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PREFACE

Through this book, for the first time we represent every finite 

group in the form of a graph. The authors choose to call these 

graphs as identity graph, since the main role in obtaining the 

graph is played by the identity element of the group.  

 This study is innovative because through this description 

one can immediately look at the graph and say the number of 

elements in the group G which are self-inversed. Also study of 

different properties like the subgroups of a group, normal 

subgroups of a group, p-sylow subgroups of a group and 

conjugate elements of a group are carried out using the identity 

graph of the group in this book. Merely for the sake of 

completeness we have defined similar type of graphs for 

algebraic structures like commutative semigroups, loops, 

commutative groupoids and commutative rings. 

 This book has four chapters. Chapter one is introductory in 

nature. The reader is expected to have a good background of 

algebra and graph theory in order to derive maximum 

understanding of this research.

 The second chapter represents groups as graphs. The main 

feature of this chapter is that it contains 93 examples with 

diagrams and 18 theorems. In chapter three we describe 
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commutative semigroups, loops, commutative groupoids and 

commutative rings as special graphs. The final chapter contains 

52 problems. 

 Finally it is an immense pleasure to thank Dr. K. 

Kandasamy for proof-reading and Kama and Meena without 

whose help the book would have been impossibility. 

W.B.VASANTHA KANDASAMY 

FLORENTIN SMARANDACHE
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Chapter One 

INTRODUCTION TO SOME BASIC 

CONCEPTS

This chapter has two sections. In section one; we introduce 

some basic and essential properties about rooted trees. In 

section two we just recall the definitions of some basic algebraic 

structures for which we find special identity graphs.  

1.1 Properties of Rooted Trees  

In this section we give the notion of basic properties of rooted 

tree.

DEFINITION 1.1.1: A tree in which one vertex (called) the root is 

distinguished from all the others is called a rooted tree. 

Example 1.1.1:  

Figure 1.1.1 gives rooted trees with four vertices. 

Figure 1.1.1 
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We would be working with rooted trees of the type.  

We will also call a vertex to be the center of the graph if every 

vertex of the graph has an edge with that vertex; we may have 

more than one center for a graph. 

In case of a complete graph Kn we have n centers.

We have four centers for K4.   

K3 has 3 centers 

a is a center of the graph. 

Figure 1.1.2 

a

Figure 1.1.3 
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For rooted trees the special vertex viz. the root is the center. 

 Cayley showed that every group of order n can be 

represented by a strongly connected digraph of n vertices.  

However we introduce a special identity graph of a group in 

the next chapter. As identity plays a unique role in the graph of 

group we choose to call the graph related with the group as the 

identity graph of the group G. 

 For more about Cayley graph and graphs in general refer 

any standard book on graph theory.  

1.2 Basic Concepts  

 In this section we just recall some basic notions about some 

algebraic structures to make this book a self contained one. 

DEFINITION 1.2.1: A non empty set S on which is defined an 

associative binary operation * is called a semigroup; if for all 

a, b � S, a * b � S. 

Example 1.2.1: Z+ = {1, 2, …} is a semigroup under 

multiplication.  

Example 1.2.2: Let Zn = {0, 1, …, n – 1} is a semigroup under 

multiplication modulo n. n � Z+.

Example 1.2.3: S(2) = {set of all mappings of (1, 2) to itself is a 

semigroup under composition of mappings}. The number of 

elements in S(2) is 22 = 4. 

Example 1.2.4: S(n) = {set of all mappings of (1, 2, 3, …, n) to 

itself is a semigroup under composition of mappings}, called 

the symmetric semigroup. The number of elements in S(n) is nn.

 Now we proceed on to recall the definition of a group. 

DEFINITION 1.2.2: A non empty set G is said to form a group if 

on G is defined an associative binary operation * such that 
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1. a, b � G then a * b � G 

2. There exists an element e � G such that a * e = e * a = 

a for all a � G. 

3. For every a � G there is an element a-1 in G such that  

a * a-1 = a-1 * a = e (existence of inverse in G).  

A group G is called an abelian or commutative if a * b = b * a 

for all a, b, � G. 

Example 1.2.5: Let G = {1, –1}, G is a group under 

multiplication. 

Example 1.2.6: Let G = Z be the set of positive and negative 

integers. G is a abelian group under addition. 

Example 1.2.7: Let Zn = {0, 1, 2, …, n – 1}; Zn is an abelian 

group under addition modulo n. n � N. 

Example 1.2.8: Let G = Zp \ {0} = {1, 2, …, p – 1}, p a prime 

number G = Zp \ {0} is a group under multiplication of even 

order (p � 2) 

Example 1.2.9: Let Sn = {group of all one to one mappings of 

(1, 2, …, n) to itself}; Sn is a group under the composition maps. 

o(Sn) = |n. Sn is called the permutation group or symmetric 

group of degree n.  

Example 1.2.10: Let An be the set of all even permutations. An

is a subgroup of Sn called the alternating subgroup of Sn, o(An) 

= |n/2.

Example 1.2.11: Let D2n = {a, b | a2 = bn = 1; bab = a}; D2n is 

the dihedral group of order 2n. D2n is not abelian (n � N). 

Example 1.2.12: Let G = �g | gn = 1�, G is the cyclic group of 

order n, G = {1, g, g2, …, gn–1}. 

Example 1.2.13: Let G = G1 � G2 � G3 = {(g1, g2, g3) | gi � Gi; 1 

� i � 3} where Gi’s groups 1 � i � 3. G is a group. 
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DEFINITION 1.2.3: Let (G, *) be a group. H a proper subset of 

G. If (H, *) is a group then we call H to be subgroup of G. 

Example 1.2.14: Let Z10 = {0, 1, 2, …, 9} be the group under 

addition modulo 10. H = {0, 2, 4, 6, 8} is a proper subset of Z10

and H is a subgroup of G under addition modulo 10. 

Example 1.2.15: Let D26 = {a, b / a2 = b6 = 1, bab = a} be the 

dihedral group of order 12. H = {1, b, b2, b3, b4, b5} is a 

subgroup of D2.6. Also H1 = {1, ab} is a subgroup of D26.

For more about properties of groups please refer Hall 

Marshall (1961). Now we proceed on to recall the definition of 

the notion of Smarandache semigroups (S-semigroups).  

DEFINITION 1.2.4: Let (Si, o) be a semigroup. Let H be a proper 

subset of S. If (H, o) is a group, then we call (S, o) to be a 

Smarandache semigroup (S-semigroup). 

 We illustrate this situation by some examples. 

Example 1.2.16: Let S(7) = {The mappings of the set (1, 2, 3, 

…, 7) to itself, under the composition of mappings} be the 

semigroup. S7 the set of all one to one maps of (1, 2, 3, …, 7) to 

itself is a group under composition of mappings.  

 Clearly S7 is a subset of S(7). Thus S(7) is a S-semigroup. 

Example 1.2.17: Let Z12 = {0, 1, 2, …, 11} be the semigroup 

under multiplication modulo 12. Take H = {1, 11} � Z12, H is a 

group under multiplication modulo 12. Thus Z12 is a S-

semigroup. 

Example 1.2.18: Let Z15 = {0, 1, 2, …, 14} be the semigroup 

under multiplication modulo 15. Take H = {1, 14} � Z15, H is a 

group. Thus Z15 is a S-semigroup. P = {5, 10} � Z15 is group of 

Z15. So Z15 is a S-semigroup. 



12

DEFINITION 1.2.5: Let G be a non commutative group. For h, g 

� G there exist x �G such that g = x h x-1, then we say g and h 

are conjugate with each other.  

For more about this concept please refer I.N.Herstein (1975). 

 Now we proceed onto define groupoids.  

DEFINITION 1.2.6: Let G be a non empty set. If * be a binary 

operation of G such that for all a, b � G, a * b � G and if in 

general a * (b*c) � (a * b) * c for a, b, c � G. Then we call (G, 

*) to be a groupoid. We say (G, *) is commutative if a*b = b * a 

for all a, b � G. 

Example 1.2.19: Let G be a groupoid given by the following 

table.

* 0 1 2 3 4

0 0 2 4 1 3

1 2 4 1 3 0

2 4 1 3 0 2

3 1 3 0 2 4

4 3 0 2 4 0

 G is a commutative groupoid. 

Note: We say a groupoid G has zero divisors if a * b = 0 for a, b 

� G \ {0} where o � G.

We say if e �G such that a * e = e * a = a for all a � G then we 

call G to be a monoid or a semigroup with identity. If for a � G 

there exists b � G such that a * b = b * a = e then we say a is a 

unit in G. 

Example 1.2.20: Let G = {0, 1, 2, …, 9} define ‘*’ on G by a * 

b = 8a + 4b (mod 10), a, b � G \ {0}. (G, *) is a groupoid.

We can have classes of groupoids built using Zn.



13

Next we proceed onto define loops. 

DEFINITION 1.2.7: A non empty set L is said to form a loop if on 

L is defined a binary non associative operation called the 

product denoted by * such that 

1. For all a, b � L, a * b � L. 

2. There exists an element e � L such that a * e = e * a = 

a for all a � L. e is called the identity element of L. 

3. For every ordered pair (a, b) � L � L there exists a 

unique pair (x, y) � L such that ax = b and ya = b. 

 We give some examples. 

Example 1.2.21: Let L = {e, 1, 2, 3, 4, 5}. The loop using L is 

given by the following table 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 5 4 3 2

2 2 3 e 1 5 4

3 3 5 4 e 2 1

4 4 2 1 5 e 3

5 5 4 3 2 1 e 

Example 1.2.22: Let L = {e, 1, 2, 3, …, 7}. The loop is given 

by the following table. 

* e 1 2 3 4 5 6 7

e e 1 2 3 4 5 6 7

1 1 e 4 7 3 6 2 5

2 2 6 e 5 1 4 7 3

3 3 4 7 e 6 2 5 1

4 4 2 5 1 e 7 3 6

5 5 7 3 6 2 e 1 4

6 6 5 1 4 7 3 e 2

7 7 3 6 2 5 1 4 e 
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 We now proceed onto define a special class of loops. 

DEFINITION 1.2.8: Let Ln(m) = {e, 1, 2, …, n} be a set where n 

> 3, n is odd and m is a positive integer such that (m, n) = 1 

and (m –1, n) = 1 with m < n. Define on Ln(m) a binary 

operation ‘o’ as follows. 

1. e o i = i o e = i for all i � Ln(m)

2. i2 = i o i = e for i � Ln(m)

3. i o j = t where t = (mj – (m – 1)i) (mod n) for all i, j �
Ln(m); i � j; i � e and j � e, then Ln (m) is a loop under 

the operation o. 

We illustrate this by some example. 

Example 1.2.23: Let L7(3) = {e, 1, 2, …, 7} be a loop given by 

the following table. 

o e 1 2 3 4 5 6 7

e e 1 2 3 4 5 6 7

1 1 e 4 7 3 6 2 5

2 2 6 e 5 1 4 7 3

3 3 4 7 e 6 2 5 1

4 4 2 5 1 e 7 3 6

5 5 7 3 6 2 e 1 4

6 6 5 1 4 7 3 e 2

7 7 3 6 2 5 1 4 e 

Example 1.2.24: Let L5 (3) be the loop given by the following 

table.

o e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 4 2 5 3

2 2 4 e 5 3 1

3 3 2 5 e 1 4

4 4 5 3 1 e 2

5 5 3 1 4 2 e 
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 Now we proceed on to recall the definition of rings and S-

rings

DEFINITION 1.2.9: Let (R, +, o) be a nonempty set R with two 

closed binary operations + and o defined on it. 

1. (R, +) is an abelian group. 

2. (R, o) is a semigroup

3. a o (b + c) = a o b + b o c for all a, b, c � R. We call R 

a ring. If (R, o) is a semigroup with identity (i.e., a 

monoid) then we say (R, +, o) is a ring with unit. 

If a o b = b o a for all a, b � R then we say (R, +, o) is a 

commutative ring. 

Example 1.2.25: Let (Z, +, �) is a ring, Z the set of integers. 

Example 1.2.26: (Q, +, �) is a ring, Q the set of rationals. 

Example 1.2.27: Z30 = {0, 1, 2, …, 29} is the ring of integers 

modulo 30.  

We recall the definition of a field. 

DEFINITION 1.2.10: Let (F, +, o) be such that F is a nonempty 

set with 0 and 1. F is a field if the following conditions hold 

good. 

1. (F, +) is an abelian group. 

2. (F \ {0}, o) is an abelian group 

3. a o (b + c) = a o b + a o c and 

(a + b) o c = a o c + b o c 

for all a, b, c � F.

Example 1.2.28: (Q, +, �) is a field, known as the field of 

rationals.

Example 1.2.29: Z5 = {0, 1, 2, 3, 4} is a field, prime finite field 

of characteristic 5. 
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Example  1.2.30:  F = 2

2

Z [x]

Ix x 1 	
 

 is a quotient ring which 

is a finite field of characteristic two.  

 Now we proceed onto recall the definition of a 

Smarandache ring. 

DEFINITION 1.2.11: Let (R, +, o) be a ring we say R is a 

Smarandache ring (S-ring) if R contains a proper subset P such 

that (P, + , o) is a field. 

 We illustrate this situation by some simple examples. 

Example 1.2.31: Let Q [x] be a polynomials ring. Q [x] is a S-

ring for Q � Q [x] is a field. So Q[x] is a S-ring. 

Example 1.2.32: Let

M2�2 = 
a b

a,b,c,d Q
c d

� � �� �
�� �� �

� �� �� �
,

M2�2 is a ring with respect to matrix addition and multiplication. 

But

P = 
a 0

a Q
0 0

� � �� �
�� �� �

� �� �� �

is a proper subset of M2�2 which is a field. Thus M2�2 is a S-ring. 

Example 1.2.33: Let R = Z11 � Z11 � Z11 be the ring with 

component wise addition and multiplication modulo 11. P = Z11

� {0} � {0} is a field contained in R. Hence R is a S-ring. 

