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GROUPOIDS AND C∗-ALGEBRAS

FOR CATEGORIES OF PATHS
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Dedicated to the memory of Bill Arveson

Abstract. In this paper we describe a new method of defining C∗-algebras
from oriented combinatorial data, thereby generalizing the construction of al-
gebras from directed graphs, higher-rank graphs, and ordered groups. We
show that only the most elementary notions of concatenation and cancellation
of paths are required to define versions of Cuntz-Krieger and Toeplitz-Cuntz-
Krieger algebras, and the presentation by generators and relations follows nat-
urally. We give sufficient conditions for the existence of an AF core, hence of
the nuclearity of the C∗-algebras, and for aperiodicity, which is used to prove
the standard uniqueness theorems.

1. Introduction

In this paper we describe a new method of defining C∗-algebras from oriented
combinatorial data, thereby generalizing the construction of algebras from directed
graphs, higher-rank graphs, and ordered groups. The use of directed graphs to an-
alyze C∗-algebras goes back to Bratteli’s thesis introducing AF algebras ([5]). The
dual role played by graphs was apparent even then. On the one hand, known C∗-
algebras could be described by generators and relations based on suitable graphs.
On the other hand, any graph (in the class being considered) gives rise, by the same
construction, to a C∗-algebra. The resulting family of C∗-algebras can be studied
as a whole via this class of graphs. The flexibility inherent in the description of
a graph yields a method of great power, especially if the process is functorial (so
that symmetries of a graph determine corresponding symmetries of the associated
C∗-algebra). The graphs are combinatorial objects, easy to “turn around in one’s
hands”. Yet their combinatorial properties control the behavior of complicated
analytic objects: the C∗-algebras.

The current use of directed graphs in C∗-theory originated in the work of Cuntz
and Cuntz-Krieger ([9], [10]). Here the generators and relations were so clearly
apparent that subsequent work took their imitation as its primary focus (although
it can be argued that the original motivation came from symbolic dynamics). The
treatment of arbitrary directed graphs was developed over a period of some 20 years
(see, e.g., the historical remarks in [27]), with ad hoc devices to deal with each new
aspect of a graph that was considered. In a far-reaching generalization of the graph
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algebra construction, Kumjian and Pask introduced in [17] the notion of higher-
rank graphs, based on work of Robertson and Steger on C∗-algebras associated to
actions of groups on the boundary of an affine building. Kumjian and Pask realized
that for the purposes of the C∗-algebra, a graph may be replaced by its space of
paths. The key features of the space of paths are the concatenation of paths and the
unique factorization of a path as a concatenation of subpaths of prescribed lengths.
If “length” is taken to be an element in the positive cone (Z+)k ⊆ Zk (instead of
in Z+), one obtains a k-graph. As in the case of 1-graphs, the work of finding the
right generators and relations, and indeed, the right hypotheses, for higher-rank
graphs passed through several phases. The culmination of this difficult process was
the notion of finite alignment, introduced in [28] (based on earlier work of Fowler).
In that paper the authors explicitly laid out their desire to find generators and
relations that shared the most important characteristics of the traditional Cuntz-
Krieger algebras.

In this paper we have quite the opposite motivation. We wish to start with a
suitable combinatorial object and define a C∗-algebra directly from what might be
termed the generalized symbolic dynamics that it induces. We give a functorial
procedure that does not make any a priori assumptions about possible presenta-
tions of the algebra. (This approach was used to give a natural derivation of the
presentation of the C∗-algebra of a general directed graph in [31]. The current pa-
per simplifies and generalizes that work.) In this general context, finite alignment
is a natural property, but is not needed to define the algebra. The construction
itself naturally gives rise to a presentation by generators and relations. We then
specialize to the finitely aligned case, where the considerations are much simpler.
In this case, the natural generators and relations turn out to be the same as those
introduced in [28] for higher-rank graphs. Our treatment, however, applies in much
more generality. Following an idea proposed in [14], we find that a degree functor
is not at all necessary for defining the C∗-algebra. Indeed, many different degrees
can exist, giving different decompositions of the algebra (see section 9).

We briefly describe the idea of our construction. Cuntz and Krieger began with a
shift matrix, i.e. a space of admissible sequences. Equivalently, one can consider the
directed graph having this as an incidence matrix. The finite admissible sequences
correspond to finite directed paths in this graph. The symbolic dynamics can be
represented by the twin notions of concatenation (right shift) and cancellation (left
shift): the right shift by a path α is the map β �→ αβ, when β is a path for which
the concatenation is defined, while the left shift by α is the inverse of the right shift.
If we let αE∗ denote the set of all paths that extend α, then the collection of all
such sets generates a Boolean ring of sets which is preserved by the shift maps. The
set of ultrafilters in this ring is a compact Hausdorff space on which the shifts then
act as partial homeomorphisms (of course, this is just the space of one-sided infinite
admissible sequences). There are various ways of passing from this to a C∗-algebra;
we choose the method of groupoids as being the most natural ([4], [25]). This
produces the usual Cuntz-Krieger algebra, as well as the Toeplitz version. Our point
of departure is the observation that the entire process requires only the operations
of concatenation and cancellation; any collection that behaves roughly like paths
with regard to such operations will permit an analogous construction. We find that
all versions of generators and relations that have been used in previous work follow
from elementary set-theoretic considerations (see Theorem 5.11). (Ultrafilters were
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used to define a boundary space, for directed graphs and their generalizations, in
[31], [13], and [6].)

One of our primary motivations is to recover some of the flexibility inherent in the
situation of directed graphs. Any collection of “dots and arrows” is a directed graph,
and so produces a graph algebra. These algebras include some very important
classes: AF algebras, and Kirchberg algebras having a free K1 group, are the most
notable. Yet it remains a fairly limited class. Already the 2-graphs exhibit much
richer behavior (e.g. [24]). Higher-rank graphs, on the other hand, are quite rigid
objects and are difficult to construct. (It is not clear how to build a k-graph from
a collection of k commuting graphs. See [18], Example 5.15(ii). The construction
we give treats this example as easily as a finite k-graph.) Although there are as
yet no compelling examples of higher-rank graphs that are not finitely aligned,
we believe that the difficulty of envisioning generators and relations for such has
been a formidable obstacle. Our methods provide a natural, albeit complicated,
definition. Moreover, in some instances the considerations are not so difficult, and
our definition may lead to new and interesting examples. Another of our goals
is to give subcategories a natural place in the theory. One of the successes of the
approach taken in [31] was that each subgraph of a given graph defines a subalgebra
of its graph algebra. For example, the algebra of a graph equals the direct limit
of algebras associated to its finite subgraphs. This result was obtained from the
observation that the algebra of a subgraph depends on the ambient graph; a graph
algebra is properly thought of as the algebra of a pair of nested graphs. We adapt
that idea here, although the considerations are much more difficult and hence our
conclusions more preliminary. For example, even the relative category of paths
defined by a subcategory of a finite category of paths need not be finitely aligned.
We plan to address some of these issues in a subsequent paper.

In section 8 we consider the example of a countable ordered group; the positive
cone is a category of paths. With appropriate hypotheses, it is possible to define a
directed boundary of the group in this situation. We prove that the corresponding
crossed product C∗-algebra is Morita equivalent to the C∗-algebra of the category
of paths. One unexpected application is to the Wiener-Hopf algebras of Nica ([23],
[19]). This work is concerned with C∗-algebras constructed from groups having a
quasi-lattice ordering. In our context, this just means a particularly strict version
of finite alignment. In particular, our treatment relaxes this requirement, as well
as clarifies the role of amenability for these algebras. Our construction generalizes
that of [8] in the quasi-lattice ordered case. In particular, for quasi-lattice ordered
groups, the boundary spectrum of [8], Definition 3.4, is the same as our boundary.
In [8] it is Nica’s notion of amenability that is investigated, namely, the coincidence
of full and reduced C∗-algebras. We consider amenability in the sense of Renault
([29]). In a separate paper ([33]) we use our methods to describe the structure
of the algebras associated to the Baumslag-Solitar groups. These turn out to be
identical to certain algebras studied by Katsura in his work on topological graphs
([16]). Our method gives a new approach to the description of these algebras by
generators and relations, and also gives the ideal structure of the Toeplitz versions.

Already in [23] it was observed that the algebras obtained from a quasi-lattice
ordered group need not be amenable, in the sense that the spatial and abstract
versions might not coincide. From the point of view of amenability of the underlying
groupoid, the problem is also of the nuclearity of the C∗-algebras. In the case of
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graphs and higher-rank graphs, these properties are established by decomposing
the algebra by means of a compact abelian group action, having an AF fixed-point
algebra with a (partial) action of a free abelian group. In general, there may
be many such actions with fixed-point algebras that are not AF. In section 9 we
give reasonable hypotheses guaranteeing the existence of an action having an AF
fixed-point algebra. This generalizes the argument for higher-rank graphs given in
[28]. In section 10 we define aperiodicity for categories of paths and prove that
it is equivalent to topological freeness of the corresponding groupoid. We give a
simple criterion for this property, generalizing recent results of Lewin and Sims
[21]. We also give analogs of the standard uniqueness theorems on the subject, as
well as results on minimality and local contractivity. In section 11 we define the
amalgamation of a collection of categories of paths. This generalizes and simplifies
the construction in [32] that has proved useful in several applications.

We briefly describe the contents of the first part of the paper. In sections 2 and
3 we define (relative) categories of paths and introduce the basic facts about homo-
morphisms of Boolean rings of their subsets. In section 4 we define the groupoid of
a relative category of paths and describe the simplifications that follow from finite
alignment. In section 5 we prove that ∗-homomorphisms from the C∗-algebra of
continuous functions vanishing at infinity on the unit space of the groupoid are
characterized in a simple way by homomorphisms from the Boolean ring of subsets
of the category. This is particularly simple in the finitely aligned case, and this
is the reason for the form of the usual presentation of the Toeplitz Cuntz-Krieger
algebra. We derive this presentation in section 6. In section 7 we restrict our at-
tention to the finitely aligned case and give a precise description of the elements
of the unit space of the groupoid — this might be termed the general infinite path
space and consists of the directed hereditary subsets of the category. It is natural
to define the boundary to be the closure of the maximal elements (see also [23], [19],
and [8]). We characterize the elements of this closure using the finite exhaustive
subsets of the category. (We acknowledge our debt to [28] for this.) In the first
part of section 8 we use this to derive the usual presentation of the Cuntz-Krieger
algebra. This generalizes, and gives what we feel is a more natural motivation for,
the presentation given in [28].

In the following we will always identify the objects of a category with the identity
morphisms in that category, and we use juxtaposition to indicate composition of
morphisms. Morphisms will be referred to as paths, and objects as vertices. We
will use s and r to denote the source and range of morphisms in a category, and
Λ0 for the vertices in the category Λ. It should be mentioned that the categorical
framework puts us firmly in the Australian convention for the case of graph algebras.
Thus when our method is used to construct a Cuntz-Krieger algebra, we obtain the
algebra associated to the transpose of the matrix.

We thank the referee for giving many valuable suggestions. We also thank Allan
Donsig and David Milan for finding a gap in our earlier proof of Theorem 6.1.

2. Definition of a category of paths

Definition 2.1. A category of paths is a small category satisfying

(1) αβ = αγ implies β = γ (left-cancellation).
(2) βα = γα implies β = γ (right-cancellation).
(3) αβ = s(β) implies α = β = s(β) (no inverses).
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Example 2.2. The following are examples of categories of paths:

(1) Higher-rank graphs.
(2) Arbitrary subcategories of higher-rank graphs.
(3) The categories of (finite) paths of the hybrid objects constructed in [32],

Definition 2.1. The obvious generalizations of this construction are straight-
forward to define in the context of categories of paths (see section 11).

(4) The category of paths in examples like [18], 5.15(ii).
(5) The positive cone in a discrete ordered group (and, in particular, the quasi-

lattice ordered groups studied in [23]).
(6) A small category equipped with a degree functor, satisfying unique fac-

torization, taking values in the positive cone of an ordered group ([17],
Remarks 1.2). The P -graphs of [6] are examples of this kind. (In the case
that the group is totally ordered abelian, one obtains the natural definition
of directed Λ-graphs, generalizing (directed) Λ-trees ([7], [11]).) See Remark
9.9.

Definition 2.3. Let Λ be a category of paths. For any α ∈ Λ we define the left
shift σα : αΛ → s(α)Λ by σα(αβ) = β (σα is well defined by left-cancellation).
Of course for a subset E of Λ, σα(E) = σα(E ∩ αΛ). (In the case where Λ is a
higher-rank graph, the difference between the functions σα for α ∈ Λ, and σn for
n ∈ Nk, should be clear from the context. However, we will not have occasion to
use the latter notation.)

Remark 2.4. The right shift maps β ∈ s(α)Λ �→ αβ ∈ r(α)Λ are one-to-one, by
left-cancellation. It is often useful to think of a category of paths as a category
of injective maps. Since the maps are generally not surjective, the hypothesis of
right-cancellation is somewhat artificial. We will see that much of the theory can
be developed satisfactorily without it. (But see Remark 4.18, section 10, and the
proof of Theorem 11.5.)

Definition 2.5. Let Λ be a category of paths. Let α, β ∈ Λ. We say that β
extends α if there exists α′ ∈ Λ such that β = αα′ (we may express this by writing
β ∈ αΛ). If β is an extension of α, we call α an initial segment of β. The set of
initial segments of β is denoted [β]. It follows easily from Definition 2.1(1) and (3)
that the relation α ∈ [β] is a partial order on Λ. We follow Exel ([14]) in using
the notation α � β (α meets β) if αΛ ∩ βΛ �= ∅, and α ⊥ β (α is disjoint from β)
otherwise. We let α ∨ β denote the set of minimal common extensions of α and
β, i.e. the minimal elements of αΛ ∩ βΛ. For a subset F ⊆ Λ we let

∨
F denote

the set of minimal common extensions of the elements of F . (The context should
suffice to distinguish this use of the symbol ∨ from its use to indicate the join of a
family of projections in a C∗-algebra (see section 6).)

Of course, not every common extension of α and β need extend a minimal com-
mon extension; in fact, α ∨ β may be empty even if α � β. If Λ is a higher-rank
graph, then every common extension does extend a minimal common extension.
Moreover, in the case of a higher-rank graph, distinct elements of α∨β are disjoint;
generally, this will not be the case in a category of paths.

Let Λ be a category of paths. The central object of study is the ring of subsets of
Λ generated by the tail sets {αΛ : α ∈ Λ} and the action on it of the left shift maps
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{σα : α ∈ Λ}. Much of the analysis rests on the following lemma from elementary
set theory. We use � to indicate a union in which the sets presented are pairwise
disjoint.

Lemma 2.6. Let D(0) be a collection of sets with the property that the intersection
of two sets from D(0) is a finite union of sets from D(0). Let D be the collection of
all nonempty sets of the form A\ (B1∪ · · ·∪Bn), where A, B1, . . ., Bn ∈ D(0), and
Bi ⊆ A for all i. Let A be the collection of all finite disjoint unions of sets from
D. Then A is the ring of sets generated by D(0).

Proof. The proof is routine. �
Remark 2.7. The stipulation in the definition of D that Bi ⊆ A is unnecessary,
since Bi can be replaced with Bi ∩ A. However, it will be useful later to have this
convention.

In the next section we will introduce the notion of finite alignment for categories
of paths. This is a strong assumption that leads to very significant simplifications in
the structure of the C∗-algebras. For example, it implies that the “usual generators
and relations” can be written in a particularly simple form. However, much of the
theory can be developed without this assumption, and one of our goals is to initiate
the study of the nonfinitely aligned theory. In order to motivate the following
definitions, we first present some examples.

Example 2.8. The 2-graph in Figure 1 is the simplest nonfinitely aligned example.
We have the identifications αγi = βδi for i ∈ N.

v0 v1 v2

α

β

γ0 γ1
γ2

δ0
δ1

δ2

. . .

Figure 1

Let us consider the tail sets at the vertex s(α) (we anticipate notation introduced
later; see Remark 3.5). For v ∈ Λ0 let Ev = {μΛ : r(μ) = v}, and let Av be
the ring of sets generated by Ev. Note that s(α)Λ = {γi : i ∈ N} ∪ {s(α)} and
γiΛ = {γi}; these are the elements of Es(α). In this example, the rings Av are
not preserved by the shift maps. For example, βΛ = {βδi : i ∈ N} ∪ {β} and
σαβΛ = {γi : i ∈ N} �∈ As(α).

Figure 2 illustrates the kind of further complication that can arise. Again this is
a nonfinitely aligned 2-graph. In this example, the central diamond represents the
same 2-graph as in Figure 1. The edges εi are present only for i even, while the
edges θi are present only when i is divisible by 3. We have additional identifications
μγ2i = νε2i and ξδ3i = ηθ3i.
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vi

α βμν ξ η

δiγi
θi (if 3|i)εi (if 2|i)

Figure 2

Applying shift maps to tail sets allows us to construct

σαβΛ = {γi : i ∈ N},
σμνΛ = {γi : i ∈ 2N},

σβασμνΛ = {δi : i ∈ 2N},
σηξσβασμνΛ = {θi : i ∈ 6N},

σαβσηξσβασμνΛ = {γi : i ∈ 6N}.

We see from these examples that sets obtained from tail sets by applying a
sequence of shift maps must be considered if we wish to build a ring of sets that is
preserved by the shift maps (that is, in order to have a setting for the generalized
symbolic dynamics associated to a category of paths). This is the motivation for
the following definition.

Definition 2.9. Let Λ be a category of paths. A zigzag is an even tuple of the
form

ζ = (α1, β1, . . . , αn, βn),

where αi, βi ∈ Λ, r(αi) = r(βi), 1 ≤ i ≤ n, and s(αi+1) = s(βi), 1 ≤ i < n. We
might draw a zigzag like this (whence the name):

α1

β1
α2

β2
αn

βn. . .

We let ZΛ denote the set of all zigzags. We may omit the subscript Λ when it is
clear from the context. We define the maps s and r on Z by s(ζ) = s(βn) and
r(ζ) = s(α1), and the reverse of ζ as

ζ = (βn, αn, . . . , β1, α1).

Each zigzag ζ ∈ ZΛ defines a zigzag map on Λ that we denote ϕζ ≡ ϕΛ
ζ , given by

ϕζ = σα1β1 · · ·σαnβn.

We let A(ζ) ≡ AΛ(ζ) denote the domain of ϕζ . Thus A(ζ) = ϕζ(Λ) ⊆ s(ζ)Λ and

the range of ϕζ equals A(ζ). We call A(ζ) a zigzag set.
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Remark 2.10. (1) Λ can be identified with a subset of Z by the pairs (r(α), α).
Then ϕ(r(α),α) is the right shift defined by α (Remark 2.4), and αΛ =

A
(
(α, r(α))

)
is a zigzag set.

(2) Z is clearly closed under concatenation and ϕζ1ζ2 = ϕζ1 ◦ϕζ2 . For ζ, ξ ∈ Z
we denote by ξZ, Zζ, and ξZζ the obvious subsets of Z.

(3) Since left- and right-shifts are one-to-one, all zigzag maps are one-to-one.
The inverse of ϕζ is ϕζ .

(4) A(ζ) = A(ζζ) for ζ ∈ Z. If ζ1, ζ2 ∈ Zv, then A(ζ1) ∩ A(ζ2) = A(ζ1ζ1ζ2ζ2).
(Thus the collection of zigzag sets is closed under intersection.)

(5) For ζ ∈ Z and α ∈ A(ζ), we have αΛ ⊆ A(ζ). For β ∈ s(α)Λ, ϕζ(αβ) =
ϕζ(α)β.

Much of what we wish to do remains valid in the following more general context.

Definition 2.11. Let Λ be a category of paths, and let Λ0 be a subcategory. We
call the pair (Λ0,Λ) a relative category of paths.

Definition 2.12. Let (Λ0,Λ) be a relative category of paths. Write

Z(Λ0,Λ) = {ζ ∈ ZΛ : ζ = (α1, β1, . . . , αn, βn), where αi, βi ∈ Λ0}.

For v ∈ Λ0
0, let D

(0)
v (or D(Λ0,Λ)

(0)
v ) denote the collection of all nonempty sets of

the form AΛ(ζ) for ζ ∈ Z(Λ0,Λ)v. (Note that while the set AΛ(ζ) (and the map ϕζ)

does not depend on the subcategory Λ0, the collection D(Λ0,Λ)
(0)
v does depend on

Λ0.) Let Av (or A(Λ0,Λ)v) denote the ring of sets generated by D(0)
v . We let Dv

denote the collection of nonempty sets of the form E \
⋃n

i=1 Fi, where E, F1, . . .,

Fn ∈ D(0)
v , and Fi ⊆ E. It follows from Lemma 2.6 and Remark 2.10(4) that Av

equals the collection of finite disjoint unions of sets from Dv.

