group is the special case of
a finitely aligned ordered group in which the set F' of Definition can always be
taken to have cardinality one or zero. Note also that if (Y, A) is finitely aligned,
then, in particular, A is a finitely aligned category of paths. The converse is not
true, even if minimal common extensions in A are unique (Example BIT).

Nica considers the following construction, which he calls the Wiener-Hopf algebra
of the ordered group. Let my be the left regular representation of Y on ¢2(Y), let
H = (?(A) C £2(Y), and let P be the projection of £2(Y) onto H. For t € Y let
S; = Pry(t)|g. (Then S; # 0 if and only if t € AA~1.) Note that S, is an isometry
if @ € A. The Wiener-Hopf algebra is defined by W(Y,A) = C*{S; : t € Y}. Nica
shows that W(Y,A) = C*({Sa : @ € A}) if (Y,A) is quasi-lattice ordered (and
hence that the Wiener-Hopf algebra is generated by isometries). We next show
how this idea fits into the finitely aligned situation.

Lemma 8.9. Let (Y,A) be an ordered group. Suppose that A is a finitely aligned
category of paths. Then W (Y,A) = C*({Sa : € A}) if and only if (Y, A) is finitely
aligned.

Proof. First suppose that (Y, A) is finitely aligned. Let ¢t € ' with S; # 0. Then
t € AA~1. There are v, ..., o, € A such that tANA =J!; a;A. For each i there
is 8; € A such that o; = tf3;. Then S, =/}, S0, S5,

For the converse, let t € AA™!. Our assumption implies that there is « in the
x-algebra generated by {S, : @ € A} with ||S; — z|| < 1. By Proposition [6:7] we
may write x = Z?zl Cisa,;SEiQi with «;, 8; € A and ¢; € P (where P is as in
the remarks before Lemma [65). Let F = {a; : t = aiﬁi_l}. We will show that
tANA=FA. Let v € tANA. Then there is 6 € A such that ¢t0 = 7. Letting
{e, : 1 € A} be the standard orthonormal basis for /2(A), we have S;es = e,. Then
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(xes, ey) # 0. Thus there is ¢ such that <Sa,;5;§i%‘€5, ey) # 0. Since g;es # 0 if and
only if gies = es, we have Sj es # 0. Then we must have § = ;u for some p € A.
Then Saisgie(; = €q,u- 1t then follows that a;u = . But then ozlﬂi_l =~ =t
Then a; € F, and hence v € FA. ]

We next consider the construction of the boundary of (T', A). Our motivation for
this is as follows. Let us suppose that Y is generated as a group by A. Let A C A be
a subset that generates A as a monoid. The Cayley graph of Y with respect to the
generating set A can be identified with a subset of Y x A: the vertices are Y x {e}
and the (oriented) edges are Y x A. Then Y x A can be identified with the directed
paths in the Cayley graph. The “infinite path space at t” can be identified with
{t} x OA. In order to obtain what we wish to consider as the directed boundary of
the Cayley graph, we have to make some identifications. (Note that the following
does not require a choice of generating subset A and the consequent interpretation
of the Cayley graph.)

We first assume only that A is finitely aligned as a category of paths. (We will
see in a moment what additional hypothesis is necessary.) Let Z =Y x A. We
make Z into a category by defining Z° =Y x {e}, s(t,a) = (ta,e), r(t,a) = (t,¢),
and (¢, a)(ta, B) = (t,af). It is clear that Z is also a category of paths. We note
that (¢,«) M (¢, a’) if and only if there are 8, 8’ € A such that (¢t,af8) = (t',a/F'),
hence if and only if t = ¢ and o @ o’. Thus Z is finitely aligned if and only if A is
as well. It is clear that 0Z =Y x OA. We note that Y acts on Z by automorphisms
via left-multiplication in the first coordinate (and hence also by homeomorphisms
of 07).

For the rest of this section, we will interpret elements of the boundary of a
category of paths as directed hereditary subsets of the category.

Lemma 8.10. Let the relation ~ on 0Z be defined by (t,z) ~ (t',x') if there exist
a, o € A and y € OA such that v = ay, 2’ = o'y, and ta = t'a’. Then ~ is an
equivalence relation. Moreover, the quotient topology on 0Z/ ~ is locally compact.

Proof. 1t is clear that ~ is reflexive and symmetric. Transitivity is proved much as
in the proof of Lemma EI3t let (¢,2) ~ (¢,2') and (¥',2’) ~ (¢,2"). Then there
are a, o/, B, 8” € A and y, z € OA such that z = ay, 2’ = o'y, ta =t'd/, 2’ = 'z,
' ="z, and /B =t"B". Since o'y = 'z, Lemma .12 implies that there are /,
0" € A and w € OA such that y = yYw, z = §’w, and o’7 = f'¢’. Then z = avy'w,
2" = p"0'w, and tay = t'a’y = /8’8 =t"B"d. Thus (¢t,xz) ~ (¢, 2").

To show that 0Z/ ~ is locally compact, we must show that the quotient map is
open ([34], Theorem 18.5). For this we show that the saturation of a basic open
set in 0Z is open. Let E € A(A) be such that ENOA # 0, and let t € Y.
Then {t} x E N OA is a basic open set in dZ. Suppose that (s,z) ~ (t,y) for
some y € E N OA. Then there are a, B € A and z € IA such that x = az,
y = Bz and sa = tB. Thinking of elements of JA as directed hereditary subsets
of A, we have from y = fz that § € y, and from y € E that E contains all
sufficiently large elements of y. Hence there is ¢ € yN BAN E. Let § = ac?(e).
Then s = tBa~! = ted~! and z = ao’(y) = §0°(y). Conversely, if ¢ € E and
5(8) = s(e), and if y € (eA N E)" N OA, then (ted~1,d0°(y)) ~ (t,y). Thus the
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saturation of {t} x E N OA equals

U U {ted™'} x 60°(E) N oA,

e€E §eAs(e)

an open subset of 07. O

We need an additional hypothesis in order to obtain a Hausdorff quotient space.

Definition 8.11. The ordered group (Y, A) is locally finitely exhaustible if for each
t € Y there is a finite set F' C tAN A, such that for each a € tANA thereis u € F
with am pu.

Remark 8.12. Tt is clear that if (Y, A) is finitely aligned, then it is locally finitely
exhaustible.

Theorem 8.13. Let (Y,A) be a countable ordered group such that A is finitely
aligned as a category of paths. The following are equivalent:
(1) 0Z/ ~ is Hausdorff.
(2) Foreacht €Y, thereis a finite set F' C tANA such that ((ANA)OA = FOA.
(8) (Y, A) is locally finitely exhaustible.