It is important to note that in general all rings are not S-rings. 

Example 1.2.34: Z be the ring of integers. Z is not a S-ring. 
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Chapter Two  

GROUPS AS GRAPHS

Here we venture to express groups as graphs. From the structure 

of the graphs try to study the properties of groups. To describe 

the group in terms of a graph we exploit the notion of identity in 

group so we call the graph associated with the group as identity 

graph. We say two elements x, y in the group are adjacent or 

can be joined by an edge if x.y = e (e, identity element of G). 

Since we have in group x.y = y.x = e we need not use the 

property of commutatively. It is by convention every element is 

adjoined with the identity of the group G. If G = {g, 1 | g2 = 1} 

then we represent this by a line as g2 = 1. This is the convention 

we use when trying to represent a group by a graph. The 

vertices corresponds to the elements of the group, hence the 

order of the group G corresponds to the number of vertices in 

the identity graph.  

Example 2.1: Let Z2 = {0, 1} be the group under addition 

modulo 2. The identity graph of Z2 is

1 0

Figure 2.1 
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as 1+1 = 0(mod 2), 0 is the identity of Z2.

Example 2.2: Let Z3 = {0, 1, 2} be the group under addition 

modulo three. The identity graph of Z3 is 

Example 2.3: Let Z4 = {0, 1, 2, 3} be the group under addition 

modulo four. The identity graph of the group Z4 is 

Example 2.4: Let G = �g | g6 = 1� the cyclic group of order 6 

under multiplication. 

 The identity graph of G is  

Example 2.5: Let

S3 = 
1 2 3

e
1 2 3

�  ��
	� � �

� � ��
, 1

1 2 3
p

1 3 2

 �
	 � �
� �

,

1 2

0

Figure 2.2 

1 3

0 2

Figure 2.3 

 g2

1 g 

 g5

 g4

 g3

Figure 2.4 
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2

1 2 3
p

3 2 1

 �
	 � �
� �

, 3

1 2 3
p

2 1 3

 �
	 � �
� �

,

4

1 2 3
p

2 3 1

 �
	 � �
� �

 and 4

1 2 3
p

3 1 2

� ��
	 �� �

�� ��

be the symmetric group of degree three. The identity graph 

associated with S3 is  

 We see the groups S3 and G are groups of order six but the 

identity graphs of S3 and G are not identical. 

Example 2.6: Let D2.3 = {a, b | a2 = b3 = 1; b a b = a} be the 

dihedral group. o(D2.3) = 6.

The identity graph associated with D2.3 is given below. 

We see the identity graph of D2.3 and S3 are identical i.e., one 

and the same. 

1

 p3

Figure 2.5 

 p1  p2

 p5

 p4

1

 b

Figure 2.6 

 a ab

 ab2

 b2
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Example 2.7: Let G = �g | g8 = 1�. The identity graph of the 

cyclic group G is given by 

Example 2.8: Let G = �h | h7 = 1� be the cyclic group of order 7. 

The identity graph of G is 

Example 2.9: Let Z7 = {0, 1, 2, …, 6}, the group of integers 

modulo 7 under addition. The identity graph of Z7 is 

 It is interesting to observe that the identity graph of Z7 and 

G in example 2.8 are identical. 

Example 2.10: Let G = �g | g12 = 1� be the cyclic group of order 

12.

The identity graph of G is 

1

Figure 2.7 

 g2

 g7

 g

 g6

 g3

 g5

 g4

1

Figure 2.8 

 h2

 h6

 h

 h5

 h4

 h3

0

Figure 2.1.9 

6 4 

31

5 2 
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Example 2.11: Let

A4 = 
1 2 3 4

e
1 2 3 4

�  ��
	� � �

� � ��
, 1

1 2 3 4
h

2 1 4 3

 �
	 � �
� �

,

2

1 2 3 4
h

4 3 2 1

 �
	 � �
� �

, 3

1 2 3 4
h

3 4 1 2

 �
	 � �
� �

,

4

1 2 3 4
h

1 3 4 2

 �
	 � �
� �

, 5

1 2 3 4
h

1 4 2 3

 �
	 � �
� �

,

6

1 2 3 4
h

3 2 4 1

 �
	 � �
� �

, 7

1 2 3 4
h

4 2 1 3

 �
	 � �
� �

,

8

1 2 3 4
h

2 4 3 1

 �
	 � �
� �

, 9

1 2 3 4
h

4 1 3 2

 �
	 � �
� �

,

10

1 2 3 4
h

2 3 1 4

 �
	 � �
� �

, 11

1 2 3 4
h

3 1 2 4

� ��
	 �� �

�� ��

be the alternating group of order 12.  

The identity graph associated with A4 is 

 g10

1

Figure 2.10 

 g2

 g9

 g3

 g4

 g8
 g7

 g11

 g5

 g 

 g6
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 It is interesting to observe both A4 and G are of order 12 

same order but the identity graph of both A4 and G are not 

identical.

We now find the identity graph of Z12, the set of integers 

modulo 12. 

Example 2.12: Let Z12 = {0, 1, 2, …, 11} be the group under 

addition modulo 12.  

The identity graph of Z12 is 

We see the identity graph of Z12 and G given in example 2.10 

are identical.

Now we see the identity graph of D2.6.

Example 2.13: The dihedral group D2.6 = {a, b | a2 = b6 = 1, b a 

b = a} = {1, a, b, ab, ab2, ab3, ab4, ab5, b2, b3, b4, b5}.

 The identity graph of D2.6 is 

 h2

 h3

e

Figure 2.11 

 h1

 h9
 h10

 h8 h11

 h7 h4

 h6 h5

0

Figure 2.12 

6

11

1

10

2 9 

3

4

8

7

5
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We see the identity graph of D26 is different from that of A4, Z12

and G, though o(D26) = 12. 

Example 2.14: The identity graph of the cyclic group G = �g | 

g14 = 1� is as follows 

Example 2.15: The identity graph of the dihedral group D2.7 = 

{a, b | a2 = b7 = 1, bab = a} is as follows:  
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We see o(D2.7) = o(G) = 14, but the identity graph of D2.7 and G 

are not identical.

Example 2.16: Let Z17 = {0, 1, 2, …, 16} be the group under 

addition modulo 17.  

The identity graph of Z17 is 

Example 2.17: Let G = Z17 \ {0} = {1, 2, …, 16} be the group 

under multiplication modulo 17.  

The identity graph associated with G is 

Example 2.18: Let G' = �g | g16 = 1� be the cyclic group of order 

16.

The identity graph of G�.
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 We see the identity graphs of G and G� are identical. 

Example 2.19: Let G  = H � K = {1, g | g2 = 1} � �h | h8 = 1� = 

{(1, 1) (1, h), (1, h2), (1, h3), (1, h4), (1, h5), (1, h6), (1, h7), (g, 

h), (g, h2), (g, h3), (g, h4), (g, h5), (g, h6), (g, 1), (g, h7)}. 

We see G  = H � K is of order 16 but the identity graph 

of G  is different from that of G and G� given in examples   

Example 2.20: Let K = P � Q = {1, g, g2, g3 | g4 = 1} � {1, h, h2,

h3 | h4 = 1} be the group of order 16. K = {(1, 1), (1, h), (1, h2),

(1, h3), (g, h) (g, 1) (g, h2), (g, h3), (g2, 1) (g2, h2), (g2, h) (g2, h3)

(g3, 1) (g3, h) (g3, h2) (g3, h3)}.

 The identity graph of K is as follows. 
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o(K) = o( G ) = 16.  

We see the identity graphs of K and G  are identical. G

given in example 2.19.   

Example 2.21: Let D2.8 = {a, b | a2 = b8 = 1, bab = a} = {1, a, b, 

b2, b3, b4, b5, b6, b7, ab, ab2, ab3, ab4, ab5, ab6, ab7} be the 

dihedral group of order 16. The identity graph of D2.8 is 

We see o(D28) = o( G ) = o(K) = o(G) = 16.  

But the identity graph of the group D2.8 is distinctly 

different from that of the groups G  and K given in examples. 
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Example 2.22: Let G = {g | g2 = 1} � {h | h3 = 1} � {p | p2 = 1} 

= {(1 1 1), (g 1 1), (1 h 1), (1 h2 1), (g h 1), (g h2 1), (1 1 p), (g h 

p), (g 1 p), (g h2 p), (1 h p), (1 h2 p)} be a group of order 12. The 

identity graph of G is 

The identity graph of G is identical with that of A4.

Example 2.23: Let G = {g | g2 = 1} � {h | h6 = 1} = {(1 1), (g 

1), (1 h), (1 h2), (1 h3), (1 h4), (1 h5), (g h), (g h2), (g h3), (g h4), 

(g h5)} be a group of order 12. The identity graph of H is as 

follows.

This is identical with the identity graph of the group A4.

Example 2.24: Let G = Z30 = {0, 1, 2, …, 29} be the group 

under addition modulo 30.  

The identity graph associated with G is as follows. 
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 Now we can express every group G as the identity graph 

consisting of lines and triangles emerging from the identity 

element of G. Lines give the number of self inversed elements 

in the group. Triangles represent elements that are not self 

inversed.

Now we proceed on to describe the subgroup of a group by 

a identity graph. 

DEFINITION 2.1: Let G be a group. H a subgroup of G then the 

identity graph drawn for the subgroup H is known as the 

identity special subgraph of G (special identity subgraph of G). 

Example 2.25: Let G = {g | g8 = 1} be a group of order 8. The 

subgroups of G are H1 = {1, g4}, H2 = {1, g2, g4 g6}, H3 = {1} 

and H4 = G.

The identity graphs of H1, H2, H3 and H4 = G is as follows: 

The identity special subgraph of H3 is just a point,  
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which is known as the trivial identity graph.  

The identity graph of H1 is

i.e., a line graph as g4 is a self inversed element of G. 

The identity graph of H2 is 

The identity graph of H4 = G is as follows. 

We see clearly the identity graphs of H1, H2 and H3 are also 

identity subgraphs of G. 

Example 2.26: Let D2.7 = {a, b | a2 = b7 = 1, bab = a} be the 

dihedral group of order 14.  

The identity graph of D2.7 is as follows. 
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The subgroups of D27 are Ho = {1, a} whose identity graph is  

Hi = {1, abi} is a subgroup of D27 with its identity graph as  

such subgroups for i = 1, 2, 3, 4, 5 and 6 are given by  

H7 = {1, b, b2, b3, b4, b5, b6} is a subgroup of D26. The identity 

graph associated with H7 is 

 We see the identity graphs of the subgroups are special 

identity subgraphs of the identity graph of D27.

 However it is interesting to note that all subgraphs of an 

identity graph need not correspond with a subgroup. We have 

for every subgroup H of a group G a special identity subgraph 

of the identity graph, however the converse is not true. 
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THEOREM 2.1: Let G be a group. Gi denote the identity graph 

related to G. Every subgroup of G has an identity graph which 

is a special identity subgraph of Gi and every identity subgraph 

of Gi need not in general be associated with a subgroup of G. 

Proof: Given G is a group. Gi the related identity graph of G. 

Suppose H is a subgroup of G then since H itself is a group and 

H a subset of G the identity graph associated with H will be a 

special identity subgraph of Gi.

 Conversely if Hi is a identity subgraph of Gi then we may 

not in general have a subgroup associated with it. 

 Let G = {g | g11 = 1} be the cyclic group of order 11. The 

identity graph associated with G be Gi which is as follows: 

This has

as some identity subgraphs of Gi. Clearly no subgroups can be 

associated with them as G has no proper subgroups, as o(G) = 

11, a prime. Hence the theorem. 
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Example 2.27: Let A4 = {1, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10,

h11} be the alternating subgroup of S4. The identity graph Gi

associated with A4 is as follows: 

 The subgroups of A4 are {1} = P1, P2 = A4, P3 = {1, h2}, P4

= {1, h1} P5 = {1, h3}, P6 = {1, h1, h2, h3}, P7 = {1, h4, h5}, P8 = 

{1, h6, h7}, P9 = {1, h8, h9} and P10 = {1, h10, h11}.

The special identity subgraph H1 of P1 is  

The special identity subgraph of P2 is given in figure 2.28.  The 

special identity subgraph of the subgroup P3 is 

The special identity subgraph of the subgroup P4 is 

The special identity subgraph of the subgroup P5 is 

The special identity subgraph of P6 is 
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The special identity subgraph of P7, the subgroup of A4

The special identity subgraph of the subgroup P8 is 

The special identity subgraph of the subgroup P9 is 

The special identity subgraph of the subgroup of P10 is 

However we see some of the subgraphs of the identity graph of 

Gi are 
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These have no subgroups of A4 being associated with it. 

Example 2.28: Let G = �g | g5 = 1� be the cyclic group of order 

5. The identity graph Gi associated with G is 

Clearly this has no identity special subgraph. 

Example 2.29: Let G = �g | g19 = 1� be the cyclic group of order 

19. The identity graph associated with G is 
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 This too has no identity special subgraphs. 

Example 2.30: Let G = �g | g15 = 1� be the cyclic group of order 

15. The identity graph of G, is given in the following. 

 The subgroups of G are H1 = {1}, H2 = G, H3 = {1, g3, g6,

g9, g12}, H4 = {1, g5, g10}. The associated special identity 

subgraphs of Gi are 

THEOREM 2.2: If G = �g | gp = 1� be a cyclic group of order p, 

p a prime. Then the identity graph formed by G has only 

triangles infact (p – 1) / 2 triangles. 

Proof: Given G = �g | gp = 1� is a cyclic group of order p, p a 

prime. G has no proper subgroups. So no element in G is a self 

inversed element i.e., for no gi in G is such that (gi)
2 = 1. For by 

Cauchy theorem G cannot have elements of order two. Thus for 
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every gi in G there exists a unique gj in G such that gigj = 1 i.e., 

for every gi the gj is such that j = (p – i) so from this the 

elements 1, gi, gp–i form a triangle. Hence the identity graph will 

not have any line any graphs. Thus a typical identity graph of 

these G will be of the following form. 