Remark 2.13. The subcategory of a relative category of paths serves to select
a certain subcollection of the zigzag sets in Λ. When Λ0 = Λ, no such selec-
tion is made, and we will omit reference to the subcategory. In general, we have
A(Λ0,Λ)v ⊆ A(Λ)v.

Lemma 2.14. Let (Λ0,Λ) be a relative category of paths. If ζ ∈ Z, then ϕζ(As(ζ))
⊆ Ar(ζ).

Proof. Let ξ ∈ Zs(ζ). Then

A(ξ) = ϕξ(Λ),

hence

ϕζ(A(ξ)) = ϕζξ(Λ) = ϕ
ξζ
(Λ) = A(ξζ) ∈ Ar(ζ).

�

Proposition 2.15. Let (Λ0,Λ) be a relative category of paths. For each v ∈ Λ0
0,

let Bv be a Boolean ring of subsets of vΛ such that

(1) vΛ ∈ Bv for all v ∈ Λ0.
(2) αBs(α) ⊆ Br(α) for all α ∈ Λ0.
(3) σαBr(α) ⊆ Bs(α) for all α ∈ Λ0.

Then Av ⊆ Bv for all v ∈ Λ0
0. Moreover, αBs(α) = {E ∩ αΛ : E ∈ Br(α)} and

σαBr(α) = Bs(α) for all α ∈ Λ0.
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Proof. Since αΛ = α
(
s(α)Λ

)
∈ αBs(α) ⊆ Br(α), we have D(0)

v ⊆ Bv for all v ∈ Λ0
0.

It now follows from (2) and (3) that A(ζ) ∈ Bs(ζ) for all ζ ∈ Z, and hence Av ⊆ Bv

for all v ∈ Λ0
0. Next, we have for E ∈ Br(α), E ∩ αΛ = ασα(E) ∈ αBs(α). Hence

{E ∩ αΛ : E ∈ Br(α)} ⊆ αBs(α). The reverse containment is clear. Finally,

Bs(α) = σααBs(α) = σα
(
{E ∩ αΛ : E ∈ Br(α)}

)
= σαBr(α).

�

Corollary 2.16. {Av : v ∈ Λ0
0} is the family of Boolean rings generated by the

collection {vΛ : v ∈ Λ0
0} and the family of left and right shift maps by elements

of Λ0. Moreover, αAs(α) = {E ∩ αΛ : E ∈ Ar(α)} and σαAr(α) = As(α) for all
α ∈ Λ0.

3. Finite alignment

The finitely aligned case is particularly important. For example, the generators
of the C∗-algebra satisfy a Wick ordering principle. Moreover, the treatment is
significantly simpler in several ways. Therefore we will take special pains to work
out the details of the finitely aligned case, taking it further than the general case.

Definition 3.1. The relative category of paths (Λ0,Λ) is finitely aligned if

(1) For every pair of elements α, β ∈ Λ0, there is a finite subset G of Λ0 such
that αΛ ∩ βΛ =

⋃
ε∈G εΛ.

(2) For every α ∈ Λ0, αΛ ∩ Λ0 = αΛ0.

If Λ0 = Λ, then (2) is vacuous. In this case we say that Λ is finitely aligned.

Lemma 3.2. Let (Λ0,Λ) be a finitely aligned relative category of paths, and let F
be a finite subset of Λ0. Let

∨
F denote the set of minimal common extensions of

F in Λ. Then
∨
F is finite,

∨
F ⊆ Λ0, and

⋂
α∈F αΛ =

⋃
β∈

∨
F βΛ.

Proof. By Definition 3.1(1) and induction, there is a finite set G ⊆ Λ0 such that

(∗)
⋂
α∈F

αΛ =
⋃
β∈G

βΛ.

Replacing G by a subset, if necessary, we may assume that β �∈ β′Λ when β, β′ are
distinct elements of G. We will show that G =

∨
F to finish the proof. By (∗),

G ⊆
⋂

α∈F αΛ. Suppose β ∈ G and γ ∈
⋂

α∈F αΛ are such that β ∈ γΛ. By (∗)
there is β′ ∈ G such that γ ∈ β′Λ. But then β ∈ β′Λ, so we have β = β′ = γ.
Hence G ⊆

∨
F . Conversely, if δ ∈

∨
F , then δ ∈

⋂
α∈F αΛ. By (∗) there is β ∈ G

such that δ ∈ βΛ. Since δ is a minimal element of
⋂

α∈F αΛ, we have δ = β ∈ G.
Thus

∨
F ⊆ G. �

In the next result we will use the following notation. Let {fi : i ∈ I} be a (finite)
collection of functions. Then

⋃
i∈I fi is a function if and only if for all i, j ∈ I, fi

and fj agree on the intersection of their domains. We will write
⋃

i∈I fi if and only
if the {fi} satisfy this condition.

Lemma 3.3. If (Λ0,Λ) is finitely aligned, then every zigzag map is a finite union
of maps of the form γσδ with γ, δ ∈ Λ0.
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Proof. If α, β ∈ Λ0 with r(α) = r(β), then the domain of σβα is

σα(βΛ) = σα(αΛ ∩ βΛ) = σα

⎛⎝ ⋃
ε∈α∨β

εΛ

⎞⎠ =
⋃

ε∈α∨β

(σαε)Λ.

Thus we see that

σβα =
⋃

ε∈α∨β

(σβε)(σσαε).

It follows from Definition 3.1(2) that σαε, σβε ∈ Λ0. Repeated application of this
reduces a zigzag map to the required form. �

Corollary 3.4. Let (Λ0,Λ) be a finitely aligned relative category of paths, and let
ζ ∈ Z. Then A(ζ) is a finite union of sets of the form αΛ with α ∈ Λ0.

Proof. For γ, δ ∈ Λ0, A(γσδ) = δΛ. �

Remark 3.5. Let (Λ0,Λ) be a finitely aligned relative category of paths. For v ∈ Λ0
0

we let E(0)
v denote the collection of all sets of the form αΛ for α ∈ vΛ0, and Ev the

collection of nonempty sets of the form αΛ \
⋃n

i=1 βiΛ for α ∈ vΛ0 and βi ∈ αΛ0.
Thus, Av is the collection of finite disjoint unions of sets in Ev, by Lemma 2.6 and
Corollary 3.4.

Proposition 3.6. Let (Λ0,Λ) be a finitely aligned relative category of paths. The
map E �→ E ∩ Λ0 from P(Λ) → P(Λ0) restricts to give a ring isomorphism
A(Λ0,Λ)v → A(Λ0)v, for each v ∈ Λ0

0. These isomorphisms are equivariant for
the shift maps defined by elements of Λ0.

Proof. It follows from the fact that intersection distributes over union and difference
that the given map is a ring homomorphism P(Λ) → P(Λ0). By Remark 3.5, a
typical (nonempty) set in A(Λ0,Λ)v has the form E =

⊔
i(αiΛ \

⋃
j βijΛ), where

αi, βij ∈ Λ0, βij ∈ αiΛ0, βij �= αi, and the unions are finite. Then E ∩ Λ0 =⊔
i(αiΛ0 \

⋃
j βijΛ0) by Definition 3.1(2). Therefore the restriction of the given

map to A(Λ0,Λ)v does have range in A(Λ0)v. It is clear that if E �= ∅, then
E ∩ Λ0 �= ∅, since αi ∈ E ∩ Λ0 for all i, and hence the restriction is one-to-one.
Since every set in A(Λ0)v is of the above form, the restriction is onto. �

Remark 3.7. Because of Proposition 3.6, we need not consider relative categories
of paths in the finitely aligned case.

Remark 3.8. We note that if (Λ0,Λ) is finitely aligned, then the family of Boolean

rings generated by the E(0)
v is already invariant under the shift maps. If (Λ0,Λ)

is not finitely aligned, we have seen that this need not be the case (Example 2.8).
Even if Λ0 and Λ are individually finitely aligned, the relative category of paths
(Λ0,Λ) need not be. For example, let Λ be the subcategory of Figure 1 generated
by α, β, γ0, γ1, δ0, δ1, and let Λ0 be the subcategory generated by α, β, γ0, δ0.
Then αΛ∩βΛ = {αγ0, αγ1}, so that Definition 3.1(1) fails. It is easy to check that
the ring generated by tail sets is not invariant under left shifts by elements of Λ0.

In the above two examples, it was condition (1) of Definition 3.1 that failed. We
present an example where condition (2) fails. For this, let Λ be the subcategory of
the first example generated by α, β, γ0, δ0, and let Λ0 = {α, β, αγ0} ∪ Λ0. In this
example, Definition 3.1(1) holds, but (2) fails. In this case, Ev is an elementary
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family but is not invariant under left shifts: σα(βΛ) = {γ0} is not in the ring
generated by Es(α).

4. The groupoid of a relative category of paths

Recall that a filter in a ring of sets A is a nonempty collection, U , of nonempty
elements of A, which is closed under the formation of intersections and supersets.
An ultrafilter is a maximal filter. Ultrafilters are characterized by the property:
for each E ∈ A, either E ∈ U or there is F ∈ U with E ∩ F = ∅. A filter base is
a nonempty collection of nonempty subsets of A such that the intersection of any
two of its elements is a superset of a third element. A filter base defines a unique
filter by closing with respect to supersets. An ultrafilter base is a filter base such
that the filter it defines is an ultrafilter. Ultrafilter bases (U0) are characterized by
the property: for each E ∈ A, either there is F ∈ U0 with E ⊇ F or there is F ∈ U0

with E ∩ F = ∅. Each element α in the set underlying A determines an ultrafilter
Uα = {E ∈ A : α ∈ E}, called a fixed ultrafilter.

Let (Λ0,Λ) be a relative category of paths. For v ∈ Λ0
0 let Av = span{χE : E ∈

Av} ⊆ �∞(vΛ), a commutative C∗-algebra. As in [31], p. 250, we identify Âv with

the set of ultrafilters in Av: the complex homomorphism ω ∈ Âv corresponds to the

ultrafilter {E ∈ Av : ω(χE) = 1}. We will write Xv for the spectrum, Âv, of Av.

We let Ux denote the ultrafilter corresponding to x ∈ Xv. For E ∈ Av let Ê ⊆ Xv

denote the support of χE . Thus x ∈ Ê if and only if E ∈ Ux. The collection

{Ê : E ∈ Dv} is a base for the topology of Xv consisting of compact-open sets.
In order to define the groupoid associated to a relative category of paths, we have

to study the maps between the spaces {Xv} that are induced by concatenation.

Lemma 4.1. Let (Λ0,Λ) be a relative category of paths, and for each v ∈ Λ0
0 let Bv

be a ring of subsets of vΛ such that conditions (1), (2) and (3) of Proposition 2.15
are satisfied. If α ∈ Λ0 and U is an ultrafilter in Bs(α), then αU is an ultrafilter
base in Br(α).

Proof. It is clear that αU is a filter base. Let E ∈ Br(α) be such that E �⊇ αF
for all F ∈ U . Then σαE �⊇ F for all F ∈ U . Since U is an ultrafilter, and since
σαE ∈ Bs(α), there is F ∈ U with σαE ∩ F = ∅. Then E ∩ αF = ∅. �

Theorem 4.2. Let (Λ0,Λ) be a relative category of paths. Let α ∈ Λ0. The map
α : As(α) → Ar(α) induces a continuous one-to-one map α̂ : Xs(α) → Xr(α). For
y ∈ Xr(α), we have y ∈ α̂(Xs(α)) if and only if αΛ ∈ Uy.

Proof. By Lemma 4.1, α defines a map α̂ as in the statement. Let x1 �= x2 in
Xs(α). Then there are Ei ∈ Uxi

with E1 ∩ E2 = ∅. Hence αE1 ∩ αE2 = ∅, so that
αUx1

and αUx2
define distinct ultrafilters in Ar(α). Therefore α̂ is one-to-one. For

continuity, let x0 ∈ Xs(α), and let V be a neighborhood of α̂(x0). Then there is

B ∈ Ar(α) such that α̂(x0) ∈ B̂ ⊆ V . Hence B ⊇ αE0 for some E0 ∈ Ux0
. Then

σα(B) ⊇ E0, so σα(B) ∈ Ux0
; i.e. σ̂α(B) is a neighborhood of x0. We will show

that α̂(σ̂α(B)) ⊆ B̂. Let x ∈ σ̂α(B). Then σα(B) ∈ Ux, hence αΛ ∩ B ∈ αUx,

hence α̂(x) ∈ B̂. Thus α̂ is continuous.
Now let y ∈ Xr(α). If y = α̂(x) for some x ∈ Xs(α), then Uy ⊇ αUx. Since

αΛ ∈ αUx, we have αΛ ∈ Uy. Conversely, suppose that αΛ ∈ Uy. Then αΛ∩Uy is a
filter base for Uy, hence is an ultrafilter base. Since αΛ∩Uy =

{
ασα(E) : E ∈ Uy

}
,
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we have αΛ ∩ Uy = ασα(Uy). We claim that σα(Uy) is an ultrafilter in As(α). To
see that it is a filter (and not merely a filter base), let F ∈ As(α) be such that
F ⊇ σα(E), where E ∈ Uy. Then αF ⊇ αΛ ∩ E, so αF ∈ Uy. Then F ∈ σα(Uy).
We now show that it is an ultrafilter. Let F ∈ As(α) be such that F �⊇ σα(E)
for all E ∈ Uy. Then αF �⊇ E for all E ∈ Uy. Since Uy is an ultrafilter, there
exists E ∈ Uy such that αF ∩ E = ∅. Then F ∩ σα(E) = ∅. Finally, let x ∈ Xs(α)

with Ux = σα(Uy). Then αUx ⊆ Uy. Since αUx is an ultrafilter base, we have
α̂(x) = y. �

Corollary 4.3. With hypotheses as in Theorem 4.2, we have α̂(Xs(α)) is a compact-
open subset of Xr(α).

Definition 4.4. Let (Λ0,Λ) be a relative category of paths. Let α ∈ Λ0. In
the sequel we will omit the caret, writing x ∈ Xs(α) �→ αx ∈ Xr(α). We define
σα : αXr(α) → Xs(α) by the equation ασα(y) = y, for y ∈ Xr(α) with αΛ ∈ Uy.

It now follows that for each ζ ∈ Z there is a homeomorphism Φζ : Â(ζ) → Â(ζ),
determined by the maps given above, and the formula Φζ1ζ2 = Φζ1 ◦ Φζ2 holds.

We will now define the groupoid of a relative category of paths (Λ0,Λ) (we refer
to [25]; see also [4]).

Definition 4.5. We let X =
⊔

v∈Λ0
0
Xv. We define r : X → Λ0

0 by r(x) = v if

x ∈ Xv. We define a relation ∼ on

Z ∗X =
⋃

v∈Λ0
0

Zv ×Xv

by: (ζ, x) ∼ (ζ ′, x′) if x = x′ and Φζ |U = Φζ′ |U for some neighborhood U of x.

Remark 4.6. It is clear that ∼ is an equivalence relation.

Definition 4.7. The groupoid of (Λ0,Λ) is the set

G ≡ G(Λ0,Λ) = (Z ∗X)/ ∼ .

The set of composable pairs is

G2 =
{(

[ζ, x], [ζ ′, x′]
)
: x = Φζ′x′},

and inversion is given by [ζ, x]−1 = [ζ, ζx] (where we use square brackets to denote
equivalence classes). Multiplication is given by

[ζ,Φζ′x][ζ ′, x] = [ζζ ′, x].

It is clear that Definition 4.7 does not depend on the choices made of represen-
tatives of the equivalence classes. It is elementary to check that the above does in
fact define a groupoid (e.g. the conditions on page 7 of [25]).

Remark 4.8. It is immediate that if [r(x), x] = [r(y), y], then x = y. Thus the map
x ∈ X �→ [r(x), x] ∈ G0 is bijective. We will often identify X and G0 via this map.

Definition 4.9. For ζ ∈ Z and E ∈ As(ζ), let

[ζ, E] =
{
[ζ, x] : x ∈ Ê

}
.

Let B =
{
[ζ, E] : E ∈ As(ζ)

}
.

We note that since [ζ, E] = [ζ, E ∩A(ζ)], we may assume that E ⊆ A(ζ).
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Proposition 4.10. B is a base for a locally compact topology on G for which the
elements of B are compact and Hausdorff, and for making G into an ample étale
groupoid.

Proof. Suppose [ζ, E] ∩ [ζ ′, E′] �= ∅. Then s(ζ) = s(ζ ′). Let [ζ, x] ∈ [ζ, E] ∩ [ζ ′, E′].

Then x ∈ Ê ∩ Ê′, and there is F ∈ As(ζ) such that Φζ |F̂ = Φζ′ |F̂ and x ∈ F̂ . Then

[ζ, x] ∈ [ζ, E ∩E′ ∩ F ] ⊆ [ζ, E] ∩ [ζ ′, E′].

Therefore B is a base for a topology on G.
Next, we show that multiplication and inversion are continuous. Let(

[ζ,Φζ′x], [ζ ′, x]
)
∈ G2. Let E = A(ζζ ′). Then E ∈ Ar(x) with x ∈ Ê. Then

[ζζ ′, E] is a basic neighborhood of the product [ζζ ′, x]. We have that ϕζ′(E) ∈ Ar(ζ′)

and Φζ′x ∈ ϕ̂ζ′(E). Then [ζ, ϕζ′(E)][ζ ′, E] = [ζζ ′, E], hence multiplication is con-

tinuous. Since [ζ, E]−1 = [ζ, ϕζ(E)], inversion is continuous.
Finally, note that r|[ζ,E] : [ζ, x] �→ Φζx is an injective open map, and similarly for

s. Therefore r and s are local homeomorphisms. It follows that [ζ, E] is compact

(since Ê is compact in X) and that the sets in B are Hausdorff. Therefore G is
ample and étale (cf. [25], Definition 2.2.4). �

In general, G is not a Hausdorff groupoid. We next give an example of this.

wu v

x

y

α1 β1

β2
α2

γi

μi

δi

νi

Figure 3

Example 4.11. In Figure 3, Λ is a nonfinitely aligned 2-graph (where the subscript
i takes values in Z), with identifications α1γi = β1δi, α1μi = β1νi, α2γi = β2δi,
α2μi = β2νi+1. (To realize Λ as a 2-graph, let edges pointing right have degree
(1, 0), and let edges pointing left have degree (0, 1).) We let ζj = (βj , αj) ∈ Zu.
Note that ϕζj (γi) = δi, ϕζ1(μi) = νi, and ϕζ2(μi) = νi+1. Further, note that
Xu = {Uu, Uγi

, Uμi
, Uu,∞}, where we let Uα = {E ∈ Ar(α) : α ∈ E} denote the

fixed ultrafilter at α, and Uu,∞ the ultrafilter generated by the cofinite subsets of
{γi, μi : i ∈ Z}. Then the domain of Φζj is Xu \ {Uu}, and we have Φζj (Uu,∞) =
Uv,∞, Φζj (Uγi

) = Uδi , Φζ1(Uμi
) = Uνi

, and Φζ2(Uμi
) = Uνi+1

. We note that basic
neighborhoods of Uu,∞ may be taken to be cofinite subsets of {Uγi

,Uμi
: i ∈ Z}.

Thus Φζ1 �= Φζ2 in any neighborhood of Uu,∞: [ζ1,Uu,∞] �= [ζ2,Uu,∞]. We claim
that these two points do not have disjoint neighborhoods. To see this, let U be a

basic neighborhood of Uu,∞, say U = Ê, where E = A(ζ1) \ {γi, μi : |i| ≤ n}. Then
[ζ1, E] ∩ [ζ2, E] ⊇ {[ζ1,Uγi

] : |i| > n}.
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In the case where Λ is finitely aligned, however, G is Hausdorff. Because of its
importance, we will next work out some details of the finitely aligned case.

Let Λ be finitely aligned. We know from Lemma 3.3 that every element of G can

be expressed in the form [ασβ, y], where α, β ∈ Λ. In this case, y ∈ Â(σβ) = βXs(β).

Thus we may write [ασβ , y] = [ασβ , βx] for some x ∈ Xs(β).

Lemma 4.12. Let Λ be a finitely aligned category of paths. Let α, α′ ∈ Λ, and let
x ∈ Xs(α), x

′ ∈ Xs(α′) with αx = α′x′. Then there exist δ ∈ s(α)Λ, δ′ ∈ s(α′)Λ,
and z ∈ Xs(δ) such that x = δz, x′ = δ′z, and αδ = α′δ′. (We refer to z as a
common tail of x and x′.) Moreover, we may assume that αδ ∈ α ∨ α′.