Proof. Il = (@): We prove the contrapositive. Suppose that there is t € Y such
that for each finite set F' C tA N A there are o € tANA and z € OA such that az ¢
FOA. Let tANA = {a1,aa,...}. Let B, =t 'a,, € A. Then (t,3,2) ~ (e, anz)
for each z € JA. By assumption, for each n there is m,, > n and z, € JA such
that am,, zn & U?:1 a;0A. Since OA is compact, we may pass to a subsequence
so as to assume that au,, 2z, — = and B, 2z, — y. We claim that (¢,y) # (e, z).
For otherwise, there is k such that x = a2z and y = Siz, for some z € JA. We
have o, 2n — arz € apdA. This means that eventually o, z, € ar0dA, and
hence that ay € ayy,, 2z, (thought of as a directed hereditary subset of A). But then
Qm,, Zn = QRO (uy, 2n) € apdA eventually, contradicting our choice of m, and
Zn. Since (t, Bm,, 2n) ~ (€, am,, zn), we see that ~ is not closed, and hence 07/ ~ is
not Hausdorff ([34], Theorem 13.12).

@) = [): Let (s;,z;) = (s,x) and (¢;,y;) — (¢, y), and assume that (s;, ;) ~
(ti,y;). Passing to a subsequence, we may assume that s; = s and ¢; = ¢ for all
i. Let oy, B; € A and z; € OA be such that sa; = t5;, ©; = a;z;, and y; = B;2;.
Let F C (s7't)AN A be as in {@). Since a; € s 1A N A, there is yu; € F such
that z; = a;2; € uOA. Let oyz; = pyw;. There is v; € A such that sty =
or su; = tv;. Then B;z; =t 'sa;z =t~ 'sp;w; = v;w;. Passing to a subsequence,
we may assume that pu; = p € F for all i. We now have z; = pw; — x and
y; = vw; — y. Since pudA is a clopen set, it must contain x, and hence y € x.
Similarly, v € y. Then oz = lim; o*z; = lim; w; = lim; 6"y; = ¢y. Denoting this
common value by z, we have sy = tv, x = pz, and y = vz. Therefore (s,z) ~ (t,y).
Thus ~ is closed, and so 0Z/ ~ is Hausdorff.

@) = @): Let t € Y, and choose F as in ([2). Now let o € tANA. Choose
any © € OA. There are 4 € F and z € OA such that az = pz. But then am p.
Therefore F satisfies Definition BT for ¢.

B) = @: Lett €Y. Let F C tANA be as in Definition BTIl Let v € tANA.
First let € A**. For each v € ax there is p, € F such that v m .. Let (v,) be
a cofinal sequence in ax. Passing to a subsequence, we may assume that (i, ) is
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constant, equal to g € F. Then pm~ for all v € az. Since ax is maximal, Lemma
implies that p € ax. But then ax € oA C FOA. Thus aA*™ C FOA. Since F
is finite, F'OA is closed, so that adA C FOA. O

Definition 8.14. Let (Y, A) be a locally finitely exhaustible ordered group, and
suppose that A is finitely aligned as a category of paths. We denote by (Y, A) the
(locally compact Hausdorfl) quotient space 907/ ~ and call it the directed boundary
of Y (with respect to A) or the boundary of (Y, A).

We note that left-multiplication by Y in the first coordinate of 07 preserves ~,
as well as the basic open sets of d(Y, A) given in the proof of Lemma Thus
Y acts by homeomorphisms of 9(Y,A). Let T = ({e} x JA)/ ~, a compact-open
subset of (Y, A).

Lemma 8.15. (1) The quotient map is one-to-one from {e} x A onto T.
(2) T meets every orbit of the action of Y.

Proof. @) If (e,x) ~ (e,y), then there are o, f € A and z € JA such that x = az,
y =Bz, and e« = ef. Then o« = and =z = y.
@) This is clear. O

Theorem 8.16. Let (Y, A) be a locally finitely exhaustible ordered group such that
A is a finitely aligned category of paths. Let' Y x O(Y,A) denote the transforma-
tion groupoid associated with the action of Y on O(Y,A). ThenY x 9(Y, A)|T is
isomorphic to G(A)|an-

Proof. We define a map G(A)[oa — Y x (Y, A)|,, by [o, 8,2] — (af™, e, Bz])
(where we use square brackets to denote the equivalence classes relative to ~). To
see that the map is one-to-one, suppose that (a8~ 1, [e, Bx]) = (761, [e, 6y]). Then
af~t=~5"1 and (e, Bx) ~ (e,dy) in Y x OA. By Lemma BIH|) we have 3z = &y,
so Lemma .12 gives u, v € A and z € A such that z = pz, y = vz, and Su = ov.
Then ap = af~Bu = v6~16v = yv. Thus (a, B,z) ~ (v,0,y). To see that the
map is onto, let (t,[e,z]) € Y x O(Y,A)|pr. Then [t,z] € T, so (t,z) ~ (e,y) for
some y € JA. Hence there are £, n € A and w € JA such that x = Ew, y = nw, and
t& = en. Thus (t,[e,x]) = (n€~1, [e, w]) is the image of [, &, w]. Continuity of the
map is clear. Since there is a basis of compact-open sets, it is a homeomorphism.
It is routine to check that the map is a homomorphism. O

Corollary 8.17. Let Y and A be as in the theorem. Then C*(A) is Morita equiv-
alent to the crossed product algebra Co(0(Y,A)) x Y.

Proof. This follows from Theorem and [22]. |

In the case where (Y, A) is quasi-lattice ordered, C*(A) equals the boundary
quotient of [§]. Thus we give a locally compact space with an action of Y, rather
than a compact space with a partial action, having the crossed product Morita
equivalent to the boundary quotient.

Example 8.18. We give some examples. The details are routine and are omitted.
(1) Let I' = {(a,b,c | ac = ca, bec = cb), and let A be the submonoid generated

by {ac™, bc™,c™ :n € Z,m € N}. (I = Z? x4 Z?, where A = {0} x Z, with

the product order determined by the lexicographic order on Z2.) Then

A is finitely aligned, with unique minimal common extensions, and (I', A)
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is locally finitely exhaustible, but not finitely aligned. (I' is right-angled
Artinian, but A is not the submonoid considered in []].)

(2) Let T = {a,b,cy1,ca,... | =), and let A be the submonoid generated by
{an,bn,cnt1 : 1 € N}, where agp = a and a,, = acfl ~oocpyt for n > 0, and
similarly for b,,. Then A is finitely aligned, with unique minimal common
extensions, but (I, A) is not locally finitely exhaustible.

(3) Let ¢, d € ZT with ¢ > 1, let T’ = (a,b | ab® = b~a), and let A be the
submonoid generated by a and b. Then A is finitely aligned, with unique
minimal common extensions, and (I', A) is locally finitely exhaustible, but
not finitely aligned. (This example is treated in detail in [33].)

9. GAUGE ACTIONS

Definition 9.1. Let A be a category of paths. Set
H(A) =Co(A,Z)/{ea + €5 —eap: s(a) =7(B),a, B €A),
and let § = 0 : A — H(A) be defined by 0(a) = [eq].

Thus H(A) is an abelian group, 6 is a homomorphism, and if ¢ : A = @ is
any homomorphism from A to an abelian group @, then there exists a unique
homomorphism making the following diagram commute:

A —8 H(A)

(4

4
.
’
'
’
Lo
»

Q

We think of such a homomorphism 1 as a generalized degree functor, and 6 as the
mazimal degree functor. In general, H(A) might be the trivial group. However, if
H(A) is large it may provide a useful decomposition of G(A). A weak restriction
in this direction is the following.