 Hence the theorem. 

COROLLARY 2.1: If G is a cyclic group of odd order then also 

G has the identity graph Gi which is formed only by triangles 

with no lines. 

Proof: Let G = {g | gn = 1}, n is a odd number. Then the identity 

graph associated with G is as follows. 
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 We illustrate this by examples and show Gi mentioned in 

the corollary has special identity subgraphs. 

Example 2.31: Let G = �g | g13 = 1� be the cyclic group of order 

13. The identity graph Gi associated with G is as follows: 

 This has no special identity subgraphs. 

Example 2.32: Let G = �g | g16 = 1� be the cyclic group of order 

16. The identity graph of G is Gi given by 

 The subgroups of G are H1 = {g2, g4, g6, g8, g10, g12, g14, 1}, 

H2 = {g4, g8, g12, 1} and H3 = {1, g8}.
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 The special identity subgraph of H1 is 

 The special identity subgraph of H2 is 

 The special identity subgraph of H3 is 

Example 2.33: Let G = �g | g9 = 1� be the cyclic group of order 

9. The identity graph of G is  
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 The subgroup of G is H = {1, g3, g6}. The special identity 

subgraph of H is 

THEOREM 2.3: If G = �g | gn = 1� be a cyclic group of order n, 

n an odd number then the identity graph Gi of G is formed with 

(n – 1) / 2 triangles.  

Proof: Clear from figure 2.32 and theorem 2.2. 

THEOREM 2.4: Let G = �g | gm = 1� be a cyclic group of order 

m; m an even number. Then the identity graph Gi has (m – 2) / 2 

triangles and a line. 

Proof: Given G = �g | gm = 1� is a cyclic group of order m where 

m is even. The identity graph Gi associated with G is given 

below:

 If it easily verified that exactly (m – 1)/2 triangles are 

present and only a line connecting 1 to gm/2 for gm/2 is a self 

inversed element of G.  

Example 2.34: Let G = �g | g6 = 1� be the cyclic group of order 

6. The identity graph associated with G is given by 
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Example 2.35: Let G = �g | g4 = 1� be the cyclic group of order 

4. The identity graph associated with G is

Example 2.36: Let G = �g | g10 = 1� the cyclic group of order 10. 

The identity graph associated with G is 

Example 2.37: Let G = {g / g4 = 1} � {g1 / 
6

1g  = 1} = {(1, 1), 

(g, 1), (g, g1), (g, g1
2), (g, g1

3), (g, g1
4), (g, g1

5), (g2, g1), (g
2, 1), 

(g2, g1
2), (g2, g1

3), (g2, g1
4), (g2, g1

5), (g3, 1), (g3, g1), (g
3, g1

2), (g3,

g1
3), (g3, g1

4), (g3, g1
5), (1, g1), (1, g1

2), (1, g1
3), (1, g1

4), (1, g1
5)}

be the group of order 24. The identity graph of G is as follows.  
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 This group is not cyclic has twenty four elements. This has 

three lines and the rest are triangles. 

Example 2.38: Let D2.10 = {a, b / a2 = b10 = 1, bab = a} = {1, a, 

b, b2, b3, b4, b5, b6, b7, b8, b9, ab, ab2, ab3, ab4, ab5, ab6, ab7, ab8,

ab9} be the dihedral group. The identity graph of D2,10 is as 

follows.
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We can now bring an analogue of the converse of the 

Lagrange’s theorem. 

THEOREM 2.5: Let G be a finite group. Gi be the identity graph 

related with G. Just as for every divisor d of the order of G we 

do not have subgroups of order d we can say corresponding to 

every identity subgraph Hi of the identity graph Gi we may not 

in general have a subgroup of G associated with Hi.

Proof: This can be proved only by an example. Let G = D27 = 

{a, b / a2 = b7 = 1, bab = a} = {1, a, b, b2, b3, b4, b5, b6, ab, ab2,

ab3, ab4, ab5, ab6} be the dihedral group of order 14. Let Gi be

the identity graph associated with D27.

Let Hi be the subgraph 
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Clearly Hi is the identity subgraph of Gi but the number of 

vertices in Hi is 9, i.e., the order of the subgroup associated with 

Hi if it exists is of 9 which is an impossibility as (14, 9) = 1 i.e., 

9 / 14.

 Thus we have for a given identity graph Gi of a finite group 

G to each of the subgraphs Hi of Gi we need not in general have 

a subgroup H of G associated with it. Hence the theorem.  

COROLLARY 2.2: Take G = �g | gp = 1�, be a cyclic group of 

order p, p a prime, Gi the identity graph with p vertices 

associated with it. G has several identity subgraphs but no 

subgroup associated with it.

COROLLARY 2.3: Let G be a finite group of order n. Gi the 

identity graph of G with n vertices. Let H be a subgroup of G of 

order m (m < n). Suppose Hi is the identity subgraph associated 

with H having m vertices. Every subgraph of Gi with m vertices 

need not in general be the subgraph associated with the 

subgroup H. 

Proof: The proof is only by an example.  

Let D2.11 = {a, b / a2 = b11 = 1, bab = a} = {1, a, b, b2, b3, b4,

b5, b6, b7, b8, b9, b10, ab, ab2, ab3, ab4, ab5, ab6, ab7, ab8, ab9, ab10}

be the dihedral group of order 22. Let Gi be the identity graph 

associated with D2.11 which has 22 vertices. 
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 Let H = {1, b, b2, …, b9, b10} be the subgroup of D2.11 of 

order 11. The identity graph associated with H be Hi, Hi is a 

subgraph of Gi with 11 vertices. 

Take Pi a subgraph of Gi with 11 vertices viz. 

 Pi is a subgraph of Gi but Pi has no subgroup of D2.11

associated with it. 

 Clearly D2.11 has only one subgroup H of order 11 and only 

the graph Hi is a special identity subgraph with 11 vertices and 

Gi has no special identity subgraph with 11 vertices. However it 

can have identity subgraphs with 11 vertices. 
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 In view of the above corollary we can have the following 

nice characterization of the dihedral groups and its subgroup of 

order 2p where p is a prime. 

THEOREM 2.6: Let D2p = {1, a, b | a2 = bp = 1; bab = a} = {1, 

a, b, b2, …, bp-1, ab, ab2, …, abp-1} be the dihedral group of 

order 2p, p a prime. Let Gi be the identity graph of D2p with 2p 

vertices. Hi be a special identity subgraph of Gi with p-vertices. 

Then Hi is formed by (p – 1)/2 triangles which will have p 

vertices. This Hi is unique special identity subgraph of Gi.

Proof: Given D2p is a dihedral group of order 2p, p a prime so 

order of D2p is 2p and D2p has one and only one subgroup of 

order p. 

 Let Gi be the identity graph associated with D2p. It has 2p 

vertices and it is of the following form. 

 Thus the graph Gi has p lines and p/2 triangles which 

comprises of (p + 1) vertices for the p lines and p vertices for 

the triangles the central vertex 1 is counted twice so the total 

vertices = vertices contributed by the p lines + vertices 

contributed by the p/2 triangles – (one vertex), which is counted 

twice.

 This add ups to p + 1 + p – 1 = 2p. Thus the special identity 

subgraph of Gi is one formed by the p/2 triangles given by 

Figure 2.45 
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which has p vertices given by the subgroup H = {1, b, b2, …, bp–

1}. Hence the claim. This subgroup H is unique so also is the 

special identity subgraph Hi of Gi.

Example 2.39: Let G = Z4 � Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 

1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)} be the direct 

product group under component wise addition of two additive 

groups Z4 and Z3.

The identity subgraph of G is  

 The subgroup H = {(0, 0), (0, 1), (2, 0), (2, 1), (2, 2), (0, 2)} 

of G is of order 6. 

 The special identity subgraph associated with H is given by  
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However the following  

subgraph does not yield a subgroup in G hence it cannot be a 

special identity subgraph of G. 

DEFINITION 2.2: Let G be a group, Gi the identity graph 

associated with G. H be a normal subgroup of G; then Hi the 

special identity subgraph of H is defined to be the special 

identity normal subgraph of Gi.

If G has no normal subgroups then we define the identity 

graph Gi to be a identity simple graph. Thus if G is a simple 

group the identity graph associated with G is a identity simple 

graph.

Example 2.40: Let G = �g | g13 = 1� be the cyclic group of order 

13. Clearly G is a simple group.  

The identity graph associated with G be Gi which is as 

follows:
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Clearly Gi is a identity simple graph. 

Example 2.41: Let G = �g | g15 = 1� be a group of order 15. The 

normal subgroups of G are H = {1, g3, g6, g9, g12} and K = {1, 

g5, g10}. The identity graph of G be Gi which is as follows: 

The special normal identity subgraph Hi of Gi is given in figure. 

The special normal identity subgraph Ki of Gi is 

Figure 2.47 
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We now discuss of the vertex or (and) edge colouring of the 

identity graph related with a group in the following way. First 

when the group G is finite which we are interested mostly; we 

say subgroup colouring of the vertex (or edges) if we colour the 

verices (or edges) of those subgroups Hi of G such that Hi � Hj

or Hj � Hi. We take only subgroups of G and not the subgroups 

of subgroups of G.  

 We now define the special clique of a group G. 

DEFINITION 2.3: Let G be a group S = {H1, …, Hn | Hi’s are 

subgroups of G such that Hi � Hj or Hj � Hi; Hi � Hj = {e} with 

G = � Hi for i, j � {1, 2, …, n}; i.e., the subgroup Hi is not a 

subgroup of any of the subgroups Hj for j=1, 2, …, j; i � j true 

for every i, i=1, 2, …, n}.  

We call S a clique of the group G, if G contains a clique 

with n element and every clique of G has at most n elements. If 

G has a clique with n elements then we say clique G = n if n = 

� then we say clique G = �. We assume that all the vertices of 

each subgroup Hi is given the same colour. The identity element 

which all subgroups have in common can be given any one of 

the colours assumed by the subgroups Hi.

 The map C: S � T such that C(Hi) � C(Hj) when ever the 

subgroups Hi and Hj are adjacent and the set T is the set of 

available colours.  

All that interests us about T is its size; typically we seek for 

the smallest integer k such that S has a k-colouring, a vertex 

colouring C: S � {1, 2, …, k}. This k is defined to be the special 

identity chromatic number of the group G and is denoted by 

�(S). The identity graph Gi with �(S) = k is called k-chromatic; 

if �(S) � k and the group G is k-colourable.  

We illustrate this by a few examples. 

Example 2.42: Let

1

g
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g
5
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S3 = 
1 2 3

e
1 2 3

� ��
	�� �

�� ��
, 1

1 2 3
p

1 3 2

 �
	� �

� �
,

2

1 2 3
p

3 2 1

 �
	� �

� �
, 3

1 2 3
p

2 1 3

 �
	� �

� �
,

4

1 2 3
p

2 3 1

 �
	� �

� �
 and 5

1 2 3
p

3 1 2

� � �
	 �� �

�� � �

be the symmetric group of S3. S = {H1 = {e, p1}, H2 = {e, p2},

H3 = {e, p3}, H4 = {p4, p5, e}.  

The identity graph Gi of S3 is 

Here two colours are sufficient for p3 and p1 can be given 

one colour and p2, p4 and p5 another colour so k = 2, for the 

identity graph given in figure 2.49 for the group S3.

 Thus � (S) = 2. 

Example 2.43: Let G = {1, 2, 3, 4, 5, 6} = Z7 \ {0} be the group 

under multiplication modulo 7. The subgroups of G are H1 = {1, 

6}, {1, 2, 4} = H2. We see G � H1 � H2. Thus we see the group 

elements 3 and 5 are left out. 

However Gi the identity graph associated with G is  

Figure 2.49 
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 We from our definition we cannot talk of S hence of � (S). 

Example 2.44: Let G = Z12, the group under addition modulo 

12. 0 is the identity element of Z12.

The identity graph Gi associated with G is given by the 

following figure. 

The subgroups of G = Z12 are H1 = {0, 6}, H2 = {2, 4, 6, 8, 10, 

0} and H3 = {0, 3, 6, 9}.  

We see the elements 1 or 5 or 7 or 11 cannot be in any one 

of the subgroups. So S for G = Z12 cannot be formed as union of 

subgroups. 

Example 2.45: Let G = �g | g18 = 1� be the group of order 18, 

The identity graph Gi of G is given below. 
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 The subgroups of G are H1 = {1, g9}, H2 = {1, g2, g4, g6, g8,

g10, g12, g14, g16}, H3 = {1, g3, g6, g9, g12, g15}, H4 = {1, g6, g12}.

Clearly {g, g5, g7, g11, g13, g17} do not form any part of any of 

the subgroups. Thus for this G also we cannot find any S. So the 

question of �(S) is impossible. 

 Now we proceed on to find more examples. 

Example 2.46: Let D2.8 = {a, b / a2 = b8 = 1; bab = a} be the 

dihedral group of order 16. Thus D28 = {1, a, b, b2, b3, b4, b5, b6,

b7, ab, ab2, ab3, ab4, ab5, ab6, ab7} and its identity graph is as 

follows.
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 The subgroups of D2.6 which can contribute to S are as 

follows.

H1 = {1, b, b2, b3, b4, b5, b6, b7}

H2 = {1, a}, H3 = {1, ab}, 

H4 = {1, ab2}, H5 = {1, ab3}, 

H6 = {1, ab4}, H7 = {1, ab5}, 

H8 = {1, ab6} and H9 = {1, ab7}.

Clearly S = {H1, H2, H3, H4, H5, H6, H7, H8, H9} is such that  

D2.8 = 
9

i

i 1

H
	
� . Now � (S) = 3. 