Proof. Since αΛ ∈ Uαx and α′Λ ∈ Uα′x′ , the equality αx = α′x′ implies that α�α′.
Then there is ε ∈ α∨α′ such that εΛ ∈ Uαx. By Theorem 4.2 there is z ∈ Xs(ε) such
that αx = εz. Write ε = αδ = α′δ′. Then αx = αδz, and hence x = σα(αx) = δz;
similarly x′ = δ′z. �

Lemma 4.13. Let Λ be a finitely aligned category of paths. Let α, β, α′, β′ ∈ Λ
and x, x′ ∈ X define elements of G as in the remarks before Lemma 4.12. Then
(ασβ, βx) ∼ (α′σβ′

, β′x′) if and only if there are δ, δ′ ∈ Λ and z ∈ X such that
x = δz, x′ = δ′z, αδ = α′δ′, and βδ = β′δ′.

Proof. Let (ασβ, βx) ∼ (α′σβ′
, β′x′). Then βx = β′x′ and ασβ = α′σβ′

near βx.
By Lemma 4.12, there are γ, γ′, and y such that x = γy, x′ = γ′y, and βγ = β′γ′.

Let E ∈ Ar(β) be such that βx ∈ Ê and ασβ = α′σβ′
in Ê. We may assume that

E ∈ Er(β). Write E = ηΛ \
⋃n

i=1 θiΛ. Since βγy = βx ∈ Ê ⊆ ηXs(η), we can write
βγy = ηu for some u ∈ Xs(η). We again apply Lemma 4.12 to obtain ε, ε′, and

z such that y = εz, u = ε′z, and βγε = ηε′. Then ηε′z = ηu ∈ Ê. It follows
that ηε′ ∈ E. For if not, there would be an i such that ηε′ ∈ θiΛ, and hence that

ηε′z ∈ θ̂iΛ ⊆ Êc, a contradiction. Let Uw be the fixed ultrafilter in Ar(β) at ηε′.

Then E ∈ Uw, so w ∈ Ê. Hence ασβw = α′σβ′
w, and hence

αγε = ασββγε = ασβηε′ = α′σβ′
ηε′ = α′σβ′

β′γ′ε = α′γ′ε.

We still have βγε = β′γ′ε, and moreover x = γy = γεz and x′ = γ′y = γ′εz. Thus
we may take δ = γε and δ′ = γ′ε.

Conversely, suppose that δ, δ′ and z are as in the statement. We must show that
(ασβ, βx) ∼ (α′σβ′

, β′x′). First, we have

βx = βδz = β′δ′z = β′x′.

Second, let y ∈ Xr(z). Then

ασββδy = αδy = α′δ′y = α′σβ′
β′δ′y = α′σβ′

βδy.

Hence ασβ = α′σβ′
on βδXr(z), a neighborhood of βδz = βx. �

Using Lemma 4.13, we may redefine the groupoid G (when Λ is finitely aligned)
as follows.

Definition 4.14. Let Λ be a finitely aligned category of paths. We define a relation
∼ on

Λ ∗ Λ ∗X =
⋃

v∈Λ0

Λv × Λv ×Xv
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by: (α, β, x) ∼ (α′, β′, x′) if there exist z ∈ X, and δ, δ′ ∈ Λr(z), such that

(1) x = δz.
(2) x′ = δ′z.
(3) αδ = α′δ′.
(4) βδ = β′δ′.

Lemma 4.15. The relation ∼ in Definition 4.14 is an equivalence relation.

Proof. Notice that the map (ασβ, βx) ∈ Z ∗X �→ (α, β, x) ∈ Λ ∗Λ ∗X is bijective.
By Lemma 4.13, this map carries the equivalence relation on Z ∗X to the relation
of Definition 4.14. �

Remark 4.16. The groupoid of Λ is the set

G ≡ G(Λ) =
( ⋃
v∈Λ0

Λv × Λv ×Xv

) /
∼ .

The set of composable pairs is

G2 =
{(

[α, β, x], [γ, δ, y]
)
: βx = γy

}
,

and inversion is given by [α, β, x]−1 = [β, α, x] (where we use square brackets
to denote equivalence classes). Multiplication G2 → G is given as follows. Let(
[α, β, x], [γ, δ, y]

)
∈ G2. Since βx = γy, Lemma 4.12 provides z, ξ, and η such

that x = ξz, y = ηz, and βξ = γη. Then

[α, β, x] [γ, δ, y] = [αξ, δη, z].

The topology of G is given as follows. Let v ∈ Λ0. For E ∈ Av and α, β ∈ Λv,
let

[α, β,E] =
{
[α, β, x] : x ∈ Ê

}
.

Thus [ασβ, βE] corresponds to [α, β,E]. Then B =
{
[α, β,E] : s(α) = s(β), E ∈

As(α)

}
is the base for the topology of G.

Proposition 4.17. Let Λ be a finitely aligned category of paths. Then the topology
of G is Hausdorff.

Proof. Let (α, β, x) �∼ (α′, β′, x′). First suppose that αx �= α′x′. By continuity
of concatenation (Theorem 4.2), there are E ∈ Ar(x) and E′ ∈ Ar(x′) such that

αÊ ∩ α′Ê′ = ∅. Then [α, β, x] ∈ [α, β,E], [α′, β′, x′] ∈ [α′, β′, E′], and [α, β,E] ∩
[α′, β′, E′] = ∅. A similar argument treats the case where βx �= β′x′. Suppose now
that αx = α′x′ and βx = β′x′. Since αx = α′x′, Lemma 4.12 provides z, δ, δ′ such
that x = δz, x′ = δ′z, and αδ = α′δ′. We have

(αδ, βδ, z) ∼ (α, β, x) �∼ (α′, β′, x′) ∼ (α′δ′, β′δ′, z).

Thus βδ �= β′δ′. We claim that

[αδ, βδ,Xr(z] ∩ [α′δ′, β′δ′, Xr(z] = ∅.

For let y, y′ ∈ Xr(z) be such that (αδ, βδ, y) ∼ (α′δ′, β′δ′, y′). Then there are w, ε,
ε′ such that y = εw, y′ = ε′w, αδε = α′δ′ε′, and βδε = β′δ′ε′. Since αδ = α′δ′, we
have ε = ε′, by left-cancellation. But then right-cancellation implies that βδ = β′δ′,
a contradiction. �
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Remark 4.18. We note that it is only in the last sentence of the above proof that
right-cancellation has been used (cf. Remark 2.4). If right-cancellation is not
assumed, the groupoid G(Λ) need not be Hausdorff in the finitely aligned case.
However, it will still be ample and étale, and will define a C∗-algebra as in the
general case.

5. Boolean ring homomorphisms

We now wish to characterize Boolean ring homomorphisms from Av. Our goal
is the following theorem.

Theorem 5.1. Let (Λ0,Λ) be a relative category of paths, v ∈ Λ0
0, and R a Boolean

ring. A map μ : D(0)
v → R extends to a Boolean ring homomorphism Av → R if

and only if the following conditions hold:

(1) μ(E ∩ F ) = μ(E) ∩ μ(F ), for E, F ∈ D(0)
v .

(2) μ(E) =
⋃n

i=1 μ(Fi) for E, F1, . . ., Fn ∈ D(0)
v with E =

⋃n
i=1 Fi.

In this case, the extension to Av is unique.

This is truly a set-theoretic result: it relies only on Lemma 2.6 and the fact

that D(0)
v is closed under intersection. Before proving the theorem, we will present

several lemmas.

Lemma 5.2. Let (Λ0,Λ), v, R and μ be as in the statement of Theorem 5.1, and

suppose that (1) and (2) hold. If E, F1, . . ., Fn ∈ D(0)
v and E ⊆

⋃n
i=1 Fi, then

μ(E) ⊆
⋃n

i=1 μ(Fi).

Proof. We first note that μ is monotone on D(0)
v . Let E, F ∈ D(0)

v with E ⊆ F .
Then E = E ∩ F , so by (1) we have μ(E) = μ(E) ∩ μ(F ) ⊆ μ(F ). Now, from E ⊆⋃n

i=1 Fi we have E =
⋃n

i=1(E ∩ Fi) and E ∩ Fi ∈ D(0)
v . By (2), and monotonicity,

μ(E) =
n⋃

i=1

μ(E ∩ Fi) ⊆
n⋃

i=1

μ(Fi). �

Corollary 5.3. If E1, . . ., Em, F1, . . ., Fn ∈ D(0)
v and

⋃m
i=1 Ei ⊆

⋃n
j=1 Fj, then⋃m

i=1 μ(Ei) ⊆
⋃n

j=1 μ(Fj).

Proof. By Lemma 5.2, μ(Ei) ⊆
⋃n

j=1 μ(Fj) for all i. �
Remark 5.4. It follows from Corollary 5.3 that the analgous result with equalities
in place of containments also holds, and hence that μ can be extended to finite

unions of sets in D(0)
v by setting μ(∪Ei) =

⋃
i μ(Ei).

Lemma 5.5. We retain the hypotheses of Lemma 5.2. Let Ei, Fj ∈ D(0)
v for

0 ≤ i ≤ m and 0 ≤ j ≤ n, and suppose that E0 \
⋃m

i=1 Ei ⊆ F0 \
⋃n

j=1 Fj. Then

μ(E0) \
⋃m

i=1 μ(Ei) ⊆ μ(F0) \
⋃n

j=1 μ(Fj).

Proof. We note the set-theoretic identity:

X \ Y ⊆ Z \W if and only if X ⊆ Y ∪ Z and X ∩W ⊆ Y.

Thus

E0 \
m⋃
i=1

Ei ⊆ F0 \
n⋃

j=1

Fj ,
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hence

E0 ⊆
m⋃
i=1

Ei ∪ F0 and E0 ∩
n⋃

j=1

Fj ⊆
m⋃
i=1

Ei,

hence

E0 ⊆
m⋃
i=1

Ei ∪ F0 and

n⋃
j=1

(E0 ∩ Fj) ⊆
m⋃
i=1

Ei,

hence

μ(E0) ⊆
m⋃
i=1

μ(Ei) ∪ μ(F0) and
n⋃

j=1

μ(E0 ∩ Fj) ⊆
m⋃
i=1

μ(Ei), by Corollary 5.3,

hence

μ(E0) \
m⋃
i=1

μ(Ei) ⊆ μ(F0) \
n⋃

j=1

μ(Fj), by (1). �

Remark 5.6. It follows from Lemma 5.5 that μ can be extended to Dv by setting
μ(E \

⋃
iEi) = μ(E) \

⋃
i μ(Ei).

Lemma 5.7. We retain the hypotheses of Lemma 5.2. Let μ be extended to Dv as
in Remark 5.6. Let A, B ∈ Dv be disjoint. Then μ(A) and μ(B) are disjoint.

Proof. We note the set-theoretic identity:

(X \ Y ) ∩ (Z \W ) = ∅ if and only if X ∩ Z ⊆ Y ∪W.

Let A = E0 \
⋃m

i=1 Ei and B = F0 \
⋃n

j=1 Fj , with Ei, Fj ∈ D(0)
v . Since A ∩B = ∅,

we have

E0 ∩ F0 ⊆
m⋃
i=1

Ei ∪
n⋃

j=1

Fj ,

hence

μ(E0) ∩ μ(F0) ⊆
m⋃
i=1

μ(Ei) ∪
n⋃

j=1

μ(Fj),

by (1) and Lemma 5.2; hence[
μ(E0) \

m⋃
i=1

μ(Ei)

]
∩

⎡⎣μ(F0) \
n⋃

j=1

μ(Fj)

⎤⎦ = ∅. �

Lemma 5.8. We retain the hypotheses of Lemma 5.2. Let μ be extended to Dv

as in Remark 5.6. Let A, A1, . . ., Ap ∈ Dv with A =
⊔p

k=1Ak. Then μ(A) =⊔p
k=1 μ(Ak).

Proof. The containment “⊇” follows from Lemma 5.5, and the disjointness from
Lemma 5.7. For “⊆” we first note the set-theoretic identity:

X \ Y ⊆
p⋃

k=1

(Zk \Wk)

if and only if for every I ⊆ {1, . . . , p},

X ∩
⋂
k∈I

Wk ⊆ Y ∪
⋃
� �∈I

Z�.
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Let A = E \
⋃m

i=1 Ei and Ak = Fk \
⋃nk

j=1 Fkj , where E, Ei, Fk, Fkj ∈ D(0)
v . Let

I ⊆ {1, . . . , p}. We have

E ∩
⋂
k∈I

nk⋃
j=1

Fkj ⊆
m⋃
i=1

Ei ∪
⋃
� �∈I

F�.

Since the left-hand side is a union of intersections, it follows from Corollary 5.3 and
(1) that

μ(E) ∩
⋂
k∈I

nk⋃
j=1

μ(Fkj) ⊆
m⋃
i=1

μ(Ei) ∪
⋃
� �∈I

μ(F�).

Since this is true for every set I ⊆ {1, . . . , p}, we have

μ(E) \
m⋃
i=1

μ(Ei) ⊆
p⋃

k=1

⎛⎝μ(Fk) \
nk⋃
j=1

μ(Fkj)

⎞⎠ ,

that is, μ(A) ⊆
⋃p

k=1 μ(Ak). �

Corollary 5.9. Let {A1, . . . , Am} and {B1, . . . , Bn} be families of pairwise disjoint
elements of Dv, and suppose that

⊔
i Ai =

⊔
j Bj. Then

⊔
i μ(Ai) =

⊔
j μ(Bj).

Proof. Let Ai ∩ Bj =
⊔

k Cijk, where Cijk ∈ Dv and the union is finite. Since
Ai =

⊔
j(Ai ∩Bj) =

⊔
j,k Cijk, Lemma 5.8 gives⊔
i

μ(Ai) =
⊔
i

μ(
⊔
j,k

Cijk) =
⊔
i,j,k

μ(Cijk).

Similarly,
⊔

j μ(Bj) =
⊔

i,j,k μ(Cijk). �

Definition 5.10. Let (Λ0,Λ), v, R and μ be as in the statement of Theorem 5.1,
and suppose that (1) and (2) hold. We define μ on Dv as in Remark 5.6, and then
on Av by setting μ(

⊔
i Ai) =

⊔
i μ(Ai) (which is unambiguous by Corollary 5.9).

Proof of Theorem 5.1. The necessity and uniqueness are clear. For the sufficiency,
first note that it follows from Lemma 5.7 and Definition 5.10 that if A, B ∈ Av are
disjoint, then μ(A) and μ(B) are disjoint, and μ(A �B) = μ(A) � μ(B). Now, for
arbitrary A, B ∈ Av we have

μ(A) = μ(A \B) � μ(A ∩B),

μ(B) = μ(B \A) � μ(A ∩B),

μ(A \B) ∩ μ(B \A) = ∅.
It follows that

μ(A \B) = μ(A) \ μ(B),

and hence that

μ(A∪B) = μ
(
(A\B)�B

)
= μ(A\B)�μ(B) =

(
μ(A)\μ(B)

)
�μ(B) = μ(A)∪μ(B).

�

In the case that Λ is finitely aligned, the hypotheses of the theorem may be
relaxed considerably. It is the following result that fundamentally explains why the
(Toeplitz) Cuntz-Krieger relations have their usual form.
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Theorem 5.11. Let Λ be a finitely aligned category of paths, v ∈ Λ0, R a Boolean

ring, and μ : E(0)
v → R. Then μ extends to a Boolean ring homomorphism Av → R

if and only if the following condition holds:

(3) μ(αΛ) ∩ μ(βΛ) =
⋃

ε∈α∨β μ(εΛ) for all α, β ∈ vΛ.

In this case, the extension is unique.

Proof. The necessity and uniqueness are clear. For the sufficiency, first note that

(3) implies monotonicity of μ on E(0)
v . Next, we observe that the sets in E(0)

v have

the following property: if E, F1, . . ., Fn ∈ E(0)
v and E ⊆

⋃
j Fj , then there is j0

such that E ⊆ Fj0 . (For, letting E = αΛ and Fj = βjΛ, α ∈ E implies α ∈ βj0Λ for
some j0, and hence αΛ ⊆ βj0Λ.) It follows that μ can be defined unambiguously

on finite unions of sets in E(0)
v and that μ remains monotone when so extended.

By Corollary 3.4 it follows that μ is defined on D(0)
v and that (2) holds. Let A,

B ∈ D(0)
v . Write A =

⋃m
i=1 Ei and B =

⋃n
j=1 Fj , with Ei = αiΛ, Fj = βjΛ in E(0)

v .

Then Ei ∩ Fj =
⋃

ε∈αi∨βj
Gijε, where Gijε = εΛ, ε ∈ αi ∨ βj . Then

μ(A ∩B) =
⋃
ijε

μ(Gijε).

On the other hand,

μ(A) ∩ μ(B) =
⋃
ij

μ(Ei) ∩ μ(Fj) =
⋃
ij

⋃
ε∈αi∨βj

μ(Gijε),

by (3). Thus (1) holds. By Theorem 5.1, μ has an extension to Av. �

6. Generators and relations

Let G be the groupoid of a relative category of paths (Λ0,Λ). For ζ ∈ Z we let
tζ = χ[ζ,A(ζ)]. The collection {tζ : ζ ∈ Z} is a total set in Cc(G) ⊆ C∗(G). Since

ϕ−1
ζ2

(A(ζ1)) = ϕζ2
(ϕζ1

(Λ)) = ϕζ1ζ2
(Λ) = A(ζ1ζ2), we see that tζ1tζ2 = tζ1ζ2 . It is

clear that tζ = t∗ζ . Since A(ζ) �→ χ[ζζ,A(ζ)] = tζζ is a Boolean ring homomorphism,

conditions (1) and (2) of Theorem 5.1 hold for this map. In fact, (1) follows from
the previous two properties and Remark 2.10(4). Notice also that ϕζ = idA(ζ) if
and only if Φζ = id

̂A(ζ)
(for the only if, consider the fixed ultrafilter determined

by a path moved by ϕζ). Therefore, if ϕζ = idA(ζ) we have tζ = t∗ζtζ . These are

enough to characterize representations of C∗(G).
Before presenting the characterization, we wish to comment on the last property

mentioned above, as it is special to the non-finitely aligned case. (We thank Allan
Donsig and David Milan for noticing a gap in our earlier proof of Theorem 6.1, which
brought to our attention the need for the relation (4) of the theorem.) We give an
example. In Figure 4, i = 1, 2, 3, . . ., and we have the identifications αjγi = βjδi
for j = 1, 2, and for all i. Letting ζj = (αj , βj), we find that A(ζj) = {δi : i ≥ 1},
and that ϕζj (δi) = γi for j = 1, 2, and for all i. Thus Φζ1 = Φζ2 : the groupoid
does not distinguish ζ1 and ζ2.

Theorem 6.1. Let G be the groupoid of a relative category of paths (Λ0,Λ). The
representations of C∗(G) are in one-to-one correspondence with the families {Tζ :
ζ ∈ Z} of Hilbert space operators satisfying the relations

(1) Tζ1Tζ2 = Tζ1ζ2 .
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γi

α2

α1

δi

β2

β1

Figure 4

(2) Tζ = T ∗
ζ .

(3) T ∗
ζ Tζ =

∨n
i=1 T

∗
ζi
Tζi if A(ζ) =

⋃n
i=1 A(ζi).

(4) Tζ = T ∗
ζ Tζ if ϕζ = idA(ζ).

Proof. First, let π : C∗(G) → B(H) be a representation. Let Tζ = π
(
χ[ζ,A(ζ)]

)
. As

indicated in the discussion before the statement of the theorem, conditions (1) - (4)
hold.

Conversely, let {Tζ : ζ ∈ Z} ⊆ B(H) satisfy (1) - (4). Since A(ζ) = A(ζζ), we
have

Tζζ = T ∗
ζ Tζ , by (1) and (2),

= T ∗
ζζ
Tζζ , by (3),

= TζζTζζ , since Tζζ = T ∗
ζ Tζ is self-adjoint,

= Tζζζζ , by (1).

Therefore Tζ is a partial isometry. Next we use (4). We claim that

(5) if ϕζ1 = ϕζ2 then Tζ1 = Tζ2 .

To see this, note that if ϕζ1 = ϕζ2 , then ϕζ1ζ2
= idA(ζ2) = idA(ζ1) = ϕζ1ζ1

= ϕζ2ζ2
.

By (4) we then have T ∗
ζ1
Tζ2 = Tζ1ζ2

= T ∗
ζ1
Tζ1 = T ∗

ζ2
Tζ2 . We also have ϕζ2ζ1

=
idA(ζ1)

= idA(ζ2)
= ϕζ1ζ1

= ϕζ2ζ2
, and hence similarly, that Tζ2T

∗
ζ1

= Tζ2ζ1
=

Tζ1T
∗
ζ1

= Tζ2T
∗
ζ2
. Now we have

Tζ1 = Tζ1T
∗
ζ1
Tζ1 = Tζ2T

∗
ζ1
Tζ1 = Tζ2T

∗
ζ2
Tζ2 = Tζ2 ,

proving (5).
We define μ : D(0) → B(H) by μ(A(ζ)) = T ∗

ζ Tζ . Since Tζ1ζ1
Tζ2ζ2

= Tζ1ζ1ζ2ζ2
,

condition (1) of Theorem 5.1 holds. Condition (2) of Theorem 5.1 holds by (3).
Then by Theorem 5.1 we obtain a ∗-homomorphism π0 : C0(G

0) → B(H) such
that π0(χA(ζ)) = T ∗

ζ Tζ .