Definition 9.2. Let A be a category of paths, and let ¢ be a generalized degree
functor on A. We call 1 nondegenerate if 1(a)) # 0 for o ¢ A°.

Let (Ao, A) be a relative category of paths, and let ¢ : Ag — @ be a generalized
degree functor. We wish to define a cocycle ¢y, : G(Ag, A) = Q by

n

co((Cw]) =Y b(Bi) — (),
i=1
where ¢ = (a1, 51,...,0n,8,). To see that ¢, is well defined, let (¢,z) ~ (¢', ).
Then z = 2’ and ®¢ equals @/ near z. Thereis { € Z such that A(§) C A(¢)NA(¢),

— —

r € A(§), and ®¢, ®¢r agree on A(§). Write z = pz, where p € A(§) and z € X(,).

Then p € A(() N A(C") and @¢lux, ., = Perlux,,,- Moreover, ®¢(uy) = wc(p)y
and @ (uy) = ¢ (n)y for all y € X(,). Let y correspond to the fixed ultrafilter
at s(u). Then we find that ¢c(p) = per(p). Let ¢ = (a1, b1, .., an, Bn). Define
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po = p, and i1 = 0% B0 B (p) for 0 < i < n. Then p, = (1) and
o =i By (i) = priyr. Thus Bn_ip; = ap_iftiy1, 0

n n—1
> (B) = len) = > W(pirr) — (i) = (e () — ().
=1 i=0

Hence if ¢ = (71,01, -, Ym, Om), then
D B(8;) — () = e (1) — () = p(pc(p) — b)) =D p(B;) — 1(as).
j=1 i=1

It is clear that c, is a homomorphism, and since it is constant on the compact

—

open set [¢, A(C)], it is continuous. The cocycle ¢, induces an action v = vy, of the
compact abelian group @ on C*(G) in the usual way:

V=(NC 2]) = (2, e (¢, 2)) F([C; 1),

for f € C.(G), z € @ We call vy the (generalized) gauge action defined by 1,
and 7g, the mazimal gauge action. In the usual way, v, can be used to define a
conditional expectation Ey from C*(G) to the fixed-point algebra C*(G)". One
of the most important uses of the gauge action has been to prove the nuclearity of
C*(G) and the coincidence of the full and reduced C*-algebras. We give a sketch
of this argument, which is by now more-or-less standard.

Proposition 9.3. Let G be a Hausdorff étale groupoid, QQ a countable abelian group,
and ¢ : G — Q a continuous homomorphism. Let G¢ = ¢=1(0), also a Hausdorff
étale groupoid. Suppose that G¢ is amenable. Then C*(G) is nuclear and G is
amenable.

Proof. As above, we have the action v of @ on C*(G). A standard argument
using the expectation of C*(G) onto the fixed-point algebra C*(G)? shows that

\ sl . .
C*(G) = C(G?) "Y' We claim that | f||c~(ge) = ||fllc= (@) for f € Co(G®),
which implies that C*(G)Y = C*(G°).

To see this, first note that for v € G,

Indgv|CC(Gc) = Indgev &,

for some representation m of C.(G€¢), where Indgv is the representation of C.(G)
induced from the point mass at v (see [25], page 107). Thus

171

c+(Ge) = [fllcs(qey, since G is amenable
sup HIndch(f)H, by [25], Proposition 3.1.2
ve(Ge)O

< sup ||Indgo(f)|| < [[fllc-e)-
veGO
Since || - ||c+(gey is the maximal C*-norm on C.(G°), it follows that || f[|c+(ge) =
Il fllc+(@)- Thus the fixed-point algebra C*(G)” = C*(G*) is nuclear. This is also

the fixed-point algebra of the discrete coaction of @ dual to 7. By [26], Corollary
2.17, it follows that C*(G) is nuclear. Then G is amenable by [2], Corollary 6.2.4(ii).
O

In some situations, this result is obtained more explicitly. For example, when
A is a higher-rank graph, the usual degree functor d : A — N has the unique

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUPOIDS AND C*-ALGEBRAS FOR CATEGORIES OF PATHS 5805

factorization property, which may be expressed in the following form: if 0 < n <
d(), then there exists a unique 8 € [o] with d(8) = n. In [28] (proof of Theorem
3.1) it is proved that the fixed-point algebra for the degree functor on a finitely
aligned higher-rank graph is AF. The key step is Lemma 3.2 of [28]. We will give
sufficient conditions on a finitely aligned category of paths for an analogous result to
hold. While these seem to be far from necessary, they apply to many examples with
degree functors that do not have the unique factorization property. In particular,
our conditions allow the possibility that there may be many factorizations of a path
into pieces of given degrees. The fact that the fixed-point algebra is AF is a key step
in the proof that the C*-algebra of a finitely aligned higher-rank graph is nuclear
([B0], Proposition 8.1). Our conditions allow us to prove this for categories of paths
(see Theorem we work at the level of the groupoid).

Lemma 9.4. Let A be a countable finitely aligned category of paths, and let i :
A — @ be a nondegenerate degree functor. Suppose that 1 has the following two
properties:
(1) If E C A is infinite, and if Y(a) = ¥(B) for all a, B € E, then there is a
finite subset F C E such that \| F = 0.
(2) For every finite subset S C (A) there is a finite subset T C (A) with
S C T such that for any finite set E C A, if Y(E) C T, then »(VE) C T.
Let E C A be a finite set, and let ¢ € A* be a directed hereditary subset of A. Let

pP= {ﬁnoa” ot ineN o, B € E, Ylay) =0(6;) fori=1,... ,n}.
Then there exists w € ¢ such that for any ¢ € P, if ¢ € dom((), then w € dom((),
and the set

{¢(w): ¢ € P andw e dom(C)}
s finite.

We briefly describe the significance of the conditions in the lemma and of the
statement of the lemma. Condition (IJ) implies that a directed subset of A (e.g. an
element of A*) cannot contain infinitely many paths of the same degree. Condition
@) provides a bound on the “size” of the minimal common extensions of a set
of paths in terms of their degrees. Finally, the purpose of the lemma is to show
that the fized point subgroupoid of G(A), consisting of elements of the form [, 3, x]
for which ¥(a) = (B), is approximately finite ([29], III.1.1); see Theorem [B.8
(The elements of P are zigzag maps, though a vertex is missing from each end
of the corresponding zigzags. We refer to them with the letter ¢ instead of ¢ for
convenience.)

Proof. Let S = ¢(F), and let T be as in condition ). Let FF = {y € ¢: ¢(y) €
T}. Every finite subset of ¢ has an upper bound in ¢. Hence for any t € T,
{y € ¢ : ¢¥(y) = t} is finite, by condition (). Since T is finite, it follows that
F = U,erly € ¢ : ¢(y) = t} is finite. Let w € ¢ be an upper bound for F, with
weF.

For i > 1 let o, B; € E be such that ¢¥(a;) = ¥(6;) and such that 3,0% ---
B10t(c) is defined for all n. We will construct elements

o, fori>1,5>0,
Bl fori>1,i>4>0,
v, fori >0
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such that
Jpitl _ ai J+1 RV fori>1and >0
(%) azﬂiﬂ- 6i+j—1ai—1 € o Biﬂ_l, ori>1andj>0.
(%) iy =71 for i > 0, a;yp = w. (Hence also w = aja] - aiv;.)