Example 2.47: Let

A4 = 
1 2 3 4

e
1 2 3 4

�  ��
	� � �

� � ��
, 1

1 2 3 4
p

2 1 4 3

 �
	 � �
� �

,

2

1 2 3 4
p

3 4 1 2

 �
	 � �
� �

, 3

1 2 3 4
p

4 3 2 1

 �
	 � �
� �

,

4

1 2 3 4
p

1 3 4 2

 �
	 � �
� �

, 5

1 2 3 4
p

1 4 2 3

 �
	 � �
� �

,

6

1 2 3 4
p

3 2 4 1

 �
	 � �
� �

, 7

1 2 3 4
p

4 2 1 3

 �
	 � �
� �

,

8

1 2 3 4
p

2 4 3 1

 �
	 � �
� �

, 9

1 2 3 4
p

4 1 3 2

 �
	 � �
� �

,

10

1 2 3 4
p

2 3 1 4

 �
	 � �
� �

, 11

1 2 3 4
p

3 1 2 4

� ��
	 �� �

�� ��

be the alternating group of S4. Let Gi be the identity graph 

associated with A4 which is given below.  
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S = {H1 = {e, p1, p2, p3}, H2 = {p4, p5, e}, H3 = {e, p6, p7}, H4 = 

{e, p8, p9}, H5 = {p10, p11, e}}. = {P1 = {e, p1}, P2 = {e, p2}, P3 = 

{e, p3}, P4 = {e, p5, p4}, P5 = {e, p6, p7}, P6 = {e, p8, p9}, P7 = {e, 

p10, p11}}.

We see we have 3 colouring for these subgroups. 

G = 
5 7

i i

i 1 i 1

H P
	 	

	� � .

 Now we have seen from the examples some groups have a 

nice representation i.e., when S is well defined in case of some 

groups S does not exist. This leads us to define a new notion 

called graphically good groups and graphically bad groups. 

DEFINITION 2.4: Let G be a group of finite or infinite order. S 

= {H1, …, Hn; subgroups of G such that Hi � Hj, Hj � Hi if 1 � j, 

j � n and G = 
1	
�

n

i

i

H } i.e., the clique of the group exists and G is 

colourable then we say G is a graphically good group. If G has 

no clique then we call G a graphically bad group and the 

identity subgraph of Gi for its subgroups is called the special 

bad identity subgraph Gi of G. 

We illustrate by a few examples these situations. 

Example 2.48: Let D2.6 = {a, b / a2 = b6 = 1, bab = a} = {1, a, b, 

b2, …, b5, ab, ab2, …, ab5} be the dihedral group of order 12. S 

= {H1 = {1, a}, H2 = {1, ab}, H3 = {1, ab2}, H4 = {1, ab3}, H5 = 

p7

Figure 2.53 
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{1, ab4}, H6 = {1, ab5}, H7 = {1, b, b2, …, b5}} where G = 
7

i

i 1

H
	
�  Hi � Hj; 1 � i, j � 7}. The special identity graph Gi of D2.6

is

 Then �(S) = 3. By putting b, b2, b3, b4, b5 one colour say 

red, ab2 and ab–blue colour, ab3 and ab4–red, ab3–blue and a–

white we can use a minimum of three colours to colour the 

group D2.6. Thus D2.6 is graphically a good graph.  

Example 2.49: Let G = {g | g12 = 1} be the cyclic group of order 

12. The subgroups of G are H1 = {1, g2, g4, g6, g8 and g10}, H2 = 

{1, g3, g6, g9}. The elements of G which is not found in the 

subgroups H1 and H2 are {g, g5, g7, g11}.

 The special identity graph of G is given in figure 2.55. 
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 The special bad subgroup of G associated with the 

subgroups H1 and H2 of G is 

H1 = {1, g6, g3, g9} and H2 = {1, g2, g4, g6, g8, g10} where H1 �
H2 = {1, g6}.

 We cannot give any colouring less than two. Now one 

interesting problem arises g6 should get which colour if we 

colour the two subgroups of G. Such situations must be 

addressed to. 

 This situation we cannot colour so we say the identity 

graphs are impossible to be coloured so we call the special 

graphs related with these groups to be graphically not 

colourable groups. 

Example 2.50: Let G = �g | g6 = 1� = {1, g, g2, g3, g4, g5} be the 

cyclic group of order 6. 

 The special identity graph associated with G is Gi which is 

given below. 

The subgroups of G are H1 = {1, g3} and H2 = {1, g2, g4}. 

Clearly G � H1 � H2; The bad graph associated with G is given 

by the following figure. 
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This group needs atleast two colours and the group is 

graphically bad group or has a bad graph for its subgroup as S 

does not exist.  

Example 2.51: Let G = �g | g8 = 1� = {1, g, g2, g3, g4, g5, g6, g7}

be the cyclic group of order 8. The special identity graph of G 

denoted by Gi is as follows. 

 The subgroups of G are H1 = {1, g4}, H2 = {1, g2, g4, g6}.

Thus S does not exist as S has only one subgroup, viz., H2.

So the question of finding a minimal colour does not exist as it 

has only one subgroup. 

Now this is yet a special and interesting study. 

Example 2.52: Let G = {g | g9 = 1} = {1, g, g2, g3, g4, g5, g6, g7,

g8} be the cyclic group of order 9. 

The special identity graph of G is given by Gi which is as 

follows:
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 Now the subgroup of G is H1 = {1, g3, g6}. So G cannot 

have S associated with it and hence the question of colouring G 

does not arise. 

Example 2.53: Let G = �g | g16 = 1� = {1, g, g2, g3, …, g15} be 

the cyclic group of order 16. The identity special graph Gi

associated with G is given below.  

The subgroups of G are H1 = {1, g8}, H2 = {1, g4, g8, g12} and 

H3 = {1, g2, g4, g6, g8, g10, g12, g14}. Clearly H1 � H2 � H3. So H3

is the only subgroup of G and we cannot find S.  

Thus colouring of G does not arise. In view of this we 

define single special identity subgraph of colourable subgroup 

of a group. 
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DEFINITION 2.5: Let G be group of finite order. If G has only 

one subgroup Hi such that Hi � Hj for only j, j � i, i.e., G has 

one and only one maximal subgroup (i.e., we say a subgroup H 

of G is maximal if H � K � G. K any other subgroup containing 

H then either K = H or K = G). We see then in such case we 

have to give only one colour to the special identity subgraph of 

subgroup. 

 We call this situation as a single colourable special identity 

subgraph, hence a single colourable bad group. Clearly these 

groups are badly colourable groups. But every bad colourable 

special identity subgraph in general is not a single special 

colourable special identity subgraph. 

Example 2.54: Let G = �g | g25 = 1� = {1, g, g2, …, g24 } be the 

cyclic group of order 25. The subgroups of G is H = {g5, g10,

g15, g20, 1}; i.e., G has one and only one subgroup. The special 

identity graph Gi of G is as follows: 

 The special identity subgraph associated with the subgroup 

H of G is 
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i.e., single (one) colourable special identity subgraph i.e., G is a 

single colourable bad group. 

Now we give a theorem which guarantees the existence of 

single colourable bad groups.  

THEOREM 2.7: Let G = | 	
2pg g 1  where p is a prime, be a 

cyclic group of order p2. G is a single colourable bad group.

Proof: Let G = 
2pg | g 1	  = {1, g, g2, … 

2p 1g � } be a cyclic 

group of order p2, p a prime. The only subgroup of G is H = {gp,

g2p, g3p, …, g(p–1)p, 1}. Clearly order of H is p. Further G has no 

other subgroups. The special graph of G is formed by (p2 – 1)/ 2 

triangles centered around 1. The special identity subgroup of H 

is formed by (p – 1) / 2 triangles centered around 1. 

Thus G is a one colourable bad group. 

Example 2.55: Let G = �g | g32 = 1� be a cyclic group of order 

32. The largest subgroup of G is given by H = {1, g2, g4, g6, g8,

…, g30} which is of order 16 and has no other subgroup K such 

that K � H. 
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 Thus G is a one colourable graphically bad group. 

THEOREM 2.8: Let G = | 	
npg g 1  where p is a prime n   2 

be a cyclic group of order pn. G is a one colourable graph bad 

group.

Proof: Given G is a cyclic group of prime power order. To show 

G has only one subgraph H such that there is no other subgroup 

K in G with K � H or H � K. i.e., G has one and only one 

maximal subgroup. 

Now the maximal group H = {1, gp, g2p, …, g(n–1)p} which is 

of order pn–1.

 Thus G is only one colourable as g has no S associated with 

it we see it is a bad graph group. Now as G has only one 

subgroup G is a uniquely colourable graph bad group. Thus we 

have a class of groups which are single colourable graph bad 

groups.

Example 2.56: Let G = {g | g10 = 1} be a cyclic group of order 

10. The subgroups of G are H1 = {g2, g4, g6, g8, 1} and H2 = {1, 

g5}. Clearly S does not exist as G � H1 � H2 so G cannot be a 

good graph group.  

 The special identity graph associated with G is as follows 

 The subgraph of the subgroups of G is given by 
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 Clearly Hi is minimum two colourable. For g5 vertex is 

given one colour and the vertices g2, g4, g6 and g8 are given 

another colour. However Gi � Hi as the vertices {g, g9, g3, g7}

cannot be associated with a group.

Example 2.57: Let G = {g | g30 = 1} be a cyclic group of order 

30. The special identity graph Gi associated with G is as 

follows.

 The subgroups of G are H1 = {1, g15}, H2 = {g10, g20, 1}, H3

= {1, g5, g10, g15, g20, g25}, H4 = {1, g6, g12, g18, g24}, H5 = {1, g2,

g4, g6, g8, …, g26, g28} and H6 = {1, g3, g6, g9, g12, g15, g18, g21,

g24, g27}.

 Clearly G � �Hi.
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 The maximal subgroups are H3, H5 and H6. We cannot give 

one colour to g6, g12, g10, g18, g20, g24.

 Hence it is impossible to colour the subgroups properly. In 

view of this we are not in a position to say whether there exists 

three colourable bad groups. 

Example 2.58: Let G = {g | g18 = 1} be a cyclic group of order 

18. The subgroups of G are H1 = {1, g9}, H2 = {g3, g6, g9, g12,

g15, 1}, H3 = {g2, g4, g6, g8, g10, g12, g14, g16, 1} and H4 = {1, g6,

g12}. We have two subgroups H2 and H3 such that H2 � H3 or H3

� H2. However H2 � H3 = {1, g6, g12}. So how to colour these 

subgroups even as bad groups. The special identity graph Gi

associated with G is as follows: 

Since we have common elements between H2 and H3. We 

cannot assign any colour to g6 and g12. Hence this is not a 

colourable bad group. 

 Now we proceed onto show that we have a class of two 

colourable bad groups. 

THEOREM 2.9: Let G = �g | gn = 1� where n = pq with p and q 

two distinct primes be a cyclic group of order n. Then G is a 

two colourable bad group.  
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Proof: Let G = {1, g, g2, …, gn-1} be the cyclic group of degree 

n. The maximal of G are H1 = {1, gp, g2p, …, g(p-1)q} and H2 = 

{1, gq, g2q, …, g(q-1)p} be subgroups of G.  

Clearly both H1 and H2 are maximal subgroups of G. 

However G � H1 � H2 and H1 � H2 = {e}. Thus G is a two 

colourable bad group. 

Example 2.59: Let G = {g | g35 = 1} be a cyclic group of order 

35. The two maximal subgroups of G are H1 = {1, g5, g10, g15,

g20, g25, g30} and H2 = {1, g7, g14, g21, g28}. H1 � H2 = {1} and G 

� H1 � H2. These can be coloured with 2 colours.  

The special identity subgraph associated with the subgroups is 

given by 5 triangles with centre one which is as follows: 

 The vertices g5, g30, g25, g10, g20 and g15 are given one colour 

and g21, g14, g27 and g7 are given another colour. Thus G is two 

colourable special graph bad group. 

Example 2.60: Let G = �g | g22 = 1� be the cyclic group of order 

22. The two maximal subgroups of G are H1 = {1, g11} and H2 = 

{g2, g4, g6, g8, g10, g12, g14, g16, g18, g20, 1}

 Thus G is a two colourable special identity subgraph bad 

group.

1
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 The vertex {g11} is given one colour and the vertices {g2, g4,

g6, g8, g10, g12, g14, g16, g18and g20} are given another colour.  

 Now we proceed onto study the colouring problem of 

normal subgroups of a group G. 

DEFINITION 2.6: Let G be a group. Suppose N = {N1, …, Nn are 

normal subgroups of G such that G = � i

i

N , Ni � Nj = {e} then 

we call N the normal clique of G and has atmost n elements, 

then clique G = n. If the sizes of the clique are not bounded, 

then define normal clique G = �.

The chromatic number of the special identity graph Gi of G 

denoted by �(G), is the minimum k for which N1, …, Nn accepts 

k colours where one colour is given to the vertices of a 

subgroup Ni of G for i = 1, 2, …, n.  

We call such groups are k – colourable normal good 

groups.

However the authors find it as an open problems to find a 

groups G which can be written as a union of normal subgroups 

Hi such G = i

i

H�  with Hi � Hj = {1}, 1 the identity element of 

G.

 We give illustration before we define more notions in this 

direction.

Example 2.61: Let G = {g | g6 = 1} = {1, g, g2, g3, g4, g5} be a 

cyclic group of order six. The normal subgroups of G are H1 = 

1
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{1, g3} and H2 = {1, g2, g4}. Clearly the elements of H1 i.e., g3

can be given one colour and the vertices of H2 viz. {1, g2, g4}

can be given another colour thus two colours are sufficient to 

colour the normal subgroups of G. However the elements {g, 

g5} do not form any part of the normal subgroups so cannot be 

given any colour.  