In order to extend π0 to all of C∗(G), we proceed locally. Let f ∈ Cc(G)

be such that there is ζ ∈ Z with supp (f) ⊆ [ζ, A(ζ)]. Define f̃ ∈ C
(
Â(ζ)
)
by

f̃(x) = f([ζ, x]). To show that f̃ is well defined, suppose that supp (f) ⊆ [ζ ′, A(ζ ′)].

For each w ∈ supp (f), w = [ζ, x] = [ζ ′, x] for some x ∈ Â(ζ) ∩ Â(ζ ′). Therefore

supp (f) ⊆ [ζ, A(ζ) ∩ A(ζ ′)] ∩ [ζ ′, A(ζ) ∩ A(ζ ′)]. Let E ∈ A with Ê = {x ∈ Â(ζ) ∩
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Â(ζ ′) : Φζ = Φζ′ near x}. Then supp (f) ⊆ [ζ, E] ∩ [ζ ′, E]. Thus f̃ doesn’t depend
on the choice of ζ.

Now we define π(f) = Tζπ0(f̃) if supp (f) ⊆ [ζ, A(ζ)]. To see that this is well-
defined, let supp(f) ⊆ [ζ1, A(ζ1)]∩[ζ2, A(ζ2)]. First suppose that f = χ[ξ,A(ξ)]. Then
A(ξ) ⊆ A(ζ1) ∩ A(ζ2), and Φζj |A(ξ) = Φξ, j = 1, 2. But then ϕζ1ξξ

= ϕζ2ξξ
, and

hence Tζ1T
∗
ξ Tξ = Tζ2T

∗
ξ Tξ, by (5). We have f̃ = χ

̂A(ξ)
, and hence π0(f̃) = T ∗

ξ Tξ.

But then Tζ1π0(f̃) = Tζ1T
∗
ξ Tξ = Tζ2T

∗
ξ Tξ = Tζ2π0(f̃). It follows that this also holds

for f in the span of such characteristic functions. By continuity of π0, it follows for
all f supported in basic sets [ζ, A(ζ)].

For an arbitrary f ∈ Cc(G), we may find ζi ∈ Z and Ai ∈ A, 1 ≤ i ≤ n, such
that supp (f) ⊆

⊔
i[ζi, Ai]. Then f =

∑
i f |[ζi,Ai]. If also supp (f) ⊆

⊔
j [ξj , Bj ],

then since [ζi, Ai] ∩ [ξj , Bj ] = [ζi, Ai ∩Bj ] = [ξj , Ai ∩Bj ], we have∑
i

f |[ζi,Ai] =
∑
i,j

f |[ζi,Ai∩Bj ] =
∑
i,j

f |[ξj ,Ai∩Bj ] =
∑
j

f |[ξj ,Bj ].

Thus
∑

i π
(
f |[ζi,Ai]

)
=
∑

j

(
f |[ξj ,Bj ]

)
. Therefore this last expression is a well-defined

extension of π to all of Cc(G) and is a self-adjoint linear map. We note that π is
continuous for the inductive limit topology, since by the above it reduces to uniform

convergence on the sets Â(ζ). Finally, since π is multiplicative on the characteristic
functions of the basic sets [ζ, A(ζ)], the continuity implies that π is multiplicative
on Cc(G). Therefore π extends to all of C∗(G) by Renault’s disintegration theorem
([25], Theorem 3.1.1). �

The third relation in Theorem 6.1 is fairly complicated, reflecting the complexity
of general nonfinitely aligned categories of paths. Our use of relative categories of
paths gives a nesting relation for subcategories.

Corollary 6.2. Let Λ be a category of paths, and let Λ0 ⊆ Λ1 ⊆ Λ be subcategories.
For ζ ∈ Λj let tζ,j ∈ C∗(G(Λj ,Λ)) be the generators described in the remarks before
Theorem 6.1. There is a ∗-homomorphism C∗(G(Λ0,Λ)) → C∗(G(Λ1,Λ)) given by
tζ,0 �→ tζ,1 for ζ ∈ Z(Λ0,Λ). Moreover, if G(Λ0,Λ) is amenable, then this map is
injective.

Proof. The existence of the map follows from Theorem 6.1. Now let v ∈ Λ0
0. If U is

an ultrafilter in A(Λ1,Λ)v, let U0 = U∩A(Λ0,Λ)v. It is easy to see that U0 is a filter.
Moreover, if E ∈ A(Λ0,Λ)v \ U0, then E �∈ U . But then vΛ \ E ∈ U ∩ A(Λ0,Λ)v.
Therefore U0 is an ultrafilter. Thus we obtain a map X(Λ1,Λ)v → X(Λ0,Λ)v given
by U �→ U∩A(Λ0,Λ)v. It is easy to check that this is a continuous proper surjection.
It extends to the groupoids as follows. Let ζ ∈ Z(Λ0,Λ)v and U ∈ X(Λ1,Λ)v. Let
U0 = U ∩ A(Λ0,Λ)v. Then the map on groupoids is given by [ζ,U ] �→ [ζ,U0]. It
follows that the regular representation of G(Λ0,Λ) induced from the point mass
at U0 is the restriction of the regular representation of G(Λ1,Λ) induced from the
point mass at U ([25], section 3.1). If G(Λ0,Λ) is amenable, then the norm in
C∗(G(Λ0,Λ)) is determined by these regular representations. Therefore in this
case, the map on C∗-algebras is isometric. �

We next present the simplification occurring when Λ is finitely aligned. In the
next result we will use the following notation. Recall the convention on unions of
functions stated before Lemma 3.3. In a similar way, let {ui : i ∈ I} be a finite
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collection of partial isometries (in a C∗-algebra) whose initial and final projections
form a commuting family. The {ui} determine a partial isometry, with initial
projection

∨
i∈I u

∗
i ui and final projection

∨
i∈I uiu

∗
i , if and only if for all i, j ∈ I,

uiu
∗
juj = uju

∗
i ui. We will write

∨
i∈I ui for the partial isometry so determined if

and only if the {ui} satisfy this condition.

Theorem 6.3. Let Λ be a finitely aligned category of paths, and let G = G(Λ).
The representations of C∗(G) are in one-to-one correspondence with the families
{Tα : α ∈ Λ} of Hilbert space operators satisfying the relations

(1) T ∗
αTα = Ts(α).

(2) TαTβ = Tαβ, if s(α) = r(β).
(3) TαT

∗
αTβT

∗
β =
∨

γ∈α∨β TγT
∗
γ .

Proof. First suppose that we have a representation of C∗(G). By Theorem 6.1
we have a family of Hilbert space operators {Tζ : ζ ∈ Z}. For α ∈ Λ we define
Tα = T(r(α),α). Note that A(r(α), α) = s(α)Λ = A(s(α), s(α)). Then

T ∗
αTα = T ∗

(r(α),α)T(r(α),α) = T(r(α),α)(r(α),α) = T(s(α),s(α)) = Ts(α),

verifying (1). Next, let s(α) = r(β). Then

TαTβ = T(r(α),α)T(r(β),β) = T(r(α),α,r(β),β) = T(r(α),αβ) = Tαβ ,

verifying (2). Finally, let α, β∈Λ. Then TαT
∗
αTβT

∗
β = T(r(α),α)(r(α),α)(r(β),β)(r(β),β).

Note that

ϕ(r(α),α)(r(α),α)(r(β),β)(r(β),β)

= ϕ(r(α),α,α,r(α),r(β),β,β,r(β)) = ασαβσβ

=
⋃

ε∈α∨β

α(σαε)σ(σ
βε)σβ

=
⋃

ε∈α∨β

(ασαε)σ(βσ
βε)

=
⋃

ε∈α∨β

εσε.

Hence

A((r(α), α)(r(α), α)(r(β), β)(r(β), β)) =
⋃

ε∈α∨β

εΛ =
⋃

ε∈α∨β

A(ε, r(ε)).

Therefore T(r(α),α)(r(α),α)(r(β),β)(r(β),β) =
∨

ε∈α∨β TεT
∗
ε , verifying (3).

Conversely, let {Tα : α ∈ Λ} be given satisfying (1), (2) and (3) of the theorem.
For ζ = (α1, β1, . . . , αn, βn) ∈ Z define Tζ = T ∗

α1
Tβ1

· · ·T ∗
αn

Tβn
. Then Theorem

6.1(1) and (2) clearly hold. We will verify Theorem 6.1(3).
We first prove the following claim. If γi, δi, ξj , ηj ∈ Λ are finite collections such

that
⋃

i γiσ
δi =

⋃
j ξjσ

ηj , then
∨

i Tγi
T ∗
δi

=
∨

j TξjT
∗
ηj
. To prove this claim, first

fix i0. Since δi0 is in the domain of
⋃

i γiσ
δi , there exists j0 such that ηj0 ∈ [δi0 ].

Similarly, there is i1 such that δi1 ∈ [ηj0 ]. Therefore δi1 ∈ [δi0 ]. Let δi0 = δi1μ.
Since any two terms of

⋃
i γiσ

δi must agree on the intersection of their domains,
we have

γi0 = γi0σ
δi0 (δi0) = γi1σ

δi1 (δi0) = γi1μ.
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Therefore γi0σ
δi0 = γi1σ

δi1 |μΛ. Thus the i0 term may be deleted from
⋃

i γiσ
δi .

We repeat this process until we have that δi �∈ [δi′ ] for all i �= i′. Moreover, we have
Tγi1

T ∗
δi1

= Tγi0
T ∗
δi0

+ Tγi1
(Ts(γi1

) + TμT
∗
μ )T

∗
δi1

. Therefore Tγi0
T ∗
δi0

can be deleted

from
∨

i Tγi
T ∗
δi
. Repeating this for the other map and operator, we may also assume

that ηj �∈ [ηj′ ] for all j �= j′. Now for each i there is j such that ηj ∈ [δi]. Then
there is i′ such that δi′ ∈ [ηj ]. Hence δi′ ∈ [δi], so we must have δi = δi′ = ηj .
Applying both maps to δi = ηj we find that γi = ξj . Thus the two presentations
of the map are identical, and thus so are the operators. This finishes the proof of
the claim.

Next we claim that if ζ ∈ Z and ϕζ =
⋃

i γiσ
δi is a finite union, then Tζ =∨

i Tγi
T ∗
δi
. We prove this by induction on the length of ζ. First suppose that

ζ = (α, β). Then σαβ =
⋃

ε∈α∨β(σ
αε)σ(σβε). Moreover,

T ∗
αTβ = T ∗

α(TαT
∗
αTβT

∗
β )Tβ =

∨
ε∈α∨β

T ∗
αTεT

∗
ε Tβ =

∨
ε∈α∨β

TσαεT
∗
σβε.

By the previous claim, we know that this doesn’t depend on the decomposition
chosen for ϕζ . Now suppose that the current claim is true for zigzags of length
at most n. Let ζ = (α1, β1, . . . , αn+1, βn+1). Let ζ0 = (α1, β1, . . . , αn, βn). Write
ϕζ0 =

⋃
i γiσ

δi and ϕ(αn+1,βn+1) =
⋃

j μjσ
νj . Then

ϕζ = ϕζ0 ◦ ϕ(αn+1,βn+1) =
⋃
i,j

γiσ
δiμjσ

νj =
⋃
i,j,k

γiξkσ
ηkσνj =

⋃
i,j,k

γiξkσ
νjηk .

Then the inductive hypothesis gives

Tζ = Tζ0T(αn+1,βn+1) =
∨
i,j

Tγi
T ∗
δiTμj

T ∗
νj

=
∨
i,j,k

Tγi
TξkT

∗
ηk
T ∗
νj

=
∨
i,j,k

TγiξkT
∗
νjηk

.

Again, the first claim shows that this is independent of the choice of decomposition
of ϕζ .

It is clear that Theorem 6.1(3) follows from the last claim. Finally, Theorem
6.1(4) also follows from the last claim. �

Remark 6.4. Because of the importance of the finitely aligned case, we formally
present some simple consequences of the relations in Theorem 6.3 (some of these
were used in the proof of the theorem). Let {Tα : α ∈ Λ} be as in the statement of
Theorem 6.3.

(1) From Theorem 6.3(1) we see that Tu is a self-adjoint projection when u ∈
Λ0. Hence Tα is a partial isometry.

(2) From Theorem 6.3(2), letting α = r(β), we see that TβT
∗
β ≤ Tr(β).

(3) From Theorem 6.3(3) we see that TuTv = 0 if u �= v, for u, v ∈ Λ0. It
follows that TαTβ = 0 if s(α) �= r(β).

(4) From Theorem 6.3(3) (or its proof), we see that T ∗
αTβ =

∨
ε∈α∨β TσαεT

∗
σβε.

Thus if the elements of α∨ β are pairwise disjoint, for example, in the case
of a higher-rank graph, we recover formula (iii), Definition 2.5, of [28].

(5) From Theorem 6.3(3) we see that {TαT
∗
α : α ∈ Λ} is commutative.

We end this section with some elementary algebraic consequences of Theorem
6.3. Because distinct minimal common extensions need not be disjoint in general,
the monomials of the form TαT

∗
β do not necessarily span a dense ∗-subalgebra of
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the Toeplitz algebra. However, there is a total set that is not too far from such
monomials.

In the following three results, we assume that Λ is a finitely aligned category of
paths. Let P0 = {TαT

∗
α : α ∈ Λ} and P = {p1 · · · pk : pi ∈ P0, 1 ≤ i ≤ k, k ∈ N}.

Let B = span {TμT
∗
ν q : μ, ν ∈ Λ, q ∈ P}.

Lemma 6.5. For α, β ∈ Λ, T ∗
αTβ ∈ B.

Proof. Let α∨β = {ε1, . . . , εk}. For each i, write εi = αμi = βνi. Let pi = Tνi
T ∗
νi

∈
P0. Then

T ∗
αTβ =

k∨
i=1

Tμi
T ∗
νi

= Tμ1
T ∗
ν1

+ Tμ2
T ∗
ν2
(1− p1) + Tμ3

T ∗
ν3
(1− p1 − p2 + p1p2)

+ · · ·+ Tμk
T ∗
νk

(
1−
∑
i1<k

pi1 +
∑

i1<i2<k

pi1pi2 − · · ·+ (−1)k−1p1p2 · · · pk−1

)
∈ B.

�

Lemma 6.6. Let α ∈ Λ and q ∈ P . Then there is q′ ∈ P such that qT ∗
α = T ∗

αq
′.

Proof. Note that if p = TγT
∗
γ ∈ P0, then Tαp = TαγT

∗
αγTα. Iterating this produces

q′ ∈ P such that Tαq = q′Tα. The lemma follows by taking adjoints. �

Proposition 6.7. B equals the ∗-algebra generated by {Tα : α ∈ Λ}.

Proof. It is clear that B is contained in the ∗-algebra. The ∗-algebra is spanned by
monomials of the form Tα1

T ∗
β1

· · ·Tαk
T ∗
βk
, so it suffices to prove that such monomials

are in B. This is clear for monomials of length one. We consider Tα1
T ∗
β1
Tα2

T ∗
β2
. By

Lemma 6.5 we know that T ∗
β1
Tα2

∈ B. So it is enough to consider Tα1
(TμT

∗
ν q)T

∗
β2
,

with q ∈ P . By Lemma 6.6 we know that there is q′ ∈ P such that qT ∗
β2

= T ∗
β2
q′.

Thus Tα1
(TμT

∗
ν q)T

∗
β2

= Tα1μT
∗
β2ν

q′ ∈ B. Finally, assume inductively that the result
holds for monomials of length less than k. Given Tα1

T ∗
β1

· · ·Tαk
T ∗
βk
, we then know

that Tα2
T ∗
β2

· · ·Tαk
T ∗
βk

∈ B. Therefore it suffices to show that (Tα1
T ∗
β1
)(TμT

∗
ν q) ∈

B. This follows from the case of length two, which was already proved. �

7. The boundary of a finitely aligned category of paths

Our next task is to identify the ultrafilters in the ring Av, for v ∈ Λ0. We have
not carried this out in the general case, so for the rest of the paper (except for the
first part of section 11), we assume that all categories of paths are finitely aligned.

Definition 7.1. Let Λ be a category of paths. A subset C ⊆ Λ is directed if
the partial order it inherits from Λ (Definition 2.5) is directed: for all α, β ∈ C,
αΛ∩βΛ∩C �= ∅. C is hereditary if [γ] ⊆ C whenever γ ∈ C (recall from Definition
2.5 that [γ] is the set of initial segments of γ). A directed set C is finite if it contains
a maximal element; otherwise it is infinite.

Remark 7.2. We note that if C is a directed set, then C̃ =
⋃

α∈C [α] is directed
and hereditary and contains C. We also note that the set of all directed subsets of
Λ, partially ordered by inclusion, satisfies the hypotheses of Zorn’s lemma, so that
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every directed set is contained in a maximal directed set. Any maximal directed
set is necessarily hereditary.

For the next few results we assume that Λ is a countable category. We do not
know if this is necessary (other than for our proofs).

Lemma 7.3. Let Λ be a countable finitely aligned category of paths, and let C be
a directed subset of Λ. Suppose that β ∈ Λ is such that β � α for all α ∈ C. Then

there exists a directed set C̃ containing both C and β.

Proof. Fix α ∈ C. We claim that there exists εα ∈ βΛ ∩ αΛ such that εα � γ for
all γ ∈ C ∩ αΛ. For suppose not. By finite alignment, βΛ ∩ αΛ =

⋃
ε∈β∨α εΛ.

The assumption means that for all ε ∈ β ∨ α, there exists γε ∈ C ∩ αΛ such that
γεΛ∩ εΛ = ∅. Since C is directed there exists γ ∈ C ∩

⋂
ε∈β∨α γεΛ. We have β � γ,

so let η ∈ βΛ ∩ γΛ. Since η ∈ αΛ we have η ∈ βΛ ∩ αΛ, so there is ε ∈ β ∨ α with
η ∈ εΛ. Since η ∈ γΛ ⊆ γεΛ, we have η ∈ γεΛ ∩ εΛ, a contradiction.

Now let C = {ξ1, ξ2, . . .}. Let α1 = ξ1, and choose εα1
as in the previous claim.

Let α2 ∈ α1Λ∩ ξ2Λ∩C. Note that since α1, α2 ∈ C we have α1Λ∩α2Λ∩C �= ∅. If
γ ∈ α1Λ∩α2Λ∩C, then εα1

�γ, and hence εα1
�α2. We now claim that there exists

εα2
as in the previous claim such that εα2

∈ εα1
Λ. Again, suppose not. Then since

εα1
∈ βΛ, we have that for each δ ∈ α2Λ ∩ εα1

Λ, there exists ηδ ∈ C ∩ α2Λ such
that δ ⊥ ηδ. Let η ∈ C ∩

⋂
δ∈α2∨εα1

ηδΛ, which is possible because C is directed.

Now we have

ηΛ ∩ εα1
Λ = ηΛ ∩ α2Λ ∩ εα1

Λ =
⋃

δ∈α2∨εα1

ηΛ ∩ δΛ ⊆
⋃

δ∈α2∨εα1

ηδΛ ∩ δΛ = ∅.

But since η, α1 ∈ C, there is η′ ∈ C ∩ ηΛ ∩ α1Λ. But then εα1
� η′, so εα1

� η, a
contradiction, and the current claim is proved.

Inductively, we let αi ∈ αi−1Λ ∩ ξiΛ ∩ C and choose εαi
(as in the first claim

above) so that εαi
∈ εαi−1

Λ. Then C̃ = C ∪ {εαi
: i ∈ N} ∪ {β} is directed. �

The definitions of filters and ultrafilters were recalled at the beginning of section
4.

Definition 7.4. Let Λ be a finitely aligned category of paths, and let v ∈ Λ0. For
a hereditary directed set C ⊆ vΛ, let

UC,0 = {E ∈ Av : E ⊇ αΛ for some α ∈ C},
UC = {E ∈ Av : E ⊇ C ∩ αΛ for some α ∈ C}.

It is clear that UC,0 and UC are filters in Av and that UC,0 ⊆ UC .

Definition 7.5. Let Λ be a finitely aligned category of paths, and let v ∈ Λ0. We
let vΛ∗ denote the collection of all hereditary directed subsets of vΛ, and vΛ∗∗ the
collection of all maximal directed subsets of vΛ. We write Λ∗ =

⋃
v∈Λ0 vΛ∗ and

Λ∗∗ =
⋃

v∈Λ0 vΛ∗∗.