The construction is illustrated in Figure Bl

> > o [ ]

! 1

Qg Qg Qg

1

Y Y Y
’}/0 ) /82 > o 52 > o

04% Qg
w

\ 51 \

FIGURE 5

Figure [0 gives a sketch of a typical square in the diagram (i > 1). Its location
is described as follows. Any square containing the edge a{ has its bottom edge
i+ 7 — 1 units from the bottom of the diagram (measured vertically from r(a1)).
Any square containing the edge 3] has its left edge p — ¢ — 1 units from the leftmost
vertical line of the diagram (measured horizontally from s(8;)).

j+1

j+1 J
oy le}

o —— o
J

it+j—1

FIGURE 6
The construction proceeds inductively on n > 1, where after stage n we have

constructed a{ with ¢ + 7 < n, ﬁzj with ¢ < n, and ~; with ¢ < n — 1. (Thus it is
stage 4 that is pictured in Figure[Bl) When n = 1, we have just a; and S;. Since ¢
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is in the domain of S0, then ay € ¢. Since ¥(ay) € T, there exists vy such that
w = a17%.

Now suppose that stage n of the induction has been completed. By the com-
mutativity of the squares and triangles constructed thus far, two paths having the
same source and range must be equal. Therefore we may indicate the path p by
the ordered pair (r(u),s()). We base the inductive step on three claims. (These
claims use only condition (*) of the construction.)

Claim 1. For k+/¢<p+q<nand k—1 > p, we have

(r(ai), s(af)) € (r(on),r(Byig)) V (r(Brie-1):m(af)).

The situation of Claim 1 is illustrated in Figure [1

FIGURE 7

The two constituent paths may be decomposed as follows:
(r(@), (Bpq)) = (r(ai) r(apin))agin,s
(r(o‘ﬁ)vT(O‘g)) :( ( ) (ﬂpJ,»q 1))/8p+q 1-

Since r(ap_H) = r(ﬁp+q 1), the claim is equivalent to asserting that

al” 1 q
Qpi1 g = Berq 1% eo‘pﬂvﬁzﬂrq 1

which is part of the inductive hypothesis.

Claim 2. For j < i <n we have
BiBl -+ Bl = Bio™ Bim10™it o B o™ (ol ad_)).
We prove this by induction on j. If j = 0, then we have 3; = 8;0% («;) whenever

1 <4 < n. Suppose inductively that the claim is true for j and all 4 such that
j<i<n.Let j+1<¢<n. Then

1 +1 ) o i i+1
) o j+1
= Bio® o Binyo I (Bimjrai el )

= B0 - Bim o™ By a0 (gl ).
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Claim 3. For i+ j < n,
Y(aia)---al) €T,
V(BB Bl €T

We again prove this by induction on j. When j = 0 the claim follows from the fact
that «;, B; € E. Suppose the claim is true for j, and for all ¢ such that i + j < n.
Let i +j 4+ 1 <n. We have
+1 i i+l
fiog -0 = Oéi+10¢zl+1 " '04§+153+j+1
€ Biaj -l Ve - alyy,
by Claim[Il Since the latter two paths have degrees in T' by the inductive hypothesis
(and since ¥(5;) = 1¥(«;)), so do their minimal common extensions, by the definition
of T. Then since 9(5;) = 1(c;) we have that ¥(cal ---alt') € T. By Claim [ we
know that 3;3} - - -Bi“ = Bio%i .- -ﬁi,j,lao‘i*j*(ai,j,lazl_j_l e aff;fl). Since
the maps ;0% preserve degree, the claim is proved.
We now return to the inductive step in the construction. By Claim [2] we have

Bn 71L T [3371%—1 = Bpo®m - Bro™ (0410& ce O/lL_l)"Yn—l
= Bpo® - fro™ (w).

We know that
Qpy1 € Bno®m - fro (C) = Bpo®m - Bro™ (w)o.w(c) = Bn 71L T ﬂzilvn—lgw(c)a
by assumption. Thus there exists

an+15711+1 = Bna; S (an+1 \ ﬂn) N Bnﬂrlt t Bsilvnflgw(cy
Thus o), € B -+ B Ly 10“’(0). Thus there exists

apBair = Buan_1 € (an V By) N By - Br tyn—10“(c).

Inductively, we construct the squares

¢ £+1 ¢ 41 ¢ ¢ -1

an+1756nil Bro n+£ € ( Upy1—eV By) N By Br ™ An-10%(c)
for 0 < ¢ <n—1. From the case { = n— 1 we have that o} € v,_10“(c). Therefore
aai---al €arag a0 (c) = c

By Claim Bl we know that ¢(ay ---af) € T, so that w € a; - - - af A. Therefore there
exists v, such that w = ay - - - af'vy,. In particular, v,—1 = a}~,. This finishes the
construction of the diagram.

We now finish the proof of the lemma. Note that it is possible (and in fact is the
case) that some of the elements we have constructed are reduced to vertices. For
the rest of the proof, we will use the term path to mean a path in A given by the
composition of some of the o) and 3 in the above diagram. By the length of such
a path we will mean the number of these elements used that are not vertices. Let
Ey = EUs(FE) and, recursively, for ¢ > 0,

EY = U oc®(aV p),

a,fEE; 1
E; = EY Us(EY).

Note that E; consists of all a{ , ﬂf , and their sources, that can arise in the diagram.
We claim that for 6 € E; \ E;_1, there is a path p of length at least j such that
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s(p) = r(5). We prove this by induction on j. When j = 0 there is nothing to
prove. Suppose that the claim is true for j —1. Let § € E; \ Ej_;. First let § € E?.
Then there are o, § € Ej_; with ad € oV 8. Since § € E;_; we may assume that
ag Ej_oor B¢ FE; 5. Either way, there is a path p of length at least j — 1 such
that s(u) = r(a) (= r(B)). If a ¢ A° then ua is a path of length at least j with
s(pa) = 7(8). If a € A%, then § = B € E;_1, a contradiction. Next, an element of
s(EY?) is of the form (), for § € EY. If p is as above for &, then ué does the job
for s(d). This finishes the proof of the claim.

It follows from Claims [l and [3] that w(ozg), w(ﬁf), Y(v;) € T —T for all 4 and j.
Let U = (T—-T)Ny(A)\{e}. Then U is a finite set. Since ¢ is nondegenerate, there
exists N such that for any n > N and any ug, ..., u, € U we have uy +---+u, € T.
It follows that Enx = En—_1. We note that all E; are finite sets: this is clearly true
for 7 = 0 and follows inductively for j by the finite alignment of A. It now follows
that the diagram contains only finitely many paths. Since for all n there is a path
w such that 5,0% - 10 (c) = po¥(c), the lemma is proved. O

We will use the notation G¥ for the “fixed point groupoid”: G¥ = {g € G :
cy(g) = 0}. Lemma implies that G¥ is “locally finite”. However it does not
guarantee that G¥ has trivial isotropy, which is necessary in order to have an AF
groupoid. The following definition characterizes trivial isotropy in a manner slightly
more intrinsic than the property itself.