Example 2.62: Let G = {g | g12 = 1} = {1, g, g2, g3, g4, g5, g6, g7,

g8, g9, g10, g11} be a group of order 12. The normal subgroups of 

G are H1 = {1, g2, …, g10} and H2 = {1, g3, g6, g9} other normal 

subgroups are H3 = {1, g6}, H4 = {1, g4, g8}. We see H3 and H4

are contained in H1 and H3 � H2 and further H1 � H2 = {1, g6},

so the normal subgroups cannot be coloured as g6 cannot 

simultaneously get two colours. 

 In view of all these examples we propose the following 

definition.

DEFINITION 2.7: Let G be a group, if G has no normal 

subgroups Ni such that G = �
n

i

iN
1	

 and Ni � Nj = {1}, if i � j 

then we say G is a k-colourable normal bad group 0 � k � n. If k 

= 1 then we say G is a one colourable normal bad group. If k = 

2 then we say G is a 2-colourable normal bad group. If k = t 

then we say G is a t-colourable normal bad group. If k = 0 we 

say G is a 0-colourable normal bad group.  

We illustrate these situations by explicit examples.  

Example 2.63: G = {g | gp = 1}, p a prime be a cyclic group of 

order p. We see G is simple i.e., G has no normal subgroups, so 

G is 0-colourable normal bad group. 

Example 2.64: Let A3 be the alternating subgroup of S3. A3 is 

also 0-colourable normal bad group. 

Example 2.65: Let An, n   5 be the alternating subgroup of Sn.

An is also 0-colourable normal bad group. 
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THEOREM 2.10: The class of 0-colourable normal bad groups is 

non empty. 

Proof: Take all alternating subgroups An of Sn, n � 4, n   3; and 

as An is simple so An’s are 0-colourable normal bad groups. 

Similarly all groups G of order p, p a prime is a 0-colourable 

normal bad group as G has no proper subgroups. Hence the 

theorem. 

Example 2.66: Let S5 be the symmetric group of order |5. S5 has 

only one proper normal subgroup viz. A5 so S5 is a 1-colourable 

normal bad group.  

Example 2.67: Let G = {g | g9 = 1} be a cyclic group of order 9. 

G = {1, g, g2, g3, g4, g5, g6, g7, g8} and H = {1, g3, g6} is the only 

normal subgroup of G. So G is one colourable normal bad 

group.

Example 2.68: Let G = {g / g32 = 1} = {1, g, g2, …, g31} be the 

cyclic group of order 32. The only normal subgroup of G is H = 

{1, g2, g4, …, g30}. Clearly every other normal subgroup K of G 

is properly contained in H. Thus G is one colourable normal bad 

group.

Inview of these examples we have the following theorem which 

gurantees the existence of a class of one colourable normal bad 

groups.

THEOREM 2.11: Let G = | 	
npg g 1  where p is any prime 

and n   2, G is a one colourable normal bad group. 

Proof: To show G is a one colourable normal bad group, it is 

enough if we show G has only one normal subgroup H and all 

other subgroups are contained in H. Take H = {1, gp,
2 np p 1g , ..., g � } = �gp�; This is the largest normal subgroup of G. 

Clearly any other subgroup of G is contained in H. Thus G has 

only one normal subgroup such that all other subgroups of G are 

contained in it. Hence G is a one colourable normal bad group, 
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as all the vertices of the group H are given one colour i.e., all 

the elements of H are given only one colour.  

 Thus G is a one colourable normal bad group. 

THEOREM 2.12: Let Sn be the symmetric group of degree n. Sn

is a one colourable normal bad group. 

Proof: Let Sn be the symmetric group of degree n. An be the 

alternating normal subgroup of Sn. We know Sn has only one 

normal subgroup viz. An. So Sn is a one colourable normal bad 

group.

 Thus the class of one colourable bad groups is non empty.  

Consider the following example. 

Example 2.69: A4 be the alternating subgroup of S4. A4 is one 

colourable normal bad group.  

Example 2.70: Let G = {g | g26 = 1} be a cyclic group of order 

26. G has only two normal subgroups H1 = {1, g13} and H2 = {1, 

g2, g4, …, g24}.

Infact G has no other subgroups. But G � H1 � H2 so G is 

not a k-colourable normal good group, but only a 2-colourable 

normal bad group. 

 This theorem shows the existence of 2-colourable normal 

bad groups. 

THEOREM 2.13: Let G = {g | gpq = 1} where p and q are primes 

p � q, be a cyclic group of order pq. G is a 2-colourable normal 

bad group. 

Proof: Given G = {1, g, g2, …, gpq-1} be the cyclic group of 

order pq where p and q are primes; p � q. The two normal 

subgroups of G are H1 = {1, gp, p2p, …, gp(q-1)} and H2 = {1, gq,

p2q, …, gq(p-1)}. Thus the group G is a 2-colourable normal bad 

group.
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Example 2.71: Let G = Zn = {0, 1, 2, …, pqr –1 = n – 1}, 

(where p, q and r are distinct primes) be the group of order n. 

Take n = 30, Z30 = {0, 1, 2, …, 29}. The normal subgroups of 

Z30 are H1 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28}, 

H2 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27} and H3 = {0, 5, 10, 15, 

20, 25}. Thus Z30 has only 3 normal subgroups. G is not a three 

colourable normal bad group.  

Example 2.72: Z210 = {0, 1, 2, …, 209} is an additive group 

order 210. H1 = �2�, H2 = �3�, H3 = �5� and H4 = �7� are the four 

normal subgroups of Z210. Z210 is a not a four colourable normal 

bad group.  

Example 2.73: Let G = Z3 � Z2 � Z5 = { (a, b, c) / a � Z3, b �
Z2 and c � Z5} a group got as a the external direct product of the 

groups under modulo addition. G is a group of order 30. G has 

three normal subgroups. H1 = {(000), (100) (200)}, H2 = {(000), 

(010)} and H3 = {(000), (001), (002), (003), (004)}. 

These are the normal subgroups of G. However G �
3

i

i 1

H
	
�  Hi �

Hj = (000) if i � j. 

 The special identity subgraph of G is as follows. 

 Clearly minimum 3 colours are needed to colour this figure. 

Thus one colour is given to the vertex (010) another colour to 

the vertices {(001), (002), (003) and (004)}. Yet another colour 

(0 0 0) 

Figure 2.66 
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different from other two are given to the vertices (100) and 

(200). (000) can be given any one of the three colours. 

 Thus G is a 3-colourable normal bad groups. 

Example 2.74: Let G = G1 � G2 � G3 � G4 where G1 = {g | g3 = 

1}, G2 = {Z2}, G3 = Z4 under addition modulo 4 and G4 = {g | g5

= 1} is the external direct product of 4 distinct groups. G is of 

order 60.

The normal subgroups of G are H1 = {(1001), (g 001) (g2001)} 

H2 = {(1001) (1101)}, H3 = {(1001) (1011) (1021) (1031)} and 

H4 = {(1001) (100g) (100g2) (100g3) (100g4)} We see Hi � Hj = 

(1001) for all i�j; 1 � i, j � 4. 

 However G �
4

i

i 1

H
	
� . Now G is two colourable normal bad 

group. For the elements of H1 can be given one colour. H2 and 

H3 another colour and H4 the colour as that of H1. The 

corresponding special identity subgraph is given by the 

following diagram.  

(1001) can be given red or blue colourable. Thus G is a 2 

colourable normal bad group. 

(1 0 0  1) 
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THEOREM 2.14: Let G = G1 � G2 � … � Gn be the direct 

product of n-groups, n an even number. Then G is a 2 

colourable normal bad group. 

Proof: Given G = G1 � G2 � … � Gn direct product of n-distinct 

/ different groups n even. We see iG  = {e1} �{e2} � … � Gi �

… � {en} is a subgroup in G, which is normal in G and is 

isomorphic with Gi. Here {ei} is the identity element of Gi, i = 

1, 2, …, n.  

 Thus G has n normal subgroups which are disjoint. 

 Clearly iG � jG  = {identity element of G}. Now since n 

is even we see this group G is a 2 colourable normal bad group. 

 It is left as a simple problem for the reader to find the 

number of colours needed to colour the group G = G1 � … � Gn,

when n is odd, where G1, …, Gn are n distinct groups in the 

external direct product. 

 Can one say n be even or odd in G = G1 � … � Gn. G is 2 

colourable normal bad group. 

 In case of k-colourable bad group or k-colourable group of 

k-colourable normal bad group we see k is always less than or 

equal to 3. Thus more than study of these k-colourable property 

the interesting features would be their graphic representation for 

it would interest the students to look at it and concretely view 

atleast finite groups. 

 Next we see about the p-sylow subgroup of a group and 

their colouring. 

 We want to show by colouring how many p-sylow 

subgroups are conjugate etc. This is mainly to attract the 

students about groups and their properties. So we are not 

bothered about colouring with minimum number of colours but 

we are bothered about mainly how we can make easy the 

understanding of Sylow theorem or Cauchy theorem and so on. 

 First we show how to colour the p-sylow subgroups of a 

group G. 

Example 2.75: Let S3 = {1, p1, p2, p3, p4, p5} be the symmetric 

group of degree 3. The order of S3 is 6. 6 = 2.3. S3 has only 2-

sylow subgroups and 3-sylow subgroups. The 2-sylow 
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subgroups of S3 are H1 = {1, p1}, H2 = {1, p2} and H3 = {1, p3}.

The 3-sylow subgroup of S3 is H3 = {1, p4, p5}.

 p1, p2, p3 are given one colour for they are 2-Sylow 

subgroups of S3. The 3-sylow subgroup H3 is given another 

colour to p4 and p5. Thus the vertices are given different colours 

for only different types of p-sylow subgroups. 

 Thus S3 is 2 colourable p-sylow subgroups. 

Example 2.76: Let S4 be the permutation group of degree 4. 

Clearly o(S4) = 1.2.3.4 = 24 = 23.3. Thus S4 has only 2-sylow 

subgroups and 3-sylow subgroups. Hence S4 is a 2 colourable p-

sylow subgroups. 

Example 2.77: Let S5 be the permutation group of (12345). o 

(S5) = |5 = 1.2.3.4.5 = 23. 3.5. S5 has only 2-sylow subgroups, 3-

sylow subgroups and 5-sylow subgroups. Thus S5 is a 3-

colourable p-sylow subgroup.  

 In view of the above examples we have the following 

theorem. 

THEOREM 2.15: Let Sn be the permutation group of degree n. 

The group Sn is a m-colourable p- sylow subgroup, where m is 

the number of primes less than or equal to n. 

Proof: Let Sn be the symmetric group of degree n. o(Sn) = 

1.2.3…n = |n. Now p is a prime such that p � n, then p / o(Sn) as 

o(Sn) = |n. So Sn has p-sylow subgroups. This is true of all 

primes p such that p � n as o(Sn) = |n. So if m is the number of 

distinct primes which divide |n or equivalently m is the number 

1

 p3

Figure 2.68 
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of primes which is less than or equal to n then we have m-

distinct sylow subgroups of different orders. Thus the group Sn

is a m-colourable p-sylow subgroups. 

Example 2.78: Consider S31, the symmetric group of degree 31. 

o(S31) = |31 = 1.2.3.4.5.6.7.8 … 31. The primes which are less 

than or equal to 31 are 2,3, 5, 7, 11, 13, 17, 19, 23, 29 and 31. 

Thus S31 has 11-distinct sylow subgroups of different orders. 

Thus S31 is a 11-colourable p-sylow subgroups.  

 Another interesting way of colouring the vertices of a group 

is by colouring the center of a non commutative group G. So by 

looking at the colours the student can know the centre of the 

group G. 

Example 2.79: Let G = {a, b / a2 = b5 = 1; bab = a} = {1, a, b, 

ab, ab2, ab3, ab4, b2b3, b4} C (G) = 1 only 1 is given a colour and 

rest of the vertices in the graph Gi of G remain uncoloured. 

 Thus the graph of G is 

Example 2.80: Let G = {a, b / a2 = b4 = 1, bab = a} = {1, a, b, 

b2, b3, ab, ab2, ab3}. The graph of G is as follows. 
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 In this graph 1 and b2 are given a colour, rest of the vertices 

remain uncoloured. 

Example 2.81: Let G = S3 � {g / g4 = 1} be the group of order 

24. To find the center of G. Given G = {(e 1), (p1, 1), (p2, 1), 

(p3,1), (p4,1), (p5,1), (e, g), (p1, g), (p2, g), (p3, g), (p4, g), (p5, g), 

(e,g2), (p1,g
2), (p2,g

2), (p3,g
2), (p4,g

2), (p5,g
2), (p1,g

3), (e1,g
3),

(p2,g
3), (p3,g

3), (p4,g
3), (p5,g

3)}. The center of G is given by {(e, 

1), (e, g), (e, g2), (e, g3)}

 The graph of G is given below 

The rest of the vertices are not given any colour. 

So by looking at the coloured graph Gi one can find the center 

and inverse of each elements. 

Example 2.82: Let G = S3 � D2.11 � H where H = {g | g14 = e1}

be a group of order n = 6 � 22 � 14. The center of G is given by 

C (G) = {(e, 1, g) / g � H} � G.

(e, 1)
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The graph Gi associated with G is coloured as follows:  

Out of the 1848 vertices of the group G only the 14 vertices of 

C(G) = {e, 1, e1) (e, 1, g), …, (e, 1, g13)} are given one colour, 

rest are uncoloured. 

 Now all the vertices which form the group elements are 

adjoined with identity. Two elements are adjacent if and only if 

one is the inverse of the other and they are joined. If an element 

is a such that its square is identity that is self inversed then only 

the vertex is joined with the identity in the centre. All the group 

elements which form the vertex set are joined with the identity. 

Remark: By looking at the identity graph of a group one can 

immediately say the number elements x in the group G which 

are such that x2 = e (e-identity element of G)  

Now we proceed onto give the matrix representation of the 

identity graph of G which is called as the graph – matrix 

representation of a group G. 

 The identity graph in the case of the group G can be given 

the corresponding adjacency matrix or connection matrix which 

is known as the graph –matrix representation of the group. 