Theorem 7.6. Let Λ be a countable finitely aligned category of paths, let v ∈ Λ0,
and let C ∈ vΛ∗. Then:

(1) UC,0 is an ultrafilter if and only if C ∈ vΛ∗∗.
(2) UC is an ultrafilter, fixed if and only if C is finite.
(3) Every ultrafilter in Av is of the form UC for a unique C ∈ vΛ∗.
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Proof. (1) (⇒) Let C, C ′ ∈ Λ∗ with C � C ′. Let β ∈ C ′ \ C. If βΛ ∈ UC,0, then
there exists α ∈ C such that βΛ ⊇ αΛ. But then α ∈ βΛ, so that β ∈ C, since C
is hereditary. From this contradiction we see that UC,0 � UC′,0, and hence UC,0 is
not an ultrafilter.

(⇐) Let C ∈ vΛ∗∗. Let E ∈ Ev \ UC,0. Write E = βΛ \
⋃n

i=1 γiΛ with γi ∈ βΛ.
We must find a set in UC,0 disjoint from E. If there exists α ∈ C with α ⊥ β,
then αΛ is such a set. So let us suppose that α � β for all α ∈ C. Then since C is
maximal, Lemma 7.3 implies that β ∈ C. Now suppose that γi �∈ C for all i. Again
by the maximality of C and Lemma 7.3, for each i there is αi ∈ C with αi ⊥ γi.
Let α ∈ C ∩

⋂n
i=1 αiΛ ∩ βΛ. Then α ⊥ γi for all i, so αΛ ⊆ E, contradicting

the assumption that E �∈ UC,0. Therefore there exists i0 such that γi0 ∈ C. Then
γi0Λ ∈ UC,0 and γi0Λ∩E = ∅. Finally, if E ∈ Av with E �∈ UC,0, then E =

⊔p
j=1Ej ,

where Ej ∈ Ev. Since UC,0 is a filter, Ej �∈ UC,0 for all j. By the above, there is
Fj ∈ UC,0 with Ej ∩ Fj = ∅. Then F =

⋂
j Fj ∈ UC,0 and E ∩ F = ∅.

(2) As in the proof of part (1), it suffices to consider E ∈ Ev with E �∈ UC . Write
E = βΛ \

⋃n
i=1 γiΛ with γi ∈ βΛ. If C ∩ βΛ �= ∅, let α ∈ C ∩ βΛ. Then αΛ ⊆ βΛ.

Since E �∈ UC , there is α′ ∈ C ∩ αΛ such that α′ �∈ E. Then there is i such that
α′ ∈ γiΛ. Then α′Λ ⊆ γiΛ ⊆ Ec and α′Λ ∈ UC . Now suppose that C ∩ βΛ = ∅.
Then vΛ \ βΛ ∈ UC and (vΛ \ βΛ) ∩ E = ∅.

If C has a maximal element α0, then {α0} ∈ UC , so that UC is fixed. Conversely,
if UC is fixed there is α0 ∈ vΛ such that {α0} ∈ UC . From the definition of UC it
follows that α0 ∈ C and must be the maximal element of C.

(3) For the uniqueness, let C, C ′ be distinct elements of vΛ∗. Then, say, there
exists α ∈ C \ C ′. Since C ′ is hereditary, C ′ ∩ αΛ = ∅. But then αΛ ∈ UC \ UC′ .

Now let U be an ultrafilter in Av. Let

S = {C ∈ Λ∗ : UC,0 ⊆ U}.

S is partially ordered by inclusion and satisfies the hypotheses of Zorn’s lemma
(note that S �= ∅ since {v} ∈ S). Let C be a maximal element of S. Then C is
hereditary. (Of course, C need not be maximal as a directed set.) Suppose U �= UC .
Let E ∈ U \ UC . We write E =

⊔p
j=1 Ej with Ej ∈ Ev. Since U is an ultrafilter,

one of the Ej is in U . Since UC is a filter, none of the Ej is in UC . Thus we may
assume that E ∈ Ev. Write E = βΛ \

⋃n
i=1 γiΛ with γi ∈ βΛ. Since E ∈ U we have

that βΛ ∈ U . Then βΛ∩αΛ ∈ U , and hence β�α, for all α ∈ C. We give a variant
of the argument in Lemma 7.3. For each α ∈ C,⋃

ε∈β∨α

εΛ = βΛ ∩ αΛ ∈ U .

Thus there exists εα ∈ βΛ ∩ αΛ with εαΛ ∈ U .
Now let C = {ξ1, ξ2, . . .}. Let α1 = ξ1, and choose εα1

∈ βΛ ∩ α1Λ with
εα1

Λ ∈ U . Let α2 ∈ α1Λ ∩ ξ2Λ ∩ C. We claim there exists εα2
∈ εα1

Λ ∩ α2Λ such
that εα2

Λ ∈ U . For suppose not. Then for each δ ∈ α2Λ ∩ εα1
Λ, we have δΛ �∈ U .

By finite alignment we have

α2Λ ∩ εα1
Λ =

⋃
δ∈α2∨εα1

δΛ �∈ U ,

since U is an ultrafilter, contradicting the fact that α2Λ, εα1
Λ ∈ U . This verifies

the claim. Inductively, there are α1, α2, . . . ∈ C and εαi
∈ βΛ∩αiΛ, such that {αi}
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is cofinal in C (in the sense of a directed set), εαi
Λ ∈ U for all i, and εαi+1

∈ εαi
Λ

for all i. Then C ′ = C ∪ {β} ∪ {εα : α ∈ C} is a directed set, and C̃ ′ ∈ S (see

Remark 7.2). By maximality, C̃ ′ = C, so that β ∈ C. Since E �∈ UC there is
η ∈ C ∩ βΛ with η �∈ E. Then η ∈ γiΛ for some i, and hence ηΛ ⊆ γiΛ ⊆ Ec. But
then ∅ = ηΛ ∩E ∈ U , a contradiction. Therefore U = UC . �

By this result we may identify Xv = vΛ∗. In the next theorem we describe the
closure (in Xv) of vΛ

∗∗. The next definition was discovered in [28].

Definition 7.7. Let Λ be a category of paths and v ∈ Λ0. A subset F ⊆ vΛ is
exhaustive (at v) if for every α ∈ vΛ there exists β ∈ F with α � β. F is trivially
exhaustive if v ∈ F . We let FE(v) denote the collection of finite exhaustive sets at
v.

Theorem 7.8. Let Λ be a countable finitely aligned category of paths, and let
C ∈ vΛ∗. Then C is in the closure of vΛ∗∗ if and only if the following condition
holds: for every α ∈ C, there exists α′ ∈ C∩αΛ such that for every finite exhaustive
set F ⊆ s(α′)Λ, we have σα′

C ∩ F �= ∅.

Proof. (⇐) Let E ∈ Av with C ∈ Ê, i.e. E ∈ UC . Writing E as a disjoint union
from Ev, only one of these sets is in UC . Thus we may assume E ∈ Ev. Write
E = βΛ \

⋃n
i=1 γiΛ with γi ∈ βΛ. Let α ∈ C with C ∩ αΛ ⊆ E. By hypothesis

there is α′ ∈ C ∩ αΛ such that for every F ∈ FE
(
s(α′)
)
, we have σα′

C ∩ F �= ∅.
Since C ∩α′Λ ⊆ E, we may replace E by α′Λ \

⋃n
i=1 γiΛ, and we may rewrite it so

that γi ∈ α′Λ.
Now, for each i, γiΛ ⊆ Ec, so γi �∈ C ∩α′Λ; hence σα′

γi �∈ σα′
C. By hypothesis,

{σα′
γ1, . . . , σ

α′
γn} is not exhaustive. Hence there is δ ∈ s(α′)Λ such that δ ⊥ σα′

γi
for all i. Then α′δ ⊥ γi for all i. Let C

′ ∈ vΛ∗∗ with α′δ ∈ C ′. Then γiΛ �∈ UC′ for

all i. But α′Λ ∈ UC′ , so E ∈ UC′ , i.e. C ′ ∈ Ê.
We present a slight sharpening of the forward direction as a sublemma.

Lemma 7.9. Suppose that the condition in the statement of Theorem 7.8 fails.
There are α0 ∈ C and Δ ∈ FE

(
s(α0)

)
such that if we let E = α0Λ \

⋃
δ∈Δ α0δΛ,

then C ∈ Ê ⊆ vΛ∗ \ vΛ∗∗.

Proof. The failure of the condition implies in particular (with α′ = α) that there are
α0 ∈ C and Δ ∈ FE

(
s(α0)

)
such that Δ∩σα0C = ∅. Then α0Δ∩C∩α0Λ = ∅. Let

E = α0Λ\
⋃

δ∈Δ α0δΛ. Then C ∩α0Λ ⊆ E, hence E ∈ UC , hence C ∈ Ê. We claim

that Ê ∩ vΛ∗∗ = ∅, which will finish the proof. For suppose that C ′ ∈ Ê ∩ vΛ∗∗.
Then E ∈ UC′ , so there is ξ ∈ C ′ such that C ′ ∩ ξΛ ⊆ E. Then ξ ∈ E, and
hence ξ ∈ α0Λ. We claim that there exists δ0 ∈ Δ such that σα0η � δ0 for all
η ∈ C ′ ∩ ξΛ. For if not, then for each δ ∈ Δ there is ηδ ∈ C ′ ∩ ξΛ with σα0ηδ ⊥ δ.
Let η ∈ C ′ ∩

⋂
δ∈Δ ηδΛ. Then η ∈ C ′ ∩ ξΛ, and σα0η ∈ σα0ηδΛ for all δ. Therefore

σα0η ⊥ δ for all δ ∈ Δ, contradicting exhaustiveness of Δ. Thus such a δ0 exists.
But then η � α0δ0 for all η ∈ C ′. By Lemma 7.3 we have α0δ0 ∈ C ′, since C ′ is
maximal. Then C ′ ∩ α0δ0Λ ∩ ξΛ �= ∅. But (C ′ ∩ ξΛ) ∩ α0δ0Λ ⊆ E ∩ Ec = ∅, a
contradiction. �

(⇒) (of Theorem 7.8) This follows immediately from Lemma 7.9. �
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Definition 7.10. Let Λ be a countable finitely aligned category of paths. The
boundary of Λ, denoted ∂Λ, is the closure in X of the set Λ∗∗ of maximal directed
sets. We will write v∂Λ for ∂Λ ∩ vΛ∗.

8. Restriction to the boundary

Lemma 8.1. Let Λ be a countable finitely aligned category of paths, v ∈ Λ0, and
Δ ⊆ vΛ a finite set. Then Δ is exhaustive if and only if

v∂Λ ⊆
⋃
α∈Δ

αΛ∗.

Proof. First suppose that v∂Λ �⊆
⋃

α∈Δ αΛ∗. Since each αΛ∗ is a clopen set, there
is C ∈ vΛ∗∗\

⋃
α∈Δ αΛ∗. Then C∩Δ = ∅. Since C is a maximal directed hereditary

set, Lemma 7.3 implies that for each α ∈ Δ there is ηα ∈ C such that ηα ⊥ α. Let
η ∈ C ∩

⋂
α∈Δ ηαΛ. Then η ⊥ Δ. Therefore Δ is not exhaustive.

Now suppose that Δ is not exhaustive. Then there is β ∈ vΛ such that β ⊥ Δ.
Let C ∈ v∂Λ with β ∈ C. We claim that C �∈

⋃
α∈Δ α∂Λ. For otherwise, there is

α ∈ Δ such that C ∈ α∂Λ. Then α ∈ C. Since β ∈ C, it follows that α � β, a
contradiction. �

Theorem 8.2. Let Λ be a countable finitely aligned category of paths. Let G =
G(Λ), and assume that G is amenable. The representations of C∗(G|∂Λ) are in
one-to-one correspondence with the families {Sα : α ∈ Λ} of Hilbert space operators
satisfying the relations

(1) S∗
αSα = Ss(α).

(2) SαSβ = Sαβ, if s(α) = r(β).
(3) SαS

∗
αSβS

∗
β =
∨

γ∈α∨β SγS
∗
γ .

(4) Sv =
∨

β∈F SβS
∗
β if F ∈ FE(v). (Equivalently, 0 =

∏
δ∈F (Sv − SδS

∗
δ ).)

Proof. Suppose that {Sα} satisfy (1) – (4). By (1) – (3) and Theorem 6.3, there is
a unique representation π : C∗(G) → B(H) with π

(
χ[α,s(α),Xs(α)]

)
= Sα. We claim

that π|C0(∂Λc) = 0. Let C ∈ vΛ∗ \ v∂Λ. Let α0, Δ and E be as in Lemma 7.9.
Then

π(χE) = Sα0
S∗
α0

−
∨
δ∈Δ

Sα0δS
∗
α0δ = Sα0

(
Ss(α0) −

∨
δ∈Δ

SδS
∗
δ

)
S∗
α0

= 0,

by (4). Thus π
∣∣
C0(∂Λc)

= 0. By amenability, and II.4.5 of [29], π factors through

C∗(G
∣∣
∂Λ

).

Conversely, let π be a representation of C∗(G
∣∣
∂Λ

). Let Sα = π
(
χ[α,s(α),Xs(α)]

)
.

Composing π with the quotient map gives a representation of C∗(G), so (1) – (3)
hold. We prove (4). Let v ∈ Λ0 and F ∈ FE(v). Let E = vΛ \

⋃
β∈F βΛ. Lemma

8.1 implies that Ê∩v∂Λ = ∅. Thus π(χE) = 0. But π(χE) = Sv −
∨

β∈F SβS
∗
β . �

Definition 8.3. Let Λ be a countable finitely aligned category of paths, and let
G = G(Λ). We denote by T C∗(Λ) the C∗-algebra C∗(G), and by C∗(Λ) the algebra
C∗(G|∂Λ).

Remark 8.4. If Λ is a (finitely aligned) higher-rank graph, then the elements of
α∨ β are pairwise disjont. In this case, the join of projections in Theorem 8.2(3) is
a sum. Thus we recover the generators and relations obtained in [28].
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We next describe a family of examples arising from ordered groups. If this is
applied to a free group, with the order determined by the usual presentation, the
result is the well-known Morita equivalence between the Cuntz algebra On and
the crossed product algebra associated to the action of the group on the boundary
of its directed Cayley graph (this boundary can also be viewed as an unstable
equivalence class of the Bernoulli shift; see [10]). A more complicated example,
that of the Baumslag-Solitar groups, is worked out in [33].

Example 8.5. Let Y be a countable group, and let Λ be a submonoid of Y such
that Λ∩Λ−1 = {e}. Then (Y,Λ) is an ordered group. We note that this assumption
implies that Λ has no inverses. Since cancellation follows from the group law, it
follows that Λ is a category of paths.

Nica studied this situation in the special case that he termed a quasi-lattice order
([23]). We generalize this definition as follows.

Definition 8.6. The ordered group (Y,Λ) is finitely aligned if for every finite set
D ⊆ Y there is a finite set F ⊆

⋂
t∈D tΛ such that

⋂
t∈D tΛ =

⋃
u∈F uΛ.

Remark 8.7. As in [23], it is easy to see that finite alignment can be checked two
elements at a time: if it holds whenever D contains two elements, then it holds for
all finite D. Moreover, it is enough to verify when one of the two elements is the
identity e.

Remark 8.8. Nica’s definition of a quasi-lattice ordered group is the special case of
a finitely aligned ordered group in which the set F of Definition 8.6 can always be
taken to have cardinality one or zero. Note also that if (Y,Λ) is finitely aligned,
then, in particular, Λ is a finitely aligned category of paths. The converse is not
true, even if minimal common extensions in Λ are unique (Example 8.18).

Nica considers the following construction, which he calls theWiener-Hopf algebra
of the ordered group. Let π� be the left regular representation of Y on �2(Y ), let
H = �2(Λ) ⊆ �2(Y ), and let P be the projection of �2(Y ) onto H. For t ∈ Y let
St = Pπ�(t)|H . (Then St �= 0 if and only if t ∈ ΛΛ−1.) Note that Sα is an isometry
if α ∈ Λ. The Wiener-Hopf algebra is defined by W (Y,Λ) = C∗{St : t ∈ Y }. Nica
shows that W (Y,Λ) = C∗({Sα : α ∈ Λ}

)
if (Y,Λ) is quasi-lattice ordered (and

hence that the Wiener-Hopf algebra is generated by isometries). We next show
how this idea fits into the finitely aligned situation.

Lemma 8.9. Let (Y,Λ) be an ordered group. Suppose that Λ is a finitely aligned
category of paths. Then W (Y,Λ) = C∗({Sα : α ∈ Λ}

)
if and only if (Y,Λ) is finitely

aligned.

Proof. First suppose that (Y,Λ) is finitely aligned. Let t ∈ Γ with St �= 0. Then
t ∈ ΛΛ−1. There are α1, . . ., αn ∈ Λ such that tΛ∩Λ =

⋃n
i=1 αiΛ. For each i there

is βi ∈ Λ such that αi = tβi. Then St =
∨n

i=1 Sαi
S∗
βi
.

For the converse, let t ∈ ΛΛ−1. Our assumption implies that there is x in the
∗-algebra generated by {Sα : α ∈ Λ} with ‖St − x‖ < 1. By Proposition 6.7 we
may write x =

∑n
i=1 ciSαi

S∗
βi
qi with αi, βi ∈ Λ and qi ∈ P (where P is as in

the remarks before Lemma 6.5). Let F = {αi : t = αiβ
−1
i }. We will show that

tΛ ∩ Λ = FΛ. Let γ ∈ tΛ ∩ Λ. Then there is δ ∈ Λ such that tδ = γ. Letting
{eμ : μ ∈ Λ} be the standard orthonormal basis for �2(Λ), we have Steδ = eγ . Then
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〈xeδ, eγ〉 �= 0. Thus there is i such that 〈Sαi
S∗
βi
qieδ, eγ〉 �= 0. Since qieδ �= 0 if and

only if qieδ = eδ, we have S∗
βi
eδ �= 0. Then we must have δ = βiμ for some μ ∈ Λ.

Then Sαi
S∗
βi
eδ = eαiμ. It then follows that αiμ = γ. But then αiβ

−1
i = γδ−1 = t.

Then αi ∈ F , and hence γ ∈ FΛ. �

We next consider the construction of the boundary of (Γ,Λ). Our motivation for
this is as follows. Let us suppose that Y is generated as a group by Λ. Let A ⊆ Λ be
a subset that generates Λ as a monoid. The Cayley graph of Y with respect to the
generating set A can be identified with a subset of Y ×Λ: the vertices are Y × {e}
and the (oriented) edges are Y ×A. Then Y ×Λ can be identified with the directed
paths in the Cayley graph. The “infinite path space at t” can be identified with
{t} × ∂Λ. In order to obtain what we wish to consider as the directed boundary of
the Cayley graph, we have to make some identifications. (Note that the following
does not require a choice of generating subset A and the consequent interpretation
of the Cayley graph.)

We first assume only that Λ is finitely aligned as a category of paths. (We will
see in a moment what additional hypothesis is necessary.) Let Z = Y × Λ. We
make Z into a category by defining Z0 = Y × {e}, s(t, α) = (tα, e), r(t, α) = (t, e),
and (t, α)(tα, β) = (t, αβ). It is clear that Z is also a category of paths. We note
that (t, α) � (t′, α′) if and only if there are β, β′ ∈ Λ such that (t, αβ) = (t′, α′β′),
hence if and only if t = t′ and α � α′. Thus Z is finitely aligned if and only if Λ is
as well. It is clear that ∂Z = Y ×∂Λ. We note that Y acts on Z by automorphisms
via left-multiplication in the first coordinate (and hence also by homeomorphisms
of ∂Z).

For the rest of this section, we will interpret elements of the boundary of a
category of paths as directed hereditary subsets of the category.

Lemma 8.10. Let the relation ∼ on ∂Z be defined by (t, x) ∼ (t′, x′) if there exist
α, α′ ∈ Λ and y ∈ ∂Λ such that x = αy, x′ = α′y, and tα = t′α′. Then ∼ is an
equivalence relation. Moreover, the quotient topology on ∂Z/ ∼ is locally compact.

Proof. It is clear that ∼ is reflexive and symmetric. Transitivity is proved much as
in the proof of Lemma 4.13: let (t, x) ∼ (t′, x′) and (t′, x′) ∼ (t′′, x′′). Then there
are α, α′, β′, β′′ ∈ Λ and y, z ∈ ∂Λ such that x = αy, x′ = α′y, tα = t′α′, x′ = β′z,
x′′ = β′′z, and t′β′ = t′′β′′. Since α′y = β′z, Lemma 4.12 implies that there are γ′,
δ′ ∈ Λ and w ∈ ∂Λ such that y = γ′w, z = δ′w, and α′γ′ = β′δ′. Then x = αγ′w,
x′′ = β′′δ′w, and tαγ′ = t′α′γ′ = t′β′δ′ = t′′β′′δ′. Thus (t, x) ∼ (t′′, x′′).