Definition 9.5. Let A be a countable finitely aligned category of paths, and let
1 be a nondegenerate degree functor on A. We say that 1 is nonisotropic if the
following condition holds. Whenever «;, 8; € A for i € N are such that

(1) ajavip1 = Bifiy1 for i €N,
(2) ¥(a1) =9(Br),
then oy = S;.

Remark 9.6. It follows from () and (@) that ¢(c;) = ¥(5;) for all 7. If in addition
ay = fB1, then a; = B; for all 4, by left-cancellation.

Lemma 9.7. Let A be a countable finitely aligned category of paths, and let ¢ be a
nondegenerate degree functor on A. Then G¥ has trivial isotropy if and only if v
18 monisotropic.

Proof. First we assume that G¥ has nontrivial isotropy. Let [31, a1, 2] be a non-
trivial element of G¥. Thus ayx = Sz, ¥(a1) = ¥(B1), and a; # B1. Then there
are g, B2 € A such that ajas = 5162 € apz. But then ag, B € x. Since z is
directed, there are ag, 83 € A such that asasz = 8203 € . Now we have

02 r = o2 q 1z = oPP2 811 = o2

Then since ag, B3 € 0%z, there are ay, Sy € A such that azay = f384 € 0“2z,
Continuing this process inductively, we see that ¢ is not nonisotropic.

Conversely, suppose that 1 is not nonisotropic. Let «a;, B; satisfy (1) and
@) of Definition with oy # f1. Let © = |J,>ylae---ap]. Then z € A*.
We claim that ayz = Byz. First note that since a1 = B;Bi11 for all i, we
have that aq ---ay,, = By -+ B, whenever n is even, while for odd n we have that
a1 = P11 B = Prag - a,. Now let v € Sz, Then there are § € A
and n € N such that 76 = f1as---a,. If n is even, we may replace § by da,,+1;
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thus we may assume that n is odd. Hence

’766n+1 = ﬁ1a2 T O‘nﬁnJrl =0y anflﬂanJrl =1 Opy1.

It follows that v € a;x. By symmetry we have that ayx = S12. Thus [51, aq, 2] is
a nontrivial element of the isotropy of G¥. O

Theorem 9.8. Let A be a countable finitely aligned category of paths, and let 1 be
a nondegenerate nonisotropic degree functor on A satisfying properties I) and ([2)
of Lemma @4l Then GV is an AF groupoid.

Proof. Let A = {\1, A2,...} be an enumeration of the elements of A. Put E, =
{Ah...,An} and Pn = {ﬂjO’aj "'Banl : j S N, O‘iyﬂi S E,“ 7,[}(0[1) = 1/)(ﬂz)
for 1 < i < j}. For z € X let wy(z) be as in Lemma [04 for E,, and z. Let
Fo(z) = {¢(wn(2)) : ¢ € P}, and let Z,(z) = Uer, (2) HXs(wn(z))- Then Fy(z)
is a finite set by Lemma @4} hence Z,(x) is a compact-open subset of X and
x € Zy(x). By compactness of X we may choose 1, ..., &,, € X such that
X =UZ Zn(:).

Note that since 1) is nonisotropic, if 1, ps € F,(x) are such that pix = psx,
then p; = ps. Lemma implies that if ( € P, and u € F,(x) are such that
C(p) = p, then (lux,, o), = id. Thus if K C Xy, (z)) 18 any compact-open
subset, then the subgroupoid of G¥ given by {[(, uy] : ¢ € P, € Fo(z),y € K} is
elementary, equal to the Cartesian product of a finite groupoid with the space K.

Let L; = Xs(w"(a:i)) for 1 <i<mn. Set K1 = Ly, and put Y7 = UHEFn(ﬂJl) wkKqi =
Zn(z1). For v € Fy,(x2), we have that vLo \ Y1 C v X, is a compact-open subset.
Therefore there is a compact-open set Ko C Lo such that vLy \ Y7 = vK,. In fact,
the set Ko doesn’t depend on the choice of v € F,,(x3): if v/ € F,,(x2), then since
Y1 is invariant under the maps in P,, we have that

V' Ky =Vo"(vKy) =Vo" (vl \ Y1) = Vo"(vLe) \ Y1 =V Ly \ Y.

We now put Yy = Uﬂan(m) wKs C Z,(z2). Again, Y3 is invariant under P,, so we
may define K3 C L3 by choosing any v € F,(z3) and setting vL3 \ (Y1 UY2) = vKj3.
Continuing this process, we obtain compact-open sets K; C Xy, (2;)) and Y; =
Upan(zi)MKi C Zy(;), for 1 <i < m. Then X = ||, Y;. Let H; = {[¢, uy] :
¢ € Py, p€F,(z;), y € K;}. Then H; is an elementary groupoid with unit space
HY? =Y;, hence H; N H; = 0 for i # j. We claim that G, := ", H; = {[(, ] :
(e P, x¢€ X}. To see this, let € X. Then z € Z,(x;,) for some i5. We
may assume that ig is minimal with this property. Then z € PX s (wn(21,)) for some
€ Fy(x;,). Since x & Z,(x;) for i < ig, x ¢ vK; for any i < ig and v € Fy,(x;).
Therefore © € HJ .

Finally, it is clear that G,, C G, 41 and that G¥ = Uflozl G,,. Therefore G¥ is
AF. ([l

Remark 9.9. In the case that there is a degree functor taking values in an ordered
abelian group and satisfying the unique factorization property, then all hypotheses
of Theorem [0.8] are satisfied. (For an example, see [11].)

10. APERIODICITY

Throughout this section, A will be a countable finitely aligned category of paths.
Note that right-cancellation in A is crucial for the results of this section.
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Definition 10.1. A point = € OA is aperiodic (or left-aperiodic) if for all a, 5 € x
with a # 3 we have 0%(z) # o”(z).

Lemma 10.2. If z is aperiodic, then so are px and o”(x) for all i € Ar(z) and
vET.

Proof. The fact that o”(z) is aperiodic follows from the definition. Let p € Ar(x),
and let «, 8 € px. Then there are o/, 8’ € A, and v, § € x such that aa’ = py and
BB = pd. Since v, § € x we have y M. Let v’ = 5§’ € z. Then

(10.1) ad'y = pyy = ués’ = By
Hence ) )

o (px) = 0% (uyy'0"" (2)) = o'y'0™7 (z),
and similarly, o (uz) = §6'0%% (). Thus if 0 (uz) = o (ux), then o/v'z = §/6'z,
where z = o7’ (z). Since z is aperiodic by the other part of the lemma, we have
o'~" = B'§'. Then by equation ([I0.I]) we have

Oéﬂl(sl — OLO[/’}/ — ﬂﬁlé/,
and hence oo = § (by right-cancellation). O
The importance of aperiodicity is illustrated by the following proposition.

Proposition 10.3. Let x € OA. G has trivial isotropy at = if and only if x is
aperiodic.

