Mathematical Surveys and Monographs

Volume 83

Groups and Geometric Analysis

Integral Geometry, Invariant Differential Operators, and Spherical Functions

Sigurdur Helgason

American Mathematical Society

PREFACE	xiii
PREFACE TO THE 2000 PRINTING	xvii
SUGGESTIONS TO THE READER	xix
A Sequel to the Present Volume	xxi

INTRODUCTION

Geometric Fourier Analysis on Spaces of Constant Curvature

Ι.	Harmonic Analysis on Homogeneous Spaces	1
	1. General Problems	1
	2. Notation and Preliminaries	2
2.	The Euclidean Plane R^2	4
	1. Eigenfunctions and Eigenspace Representations	4
	2. A Theorem of Paley-Wiener Type	15
3.		16
	1. Spherical Harmonics	16
	2. Proof of Theorem 2.10	23
4.	The Hyperbolic Plane H^2	29
	1. Non-Euclidean Fourier Analysis. Problems and Results	29
	2. The Spherical Functions and Spherical Transforms	38
	3. The Non-Euclidean Fourier Transform. Proof of the Main Result	.44
	4. Eigenfunctions and Eigenspace Representations. Proofs of	
	Theorems 4.3 and 4.4	58
	5. Limit Theorems	69
	Exercises and Further Results	72
	Notes	78

CHAPTER I

Integral Geometry and Radon Transforms

1.	Inte	tegration on Manifolds								81
	1.	Integration of Forms. Riemannian Measure								81
	2.	Invariant Measures on Coset Spaces								85
	3.	Haar Measure in Canonical Coordinates								96
2.	The	e Radon Transform on R ⁿ								96
	1.	Introduction								96
	2.	The Radon Transform of the Spaces $\mathcal{D}(\mathbf{R}^n)$ and \mathcal{G}	P(I	R ").						
		The Support Theorem	•							97

	3. The Inversion Formulas	110
	4. The Plancherel Formula	115
	5. The Radon Transform of Distributions	117
	6. Integration over d-Planes. X-Ray Transforms	122
	7. Applications	126
	A. Partial Differential Equations	126
	B. Radiography	130
	8. Appendix. Distributions and Riesz Potentials	131
3.	A Duality in Integral Geometry. Generalized Radon Transforms	
	and Orbital Integrals	139
	1. A Duality for Homogeneous Spaces	139
	2. The Radon Transform for the Double Fibration	143
	3. Orbital Integrals	149
4.	The Radon Transform on Two-Point Homogeneous Spaces.	
	The X-Ray Transform	150
	1. Spaces of Constant Curvature	151
	A. The Hyperbolic Space	152
	B. The Spheres and the Elliptic Spaces	161
	2. Compact Two-Point Homogeneous Spaces	164
	3. Noncompact Two-Point Homogeneous Spaces	177
	4. The X-Ray Transform on a Symmetric Space	178
5.	Integral Formulas	180
	1. Integral Formulas Related to the Iwasawa Decomposition	181
	2. Integral Formulas for the Cartan Decomposition	186
	A. The Noncompact Case	186
	B. The Compact Case	187
	C. The Lie Algebra Case	195
	3. Integral Formulas for the Bruhat Decomposition	196
6.	Orbital Integrals	199
	1. Pseudo-Riemannian Manifolds of Constant Curvature	199
	2. Orbital Integrals for the Lorentzian Case	203
	3. Generalized Riesz Potentials	211
	4. Determination of a Function from Its Integrals over Lorentzian Spheres	214
	5. Orbital Integrals on $SL(2, \mathbb{R})$	218
	Exercises and Further Results	221
	Notes	229

CHAPTER II

Invariant Differential Operators

1.	Differentiable Functions on \mathbb{R}^n	233
2.	Differential Operators on Manifolds.	239
	1. Definition. The Spaces $\mathcal{D}(M)$ and $\mathscr{E}(M)$	239
	2. Topology of the Spaces $\mathscr{D}(M)$ and $\mathscr{E}(M)$. Distributions.	239
	3. Effect of Mappings. The Adjoint	241
		242
3.	Geometric Operations on Differential Operators	251
	1. Projections of Differential Operators	251
	2. Transversal Parts and Separation of Variables for Differential Operators	253