To show that ∂Z/ ∼ is locally compact, we must show that the quotient map is
open ([34], Theorem 18.5). For this we show that the saturation of a basic open

set in ∂Z is open. Let E ∈ A(Λ) be such that Ê ∩ ∂Λ �= ∅, and let t ∈ Y .

Then {t} × Ê ∩ ∂Λ is a basic open set in ∂Z. Suppose that (s, x) ∼ (t, y) for

some y ∈ Ê ∩ ∂Λ. Then there are α, β ∈ Λ and z ∈ ∂Λ such that x = αz,
y = βz and sα = tβ. Thinking of elements of ∂Λ as directed hereditary subsets

of Λ, we have from y = βz that β ∈ y, and from y ∈ Ê that E contains all
sufficiently large elements of y. Hence there is ε ∈ y ∩ βΛ ∩ E. Let δ = ασβ(ε).
Then s = tβα−1 = tεδ−1 and x = ασβ(y) = δσε(y). Conversely, if ε ∈ E and
s(δ) = s(ε), and if y ∈ (εΛ ∩ E)∧ ∩ ∂Λ, then (tεδ−1, δσε(y)) ∼ (t, y). Thus the
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saturation of {t} × Ê ∩ ∂Λ equals⋃
ε∈E

⋃
δ∈Λs(ε)

{tεδ−1} × δσε(Ê) ∩ ∂Λ,

an open subset of ∂Z. �

We need an additional hypothesis in order to obtain a Hausdorff quotient space.

Definition 8.11. The ordered group (Y,Λ) is locally finitely exhaustible if for each
t ∈ Y there is a finite set F ⊆ tΛ ∩Λ, such that for each α ∈ tΛ∩Λ there is μ ∈ F
with α � μ.

Remark 8.12. It is clear that if (Y,Λ) is finitely aligned, then it is locally finitely
exhaustible.

Theorem 8.13. Let (Y,Λ) be a countable ordered group such that Λ is finitely
aligned as a category of paths. The following are equivalent:

(1) ∂Z/ ∼ is Hausdorff.
(2) For each t ∈ Y , there is a finite set F ⊆ tΛ∩Λ such that (tΛ∩Λ)∂Λ = F∂Λ.
(3) (Y,Λ) is locally finitely exhaustible.

Proof. (1) =⇒ (2): We prove the contrapositive. Suppose that there is t ∈ Y such
that for each finite set F ⊆ tΛ∩Λ there are α ∈ tΛ∩Λ and z ∈ ∂Λ such that αz �∈
F∂Λ. Let tΛ ∩ Λ = {α1, α2, . . .}. Let βn = t−1αn ∈ Λ. Then (t, βnz) ∼ (e, αnz)
for each z ∈ ∂Λ. By assumption, for each n there is mn > n and zn ∈ ∂Λ such
that αmn

zn �∈
⋃n

j=1 αj∂Λ. Since ∂Λ is compact, we may pass to a subsequence

so as to assume that αmn
zn → x and βmn

zn → y. We claim that (t, y) �∼ (e, x).
For otherwise, there is k such that x = αkz and y = βkz, for some z ∈ ∂Λ. We
have αmn

zn → αkz ∈ αk∂Λ. This means that eventually αmn
zn ∈ αk∂Λ, and

hence that αk ∈ αmn
zn (thought of as a directed hereditary subset of Λ). But then

αmn
zn = αkσ

αk(αmn
zn) ∈ αk∂Λ eventually, contradicting our choice of mn and

zn. Since (t, βmn
zn) ∼ (e, αmn

zn), we see that ∼ is not closed, and hence ∂Z/ ∼ is
not Hausdorff ([34], Theorem 13.12).

(2) =⇒ (1): Let (si, xi) → (s, x) and (ti, yi) → (t, y), and assume that (si, xi) ∼
(ti, yi). Passing to a subsequence, we may assume that si = s and ti = t for all
i. Let αi, βi ∈ Λ and zi ∈ ∂Λ be such that sαi = tβi, xi = αizi, and yi = βizi.
Let F ⊆ (s−1t)Λ ∩ Λ be as in (2). Since αi ∈ s−1tΛ ∩ Λ, there is μi ∈ F such
that xi = αizi ∈ μi∂Λ. Let αizi = μiwi. There is νi ∈ Λ such that s−1tνi = μi

or sμi = tνi. Then βizi = t−1sαizi = t−1sμiwi = νiwi. Passing to a subsequence,
we may assume that μi = μ ∈ F for all i. We now have xi = μwi → x and
yi = νwi → y. Since μ∂Λ is a clopen set, it must contain x, and hence μ ∈ x.
Similarly, ν ∈ y. Then σμx = limi σ

μxi = limi wi = limi σ
νyi = σνy. Denoting this

common value by z, we have sμ = tν, x = μz, and y = νz. Therefore (s, x) ∼ (t, y).
Thus ∼ is closed, and so ∂Z/ ∼ is Hausdorff.

(2) =⇒ (3): Let t ∈ Y , and choose F as in (2). Now let α ∈ tΛ ∩ Λ. Choose
any x ∈ ∂Λ. There are μ ∈ F and z ∈ ∂Λ such that αx = μz. But then α � μ.
Therefore F satisfies Definition 8.11 for t.

(3) =⇒ (2): Let t ∈ Y . Let F ⊆ tΛ∩Λ be as in Definition 8.11. Let α ∈ tΛ∩Λ.
First let x ∈ Λ∗∗. For each γ ∈ αx there is μγ ∈ F such that γ � μγ . Let (γn) be
a cofinal sequence in αx. Passing to a subsequence, we may assume that (μγn

) is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5802 JACK SPIELBERG

constant, equal to μ ∈ F . Then μ � γ for all γ ∈ αx. Since αx is maximal, Lemma
7.3 implies that μ ∈ αx. But then αx ∈ μ∂Λ ⊆ F∂Λ. Thus αΛ∗∗ ⊆ F∂Λ. Since F
is finite, F∂Λ is closed, so that α∂Λ ⊆ F∂Λ. �

Definition 8.14. Let (Y,Λ) be a locally finitely exhaustible ordered group, and
suppose that Λ is finitely aligned as a category of paths. We denote by ∂(Y,Λ) the
(locally compact Hausdorff) quotient space ∂Z/ ∼ and call it the directed boundary
of Y (with respect to Λ) or the boundary of (Y,Λ).

We note that left-multiplication by Y in the first coordinate of ∂Z preserves ∼,
as well as the basic open sets of ∂(Y,Λ) given in the proof of Lemma 8.10. Thus
Y acts by homeomorphisms of ∂(Y,Λ). Let T = ({e} × ∂Λ)/ ∼, a compact-open
subset of ∂(Y,Λ).

Lemma 8.15. (1) The quotient map is one-to-one from {e} × ∂Λ onto T .
(2) T meets every orbit of the action of Y .

Proof. (1) If (e, x) ∼ (e, y), then there are α, β ∈ Λ and z ∈ ∂Λ such that x = αz,
y = βz, and eα = eβ. Then α = β and x = y.

(2) This is clear. �

Theorem 8.16. Let (Y,Λ) be a locally finitely exhaustible ordered group such that
Λ is a finitely aligned category of paths. Let Y × ∂(Y,Λ) denote the transforma-
tion groupoid associated with the action of Y on ∂(Y,Λ). Then Y × ∂(Y,Λ)

∣∣
T

is

isomorphic to G(Λ)|∂Λ.

Proof. We define a map G(Λ)|∂Λ → Y × ∂(Y,Λ)
∣∣
T

by [α, β, x] �→ (αβ−1, [e, βx])

(where we use square brackets to denote the equivalence classes relative to ∼). To
see that the map is one-to-one, suppose that (αβ−1, [e, βx]) = (γδ−1, [e, δy]). Then
αβ−1 = γδ−1 and (e, βx) ∼ (e, δy) in Y ×∂Λ. By Lemma 8.15(1) we have βx = δy,
so Lemma 4.12 gives μ, ν ∈ Λ and z ∈ ∂Λ such that x = μz, y = νz, and βμ = δν.
Then αμ = αβ−1βμ = γδ−1δν = γν. Thus (α, β, x) ∼ (γ, δ, y). To see that the
map is onto, let (t, [e, x]) ∈ Y × ∂(Y,Λ)|T . Then [t, x] ∈ T , so (t, x) ∼ (e, y) for
some y ∈ ∂Λ. Hence there are ξ, η ∈ Λ and w ∈ ∂Λ such that x = ξw, y = ηw, and
tξ = eη. Thus (t, [e, x]) = (ηξ−1, [e, ξw]) is the image of [η, ξ, w]. Continuity of the
map is clear. Since there is a basis of compact-open sets, it is a homeomorphism.
It is routine to check that the map is a homomorphism. �

Corollary 8.17. Let Y and Λ be as in the theorem. Then C∗(Λ) is Morita equiv-
alent to the crossed product algebra C0(∂(Y,Λ))× Y .

Proof. This follows from Theorem 8.16 and [22]. �

In the case where (Y,Λ) is quasi-lattice ordered, C∗(Λ) equals the boundary
quotient of [8]. Thus we give a locally compact space with an action of Y , rather
than a compact space with a partial action, having the crossed product Morita
equivalent to the boundary quotient.

Example 8.18. We give some examples. The details are routine and are omitted.

(1) Let Γ = 〈a, b, c | ac = ca, bc = cb〉, and let Λ be the submonoid generated
by {acn, bcn, cm : n ∈ Z,m ∈ N}. (Γ = Z2 ∗A Z2, where A = {0} × Z, with
the product order determined by the lexicographic order on Z2.) Then
Λ is finitely aligned, with unique minimal common extensions, and (Γ,Λ)
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is locally finitely exhaustible, but not finitely aligned. (Γ is right-angled
Artinian, but Λ is not the submonoid considered in [8].)

(2) Let Γ = 〈a, b, c1, c2, . . . | −〉, and let Λ be the submonoid generated by
{an, bn, cn+1 : n ∈ N}, where a0 = a and an = ac−1

1 · · · c−1
n for n > 0, and

similarly for bn. Then Λ is finitely aligned, with unique minimal common
extensions, but (Γ,Λ) is not locally finitely exhaustible.

(3) Let c, d ∈ Z+ with c > 1, let Γ = 〈a, b | abc = b−da〉, and let Λ be the
submonoid generated by a and b. Then Λ is finitely aligned, with unique
minimal common extensions, and (Γ,Λ) is locally finitely exhaustible, but
not finitely aligned. (This example is treated in detail in [33].)

9. Gauge actions

Definition 9.1. Let Λ be a category of paths. Set

H(Λ) = Cc(Λ,Z)/〈eα + eβ − eαβ : s(α) = r(β), α, β ∈ Λ〉,

and let θ ≡ θΛ : Λ → H(Λ) be defined by θ(α) = [eα].

Thus H(Λ) is an abelian group, θ is a homomorphism, and if ψ : Λ → Q is
any homomorphism from Λ to an abelian group Q, then there exists a unique
homomorphism making the following diagram commute:

Q

Λ H(Λ)

∃!

θ

ψ

We think of such a homomorphism ψ as a generalized degree functor, and θ as the
maximal degree functor. In general, H(Λ) might be the trivial group. However, if
H(Λ) is large it may provide a useful decomposition of G(Λ). A weak restriction
in this direction is the following.

Definition 9.2. Let Λ be a category of paths, and let ψ be a generalized degree
functor on Λ. We call ψ nondegenerate if ψ(α) �= 0 for α �∈ Λ0.

Let (Λ0,Λ) be a relative category of paths, and let ψ : Λ0 → Q be a generalized
degree functor. We wish to define a cocycle cψ : G(Λ0,Λ) → Q by

cψ([ζ, x]) =

n∑
i=1

ψ(βi)− ψ(αi),

where ζ = (α1, β1, . . . , αn, βn). To see that cψ is well defined, let (ζ, x) ∼ (ζ ′, x′).
Then x = x′ and Φζ equals Φζ′ near x. There is ξ ∈ Z such that A(ξ) ⊆ A(ζ)∩A(ζ ′),

x ∈ Â(ξ), and Φζ , Φζ′ agree on Â(ξ). Write x = μz, where μ ∈ A(ξ) and z ∈ Xs(μ).
Then μ ∈ A(ζ) ∩ A(ζ ′) and Φζ |μXs(μ)

= Φζ′ |μXs(μ)
. Moreover, Φζ(μy) = ϕζ(μ)y

and Φζ′(μy) = ϕζ′(μ)y for all y ∈ Xs(μ). Let y correspond to the fixed ultrafilter
at s(μ). Then we find that ϕζ(μ) = ϕζ′(μ). Let ζ = (α1, β1, . . . , αn, βn). Define
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μ0 = μ, and μi+1 = σαn−iβn−i · · ·σαnβn(μ) for 0 ≤ i < n. Then μn = ϕζ(μ) and
σαn−iβn−i(μi) = μi+1. Thus βn−iμi = αn−iμi+1, so

n∑
i=1

ψ(βi)− ψ(αi) =
n−1∑
i=0

ψ(μi+1)− ψ(μi) = ψ(ϕζ(μ))− ψ(μ).

Hence if ζ ′ = (γ1, δ1, . . . , γm, δm), then
m∑
j=1

ψ(δj)− ψ(γj) = ψ(ϕζ′(μ))− ψ(μ) = ψ(ϕζ(μ))− ψ(μ) =
n∑

i=1

ψ(βi)− ψ(αi).

It is clear that cψ is a homomorphism, and since it is constant on the compact

open set [ζ, Â(ζ)], it is continuous. The cocycle cψ induces an action γ ≡ γψ of the

compact abelian group Q̂ on C∗(G) in the usual way:

γz(f)([ζ, x]) = 〈z, cψ([ζ, x])〉f([ζ, x]),

for f ∈ Cc(G), z ∈ Q̂. We call γψ the (generalized) gauge action defined by ψ,
and γθΛ the maximal gauge action. In the usual way, γψ can be used to define a
conditional expectation Eψ from C∗(G) to the fixed-point algebra C∗(G)γψ . One
of the most important uses of the gauge action has been to prove the nuclearity of
C∗(G) and the coincidence of the full and reduced C∗-algebras. We give a sketch
of this argument, which is by now more-or-less standard.

Proposition 9.3. Let G be a Hausdorff étale groupoid, Q a countable abelian group,
and c : G → Q a continuous homomorphism. Let Gc = c−1(0), also a Hausdorff
étale groupoid. Suppose that Gc is amenable. Then C∗(G) is nuclear and G is
amenable.

Proof. As above, we have the action γ of Q̂ on C∗(G). A standard argument
using the expectation of C∗(G) onto the fixed-point algebra C∗(G)γ shows that

C∗(G)γ = Cc(Gc)
‖·‖C∗(G)

. We claim that ‖f‖C∗(Gc) = ‖f‖C∗(G) for f ∈ Cc(G
c),

which implies that C∗(G)γ = C∗(Gc).
To see this, first note that for v ∈ G0,

IndGv
∣∣
Cc(Gc)

= IndGcv ⊕ π,

for some representation π of Cc(G
c), where IndGv is the representation of Cc(G)

induced from the point mass at v (see [25], page 107). Thus

‖f‖C∗(Gc) = ‖f‖C∗
r (G

c), since Gc is amenable

= sup
v∈(Gc)0

∥∥IndGcv(f)
∥∥, by [25], Proposition 3.1.2

≤ sup
v∈G0

∥∥IndGv(f)∥∥ ≤ ‖f‖C∗(G).

Since ‖ · ‖C∗(Gc) is the maximal C∗-norm on Cc(G
c), it follows that ‖f‖C∗(Gc) =

‖f‖C∗(G). Thus the fixed-point algebra C∗(G)γ = C∗(Gc) is nuclear. This is also
the fixed-point algebra of the discrete coaction of Q dual to γ. By [26], Corollary
2.17, it follows that C∗(G) is nuclear. Then G is amenable by [2], Corollary 6.2.4(ii).

�

In some situations, this result is obtained more explicitly. For example, when
Λ is a higher-rank graph, the usual degree functor d : Λ → Nk has the unique
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factorization property, which may be expressed in the following form: if 0 ≤ n ≤
d(α), then there exists a unique β ∈ [α] with d(β) = n. In [28] (proof of Theorem
3.1) it is proved that the fixed-point algebra for the degree functor on a finitely
aligned higher-rank graph is AF. The key step is Lemma 3.2 of [28]. We will give
sufficient conditions on a finitely aligned category of paths for an analogous result to
hold. While these seem to be far from necessary, they apply to many examples with
degree functors that do not have the unique factorization property. In particular,
our conditions allow the possibility that there may be many factorizations of a path
into pieces of given degrees. The fact that the fixed-point algebra is AF is a key step
in the proof that the C∗-algebra of a finitely aligned higher-rank graph is nuclear
([30], Proposition 8.1). Our conditions allow us to prove this for categories of paths
(see Theorem 9.8; we work at the level of the groupoid).

Lemma 9.4. Let Λ be a countable finitely aligned category of paths, and let ψ :
Λ → Q be a nondegenerate degree functor. Suppose that ψ has the following two
properties:

(1) If E ⊆ Λ is infinite, and if ψ(α) = ψ(β) for all α, β ∈ E, then there is a
finite subset F ⊆ E such that

∨
F = ∅.

(2) For every finite subset S ⊆ ψ(Λ) there is a finite subset T ⊆ ψ(Λ) with
S ⊆ T such that for any finite set E ⊆ Λ, if ψ(E) ⊆ T , then ψ(∨E) ⊆ T .

Let E ⊆ Λ be a finite set, and let c ∈ Λ∗ be a directed hereditary subset of Λ. Let

P =
{
βnσ

αn · · ·β1σ
α1 : n ∈ N, αi, βi ∈ E, ψ(αi) = ψ(βi) for i = 1, . . . , n

}
.

Then there exists ω ∈ c such that for any ζ ∈ P , if c ∈ dom(ζ), then ω ∈ dom(ζ),
and the set {

ζ(ω) : ζ ∈ P and ω ∈ dom(ζ)
}

is finite.

We briefly describe the significance of the conditions in the lemma and of the
statement of the lemma. Condition (1) implies that a directed subset of Λ (e.g. an
element of Λ∗) cannot contain infinitely many paths of the same degree. Condition
(2) provides a bound on the “size” of the minimal common extensions of a set
of paths in terms of their degrees. Finally, the purpose of the lemma is to show
that the fixed point subgroupoid of G(Λ), consisting of elements of the form [α, β, x]
for which ψ(α) = ψ(β), is approximately finite ([29], III.1.1); see Theorem 9.8.
(The elements of P are zigzag maps, though a vertex is missing from each end
of the corresponding zigzags. We refer to them with the letter ζ instead of ϕ for
convenience.)

Proof. Let S = ψ(E), and let T be as in condition (2). Let F = {γ ∈ c : ψ(γ) ∈
T}. Every finite subset of c has an upper bound in c. Hence for any t ∈ T ,
{γ ∈ c : ψ(γ) = t} is finite, by condition (1). Since T is finite, it follows that
F =

⋃
t∈T {γ ∈ c : ψ(γ) = t} is finite. Let ω ∈ c be an upper bound for F , with

ω ∈ F .
For i ≥ 1 let αi, βi ∈ E be such that ψ(αi) = ψ(βi) and such that βnσ

αn · · ·
β1σ

α1(c) is defined for all n. We will construct elements

αj
i , for i ≥ 1, j ≥ 0,

βj
i , for i ≥ 1, i > j ≥ 0,

γi, for i ≥ 0
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such that

αj
iβ

j+1
i+j = βj

i+j−1α
j+1
i−1 ∈ αj

i ∨ βj
i+j−1, for i > 1 and j ≥ 0.(∗)

αi
1γi = γi−1 for i > 0, α1γ0 = ω. (Hence also ω = α1α

1
1 · · ·αi

1γi.)(∗∗)
The construction is illustrated in Figure 5.

α1

α1
1

α2
1

α3
1

α2

α1
2

α2
2

α3

α1
3 α4

β4β1
4β2

4β3
4

β3β1
3β2

3

β2β1
2

β1

ω

γ0

γ1

γ2

γ3
σω(c)

Figure 5

Figure 6 gives a sketch of a typical square in the diagram (i > 1). Its location

is described as follows. Any square containing the edge αj
i has its bottom edge

i + j − 1 units from the bottom of the diagram (measured vertically from r(α1)).
Any square containing the edge βq

p has its left edge p−q−1 units from the leftmost
vertical line of the diagram (measured horizontally from s(β1)).

αj+1
i−1 αj

i

βj
i+j−1

βj+1
i+j

Figure 6

The construction proceeds inductively on n ≥ 1, where after stage n we have
constructed αj

i with i + j ≤ n, βj
i with i ≤ n, and γi with i ≤ n − 1. (Thus it is

stage 4 that is pictured in Figure 5.) When n = 1, we have just α1 and β1. Since c
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is in the domain of β1σ
α1 , then α1 ∈ c. Since ψ(α1) ∈ T , there exists γ0 such that

ω = α1γ0.
Now suppose that stage n of the induction has been completed. By the com-

mutativity of the squares and triangles constructed thus far, two paths having the
same source and range must be equal. Therefore we may indicate the path μ by
the ordered pair

(
r(μ), s(μ)

)
. We base the inductive step on three claims. (These

claims use only condition (∗) of the construction.)