Proof. First suppose that G has trivial isotropy at z. Let a, 8 € z with 0%(z) =
of(x) = y. Then [a, B,y] € G(z), the isotropy subgroup of G at x. Since G(x) =
{z} by assumption, we have [«, 3,y] = [e,e,z]. From Definition [£I4] there are
z € OA and v, 6 € A such that y = vz, x = 0z, ary = e, and Sy = eJ. But then
ay = B, and hence o = § (by right-cancellation).

Next suppose that z is aperiodic. Let [a, 8,y] € G(z). Then ay = By = «z,
so 0%(z) = y = oP(x). The aperiodicity implies that a = 8. Thus [a, 8,y] =
[e, e, ay] = [e, e, z]. Hence G(z) = {z}. O

Recall that a Hausdorff étale groupoid is topologically free (or essentially free in
[4]) if the set of units having trivial isotropy is dense in the unit space ([3], [1]).

Proposition 10.4. G|ga is topologically free if and only if for every v € A° there
is an aperiodic point in vOA.

Proof. We will use Proposition[I0.3l If G|sx is topologically free, then the aperiodic
points are dense in JA. Since vOA is an open set, it contains an aperiodic point.
Conversely, suppose that the condition in the statement holds. Let U C JA be a
nonempty open set. Let y € U N A**. Since {yOA : v € y} is a neighborhood base
at y, there is v € y such that vOA C U. By hypothesis there is an aperiodic point
x € s(y)OA. Then ~z is aperiodic, by Lemma [I0.2] and v € y0A C U. O

Aperiodicity with respect to rightward shifts is not as useful as (left-) aperiod-
icity; for example, if v € AY is a sink, i.e. if Av = {v}, then there are no rightward
shifts on elements of vOA. Nevertheless, it will be convenient to have some results
about the two kinds of aperiodicity.

Definition 10.5. A point x € JA is right-aperiodic if for all «, 8 in Ar(z) with
«a # 3, we have ax # Sx.
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Lemma 10.6. Let x € OA. Then x is aperiodic if and only if o*(x) is right-
aperiodic for all p € x.

Proof. First we show that aperiodicity of x implies right-aperiodicity of z. For this,
suppose that = is not right-aperiodic. Then there are o # 8 with ax = fz. Let
ac’ = BF" € ax. Then

o =0%ad) € o%(ax) =,

B =o"(BB') € o7 (Bz) = .
Since a # 8 then o’ # . But
o () = 0 (az) = 0% (Bz) = o ().

Therefore x is not aperiodic. Now, by Lemma [[0.2] we see that if x is aperiodic and
u € x, then oz is aperiodic, and hence oz is right-aperiodic.

For the converse, let x not be aperiodic. Then there are @ # § in x such that
0%(x) = oP(z). Let v = aa’ = B8’ € 2. Then

oo (z) = 0%(z) = 0P (x) = B'o7 (z).

Therefore o7 (x) is not right-aperiodic. O

Lemma 10.7. G|ga is topologically free if and only if for all « # [ in A there is
x € s(a)OA such that ax # fx.

Proof. First suppose that G|sa is topologically free, and let @ # S in A. By
Proposition [0 there is an aperiodic point € s(«)0A. By Lemmal[l0L6] « is right-
aperiodic, and hence ax # Sx. Conversely, suppose that G|sa is not topologically
free. Then there is a nonempty open set U C JA containing no aperiodic points.
For o # B in A let

Diapy ={zeU:a,f€xand 0*(z) =0’ (x)}.

Then Dy, gy is a relatively closed subset of U, and U = ({Dja 5y : @, BE A, a#
fB}. Since U is a Baire space there are o # 3 such that W = int(Dy,,53) # 0. Then
o%|w = o”|w. As in the proof of Proposition [0:4) we may replace W by a set of
the form vOA. Further, we may choose v € aA N BA. Thus v = aa’ = 86’. Then
for x € W we have

ooV (z) = 0%(z) = 0P (x) = B'o7 (z).
Thus o'y = By for all y € s(y)OA. O

We now give a “local” criterion for aperiodicity, in that it refers only to elements
of A. This generalizes a recent result of Lewin and Sims ([21]).

Definition 10.8. Let «, 5 € A with o # 3, s(a) = s(8), and r(a) = r(8). We say
that A has {a, 8}-periodicity if for all v € s(a)A we have vy m By. We say that A
is aperiodic if A does not have {«, 8}-periodicity for any « and S.

Lemma 10.9. A has {«, B}-periodicity if and only if ax = Pz for all x € s(a)OA.

Proof. First suppose that ax = Sz for all € s(a)0A. Let v € s(a)A. Choose

x € yOA; then v € z. Then ay € az, 8y € Bz, and ax = Sx. Hence oy m 3.
Conversely, suppose that there is € s(a)OA with ax # Bx. Since {y € s(a)OA :

ay # Py} is an open set, we may assume that x € s(a)A**. Since ax and fx are
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maximal, Lemma [Z3] gives 71, 72 € x such that ay; L S7ys. Let v} and +} be such
that v = y17] = v27% € . Then ay L Br. O

Theorem 10.10. G|sp is topologically free if and only if A is aperiodic.
Proof. The theorem follows from Lemmas [I0.7] and |

Remark 10.11. A is aperiodic if and only if the following holds: for all a # 3 in A
there is v € s(a)A such that oy L 8.

We now give analogs of the usual “uniqueness” theorems in the subject. The
next two results rely on the characterization of C*(A) by generators and relations
given in Theorem

Theorem 10.12 (Cuntz-Krieger uniqueness theorem). Let A be a countable finitely
aligned category of paths with amenable groupoid. Suppose that A is aperiodic. Let
7 be a x-homomorphism from C*(A) into a C*-algebra. If w(S,) # 0 for allv € A°,
then 7 is faithful.

Proof. Since Glgy is topologically free, ideals in C*(A) are determined by their
intersection with Cp(9A) (the argument in [3] works for Hausdorff étale groupoids;
see also [15]). Since every nonempty open set in JA contains a set of the form
OA N vA for some v, and 7(S,S%) # 0 since 7(S,(,)) # 0, we see that 7[c, o) is
faithful. Therefore m must be faithful. (|

Theorem 10.13 (Gauge-invariant uniqueness theorem). Let A be a countable
finitely aligned category of paths, and let v : A — @Q be a nondegenerate non-
isotropic degree functor satisfying the conditions ({{l) and [2)) of Lemma 04l Let
v = vy be the associated gauge action ofé on C*(A). Let w be a x-homomorpism
from C*(A) to a C*-algebra B, and suppose that there is an action 6 of @ on B
such that 7 is equivariant for v and 6. If m(S,) # 0 for all v € A°, then 7 is
faithful.

Proof. As in the proof of Theorem [[0.12] we find that 7|, 9a) is faithful. G7 is an
AF groupoid, by Theorem [0.8] and OA is the unit space of G7. Thus the injectivity
of m|c,(oa) implies that 7 is faithful on C*(G7) = C*(A)7. By the equivariance
of 7 it follows that 7(C*(A)Y) = 7n(C*(A))°. Now the usual argument using the

faithful conditional expectations defined by the two actions of @ shows that 7 is
faithful. |

We now characterize those A for which the groupoid G|ga is minimal (this is a
version of cofinality for a category of paths; see [21], Definition 3.3).