3. Radial Parts of a Differential Operator. General Theory	259
	265
	274
1. Introductory Remarks. Examples. Problems	274
	280
3. The Case of a Two-Point Homogeneous Space. The Generalized	
Darboux Equation	287
	289
	289
	295
	309
	312
	315
	318
7. Restriction of the Central Operators in $D(G)$	323
8. Invariant Differential Operators for Complex Semisimple Lie Algebras	326
9. Invariant Differential Operators for $X = G/K$, G Complex	329
Exercises and Further Results	330
Notes	343
	 Examples of Radial Parts. Invariant Differential Operators on Lie Groups and Homogeneous Spaces Introductory Remarks. Examples. Problems The Algebra D(G/H). The Case of a Two-Point Homogeneous Space. The Generalized Darboux Equation Invariant Differential Operators on Symmetric Spaces The Action on Distributions and Commutativity The Connection with Weyl Group Invariants The Polar Coordinate Form of the Laplacian The Laplace-Beltrami Operator for a Symmetric Space of Rank One The Poisson Equation Generalized Afgeirsson's Mean-Value Theorem Generalized Invariant Differential Operators for Complex Semisimple Lie Algebras Invariant Differential Operators for X = G/K, G Complex

CHAPTER III

Invariants and Harmonic Polynomials

1.	Decomposition of the Symmetric Algebra. Harmonic Polynomials	345
2.	Decomposition of the Exterior Algebra. Primitive Forms	354
3.	Invariants for the Weyl Group	356
	1. Symmetric Invariants	356
	2. Harmonic Polynomials	360
	3. The Exterior Invariants	363
	4. Eigenfunctions of Weyl Group Invariant Operators	364
	5. Restriction Properties	366
4.	The Orbit Structure of p	368
	1. Generalities	368
	2. Nilpotent Elements	370
	3. Regular Elements	373
	4. Semisimple Elements	378
	5. Algebro-Geometric Results on the Orbits	380
5.	Harmonic Polynomials on p	380
	Exercises and Further Results	382
	Notes	384

CHAPTER IV

Spherical Functions and Spherical Transforms

1.	Representations															385
	1. Generalities	• •											•			385
	2. Compact Grou	ups									-					390

2.	Spherical Functions: Preliminaries	399
	1. Definition	399
	2. Joint Eigenfunctions	402
	3. Examples	403
3.	Elementary Properties of Spherical Functions.	407
4.	Integral Formulas for Spherical Functions. Connections with Representations	416
	1. The Compact Type	416
	2. The Noncompact Type	417
	3. The Euclidean Type	424
5.	Harish-Chandra's Spherical Function Expansion	425
	1. The General Case	425
	2. The Complex Case	432
6.	The <i>c</i> -Function	434
	1. The Behavior of ϕ_{λ} at ∞	434
	2. The Rank-One Case	436
	3. Properties of $H(\tilde{n})$.	438
	4. Integrals of Nilpotent Groups	439
	5. The Weyl Group Acting on the Root System	441
	6. The Rank-One Reduction. The Product Formula of Gindikin-Karpelević	444
7.	The Paley-Wiener Theorem and the Inversion Formula for the	
	Spherical Transform	448
	I. Normalization of Measures	449
	2. The Image of $\mathcal{D}^{\natural}(G)$ under the Spherical Transform.	
	The Paley-Wiener Theorem.	450
	3. The Inversion Formula	454
8.	The Bounded Spherical Functions.	458
	1. Generalities	458
	2. Convex Hulls	459
	3. Boundary Components	461
9.	The Spherical Transform on p, the Euclidean Type	467
10.	Convexity Theorems	472
	Exercises and Further Results	481
	Notes	491

.

CHAPTER V

Analysis on Compact Symmetric Spaces

1.	Representations of Compact Lie Groups	495
	1. The Weights	496
	2. The Characters	501
2.	Fourier Expansions on Compact Groups.	507
	1. Introduction. $L^1(K)$ versus $L^2(K)$	507
	2. The Circle Group	508
	3. Spectrally Continuous Operators	510
	4. Absolute Convergence	519
	5. Lacunary Fourier Series	522
3.	Fourier Decomposition of a Representation	529
	1. Generalities	529
	2. Applications to Compact Homogeneous Spaces	532

4.	The Case of a Compact Symmetric Space	534
	I. Finite-Dimensional Spherical Representations	534
	2. The Eigenfunctions and the Eigenspace Representations	538
	3. The Rank-One Case	542
	Exercises and Further Results	543
	Notes	548
SOL	UTIONS TO EXERCISES	551
Арр	PENDIX	597
1.	The Finite-Dimensional Representations of $\mathfrak{sl}(2, \mathbb{C})$	597
2.	Representations and Reductive Lie Algebras	600
	1. Semisimple Representations	600
	2. Nilpotent and Semisimple Elements	602
	3. Reductive Lie Algebras	605
3.		607
Som	e Details	611
	LIOGRAPHY	619
	BOLS FREQUENTLY USED	655
	EX	659
	ATA	665
		000

xi