Claim 1. For k + � ≤ p+ q ≤ n and k − 1 ≥ p, we have(
r(α�

k), s(α
q
p)
)
∈
(
r(α�

k), r(β
q
p+q)
)
∨
(
r(β�

k+�−1), r(α
q
p)
)
.

The situation of Claim 1 is illustrated in Figure 7.

αq
p αq−1

p+1

βq
p+q

βq−1
p+q−1

α�
kα�+1

k−1

β�+1
k+�

β�
k+�−1

Figure 7

The two constituent paths may be decomposed as follows:(
r(α�

k), r(β
q
p+q)
)
=
(
r(α�

k), r(α
q−1
p+1)
)
αq−1
p+1,(

r(α�
k), r(α

q
p)
)
=
(
r(α�

k), r(β
q−1
p+q−1)

)
βq−1
p+q−1.

Since r(αq−1
p+1) = r(βq−1

p+q−1), the claim is equivalent to asserting that

αq−1
p+1β

q
p+q = βq−1

p+q−1α
q
p ∈ αq−1

p+1 ∨ βq−1
p+q−1,

which is part of the inductive hypothesis.

Claim 2. For j < i ≤ n we have

βiβ
1
i · · ·β

j
i = βiσ

αiβi−1σ
αi−1 · · ·βi−jσ

αi−j (αi−jα
1
i−j · · ·α

j
i−j).

We prove this by induction on j. If j = 0, then we have βi = βiσ
αi(αi) whenever

1 ≤ i ≤ n. Suppose inductively that the claim is true for j and all i such that
j < i ≤ n. Let j + 1 < i ≤ n. Then

βiβ
1
i · · ·β

j+1
i = βiσ

αi · · ·βi−jσ
αi−j (αi−j · · ·αj

i−jβ
j+1
i )

= βiσ
αi · · ·βi−jσ

αi−j (βi−j−1α
1
i−j−1 · · ·α

j+1
i−j−1)

= βiσ
αi · · ·βi−jσ

αi−jβi−j−1σ
αi−j−1(αi−j−1α

1
i−j−1 · · ·α

j+1
i−j−1).
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Claim 3. For i+ j ≤ n,

ψ(αiα
1
i · · ·α

j
i ) ∈ T,

ψ(βiβ
1
i · · ·β

j
i ) ∈ T.

We again prove this by induction on j. When j = 0 the claim follows from the fact
that αi, βi ∈ E. Suppose the claim is true for j, and for all i such that i + j ≤ n.
Let i+ j + 1 ≤ n. We have

βiα
1
i · · ·α

j+1
i = αi+1α

1
i+1 · · ·α

j
i+1β

j+1
i+j+1

∈ βiα
1
i · · ·α

j
i ∨ αi+1α

1
i+1 · · ·α

j
i+1,

by Claim 1. Since the latter two paths have degrees in T by the inductive hypothesis
(and since ψ(βi) = ψ(αi)), so do their minimal common extensions, by the definition

of T . Then since ψ(βi) = ψ(αi) we have that ψ(αiα
1
i · · ·α

j+1
i ) ∈ T . By Claim 2, we

know that βiβ
1
i · · ·β

j+1
i = βiσ

αi · · ·βi−j−1σ
αi−j−1(αi−j−1α

1
i−j−1 · · ·α

j+1
i−j−1). Since

the maps β�σ
α� preserve degree, the claim is proved.

We now return to the inductive step in the construction. By Claim 2 we have

βnβ
1
n · · ·βn−1

n γn−1 = βnσ
αn · · ·β1σ

α1(α1α
1
1 · · ·αn−1

1 )γn−1

= βnσ
αn · · ·β1σ

α1(ω).

We know that

αn+1 ∈ βnσ
αn · · ·β1σ

α1(c) = βnσ
αn · · ·β1σ

α1(ω)σω(c) = βnβ
1
n · · ·βn−1

n γn−1σ
ω(c),

by assumption. Thus there exists

αn+1β
1
n+1 = βnα

1
n ∈ (αn+1 ∨ βn) ∩ βnβ

1
n · · ·βn−1

n γn−1σ
ω(c).

Thus α1
n ∈ β1

n · · ·βn−1
n γn−1σ

ω(c). Thus there exists

α1
nβ

2
n+1 = β1

nα
2
n−1 ∈ (α1

n ∨ β1
n) ∩ β1

n · · ·βn−1
n γn−1σ

ω(c).

Inductively, we construct the squares

α�
n+1−�β

�+1
n+1 = β�

nα
�+1
n−� ∈ (α�

n+1−� ∨ β�
n) ∩ β�

n · · ·βn−1
n γn−1σ

ω(c)

for 0 ≤ � ≤ n−1. From the case � = n−1 we have that αn
1 ∈ γn−1σ

ω(c). Therefore

α1α
1
1 · · ·αn

1 ∈ α1α
1
1 · · ·αn−1

1 γn−1σ
ω(c) = c.

By Claim 3 we know that ψ(α1 · · ·αn
1 ) ∈ T , so that ω ∈ α1 · · ·αn

1Λ. Therefore there
exists γn such that ω = α1 · · ·αn

1γn. In particular, γn−1 = αn
1γn. This finishes the

construction of the diagram.
We now finish the proof of the lemma. Note that it is possible (and in fact is the

case) that some of the elements we have constructed are reduced to vertices. For
the rest of the proof, we will use the term path to mean a path in Λ given by the
composition of some of the αj

i and βj
i in the above diagram. By the length of such

a path we will mean the number of these elements used that are not vertices. Let
E0 = E ∪ s(E) and, recursively, for i > 0,

E0
i =

⋃
α,β∈Ei−1

σα(α ∨ β),

Ei = E0
i ∪ s(E0

i ).

Note that Ei consists of all α
j
i , β

j
i , and their sources, that can arise in the diagram.

We claim that for δ ∈ Ej \ Ej−1, there is a path μ of length at least j such that
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s(μ) = r(δ). We prove this by induction on j. When j = 0 there is nothing to
prove. Suppose that the claim is true for j−1. Let δ ∈ Ej \Ej−1. First let δ ∈ E0

j .
Then there are α, β ∈ Ej−1 with αδ ∈ α ∨ β. Since δ �∈ Ej−1 we may assume that
α �∈ Ej−2 or β �∈ Ej−2. Either way, there is a path μ of length at least j − 1 such
that s(μ) = r(α) (= r(β)). If α �∈ Λ0, then μα is a path of length at least j with
s(μα) = r(δ). If α ∈ Λ0, then δ = β ∈ Ej−1, a contradiction. Next, an element of
s(E0

j ) is of the form s(δ), for δ ∈ E0
j . If μ is as above for δ, then μδ does the job

for s(δ). This finishes the proof of the claim.

It follows from Claims 1 and 3 that ψ(αj
i ), ψ(β

j
i ), ψ(γi) ∈ T − T for all i and j.

Let U = (T−T )∩ψ(Λ)\{e}. Then U is a finite set. Since ψ is nondegenerate, there
exists N such that for any n > N and any u1, . . ., un ∈ U we have u1+ · · ·+un �∈ T .
It follows that EN = EN−1. We note that all Ej are finite sets: this is clearly true
for j = 0 and follows inductively for j by the finite alignment of Λ. It now follows
that the diagram contains only finitely many paths. Since for all n there is a path
μ such that βnσ

αn · · ·β1σ
α1(c) = μσω(c), the lemma is proved. �

We will use the notation Gψ for the “fixed point groupoid”: Gψ = {g ∈ G :
cψ(g) = 0}. Lemma 9.4 implies that Gψ is “locally finite”. However it does not
guarantee that Gψ has trivial isotropy, which is necessary in order to have an AF
groupoid. The following definition characterizes trivial isotropy in a manner slightly
more intrinsic than the property itself.

Definition 9.5. Let Λ be a countable finitely aligned category of paths, and let
ψ be a nondegenerate degree functor on Λ. We say that ψ is nonisotropic if the
following condition holds. Whenever αi, βi ∈ Λ for i ∈ N are such that

(1) αiαi+1 = βiβi+1 for i ∈ N,
(2) ψ(α1) = ψ(β1),

then α1 = β1.

Remark 9.6. It follows from (1) and (2) that ψ(αi) = ψ(βi) for all i. If in addition
α1 = β1, then αi = βi for all i, by left-cancellation.

Lemma 9.7. Let Λ be a countable finitely aligned category of paths, and let ψ be a
nondegenerate degree functor on Λ. Then Gψ has trivial isotropy if and only if ψ
is nonisotropic.

Proof. First we assume that Gψ has nontrivial isotropy. Let [β1, α1, x] be a non-
trivial element of Gψ

x . Thus α1x = β1x, ψ(α1) = ψ(β1), and α1 �= β1. Then there
are α2, β2 ∈ Λ such that α1α2 = β1β2 ∈ α1x. But then α2, β2 ∈ x. Since x is
directed, there are α3, β3 ∈ Λ such that α2α3 = β2β3 ∈ x. Now we have

σα2x = σα1α2α1x = σβ1β2β1x = σβ2x.

Then since α3, β3 ∈ σα2x, there are α4, β4 ∈ Λ such that α3α4 = β3β4 ∈ σα2x.
Continuing this process inductively, we see that ψ is not nonisotropic.

Conversely, suppose that ψ is not nonisotropic. Let αi, βi satisfy (1) and
(2) of Definition 9.5 with α1 �= β1. Let x =

⋃
n≥2[α2 · · ·αn]. Then x ∈ Λ∗.

We claim that α1x = β1x. First note that since αiαi+1 = βiβi+1 for all i, we
have that α1 · · ·αn = β1 · · ·βn whenever n is even, while for odd n we have that
α1 · · ·αn−1βn = β1 · · ·βn = β1α2 · · ·αn. Now let γ ∈ β1x. Then there are δ ∈ Λ
and n ∈ N such that γδ = β1α2 · · ·αn. If n is even, we may replace δ by δαn+1;
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thus we may assume that n is odd. Hence

γδβn+1 = β1α2 · · ·αnβn+1 = α1 · · ·αn−1βnβn+1 = α1 · · ·αn+1.

It follows that γ ∈ α1x. By symmetry we have that α1x = β1x. Thus [β1, α1, x] is
a nontrivial element of the isotropy of Gψ. �

Theorem 9.8. Let Λ be a countable finitely aligned category of paths, and let ψ be
a nondegenerate nonisotropic degree functor on Λ satisfying properties (1) and (2)
of Lemma 9.4. Then Gψ is an AF groupoid.

Proof. Let Λ = {λ1, λ2, . . .} be an enumeration of the elements of Λ. Put En =
{λ1, . . . , λn} and Pn =

{
βjσ

αj · · ·β1σ
α1 : j ∈ N, αi, βi ∈ En, ψ(αi) = ψ(βi)

for 1 ≤ i ≤ j
}
. For x ∈ X let ωn(x) be as in Lemma 9.4 for En and x. Let

Fn(x) =
{
ζ
(
ωn(x)

)
: ζ ∈ Pn

}
, and let Zn(x) =

⋃
μ∈Fn(x)

μXs(ωn(x)). Then Fn(x)

is a finite set by Lemma 9.4; hence Zn(x) is a compact-open subset of X and
x ∈ Zn(x). By compactness of X we may choose x1, . . ., xm ∈ X such that
X =

⋃m
i=1 Zn(xi).

Note that since ψ is nonisotropic, if μ1, μ2 ∈ Fn(x) are such that μ1x = μ2x,
then μ1 = μ2. Lemma 9.4 implies that if ζ ∈ Pn and μ ∈ Fn(x) are such that
ζ(μ) = μ, then ζ|μXs(ωn(x))

= id. Thus if K ⊆ Xs(ωn(x)) is any compact-open

subset, then the subgroupoid of Gψ given by
{
[ζ, μy] : ζ ∈ Pn, μ ∈ Fn(x), y ∈ K

}
is

elementary, equal to the Cartesian product of a finite groupoid with the space K.
Let Li = Xs(ωn(xi)) for 1 ≤ i ≤ n. Set K1 = L1, and put Y1 =

⋃
μ∈Fn(x1)

μK1 =

Zn(x1). For ν ∈ Fn(x2), we have that νL2 \Y1 ⊆ νXs(ν) is a compact-open subset.
Therefore there is a compact-open set K2 ⊆ L2 such that νL2 \ Y1 = νK2. In fact,
the set K2 doesn’t depend on the choice of ν ∈ Fn(x2): if ν′ ∈ Fn(x2), then since
Y1 is invariant under the maps in Pn, we have that

ν′K2 = ν′σν(νK2) = ν′σν(νL2 \ Y1) = ν′σν(νL2) \ Y1 = ν′L2 \ Y1.

We now put Y2 =
⋃

μ∈Fn(x2)
μK2 ⊆ Zn(x2). Again, Y2 is invariant under Pn, so we

may define K3 ⊆ L3 by choosing any ν ∈ Fn(x3) and setting νL3 \ (Y1∪Y2) = νK3.
Continuing this process, we obtain compact-open sets Ki ⊆ Xs(ωn(xi)) and Yi =⋃

μ∈Fn(xi)
μKi ⊆ Zn(xi), for 1 ≤ i ≤ m. Then X =

⊔m
i=1 Yi. Let Hi =

{
[ζ, μy] :

ζ ∈ Pn, μ ∈ Fn(xi), y ∈ Ki

}
. Then Hi is an elementary groupoid with unit space

H0
i = Yi, hence Hi ∩ Hj = ∅ for i �= j. We claim that Gn :=

⋃m
i=1 Hi =

{
[ζ, x] :

ζ ∈ Pn, x ∈ X
}
. To see this, let x ∈ X. Then x ∈ Zn(xi0) for some i0. We

may assume that i0 is minimal with this property. Then x ∈ μXs(ωn(xi0
)) for some

μ ∈ Fn(xi0). Since x �∈ Zn(xi) for i < i0, x �∈ νKi for any i < i0 and ν ∈ Fn(xi).
Therefore x ∈ H0

i0
.

Finally, it is clear that Gn ⊆ Gn+1 and that Gψ =
⋃∞

n=1 Gn. Therefore Gψ is
AF. �

Remark 9.9. In the case that there is a degree functor taking values in an ordered
abelian group and satisfying the unique factorization property, then all hypotheses
of Theorem 9.8 are satisfied. (For an example, see [11].)

10. Aperiodicity

Throughout this section, Λ will be a countable finitely aligned category of paths.
Note that right-cancellation in Λ is crucial for the results of this section.
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Definition 10.1. A point x ∈ ∂Λ is aperiodic (or left-aperiodic) if for all α, β ∈ x
with α �= β we have σα(x) �= σβ(x).

Lemma 10.2. If x is aperiodic, then so are μx and σν(x) for all μ ∈ Λr(x) and
ν ∈ x.

Proof. The fact that σν(x) is aperiodic follows from the definition. Let μ ∈ Λr(x),
and let α, β ∈ μx. Then there are α′, β′ ∈ Λ, and γ, δ ∈ x such that αα′ = μγ and
ββ′ = μδ. Since γ, δ ∈ x we have γ � δ. Let γγ′ = δδ′ ∈ x. Then

(10.1) αα′γ′ = μγγ′ = μδδ′ = ββ′δ′.

Hence
σα(μx) = σα(μγγ′σγγ′

(x)) = α′γ′σγγ′
(x),

and similarly, σβ(μx) = β′δ′σδδ′(x). Thus if σα(μx) = σβ(μx), then α′γ′z = β′δ′z,

where z = σγγ′
(x). Since z is aperiodic by the other part of the lemma, we have

α′γ′ = β′δ′. Then by equation (10.1) we have

αβ′δ′ = αα′γ′ = ββ′δ′,

and hence α = β (by right-cancellation). �
The importance of aperiodicity is illustrated by the following proposition.

Proposition 10.3. Let x ∈ ∂Λ. G has trivial isotropy at x if and only if x is
aperiodic.

Proof. First suppose that G has trivial isotropy at x. Let α, β ∈ x with σα(x) =
σβ(x) = y. Then [α, β, y] ∈ G(x), the isotropy subgroup of G at x. Since G(x) =
{x} by assumption, we have [α, β, y] = [e, e, x]. From Definition 4.14 there are
z ∈ ∂Λ and γ, δ ∈ Λ such that y = γz, x = δz, αγ = eδ, and βγ = eδ. But then
αγ = βγ, and hence α = β (by right-cancellation).

Next suppose that x is aperiodic. Let [α, β, y] ∈ G(x). Then αy = βy = x,
so σα(x) = y = σβ(x). The aperiodicity implies that α = β. Thus [α, β, y] =
[e, e, αy] = [e, e, x]. Hence G(x) = {x}. �

Recall that a Hausdorff étale groupoid is topologically free (or essentially free in
[4]) if the set of units having trivial isotropy is dense in the unit space ([3], [1]).

Proposition 10.4. G|∂Λ is topologically free if and only if for every v ∈ Λ0 there
is an aperiodic point in v∂Λ.

Proof. We will use Proposition 10.3. If G|∂Λ is topologically free, then the aperiodic
points are dense in ∂Λ. Since v∂Λ is an open set, it contains an aperiodic point.
Conversely, suppose that the condition in the statement holds. Let U ⊆ ∂Λ be a
nonempty open set. Let y ∈ U ∩ Λ∗∗. Since {γ∂Λ : γ ∈ y} is a neighborhood base
at y, there is γ ∈ y such that γ∂Λ ⊆ U . By hypothesis there is an aperiodic point
x ∈ s(γ)∂Λ. Then γx is aperiodic, by Lemma 10.2, and γx ∈ γ∂Λ ⊆ U . �

Aperiodicity with respect to rightward shifts is not as useful as (left-) aperiod-
icity; for example, if v ∈ Λ0 is a sink, i.e. if Λv = {v}, then there are no rightward
shifts on elements of v∂Λ. Nevertheless, it will be convenient to have some results
about the two kinds of aperiodicity.

Definition 10.5. A point x ∈ ∂Λ is right-aperiodic if for all α, β in Λr(x) with
α �= β, we have αx �= βx.
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Lemma 10.6. Let x ∈ ∂Λ. Then x is aperiodic if and only if σμ(x) is right-
aperiodic for all μ ∈ x.

Proof. First we show that aperiodicity of x implies right-aperiodicity of x. For this,
suppose that x is not right-aperiodic. Then there are α �= β with αx = βx. Let
αα′ = ββ′ ∈ αx. Then

α′ = σα(αα′) ∈ σα(αx) = x,

β′ = σβ(ββ′) ∈ σβ(βx) = x.

Since α �= β then α′ �= β′. But

σα′
(x) = σαα′

(αx) = σββ′
(βx) = σβ′

(x).

Therefore x is not aperiodic. Now, by Lemma 10.2 we see that if x is aperiodic and
μ ∈ x, then σμx is aperiodic, and hence σμx is right-aperiodic.

For the converse, let x not be aperiodic. Then there are α �= β in x such that
σα(x) = σβ(x). Let γ = αα′ = ββ′ ∈ x. Then

α′σγ(x) = σα(x) = σβ(x) = β′σγ(x).

Therefore σγ(x) is not right-aperiodic. �

Lemma 10.7. G|∂Λ is topologically free if and only if for all α �= β in Λ there is
x ∈ s(α)∂Λ such that αx �= βx.

Proof. First suppose that G|∂Λ is topologically free, and let α �= β in Λ. By
Proposition 10.4 there is an aperiodic point x ∈ s(α)∂Λ. By Lemma 10.6, x is right-
aperiodic, and hence αx �= βx. Conversely, suppose that G|∂Λ is not topologically
free. Then there is a nonempty open set U ⊆ ∂Λ containing no aperiodic points.
For α �= β in Λ let

D{α,β} = {x ∈ U : α, β ∈ x and σα(x) = σβ(x)}.
Then D{α,β} is a relatively closed subset of U , and U =

⋃
{D{α,β} : α, β ∈ Λ, α �=

β}. Since U is a Baire space there are α �= β such that W = int(D{α,β}) �= ∅. Then
σα|W = σβ |W . As in the proof of Proposition 10.4, we may replace W by a set of
the form γ∂Λ. Further, we may choose γ ∈ αΛ ∩ βΛ. Thus γ = αα′ = ββ′. Then
for x ∈ W we have

α′σγ(x) = σα(x) = σβ(x) = β′σγ(x).

Thus α′y = β′y for all y ∈ s(γ)∂Λ. �

We now give a “local” criterion for aperiodicity, in that it refers only to elements
of Λ. This generalizes a recent result of Lewin and Sims ([21]).