Theorem 10.14. G|p is minimal if and only if for every pair u,v € A° there
exists F' € FE(v) such that for each o € F, we have ulAs(a) # 0.

Proof. First suppose that the condition in the statement holds, let € 9A, and let
U C 9A be open. Choose v € A such that yOA C U (as in the proof of Proposition
I0.4)). Let u = s(y). By Theorem [(.§ there is 1 € x such that for all F' € FE(s(p))
we have uF' Nz # 0. Let v = s(u) and choose F € FFE(v) such that for each o € F,
we have uAs(a) # . Let o € F with ua € x. By the assumed condition there is
B € uAs(a). Then g = [v0, pa, o#*(x)] € G|aa satisfies s(g) = z and r(g) € U.
Next suppose that G|pa is minimal. Let u,v € A°. If 2 € vOA, then there is
[, B,y] € Glaa with ay = = and By € udA (i.e. with 7(8) = u). Thus for each
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x € vOA there exists a(z) € x such that uAs(a(x)) # 0. Then {a(z)0A : © € vOA}
is an open cover of vOA. By compactness there are 1, ..., , € vdA such that
{a(z;)0A : 1 <i <n}is acover. We claim that {a(z;): 1 <1i <n} is exhaustive.
For this, let v € vA. Choose z € vOA with v € z. Choose i such that x € a(z;)0A.
Then a(z;) € . Hence v M a(x;). O

We end this section with a sufficient condition that G|ga be locally contractive.
Unlike the case of a directed graph ([31], Theorem 3.4), we do not know if the
condition is necessary (see also [30], [12]). We adapt some notions from [12].

Definition 10.15. Let A be a category of paths. A generalized cycle in A is a
pair (p,v) € A x A such that p # v, s(u) = s(v), r(n) = r(v), and pur M v for all
T € s(p)A.

(A cycle in A is a path a ¢ AY such that s(a) = r(a). A cycle a defines a
generalized cycle (a, s(«)). Examples in [12] show that it is possible for a higher-
rank graph to contain generalized cycles, but no cycles.) Lemma 3.2 of [12] gives
two other equivalent descriptions of generalized cycles in higher-rank graphs. Since
their proof cites other work, and the proof for categories of paths is quite simple,
we present it here.

Lemma 10.16. Let i, v € A with that pn # v, s(u) = s(v), and r(u) = r(v). The
following are equivalent:

(1) (u,v) is a generalized cycle.

(2) o"(pV v) is exhaustive.

(3) noA C voA.

Proof. ) = ([@): Let v € s(u)A. Then py M v, so there are §, & such that
uyo = ve. There is n € p V v such that uyd € nA. Write n = pp’ = v/ and
uyd = né. Then uvyd = né = pup'€, so v6 = '€, Then p/' € o (uV v) and p' @ ~.

@) = @): Let z € s(u)OA, x a directed hereditary subset of A. Since o (V)
is exhaustive, there is u' € o#(pVv)Na. There is v/ such that uy’ = v/’ (€ pVv),
o px = pp'o™ z = v'o" z € vOA.

@) = @): Let 7 € s(u)A. Let z € s(1)0A, so 7z € s(u)OA. Then prz €
wOA CvOA, so v € urz. Therefore v m pr. O

The next definition is adapted from Definition 3.5 of [12].

Definition 10.17. The generalized cycle (i, v) has an entrance if thereis 7 € s(u)A
such that p L vr.

It follows from Lemmal[[0. I8 that (u, ) has an entrance if and only if pdA C voA.
We recall that a groupoid is locally contractive if for every nonempty open subset U

of the unit space there exists an open G-set A such that s(A) C U and r(A) C s(A)

([, [200).

Theorem 10.18. Let A be a countable category of paths. Suppose that for each
v € A° there is a generalized cycle, (u,v), having an entrance, such that vAr(u) # ()
(i.e. every vertex is seen by a generalized cycle having an entrance). Then G|ga is
locally contractive.

Proof. Let U C OA be nonempty. Let E € A be such that () # ENoA CU.
Then there is C € A* N E. By Theorem [Z6|]) there is v € C such that yA C
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E. By hypothesis there is a generalized cycle, (u,v), having an entrance, and
a € s(y)Ar(un). Let A = [yau,vyav, s(n)OA]. Then A is a compact-open G-set,
s(A) C U, and r(A) = yapdA C yavdA = s(A). O

11. EXAMPLE: AMALGAMATION OF CATEGORIES OF PATHS

We give a generalization of the examples termed hybrid graph algebras that
were constructed in [32], Definition 2.1. In particular, these include the obvious
generalizations of those examples, and many others besides. The results of this
section give considerable simplification to those constructions.

Definition 11.1. Let {A; : i € I} be a collection of categories of paths. Let ~ be
an equivalence relation on (J;; AY. Let

L={(,as,...,a,) 1 q; € U A;, s(aj) ~r(ajq), forall j,n>1}.
il

L admits a partially defined concatenation: L? = {((al, cey @), (B, ,,Bn)) :
s(am) ~ r(ﬁl)}, and then (ag,...,am)(B1,.--,8n) = (a1, . yam,B1,-.., Bn)-
(Thus L is a semigroupoid, in that composition is not everywhere defined and there
are no units.) We define a relation ~ on L as follows. Let o, 8 € L. Then a ~ 8
if there are o, ..., @™ € L such that o = o, a™ = 3, and for each j one of the
following holds:

(1) o = (py,- g, 01, 00,01, ,Um), where 01, ..., 8, € A; for some
i€, and s(6p) = r(Opy1) for all p, and a1 = (@1, , 1k, 0,01, -+, Vm),
where 6§ =01 ---60, in A;.

(2) Asin (), but with the roles of a; and a4 reversed.

(3) @/ = (1, , g, W, V1, , V), where w ~ s(ux) (and hence also w ~
r(v1)), and op1 = (p1, -~ 5 M, V1s - 0 > Um)-

(4) Asin (@), but with the roles of a; and «a;41 reversed.

It is clear that ~ is an equivalence relation on L. We note that if a ~ o
and 3 ~ ', then (o, 3) € L? implies that (o/,3') € L? and a8 ~ o’B’. Thus
concatenation descends to A = L/ ~. We will show that A is a category of paths.
First, let S C |J,c; As be an equivalence class of ~. It is easy to see that S must also
be an equivalence class of ~=. We define A® = (Uz‘e I A?) / ~. These are the identity
elements for concatenation in A. Associativity in A follows from associativity in
L. In order to verify the properties of a category of paths, it is helpful to have a
normal form for elements of A.

Lemma 11.2. Let a € L. There exists a unique element 8 € L such that
(1) anp.
(2) B=(B1,---,Bm) with
(a) Bj ¢Ui61A? for all j. ‘
(b) s(B;) # r(Bit1) for all j.

The element S is called the normal form of a.