DEFINITION 2.8: Let G be a group with elements e, g1, …, gn.

Clearly the order of G is n + 1. Let Gi be the identity graph of 

G. The adjacency matrix of Gi is a (n + 1) � (n + 1) matrix X = 

(xij) in which diagonal terms are zero i.e., xii = 0 for i = 1, 2, …, 

n + 1 the first row and first column are one except, xij = 1 if the 

element gi is the inverse of gj in which case xij = xji = 1 if (i � j). 

We call the matrix X = (xij) to be  (n + 1) � (n +1) the identity 

graph matrix of the group G.  

We shall illustrate this situation by some examples. 

Example 2.82: Let Z10 = {0, 1, 2, …, 9} be the group under 

addition modulo 10. The identity graph of Z10 is given by the 

following figure. 
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 The identity graph matrix of Z10 is a 10 � 10 matrix X. 

 0 1 2 3 4 5 6 7 8 9 

X = 

0 0 1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1

2 1 0 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 0 1 0 0

4 1 0 0 0 0 0 1 0 0 0

5 1 0 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0 0 0

7 1 0 0 1 0 0 0 0 0 0

8 1 0 1 0 0 0 0 0 0 0

9 1 1 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Example 2.84: Let G = {a, b | a2 = b4 = 1, bab = a} = {1, a, b, 

b2, b3, ab, ab2, ab3} be the dihedral group of order 8.  

The identity graph of G denoted by Gi is as follows. 

0
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6
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Figure 2.72 
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 The identity graph matrix X of Gi is as follows. 

 1 a b b2 b3 ab ab2 ab3

1 0 1 1 1 1 1 1 1 

a 1 0 0 0 0 0 0 0 

b 1 0 0 0 1 0 0 0 

b2 1 0 0 0 0 0 0 0 

b3 1 0 1 0 0 0 0 0 

ab 1 0 0 0 0 0 0 0 

ab2 1 0 0 0 0 0 0 0 

ab3 1 0 0 0 0 0 0 0 

Example 2.85: Let

A4 = {1, g1 = 
1 2 3 4

2 1 4 3

 �
� �
� �

, g2 = 
1 2 3 4

3 4 1 2

 �
� �
� �

 , 

g3 = 
1 2 3 4

4 3 2 1

 �
� �
� �

, g4 = 
1 2 3 4

1 3 4 2

 �
� �
� �

,

g5 = 
1 2 3 4

1 4 2 3

 �
� �
� �

, g6 = 
1 2 3 4

3 2 4 1

 �
� �
� �

,

g7 = 
1 2 3 4

4 2 1 3

 �
� �
� �

, g8 = 
1 2 3 4

2 4 3 1

 �
� �
� �

,

1
a

ab

ab2
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g9 = 
1 2 3 4

4 1 3 2

 �
� �
� �

, g10 = 
1 2 3 4

2 3 1 4

 �
� �
� �

,

g11 = 
1 2 3 4

3 1 2 4

� ��
�� �
�� ��

be the alternating subgroup of S4.

The graph Gi of A4 is as follows. 

The corresponding identity graph – matrix X of A4 is as follows: 

 1 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 0 1 1 1 1 1 1 1 1 1 1 1 

g1 1 0 0 0 0 0 0 0 0 0 0 0 

g2 1 0 0 0 0 0 0 0 0 0 0 0 

g3 1 0 0 0 0 0 0 0 0 0 0 0 

g4 1 0 0 0 0 1 0 0 0 0 0 0 

g5 1 0 0 0 1 0 0 0 0 0 0 0 

g6 1 0 0 0 0 0 0 1 0 0 0 0 

g7 1 0 0 0 0 0 1 0 0 0 0 0 

g8 1 0 0 0 0 0 0 0 0 1 0 0 

g9 1 0 0 0 0 0 0 0 1 0 0 0 

g10 1 0 0 0 0 0 0 0 0 0 0 1 

g11 1 0 0 0 0 0 0 0 0 0 1 0 

1

Figure 2.74 
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(1) We see X is a symmetric matrix with diagonal entries to 

be zero. 

(2) Further if the row gi has only one 1 at the 1st column 

then gi � G is such that 
2

ig  = 1. 

(3) If a row gj has two ones and the rest zero then for the gj

we have a gk row that has two ones and gjgk = gkgj = 1. 

This observation is also true for columns. 

We now proceed onto study or define a graph of a group by 

its conjugate elements. We assume the groups are non 

commutative. 

DEFINITION 2.9: Let G be a non abelian group. The 

equivalence classes of G be denoted by [e], [g1], …, [gn]. Then 

each element hi in an equivalence class [gi], is joined with gi, i 

= 1, 2, …, n. 

This graph will be known as conjugate graph of the 

conjugacy classes of a non commutative group. 

We illustrate this situation by the following examples. 

Example 2.86: Let S3 = {e, p1, p2, p3, p4, p5} be the symmetric 

group of degree 3. The conjugacy classes of S3 are [e], [p1] and 

[p4]. The conjugacy graph of S3 is 

Example 2.87: Let D24 = {a, b / a2 = b4 = 1, bab = a} = {1, a, b, 

b2, b3, ab, ab2, ab3}. The conjugacy class of D24 are {1}, {a, ab2,

b2} = {a}, {b} = {b, b3} and {ab3} = {ab, ab3}.

 The conjugacy graph of D24 is 

Figure 2.75 
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 We now proceed onto find the conjugacy graph of D27.

Example 2.88: Let G = D27 = {a, b / a2 = b7 = 1, bab = a} = {1, 

a, b, b2, …, b6, ab, ab2,…, ab6} be the dihedral group of order 

14.

 The conjugacy classes of D27 are {1}, {a} = {a, ab3, ab, ab5,

ab4, ab6, ab2}, {b} = {b, b6}, {b2} = {b2, b5} and {b3} = {b3, b4}.

 The conjugacy graph associated with D27 is 

 We see the graphs of different type for D2n when n is a 

prime and n a non prime. 

Example 2.89: Let D26 = {a, b | a2 = b6 = 1, bab = a} = {1, a, b, 

b2, …, b5, ab, ab2,…, ab5} be a group of order 12. The 

conjugacy classes of D2.6 is {1}, {b2} = {b2, b4}, {a} = {a, ab2,

Figure 2.76 
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ab4}, {b3} = {b3}, {b} = {b, b5}, {ab} = {ab, ab3, ab5}. The 

conjugacy graph of D26 is 

Example 2.90: Let D2.9 = {a, b | a2 = b9 = 1, bab = a} be the 

group of order 18. The conjugacy classes of D29 is {1}, {a} = 

{a, ab2, ab4, ab6, ab8, ab, ab3, ab5, ab7}, {b} = {b, b8} b2 = {b2,

b7} {b3} = {b3, b6}, {b4} = {b4, b5}. The conjugacy graph of D2.9

is

Figure 2.78 
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 We have the following theorem. 

THEOREM 2.16: Let Z2p = {a, b / a2 = bp = 1, bab = a} be a 

dihedral group of order 2p, p a prime. The conjugacy classes of 

Z2p forms a collection of complete graph with p – 1 / 2 complete 

graphs with two vertices and one complete graph with p 

vertices.

Proof: Let Z2p = {a, b / a2 = bp = 1 bab = a} = {1, a, b, b2, …, bp-

1, ab, ab2,…, abp-1} where p is a prime. The conjugacy classes of 

Z2p are {1}, {a} = {a, ab, ab2, …, abp-1}, {b} = {b, bp-1}, {b2} = 

{b2, bp-2} … 
p 1 p 1 p 1

2 2 2b b ,b
� � 
� � � �

	� � � �
� � � �

.

 Clearly the conjugacy graph associated with this groups 

consists of a point graph, p – 1/2 number complete graphs with 

two vertices and one complete graph with p vertices, which is 

indicated below 

Example 2.91: Let Z2.10 = {a, b / a2 = b10 = 1, bab = a} be the 

dihedral group of order 20. 
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 The conjugacy classes of Z2.10 are {1} = {1}, {a} = {a, ab2,

ab4, ab6, ab8}, {ab3} = {ab7, ab3, ab, ab5, ab9}, {b} = {b, b9},

{b2} = {b2, b8}, {b3} = {b3, b7}, {b4} = {b4, b6}. 

 The conjugacy graph of D20 is given below.  

 We see in this case we have 2 complete graphs with five 

vertices.

Example 2.92: Consider the dihedral group of order 24 given 

by D2.12 = {a, b / a2 = b12 = 1, bab = a}. The conjugacy classes of 

D2.12 is as follows.

 {1}, {a} = {a, ab2, ab4, ab6, ab8, ab10}, {ab} = {ab, ab9, ab7,

ab5, ab3, ab11} {b} = {b, b11}, {b2} = {b2, b10}, {b3} = {b3, b9},

{b4} = {b4, b8}, {b5} = {b5, b7} and {b6}. The conjugacy graph 

of D2.12 is as follows. 
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 We see the conjugacy graph of D2.12 contains 2 points 

graphs 5 complete graph with two vertices and 2 complete 

graphs with 6 vertices. 

Example 2.93: Let Z2.18 = {a, b | a2 = b18 = 1, bab = a} be the 

dihedral group of order 36. The conjugacy classes of Z2.18 are 

{1}, {a} = {a, ab2, ab4, ab6, ab8, ab10, ab12, ab14, ab18}, {ab} = 

{ab, ab3, ab5, ab7, ab9, ab11, ab13, ab15, ab17} {b} = {b, b17}, {b2}

= {b2, b16}, b3 = {b3, b15}, b4 = {b4, b14}, b5 = {b5, b13}, {b6} = 

{b6, b12}, {b7} = {b7, b11}, {b8} = {b8, b10} and {b9}. The 

conjugacy graph of Z2.18 is as follows. 

Figure 2.82 
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 In view of this we have the following theorem 
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THEOREM 2.17: Let D2n = {a, b / a2 = bn = 1, bab = a} where n 

is of the form 2r. Then the conjugacy graph of D2n has two point 

graphs. (n – 2)/2 number of complete graph with two vertices 

and two complete graphs with r vertices. 

Proof: Given D2n = {a, b / a2 = bn = 1 bab = a} where n = 2r is a 

dihedral group of order 2n. The conjugacy classes of D2n are 

{1}, {r}, {b, b2r-1}, {b2, b2r-2}, {b3, b2r-3}, …, {br-1, b2r-(r-1)},

{a, ab2, ab4, …, ab2r-2} and 

{a, ab3, ab5, …, ab2r-1}.

The conjugacy graph of D2n consists of 2r-2/2 number 

of complete 2 vertices graphs and two complete graph with r 

vertices. Hence the claim. 

Example 2.94: Let D2.8 = {a, b / a2 = b8 = 1 bab = a} be the 

dihedral group of order 16. The conjugacy classes of D28 are 

{1}, {a, ab2, ab4, ab6}, {b, b7}, {b2, b6}, {b3, b5}, {b4} {ab, ab5,

ab3, ab7}. The conjugacy graph associated with D28 is as 

follows.

Example 2.95:  

A4 = 
1 2 3 4 1 2 3 4 1 2 3 4

, , ,
1 2 3 4 2 1 4 3 4 3 2 1

� �  �  ��
�� � � � � �
�� � � � � ��
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1 2 3 4

3 4 1 2

 �
� �
� �

,
1 2 3 4 1 2 3 4

, ,
1 3 4 2 1 4 2 3

 �  �
� � � �
� � � �

1 2 3 4 1 2 3 4 1 2 3 4
, , ,

3 2 4 1 4 2 1 3 2 4 3 1

 �  �  �
� � � � � �
� � � � � �

1 2 3 4

4 1 3 2

 �
� �
� �

,
1 2 3 4 1 2 3 4

,
2 3 1 4 3 1 2 4

� �  ��
�� � � �
�� � � ��

be the alternating group of S4.

The conjugacy classes of A4 are

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
, , ,

1 2 3 4 2 1 4 3 4 3 2 1 3 4 1 2

� � �  �  �  �� �
� �� � � � � � � �
� �� � � � � � � �� �

,

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
, , ,

1 3 4 2 3 1 2 4 4 2 1 3 2 4 3 1

� � �  �  �  �� �
� �� � � � � � � �
� �� � � � � � � �� �

,

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
, , ,

1 4 2 3 3 2 4 1 2 3 1 4 4 1 3 2

� � �  �  �  �� �
� �� � � � � � � �
� �� � � � � � � �� �

 The conjugacy graph associated with A4 is as follows. 
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 �
� �
� �
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 �
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 �
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� �
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4 3 2 1

 �
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THEOREM 2.18: Let G be any non commutative group of finite 

order. The conjugacy graph of G is always a collection of 

complete graphs. 

Proof: If x is conjugate with p elements say g1, …, gp then each 

gi is conjugate with p elements resulting in a complete graph 

with p + 1 vertices. Hence the claim. 

Figure 2.85 
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Chapter Three  

IDENTITY GRAPHS OF SOME ALGEBRAIC

STRUCTURES

For the first time we introduce the identity graphs of some 

algebraic structures like semigroups, loops and commutative 

rings. This chapter has three sections. In section one we study 

the identity graph of semigroups and S-semigroups. In section 

two we study the graphs of loops and commutative groupoids. 

In the final section the identity graph of a commutative ring is 

studied.

3.1 Identity graphs of semigroups 

Now we consider the identity graph of the semigroup S which is 

taken under multiplication. Let (S, *) be a commutative 

semigroup with identity 1, i.e., a monoid, we say an element x �
S has an inverse y in S if x * y = y * x = 1. If y = x then x * x = 

x2 = 1 we say x � S is a self inversed element of S. 

Example 3.1.1: Z12 the set of modulo integers 12 is a semigroup 

under multiplication modulo 12. We see Z12 is a commutative 

monoid. 
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 We can draw identity graph for semigroups with units. We 

say the element and its inverse are adjoined by an edge. Like 

zero divisor graphs for semigroups we draw identity graphs for 

semigroups which are commutative with unit. 