Definition 10.8. Let α, β ∈ Λ with α �= β, s(α) = s(β), and r(α) = r(β). We say
that Λ has {α, β}-periodicity if for all γ ∈ s(α)Λ we have αγ � βγ. We say that Λ
is aperiodic if Λ does not have {α, β}-periodicity for any α and β.

Lemma 10.9. Λ has {α, β}-periodicity if and only if αx = βx for all x ∈ s(α)∂Λ.

Proof. First suppose that αx = βx for all x ∈ s(α)∂Λ. Let γ ∈ s(α)Λ. Choose
x ∈ γ∂Λ; then γ ∈ x. Then αγ ∈ αx, βγ ∈ βx, and αx = βx. Hence αγ � βγ.

Conversely, suppose that there is x ∈ s(α)∂Λ with αx �= βx. Since {y ∈ s(α)∂Λ :
αy �= βy} is an open set, we may assume that x ∈ s(α)Λ∗∗. Since αx and βx are
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maximal, Lemma 7.3 gives γ1, γ2 ∈ x such that αγ1 ⊥ βγ2. Let γ
′
1 and γ′

2 be such
that γ = γ1γ

′
1 = γ2γ

′
2 ∈ x. Then αγ ⊥ βγ. �

Theorem 10.10. G|∂Λ is topologically free if and only if Λ is aperiodic.

Proof. The theorem follows from Lemmas 10.7 and 10.9. �
Remark 10.11. Λ is aperiodic if and only if the following holds: for all α �= β in Λ
there is γ ∈ s(α)Λ such that αγ ⊥ βγ.

We now give analogs of the usual “uniqueness” theorems in the subject. The
next two results rely on the characterization of C∗(Λ) by generators and relations
given in Theorem 8.2.

Theorem 10.12 (Cuntz-Krieger uniqueness theorem). Let Λ be a countable finitely
aligned category of paths with amenable groupoid. Suppose that Λ is aperiodic. Let
π be a ∗-homomorphism from C∗(Λ) into a C∗-algebra. If π(Sv) �= 0 for all v ∈ Λ0,
then π is faithful.

Proof. Since G|∂Λ is topologically free, ideals in C∗(Λ) are determined by their
intersection with C0(∂Λ) (the argument in [3] works for Hausdorff étale groupoids;
see also [15]). Since every nonempty open set in ∂Λ contains a set of the form
∂Λ ∩ γΛ for some γ, and π(SγS

∗
γ) �= 0 since π(Ss(γ)) �= 0, we see that π|C0(∂Λ) is

faithful. Therefore π must be faithful. �
Theorem 10.13 (Gauge-invariant uniqueness theorem). Let Λ be a countable
finitely aligned category of paths, and let ψ : Λ → Q be a nondegenerate non-
isotropic degree functor satisfying the conditions (1) and (2) of Lemma 9.4. Let

γ = γψ be the associated gauge action of Q̂ on C∗(Λ). Let π be a ∗-homomorpism

from C∗(Λ) to a C∗-algebra B, and suppose that there is an action δ of Q̂ on B
such that π is equivariant for γ and δ. If π(Sv) �= 0 for all v ∈ Λ0, then π is
faithful.

Proof. As in the proof of Theorem 10.12, we find that π|C0(∂Λ) is faithful. G
γ is an

AF groupoid, by Theorem 9.8, and ∂Λ is the unit space of Gγ . Thus the injectivity
of π|C0(∂Λ) implies that π is faithful on C∗(Gγ) = C∗(Λ)γ . By the equivariance

of π it follows that π(C∗(Λ)γ) = π(C∗(Λ))δ. Now the usual argument using the

faithful conditional expectations defined by the two actions of Q̂ shows that π is
faithful. �

We now characterize those Λ for which the groupoid G|∂Λ is minimal (this is a
version of cofinality for a category of paths; see [21], Definition 3.3).

Theorem 10.14. G|∂Λ is minimal if and only if for every pair u, v ∈ Λ0 there
exists F ∈ FE(v) such that for each α ∈ F , we have uΛs(α) �= ∅.
Proof. First suppose that the condition in the statement holds, let x ∈ ∂Λ, and let
U ⊆ ∂Λ be open. Choose γ ∈ Λ such that γ∂Λ ⊆ U (as in the proof of Proposition
10.4). Let u = s(γ). By Theorem 7.8 there is μ ∈ x such that for all F ∈ FE(s(μ))
we have μF ∩x �= ∅. Let v = s(μ) and choose F ∈ FE(v) such that for each α ∈ F ,
we have uΛs(α) �= ∅. Let α ∈ F with μα ∈ x. By the assumed condition there is
β ∈ uΛs(α). Then g = [γβ, μα, σμα(x)] ∈ G|∂Λ satisfies s(g) = x and r(g) ∈ U .

Next suppose that G|∂Λ is minimal. Let u, v ∈ Λ0. If x ∈ v∂Λ, then there is
[α, β, y] ∈ G|∂Λ with αy = x and βy ∈ u∂Λ (i.e. with r(β) = u). Thus for each
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x ∈ v∂Λ there exists α(x) ∈ x such that uΛs(α(x)) �= ∅. Then {α(x)∂Λ : x ∈ v∂Λ}
is an open cover of v∂Λ. By compactness there are x1, . . ., xn ∈ v∂Λ such that
{α(xi)∂Λ : 1 ≤ i ≤ n} is a cover. We claim that {α(xi) : 1 ≤ i ≤ n} is exhaustive.
For this, let γ ∈ vΛ. Choose x ∈ v∂Λ with γ ∈ x. Choose i such that x ∈ α(xi)∂Λ.
Then α(xi) ∈ x. Hence γ � α(xi). �

We end this section with a sufficient condition that G|∂Λ be locally contractive.
Unlike the case of a directed graph ([31], Theorem 3.4), we do not know if the
condition is necessary (see also [30], [12]). We adapt some notions from [12].

Definition 10.15. Let Λ be a category of paths. A generalized cycle in Λ is a
pair (μ, ν) ∈ Λ × Λ such that μ �= ν, s(μ) = s(ν), r(μ) = r(ν), and μτ � ν for all
τ ∈ s(μ)Λ.

(A cycle in Λ is a path α �∈ Λ0 such that s(α) = r(α). A cycle α defines a
generalized cycle (α, s(α)). Examples in [12] show that it is possible for a higher-
rank graph to contain generalized cycles, but no cycles.) Lemma 3.2 of [12] gives
two other equivalent descriptions of generalized cycles in higher-rank graphs. Since
their proof cites other work, and the proof for categories of paths is quite simple,
we present it here.

Lemma 10.16. Let μ, ν ∈ Λ with that μ �= ν, s(μ) = s(ν), and r(μ) = r(ν). The
following are equivalent:

(1) (μ, ν) is a generalized cycle.
(2) σμ(μ ∨ ν) is exhaustive.
(3) μ∂Λ ⊆ ν∂Λ.

Proof. (1) =⇒ (2): Let γ ∈ s(μ)Λ. Then μγ � ν, so there are δ, ε such that
μγδ = νε. There is η ∈ μ ∨ ν such that μγδ ∈ ηΛ. Write η = μμ′ = νν′ and
μγδ = ηξ. Then μγδ = ηξ = μμ′ξ, so γδ = μ′ξ. Then μ′ ∈ σμ(μ ∨ ν) and μ′ � γ.

(2) =⇒ (3): Let x ∈ s(μ)∂Λ, x a directed hereditary subset of Λ. Since σμ(μ∨ν)
is exhaustive, there is μ′ ∈ σμ(μ∨ ν)∩x. There is ν′ such that μμ′ = νν′ (∈ μ∨ ν),

so μx = μμ′σμ′
x = νν′σμ′

x ∈ ν∂Λ.
(3) =⇒ (1): Let τ ∈ s(μ)Λ. Let z ∈ s(τ )∂Λ, so τz ∈ s(μ)∂Λ. Then μτz ∈

μ∂Λ ⊆ ν∂Λ, so ν ∈ μτz. Therefore ν � μτ . �

The next definition is adapted from Definition 3.5 of [12].

Definition 10.17. The generalized cycle (μ, ν) has an entrance if there is τ ∈ s(μ)Λ
such that μ ⊥ ντ .

It follows from Lemma 10.16 that (μ, ν) has an entrance if and only if μ∂Λ � ν∂Λ.
We recall that a groupoid is locally contractive if for every nonempty open subset U
of the unit space there exists an open G-set Δ such that s(Δ) ⊆ U and r(Δ) � s(Δ)
([1], [20]).

Theorem 10.18. Let Λ be a countable category of paths. Suppose that for each
v ∈ Λ0 there is a generalized cycle, (μ, ν), having an entrance, such that vΛr(μ) �= ∅
(i.e. every vertex is seen by a generalized cycle having an entrance). Then G|∂Λ is
locally contractive.

Proof. Let U ⊆ ∂Λ be nonempty. Let E ∈ A be such that ∅ �= Ê ∩ ∂Λ ⊆ U .

Then there is C ∈ Λ∗∗ ∩ Ê. By Theorem 7.6(1) there is γ ∈ C such that γΛ ⊆

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUPOIDS AND C∗-ALGEBRAS FOR CATEGORIES OF PATHS 5815

E. By hypothesis there is a generalized cycle, (μ, ν), having an entrance, and
α ∈ s(γ)Λr(μ). Let Δ = [γαμ, γαν, s(μ)∂Λ]. Then Δ is a compact-open G-set,
s(Δ) ⊆ U , and r(Δ) = γαμ∂Λ � γαν∂Λ = s(Δ). �

11. Example: Amalgamation of categories of paths

We give a generalization of the examples termed hybrid graph algebras that
were constructed in [32], Definition 2.1. In particular, these include the obvious
generalizations of those examples, and many others besides. The results of this
section give considerable simplification to those constructions.

Definition 11.1. Let {Λi : i ∈ I} be a collection of categories of paths. Let ∼ be
an equivalence relation on

⋃
i∈I Λ

0
i . Let

L =
{
(α1, α2, . . . , αn) : αj ∈

⋃
i∈I

Λi, s(αj) ∼ r(αj+1), for all j, n ≥ 1
}
.

L admits a partially defined concatenation: L2 =
{(

(α1, . . . , αm), (β1, . . . , βn)
)
:

s(αm) ∼ r(β1)
}
, and then (α1, . . . , αm)(β1, . . . , βn) = (α1, . . . , αm, β1, . . . , βn).

(Thus L is a semigroupoid, in that composition is not everywhere defined and there
are no units.) We define a relation ≈ on L as follows. Let α, β ∈ L. Then α ≈ β
if there are α0, . . ., αn ∈ L such that α0 = α, αn = β, and for each j one of the
following holds:

(1) αj = (μ1, · · · , μk, θ1, · · · , θ�, ν1, · · · , νm), where θ1, . . ., θ� ∈ Λi for some
i ∈ I, and s(θp) = r(θp+1) for all p, and αj+1 = (μ1, · · · , μk, θ, ν1, · · · , νm),
where θ = θ1 · · · θ� in Λi.

(2) As in (1), but with the roles of αj and αj+1 reversed.
(3) αj = (μ1, · · · , μk, w, ν1, · · · , νm), where w ∼ s(μk) (and hence also w ∼

r(ν1)), and αj+1 = (μ1, · · · , μk, ν1, · · · , νm).
(4) As in (3), but with the roles of αj and αj+1 reversed.

It is clear that ≈ is an equivalence relation on L. We note that if α ≈ α′

and β ≈ β′, then (α, β) ∈ L2 implies that (α′, β′) ∈ L2 and αβ ≈ α′β′. Thus
concatenation descends to Λ = L/ ≈. We will show that Λ is a category of paths.
First, let S ⊆

⋃
i∈I Λi be an equivalence class of ∼. It is easy to see that S must also

be an equivalence class of ≈. We define Λ0 =
(⋃

i∈I Λ
0
i

) /
∼. These are the identity

elements for concatenation in Λ. Associativity in Λ follows from associativity in
L. In order to verify the properties of a category of paths, it is helpful to have a
normal form for elements of Λ.

Lemma 11.2. Let α ∈ L. There exists a unique element β ∈ L such that

(1) α ≈ β.
(2) β = (β1, . . . , βm) with

(a) βj �∈
⋃

i∈I Λ
0
i for all j.

(b) s(βj) �= r(βj+1) for all j.

The element β is called the normal form of α.

Proof. For the existence, note that we can obtain β from α by first deleting all
vertices among the entries of α and then concatenating adjacent entries αjαj+1 if
s(αj) = r(αj+1). For the uniqueness, note that if αk are succesive moves as in the
definition of ≈, then the above process of constructing β gives the same result for
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αk as for αk+1. Therefore equivalent elements of L yield the same normal form
under this process. In particular, two normal forms for the same element must be
equal. �

Now suppose that [α][β] = [α][γ] in Λ (where square brackets denote equivalence
classes of ≈). Then αβ ≈ αγ. Let α = (α1, . . . , αm), β = (β1, . . . , βk), and γ =
(γ1, . . . , γn) in normal form. First suppose that s(αm) �= r(β1). Then αβ is in nor-
mal form. If s(αm) = r(γ1), then the normal form of αγ is (α1, . . . , αm−1, αmγ1, γ2,
. . . , γn). Since this equals αβ, we must have αm = αmγ1. By cancellation in the
appropriate Λi we see that γ1 ∈ Λ0

i , contradicting the assumption that γ is in
normal form. Thus s(αm) �= r(γn), and it follows that β = γ. Now suppose that
s(αm) = r(β1). By the previous argument, we must have s(αm) = r(γ1). Then
the same considerations show that αmβ1 = αmγ1 in the appropriate Λi, and hence
that β1 = γ1, k = n, and βj = γj for j > 1. Hence again β = γ. The arguments
for right cancellation and absence of inverses are similar.

Definition 11.3. We refer to Λ constructed as above as an amalgmation of the
collection {Λi}. It depends on the choice of the equivalence relation ∼ on the set
of units of the collection.

We have the following result on common extensions in an amalgamation.

Lemma 11.4. Let α = (α1, . . . , αm) and β = (β1, . . . , βk) be in normal form.
Then [α] � [β] if and only if

(1) in case m �= k, we have αj = βj for j < min{m, k}, and if, e.g., m < k,
then βm ∈ αmΛi, where αm, βm ∈ Λi for some i (i.e. one extends the
other);

(2) in case m = k, we have αj = βj for j < m; αm, βm ∈ Λi for some i; and
αm � βm.

The proof follows easily from the use of normal forms. It follows from this lemma
that Λ is finitely aligned if all of the Λi are finitely aligned.

We conclude with a result implying that an amalgamation of finitely aligned
categories of paths has a degree functor defining an AF core (as in section 9) if each
of the individual categories has one. Thus, in particular, such an amalgamation
has nuclear C∗-algebras. The degree functor we construct will generally be more
complicated than necessary (compare, e.g., with the examples in [32]). We require
a couple of additional hypotheses. First, it is possible that a nondegenerate degree
functor takes inverse values on two paths (for example, if such paths cannot occur
as parts of the same path). Since the amalgamation can allow such paths to be
composed, we have to proscribe such behavior. Second, property (2) of Lemma 9.4
could be violated for an amalgamation if the range of the degree functor admits
divisibility. We replace it with a stronger version. The hypotheses we give are
convenient rather than sharp, but they are easily verified in many examples, such
as an amalgamation of higher-rank graphs.

Theorem 11.5. Let {Λi : i ∈ I} be a collection of finitely aligned categories of
paths, and let Λ be their amalgamation over an equivalance relation on

⋃
i∈I Λ

0
i .

For each i let ψi : Λi → Qi be a nondegenerate nonisotropic degree functor into an
abelian group Qi satisfying property (1) of Lemma 9.4. Suppose additionally that
the range of ψi lies in a positive cone Q+

i ⊆ Qi and also the following stronger
version of property (2) of Lemma 9.4:
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(2′) For every finite subset S ⊆ ψi(Λi) there is a finite subset T ⊆ ψi(Λi) with
S ⊆ T such that for any finite set E ⊆ Λi, if ψi(E) ⊆ T , then
(a) ψ(∨E) ⊆ T .
(b) If α, β ∈ Λi with ψi(αβ) ∈ T , then ψi(α), ψi(β) ∈ T .

Let Q =
⊕

i∈I Qi, and define ψ : Λ → Q by ψ([α1, . . . , αm]) =
∑m

j=1 ψij (αj), where
ij ∈ I is such that αj ∈ Λij . Then ψ is a well-defined nondegenerate nonisotropic
degree functor also satisfying properties (1) and (2) of Lemma 9.4.

Proof. It is clear that the definition of ψ(α) is unchanged when α is modified by
the moves (1) - (4) of Definition 11.1. Thus ψ is well defined, and functoriality
follows easily. Nondegeneracy follows immediately from nondegeneracy of the ψi.
Let us prove that ψ is nonisotropic. Let [α1], [α2], . . ., [β1], [β2], . . . ∈ Λ be such

that [αj ][αj+1] = [βj ][βj+1] for all j, and ψ([α1]) = ψ([β1]). Let αj = (αj
1, . . . , α

j
kj
)

and βj = (βj
1, . . . , β

j
�j
) in normal form. Suppose that α1 �= β1. We may as well

assume that α1
1 �= β1

1 , as otherwise they can be deleted. We claim that k1 = 1. For
suppose that k1 > 1. Then

[α1
1, . . . , α

1
k1
, α2

1, . . . , α
2
k2
] = [α1][α2] = [β1][β2] = [β1

1 , . . . , β
1
�1 , β

2
1 , . . . , β

2
�2 ].

By the uniqueness of the of normal form, we must have �1 = 1, s(β1
1) = r(β2

1), and
α1
1 = β1

1β
2
1 in Λi, for some i ∈ I. But then

ψi(β
1
1) = ψ(β1) = ψ(α1) = ψi(α

1
1) + ψ([α1

2 · · ·α1
k1
])

= ψi(β
1
1β

2
1) + ψ([α1

2 · · ·α1
k1
]) = ψi(β

1
1) + ψi(β

2
1) + ψ([α1

2 · · ·α1
k1
]).

Thus, in particular, ψi(β
2
1) = 0 (here we use the hypothesis that the degree functors

have ranges lying in positive cones). Hence β2
1 is a unit, contradicting the definition

of the normal form of β2. It follows that k1 = 1; similarly we have �1 = 1. Now
by the uniqueness of the normal form (of [α1][α2]) we must have α1 = α1

1 and
β1 = β1

1 in Λi. Since α1
1 �= β1

1 , we must have s(α1
1) = r(α2

1), s(β
1
1) = r(β2

1), and
α1
1α

2
1 = β1

1β
2
1 . Then α2

1 �= β2
1 , by right-cancellation. We may now apply the above

argument to αj , βj for j ≥ 2. We find that α2 = α2
1, β

2 = β2
1 , s(α

2
1) = r(α3

1),
s(β2

1) = r(β3
1), and α2

1α
3
1 = β2

1β
3
1 . Continuing, we find that the entire process

occurs inside of Λi. This contradicts the assumption that ψi is nonisotropic.
Finally, we verify properties (1) and (2) of Lemma 9.4. For (1), let E ⊆ Λ be

infinite such that ψ is constant on E. Suppose that every pair in E has a common
extension. Since ψ is nondegenerate, no element of E can extend another. Thus
by Lemma 11.4, every pair α, β ∈ E has normal forms α = [(α1, . . . , αm, γ)],
β = [(α1, . . . , αm, δ)] such that γ�δ in some Λi. Thus the final terms of the normal
forms of the elements of E give an infinite subset E′ ⊆ Λi such that ψi is constant
on E′. By property (1) of ψi, there is a finite subset F ′ ⊆ E′ with

∨
F ′ = ∅. Then

the corresponding finite set F ⊆ E satisfies
∨
F = ∅. For (2), let S ⊆ ψ(Λ) be

finite. Let πi : Q → Qi be the projection, and let Si = πi(S). Since S is finite,
there are only finitely many i such that Si �= {0}. For such i, choose Ti ⊆ ψi(Qi)
as in (2′). By our hypothesis, we may assume that if t ∈ Ti can be written as
t = t1 + · · ·+ tk with t1, . . ., tk ∈ Q+

i , then t1, . . ., tk ∈ Ti. Let T =
∑

i Ti, a finite
subset of ψ(Q). Let E ⊆ Λ with ψ(E) ⊆ T . If

∨
E �= ∅, we must have that E is

as above, in the proof of (1): there is α ∈ Λ and i ∈ I such that each element of
E is of the form αγ for some γ ∈ Λi, and

∨
E = α ·

∨
{γ : αγ ∈ E}. But then

{ψi(γ) : αγ ∈ E} ⊆ Ti, so that ψi(
∨
E) ⊆ T . �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5818 JACK SPIELBERG

References

[1] Claire Anantharaman-Delaroche, Purely infinite C∗-algebras arising from dynamical systems
(English, with English and French summaries), Bull. Soc. Math. France 125 (1997), no. 2,
199–225. MR1478030 (99i:46051)

[2] C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de
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