Proof. For the existence, note that we can obtain S from « by first deleting all
vertices among the entries of o and then concatenating adjacent entries ojaj4q if
s(aj) = r(aj41). For the uniqueness, note that if o are succesive moves as in the
definition of ~, then the above process of constructing 3 gives the same result for
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aF as for a*t!. Therefore equivalent elements of L yield the same normal form
under this process. In particular, two normal forms for the same element must be
equal. (Il

Now suppose that [a][8] = [a][y] in A (where square brackets denote equivalence
classes of ). Then af ~ ay. Let a = (a1,...,m), 8 = (B1,...,0k), and v =
(Y1, -+ +,Yn) in normal form. First suppose that s(a,,) # r(£1). Then af is in nor-
mal form. If s(a,,) = r(y1), then the normal form of vy is (e, ..., am—1, @m71, Y2,

.+yYn). Since this equals a8, we must have «,, = a,;,7y1. By cancellation in the
appropriate A; we see that 73 € AY, contradicting the assumption that v is in
normal form. Thus s(a,,) # r(v,), and it follows that 8 = . Now suppose that
s(am) = r(B1). By the previous argument, we must have s(a,,) = r(v1). Then
the same considerations show that a,, 31 = a.,7y1 in the appropriate A;, and hence
that 81 = v1, k = n, and 3; = y; for j > 1. Hence again § = . The arguments
for right cancellation and absence of inverses are similar.

Definition 11.3. We refer to A constructed as above as an amalgmation of the
collection {A;}. It depends on the choice of the equivalence relation ~ on the set
of units of the collection.

We have the following result on common extensions in an amalgamation.

Lemma 11.4. Let a = (a1,...,qm) and 8 = (B1,...,0k) be in normal form.
Then [a] M [8] if and only if
(1) in case m # k, we have a; = 3 for j < min{m, k}, and if, e.g., m < k,
then B € aml;, where oy, Bm € A; for some i (i.e. one extends the
other);
(2) in case m =k, we have a; = B; for j < m; o, Bm € A; for some i; and
Ay, M B, -

The proof follows easily from the use of normal forms. It follows from this lemma
that A is finitely aligned if all of the A; are finitely aligned.

We conclude with a result implying that an amalgamation of finitely aligned
categories of paths has a degree functor defining an AF core (as in section[d) if each
of the individual categories has one. Thus, in particular, such an amalgamation
has nuclear C*-algebras. The degree functor we construct will generally be more
complicated than necessary (compare, e.g., with the examples in [32]). We require
a couple of additional hypotheses. First, it is possible that a nondegenerate degree
functor takes inverse values on two paths (for example, if such paths cannot occur
as parts of the same path). Since the amalgamation can allow such paths to be
composed, we have to proscribe such behavior. Second, property (2] of Lemma [0.4]
could be violated for an amalgamation if the range of the degree functor admits
divisibility. We replace it with a stronger version. The hypotheses we give are
convenient rather than sharp, but they are easily verified in many examples, such
as an amalgamation of higher-rank graphs.

Theorem 11.5. Let {A; : i € I} be a collection of finitely aligned categories of
paths, and let A be their amalgamation over an equivalance relation on |J;c; AY.
For each i let ¥; : Ay — Q; be a nondegenerate nonisotropic degree functor into an
abelian group Q; satisfying property [Al) of Lemma @4l Suppose additionally that
the range of ; lies in a positive cone Q:r C Q; and also the following stronger
version of property @) of Lemma [0
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@) For every finite subset S C 1;(A;) there is a finite subset T C ;(A;) with
S C T such that for any finite set E C A;, if ¥;(E) C T, then
(a) v(VE) C T
(b) If a, B € A; with ¢;(af) € T, then ¥;(a), ¥;(8) € T.
Let Q = @,y Qi, and define 1 : A — Q by Y([an, ..., ) = Z;nzl Vi, (o), where
ij € I is such that a; € A;;. Then ¢ is a well-defined nondegenerate nonisotropic
degree functor also satisfying properties (1) and @) of Lemma Q41

Proof. 1t is clear that the definition of ¥(«) is unchanged when « is modified by
the moves () - (@) of Definition IT.I] Thus ¢ is well defined, and functoriality
follows easily. Nondegeneracy follows immediately from nondegeneracy of the ;.

Let us prove that ¢ is nonisotropic. Let [al], [@?], ..., [B8'], [8?%], ... € A be such
that [o][? ] = [#][8+1] for all j, and ([a']) = Y([']). Let af = (ol ...,ad, )
and 7 = ( {, . ,[3gj) in normal form. Suppose that o' # B!. We may as well

assume that af # 1, as otherwise they can be deleted. We claim that k; = 1. For
suppose that k1 > 1. Then

[aiv""allcl’a%a"'vaé} = [al][aﬂ = [BI]WQ} = [6%7""55175%""aﬂ?2]'

By the uniqueness of the of normal form, we must have ¢; = 1, s(31) = (%), and
at = B1BE in A, for some i € I. But then

Pi(B1) = ¥(BY) = ¢(at) = dilal) + (o - oy, ])
= 0i(B167) +([og - ap,]) = »i(B) + ¥i(B) + v([ag - ap, ).

Thus, in particular, 1;(3?) = 0 (here we use the hypothesis that the degree functors
have ranges lying in positive cones). Hence (7 is a unit, contradicting the definition
of the normal form of 2. It follows that k1 = 1; similarly we have ¢, = 1. Now
by the uniqueness of the normal form (of [a!][a?]) we must have a! = a} and
B = Bf in A;. Since al # Bi, we must have s(ai) = r(a?), s(B}) = r(B7), and
ata? = BiB2. Then of # B2, by right-cancellation. We may now apply the above
argument to of, 87 for j > 2. We find that o = o2, 8% = %, s(a?) = r(aj),
s(8?) = r(B3), and a?af = BIp3. Continuing, we find that the entire process
occurs inside of A;. This contradicts the assumption that ; is nonisotropic.
Finally, we verify properties ([I) and (2] of Lemma @4l For (), let £ C A be
infinite such that 1 is constant on E. Suppose that every pair in F has a common
extension. Since 1 is nondegenerate, no element of E can extend another. Thus
by Lemma [[T.4 every pair o, 8§ € E has normal forms o = [(a1,...,Qm,7)],
B8 =1(o1,...,0m,0)] such that yMJ in some A;. Thus the final terms of the normal
forms of the elements of E give an infinite subset E’ C A; such that 1); is constant
on E’. By property () of v;, there is a finite subset F’ C E’ with \/ F/ = (). Then
the corresponding finite set F' C E satisfies \/ F' = . For @), let S C (A) be
finite. Let m; : @ — Q; be the projection, and let S; = m;(S). Since S is finite,
there are only finitely many i such that S; # {0}. For such i, choose T; C ¢;(Q;)
as in [@&). By our hypothesis, we may assume that if ¢ € T; can be written as
t=1t1+ - +tp withty, ..., t € QF, then t1, ..., t, € T}. Let T'= )", T;, a finite
subset of ¥(Q). Let E C A with ¢(F) CT. If \/ E # 0, we must have that E is
as above, in the proof of ([I)): there is &« € A and ¢ € I such that each element of
E is of the form a~y for some v € A;, and \/ E = - \/{y: ay € E}. But then
{¥i(v) : y € E} C T;, so that ¢;(\V E) CT. O
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