Example 3.1.2: Let Z6 = {0, 1, 2, 3, 4, 5} be the semigroup 

under multiplication modulo 6. The identity graph of Z6 is just a 

line graph joining 1 and 5.  

Example 3.1.3: Let Z5 = {0, 1, 2, 3, 4} be the semigroup under 

multiplication modulo 5. The identity graph is 

Example 3.1.4: Let Z12 = {0, 1, 2, …, 11} be the semigroup 

under multiplication modulo 12. The identity graph of Z12 is 

Figure 3.1.1 
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Example 3.1.5: Let

S(2) = 
1 2 1 2 1 2 1 2

, , ,
1 1 1 2 2 1 2 2

� � �  �  �  �� �
� �� � � � � � � �
� �� � � � � � � �� �

be the symmetric semigroup under composition of maps. The 

identity graph of S(2) is 

Example 3.1.6: Let Z15 = {0, 1, 2, …, 14} be the semigroup 

under multiplication modulo 15. The identity graph of Z15 is 

Example 3.1.7: Let Z14 = {0, 1, 2, …, 13} be the semigroup 

under multiplication modulo 14. The identity graph of Z14 is 

1 2

1 1

 �
� �
� �

Figure 3.1.4 
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Example 3.1.8: Let Z10 = {0, 1, 2, …, 9} be the semigroup 

under multiplication modulo 10. The identity graph of Z10 is 

Example 3.1.9: Let Z21 = {0, 1, 2, …, 20} be the semigroup 

under multiplication modulo 21. The identity graph of Z21 is 

Example 3.1.10: Let Z18 = {0, 1, 2, …, 17} be the semigroup 

under multiplication modulo 18. The identity graph of Z18 is as 

follows:

1

Figure 3.1.7 
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Example 3.1.11: Let Z30 be the semigroup under multiplication 

modulo 30. The identity graph of Z30 is 

Example 3.1.12: Let

V = 
1 0 0 0 0 1 0 0

, , , ,
0 0 0 0 0 0 1 0

� �  �  �  ��
�� � � � � � � �
�� � � � � � � ��

0 0 1 1 1 0 0 0 0 1
, , , ,

0 1 0 0 1 0 1 1 0 1

 �  �  �  �  �
� � � � � � � � � �
� � � � � � � � � �

,

1 0 0 1 1 1
, , ,

0 1 1 0 1 0

 �  �  �
� � � � � �
� � � � � �

0 1 1 0 1 1 1 1
, , ,

1 1 1 1 0 1 1 1

� �  �  �  ��
�� � � � � � � �
�� � � � � � � ��

 be the semigroup under multiplication; elements of V are from 

Z2 = {0, 1}. Clearly V is a semigroup of order 16.  

The identity graph associated with V is as follows.  

1
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 However the semigroup V is non commutative since  

ab = ba = 
1 0

0 1

 �
� �
� �

is true for the inverse elements we need not be bothered about 

commutativity, as only thing we should guarantee is that the 

presence of unique inverse for a � V which is such that

ab = ba = 
1 0

0 1

 �
� �
� �

.

However this work is left for the reader to prove. 

We know the zero divisor graph of the semigroup has been 

studied extensively in [7]. We now give some examples of the 

zero divisor graph and compare it with the identity graph. 

Example 3.1.13: Let Z6 = {0, 1, 2, 3, 4, 5} be the semigroup 

under multiplication modulo 6. The zero divisors in Z6 are 

2.3 ' 0 (mod 6), 4.3 ' 0 (mod 6). The zero divisor graph of Z6 is 

as follows: 

Figure 3.1.11
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Example 3.1.14: Let Z8 = {0, 1, 2, 3, …, 7} be the semigroup 

under multiplication modulo 8. The zero divisor graph of Z8 is 

as follows: 

Example 3.1.15: Let Z10 = {0, 1, 2, 3, 4, 5, …,8} be the 

semigroup under multiplication modulo 10. The zero divisor 

graph of Z10 is as follows: 

Example 3.1.16: Let Z18 = {0, 1, 2, 3, …, 17} be the semigroup 

under multiplication modulo 18. The zero divisor graph of Z18 is 

as follows: 

 Now having seen the zero divisor graph and the identity 

graph of a semigroup S, we now proceed on to define the notion 

of identity-zero combined graph of a semigroup G. 
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DEFINITION 3.1.1: Let S = {0, 1, s1, …, sn} be the commutative 

semigroup where 0 and 1 � S i.e., semigroup is a monoid which 

has both zero divisors and units. The combined graph of S with 

zero divisor graph and identity graph will be known as the 

combined identity-zero graph of the semigroup. 

We illustrate this by some examples. 

Example 3.1.17: Let Z6 = {0, 1, 2, …, 5} be the semigroup 

under multiplication modulo 6. The identity-zero combined 

graph (combined identity-zero graph) of Z6 is as follows: 

Example 3.1.18: Let S = {0, 1, 2, …, 7} = Z8 be the semigroup 

under multiplication modulo 8. The combined identity-zero 

graph of Z8 is as follows: 

Example 3.1.19: Let Z9 = {0, 1, 2, …, 8} be the semigroup 

under multiplication modulo 9. The identity-zero combined 

graph of Z9 is as follows: 

Figure 3.1.16
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Example 3.1.20: The combined identity-zero graph of Z10 = {0, 

1, 2, 3, …, 9} under multiplication modulo 10 is as follows: 

Example 3.1.21: The identity-zero combined graph of the 

semigroup Z12 = {0, 1, 2, 3, …, 11} under multiplication 

modulo 12 is as follows: 

Example 3.1.22: Let Z15 = {0, 1, 2, 3, …, 14} be the semigroup 

under multiplication modulo 15. The combined identity-zero 

graph of Z15 is as follows: 

Example 3.1.23: Let Z16 = {0, 1, 2, 3, …, 15} be the semigroup 

under multiplication modulo 16. The combined identity-zero 

graph of Z16 is as follows: 
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Example 3.1.24: Let Z30 = {0, 1, 2, 3, …, 29} be the semigroup 

under multiplication modulo 30. The combined identity-zero 

graph of Z30 is as follows. 

 Now having seen some examples of monoids with zero 

divisors. We illustrate the three adjacency matrices associated 

with the identity graph, zero divisor graph and the combined 

identity-zero graph. 

DEFINITION 3.1.2: Let S be a semigroup. The adjacency matrix 

associated with identity-zero combined graph Si is defined to be 

the identity-zero combined adjacency matrix of Si.

 It is assumed that the reader is familiar with adjacency 

matrix of the identity graph and the zero graph. If the semigroup 
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has no zero divisors they we will not have the notion of zero 

graph or the combined identity-zero graph. 

 If the semigroup has no identity then the semigroup has no 

identity graph associated with it. 

We will illustrate this situation before we proceed to define 

some more new notions. 

Example 3.1.25: Let Z12 = {0, 1, 2, 3, …, 11} be the semigroup 

under multiplication modulo 12.  

The combined identity-zero graph of Z12 is as follows. 

This graph is the associated with the following adjacency matrix 

 0  1  2  3  4  5  6  7  8  9  10  11 

A = 

0 0 0 1 1 1 0 1 0 1 1 1 0

1 0 0 0 0 0 1 0 1 0 0 0 1

2 1 0 0 0 0 0 1 0 0 0 0 0

3 1 0 0 0 1 0 0 0 1 0 0 0

4 1 0 0 1 0 0 1 0 0 1 0 0

5 0 1 0 0 0 0 0 0 0 0 0 0

6 1 0 1 0 1 0 0 0 1 0 1 0

7 0 1 0 0 0 0 0 0 0 0 0 0

8 1 0 0 1 0 0 1 0 0 1 0 0

9 1 0 0 0 1 0 0 0 1 0 0 0

10 1 0 0 0 0 0 1 0 0 0 0 0

11 0 1 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Figure 3.1.24
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The zero graph associated with Z12 is given in the following. 

The adjacency matrix of the zero graph is as follows.  

 0  1 2  3 4  5  6  7  8  9  10  11 

B = 

0 0 0 1 1 1 0 1 0 1 1 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 1 0 0 0 0 0

3 1 0 0 0 1 0 0 0 1 0 0 0

4 1 0 0 1 0 0 1 0 0 1 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 1 0 1 0 1 0 0 0 1 0 1 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 1 0 0 1 0 0 1 0 0 1 0 0

9 1 0 0 0 1 0 0 0 1 0 0 0

10 1 0 0 0 0 0 1 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

 The identity graph of the semigroup Z12 is as follows. 

Figure 3.1.25
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The adjacency matrix of the identity graph is as follows. 

  C = 

0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 1 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

11 0 1 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
#
#
#
#
#
#
#
#
#
#% &

$
$
$
$
$
$
$
$
$
$

It is verified that the combined identity-zero adjacency 

matrix of the combined identity-zero graph can be, got as the 

sum of the adjacency matrix of the special identity and 

adjacency matrix of the zero divisor graph, i.e., A = B + C.  

Example 3.1.26: Let Z6 = {0, 1, 2, 3, 4, 5} be the semigroup 

under multiplication modulo 6.  

The zero divisor graph of Z6 is

The associated adjacency matrix D of the zero divisor graph  

Figure 3.1.27
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D = 

0 1 2 3 4 5

0 0 0 1 1 1 0

1 0 0 0 0 0 0

2 1 0 0 1 0 0

3 1 0 1 0 1 0

4 1 0 0 1 0 0

5 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

The special identity graph of Z6 is 

The adjacency matrix B of the special identity graph is as 

follows:

B = 

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 0 0 0 1

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 1 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

.

The combined identity-zero divisor graph of Z6 is given below.

Figure 3.1.28
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 The combined adjacency matrix C of the identity-zero 

divisor combined graph C is as follows: 

C = 

0 1 2 3 4 5

0 0 0 1 1 1 0

1 0 0 0 0 0 1

2 1 0 0 1 0 0

3 1 0 1 0 1 0

4 1 0 0 1 0 0

5 0 1 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

We see 

 C = 

0 0 1 1 1 0

0 0 0 0 0 1

1 0 0 1 0 0

1 0 1 0 1 0

1 0 0 1 0 0

0 1 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

=

0 0 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

! " ! "
# $ # $
# $ # $
# $ # $


# $ # $
# $ # $
# $ # $
# $ # $
# $ # $% & % &

= D + B. 

Example 3.1.27: Let Z8 = {0, 1, 2, …, 7} be the semigroup 

under multiplication modulo 8. 
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 The zero divisor graph of Z8 is as follows: 

The corresponding adjacency matrix of the above graph is 

B = 

0 1 2 3 4 5 6 7

0 0 0 1 0 1 0 1 0

1 0 0 0 0 0 0 0 0

2 1 0 0 0 1 0 0 0

3 0 0 0 0 0 0 0 0

4 1 0 1 0 0 0 1 0

5 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

The special identity graph of Z8 is as follows: 

The adjacency matrix of the above graph is 

Figure 3.1.30
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A = 

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 1

2 0 0 0 0 0 0 0 0

3 0 1 0 0 0 1 0 0

4 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Now we find

B + A = 

0 1 2 3 4 5 6 7

0 0 0 1 0 1 0 1 0

1 0 0 0 1 0 1 0 1

2 1 0 0 0 1 0 0 0

3 0 1 0 0 0 0 0 0

4 1 0 1 0 0 0 1 0

5 0 1 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0

7 0 1 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

.

We find the special identity-zero graph of Z8.

The adjacency matrix associated with the graph is as follows: 

Figure 3.1.32
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0 1 2 3 4 5 6 7

0 0 0 1 0 1 0 1 0

1 0 0 0 1 0 1 0 1

2 1 0 0 0 1 0 0 0

3 0 1 0 0 0 0 0 0

4 1 0 1 0 0 0 1 0

5 0 1 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0

7 0 1 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

 = B + A. 

Example 3.1.28: Let Z5 = {0, 1, 2, …, 4} be the semigroup 

under multiplication modulo 5.  

The zero divisor graph of Z5 is 

 Thus we see as Z5 has no non trivial zero divisors; no edges 

in the zero divisor graph but only vertices. Thus the related 

adjacency matrix would only be a zero matrix as we do not 

consider ab = 0 with a = 0 or b = 0 as a non trivial zero divisor. 

The special identity graph of Z5 is 

The related adjacency matrix is as follows. 

Figure 3.1.33
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0 1 2 3 4

0 0 0 0 0 0

1 0 0 1 1 1

2 0 1 0 1 0

3 0 1 1 0 0

4 0 1 0 0 0

! "
# $
# $
# $
# $
# $
# $% &

.

 We see the combined identity-zero graph of Z5 is the same 

as the special identity graph of Z5.

 Further the zero divisor graph has only 5 vertices and no 

edges.

 In view of this we have the following theorem. 

THEOREM 3.1.1: Let Zp = {0, 1, 2, …, p-1} be the semigroup 

under multiplication modulo p, p a prime. The zero divisor 

graph has no edges so the related adjacency matrix is a zero 

matrix and the special identity graph is the same as the 

combined identity-zero graph. 

Proof: Since in the semigroup Zp = {0, 1, 2, …, p – 1}, p a 

prime, we see Zp \ {0} is a group so Zp has no non trivial zero 

divisors. Hence the zero divisor graph has no edges hence the 

associated adjacency matrix is a p � p zero matrix. 

 Now Zp \ {0} is a group so every element x � Zp \ {0} has 

inverse so in the special identity graph of Zp all elements in Zp \ 

{0} are adjacent with one and 0 alone is left with no element 

adjacent with it. Thus we see the matrix associated with the zero 

divisor graph is just a zero matrix. 

 Like wise if the semigroup has no identity then this 

semigroup will not have the special identity graph associated 

with it. Thus in this case also we will not have the combined 

identity-zero matrix associated with it. 

 We give a few examples. 
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Example 3.1.29: Let S = 2Z12 = {0, 2, 4, 6, 8, 10} be the 

semigroup under multiplication modulo 12. Clearly 1 ( 2Z12.

Thus the zero divisor graph associated with 2Z12 is  

This has no special identity graph associated with it as 1 ( 2Z12.

Example 3.1.30: Let 3Z15 = {0, 3, 6, 12} be the semigroup. The 

semigroup too has no identity. The zero graph associated with 

3Z15 is as follows. 

 No zero divisors so no graph can be associated with it.  

Also this semigroup cannot have the special identity graph 

associated with it as 1 ( 3Z. 

 Thus we can have semigroups which has no zero divisors 

and no special identity graph as it does not contain 1 so such 

semigroups cannot be given any graph representation. This 

property is a major difference between the groups and 

semigroups. 

Example 3.1.31: Let 2Z30 ={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 

22, 24, 26, 28} be the semigroup under multiplication modulo 

30. Since 1 ( 2Z30 the question of its special identity graph does 

not arise. 

 Now the zero divisor graph of 2Z30 is as follows. 

Figure 3.1.35
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The associated adjacency matrix M with this graph is as 

follows.

 0  2  4  6  8  10  12 14 16  18  20  22  24 26  28 

M = 

0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

20 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

22 0 0 0 0 0 0 0 0 0 0

24

26

28

0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

This semigroup has no associated special identity graph as 1 

( 2 Z30.
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Example 3.1.32: Let S(3) be the semigroup of the maps of (1 2 

3) to (1 2 3). This semigroup has no zero divisors hence no zero 

divisor graph associated with it. However the special identity 

graph associated with it is as follows:  

 Thus this semigroup does not have a combined identity-zero 

divisor graph associated with it. 

THEOREM 3.1.2: The class of symmetric semigroups S(n) has 

only special identity graphs associated with it and with no zero 

divisor graph hence cannot have the combined identity-zero 

graph associated with it. 

Proof: S(n) is a semigroup of order nn. Clearly S(n) has no zero 

divisors. So S(n) cannot have any zero divisor graph associated 

with it. 

 Further S(n) contains the subset Sn which is the symmetric 

group of degree n. Now associated with Sn is the special identity 

graph. Thus with S(n) we have an associated special identity 

graph and no zero divisor graph. Hence S(n) cannot have the 

combined identity-zero graph associated with it. 

We illustrate this by an example. 

Figure 3.1.38
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Example 3.1.33: Let S(4) be the symmetric semigroup got from 

the maps of (1 2 3 4) to itself. S(4) is a semigroup under the 

operation of composition of mappings. 

 S4 is the permutation group of degree 4 is a proper subset of 

S(4). Clearly S(4) has no zero divisors. Thus S(4) has no zero 

divisor graph associated with it. Now S4 � S(4) and since S4 is 

group; every element in S4 has an inverse. Hence S4 � S(4) has 

a special identity graph associated with it. 

 Thus the semigroup too cannot have a combined identity-

zero divisor graph associated with it. 

 We give a theorem which shows we have a class of 

semigroups which cannot have the special identity graph 

associated with it. 

THEOREM 3.1.3: Let pi Zn = {0, pi, 2pi, …, pi(n – 1)} be a 

semigroup under multiplication modulo n where pi / n and n = 

p1 p2 … pt, where each pi is a prime 1 � i � t, t   2. These 

Figure 3.1.39
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semigroups do not contain identity so these classes of 

semigroups have no special identity graphs associated with 

them.

Proof: Given pi Zn = {0, pi, …, pi (n – 1)} is a semigroup under 

multiplication modulo n, where n = p1 p2 … pt, t   2 and p1 … pt

are distinct primes 1 � i � t. Clearly 1 ( pi Zn so pi Zn cannot 

contain units hence piZn is a semigroup for which one cannot 

associate special identity graph with it. 

 Thus we have a class of semigroups which has no special 

identity graph associated with it. Thus this class of semigroups 

cannot have combined identity-zero divisor graph associated 

with it. 

 Next we give a class of semigroups which has combined 

identity-zero divisor graphs associated with it. 

THEOREM 3.1.4: Let Zn = {0, 1, 2, …, n-1} be the semigroup 

under multiplication modulo n where n is a composite number. 

This semigroup has combined identity-zero divisor graph.

Proof: Given Zn = {0, 1, 2, …, n – 1} is a semigroup of order n, 

n a composite number under multiplication modulo n. Clearly 

Zn has zero divisors as well as units. Thus Zn has a zero divisor 

graph and a special identity graph associated with it. Hence Zn

has a combined identity-zero divisor graph associated with it. 

Thus we have a class of semigroups for which we have an 

associated combined identity-zero graph. 

 We illustrate this by some examples before we proceed onto 

define some more new notions. 

Example 3.1.34: Let 3Z24 = {0, 3, 6, 9, 12, 15, 18, 21} be the 

semigroup under multiplication modulo 24. We see 3Z24 has no 

units but only zero divisors. Also 3Z24 is not a monoid as 1 (
3Z24. The zero divisor graph associated with 3Z24 is as follows: 

Figure 3.1.40
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The adjacency matrix of the zero divisor graph is 

 0  3  6   9  12 15  18 21 

0 0 0 1 0 1 0 1 0

3 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0

9 0 0 0 0 0 0 0 0

12 1 0 1 0 0 0 1 0

15 0 0 0 0 0 0 0 0

18 1 0 0 0 1 0 0 0

21 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Example 3.1.35: Let 4Z24 = {0, 4, 8, 12, 16, 20} be the 

semigroup under multiplication modulo 24. This semigroup too 

has no units but only zero divisors. Infact 1 ( 4Z24 so no units, 

that is cannot have the special identity graph associated with it. 

The zero divisor graph associated with 4Z24 is as follows:  

The zero divisor matrix associated with this graph is as follows; 

  0  4  8  12 16  20 

0 0 1 1 1 1 1

4 1 0 0 1 0 0

8 1 0 0 1 0 0

12 1 1 1 0 1 1

16 1 0 0 1 0 0

20 1 0 0 1 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $% &

Figure 3.1.41
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Example 3.1.36: Consider the semigroup 2Z24 = {0, 2, 4, 6, 8, 

10, 12, 14, 16, 18, 20, 22} under multiplication modulo 24. This 

has no unit so cannot have a special identity graph associated 

with it. The zero divisor graph associated with 2Z24 is as 

follows.

The adjacency matrix associated with the zero divisor graph is 

as follows. 

 0  2  4   6  8 10  12 14  16  18  20 22 

0 0 1 1 1 1 1 1 1 1 1 1 1

2 1 0 0 0 0 0 1 0 0 0 0 0

4 1 0 0 1 0 0 1 0 0 1 0 0

6 1 0 1 0 1 0 1 0 1 0 1 0

8 1 0 0 1 0 0 1 0 0 1 0 0

10 1 0 0 0 0 0 1 0 0 0 0 0

12 1 1 1 1 1 1 0 1 1 1 1 1

14 1 0 0 0 0 0 1 0 0 0 0 0

16 1 0 0 1 0 0 1 0 0 1 0 0

18 1 0 1 0 1 0 1 0 1 0 1 0

20 1 0 0 1 0 0 1 0 0 1 0 0

22 1 0 0 0 0 0 1 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
#% &$

Example 3.1.37: Let 8Z24 = {0, 8, 16} be the semigroup under 

multiplication modulo 24. For this semigroup we can take 24 as 

the identity. This is evident from the following table 

Figure 3.1.42

0

22

8

12
16

10

2

20

14

4

18
6



115

� 8 16

8 16 8 

16 8 16

Thus the special unit matrix of 8Z24 is

0 0 0 0

8 0 0 1

16 0 1 0

! "
# $
# $
# $% &

Example 3.1.38: Let 6Z24 = {0, 6, 12, 18} be the semigroup 

under multiplication modulo 24. The zero divisor graph of 6Z24

The matrix of the zero divisor graph is as follows: 

 0  6  12  18 

0 0 1 1 1

6 1 0 1 0

12 1 1 0 1

18 1 0 1 0

! "
# $
# $
# $
# $
% &

This sort of study with a different element as identity is 

interesting.

Example 3.1.39: Let Z20 = {0, 1, 2, …, 19} be the semigroup 

under multiplication modulo 20. The zero divisor graph of Z20 is 

as follows. 
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0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

 The special identity graph associated with the semigroup is 
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The matrix associated with the special identity graph is as 

follows:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

One can using both the matrices get the combined special 

identity-zero divisor graph which is as follows. 
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 The related combined adjacency matrix is 

0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0

0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

! "
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $
# $% &

Figure 3.1.47
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Now we proceed onto define the zero divisor graph of a 

Smarandache semigroup (S-semigroup). Since every S-

semigroup is also a semigroup we have the same definition of 

zero divisor graph and special identity graph to hold good. 

However we have the following to be true in case of S-

semigroups. 

 We define for S-semigroups the special group semigroup 

identity graphs. 

DEFINITION 3.1.2: Let S be a S-semigroup. Let P be a proper 

subset of G such that P is a group under the operations of G. 

Then we have a special identity graph associated with P. This 

graph will be known as the special group semigroup identity 

graph of S. 

Note: A S-semigroup has atleast one special group semigroup 

identity graph. It is pertinent to note in general a semigroup S 

need not have a special group – semigroup identity graph. We 

first give some examples of these structures, before we proceed 

on to define more properties about them. 

Example 3.1.40: Let S = {0, 1, 2, …, 14} be a semigroup under 

multiplication modulo 15. P = {1, 14} is a proper subgroup in S. 

The special group - semigroup identity graph of S is given by 

Take P1 = {5, 10} is again a subgroup in P1 with 10 as the 

identity. The special group semigroup identity graph associated 

with it is; 

 Take the subset P2 = {3, 6, 9, 12} in S. Clearly P2 is a 

subgroup of S. The special group semigroup identity graph 

Figure 3.1.48
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associated with P2 as a group is as follows. For P2, 6 acts as the 

identity element of the group. 

 Thus we have seen 3 subgroups in S and their related 

special group semigroup identity graphs. Here also two groups 

are isomorphic. Now we see the position of these groups in the 

combined special identity-zero divisor graph of S. 

 From this example it is surprising to see the special group 

semigroup identity graphs are from the zero divisor group also. 

However one group is from the special identity graph of S.  

Example 3.1.41: Let S = {0, 1, 2, …, 7} be a semigroup under 

multiplication modulo 8. Clearly S is a S-semigroup for 72 = 1 

(mod 8) and P = {1, 7} forms a group. Also P1 = {1, 3} forms a 

group and P2 = {1, 5} forms a group. 

 Thus the special group semigroup identity graphs of S 

related to P, P1 and P2 is as follows: 
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 The combined special identity-zero divisor graph of S is as 

follows:

 We see also P3 = {1, 3, 5, 7} is a subgroup of S and its 

special group semigroup identity graph is the special identity 

graph of S. However no group has been found from the zero 

divisor graph of S. 

 It is pertinent to mention here that when S = Z15 and S = Z8

the behavior of these two semigroups under modulo 

multiplication behaves differently. 

Example 3.1.42: Let S = Z9 = {0, 1, 2, …, 8} be a semigroup 

under multiplication modulo 9. Clearly Z9 is a S-semigroup. 

 The combined special identity-zero divisor of Z9 is as 

follows:

 P1 = {1, 8} is a subgroup of S. 

 P2 = {1, 7, 4} is again a subgroup of S.  

 P3 = {1, 2, 5, 8, 7, 4} is again a subgroup of S.  

Thus vertices of the special identity graph of S is again a group. 

However the elements of S which forms the zero divisor graph 

does not yield to any subgroups of the semigroup. 

Figure 3.1.51
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Example 3.1.43: Let S = Z25 = {0, 1, 2, …, 24} be a semigroup 

under multiplication modulo 25.  

The special combined identity-zero divisor graph of Z25 is 

as follows: 

 Now we find the subsets of S which are subgroups under 

multiplication modulo 25. 

 P1 = {1, 24} is a subgroup of S. 

 P2 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 

19, 20, 21, 22, 23, 24} is a subgroup.  

The special group semigroup identity graph of S = Z25 is the 

whole of the special identity graph given by the following 

diagram. 

Figure 3.1.53
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 Now we see yet another example. 

Example 3.1.44: Let G = {0, 1, 2, 3} be the S-semigroup under 

multiplication modulo 4. Clearly the combined special identity-

zero divisor graph of G is given by 

The special group semigroup identity graph is given by 

Example 3.1.45: Let S = {0, 1, 2, 3, 4, 5} be the semigroup 

under multiplication modulo 6. The combined special identity-

zero divisor graph of S is 
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 The special group semigroup identity graph of S is 

Example 3.1.46: Let Z20 = {0, 1, 2, …, 19} be the S-semigroup 

under multiplication modulo 20. The combined special identity-

zero divisor graph of Z20 is as follows. 

 The subgroup of Z20 = S are P1 = {1, 9}, P2 = {1, 11}, P3 = 

{1, 19}, P4 = {1, 3, 7, 9}, P5 = {1, 13, 17, 9}, P6 = {1, 3, 7, 9, 

11, 13, 17, 19} and P7 = {1, 9, 11, 19}. 

 Thus the related graphs of these subgroups are given in the 

following diagrams.   

Figure 3.1.55
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Consider another example.  

Example 3.1.47: Let Z30 = {0, 1, 2, …, 29} be the semigroup 

under multiplication modulo 30. 

The zero divisor graph of Z30 is as follows 

The special identity graph of Z30 is

Cleary Z30 is also a S-semigroup. 

THEOREM 3.1.5: Let S be a S-semigroup. Then S has atleast 

one nontrivial special identity graph. 
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Proof: Since every S-semigroup S has a proper subset P which 

is a group under the operations of S we see the special identity 

graph of P gives the non trivial special identity graph of S. 

Hence the claim. 

 We now show we have classes of S-semigroups which 

satisfy the above theorem. 

 The class of symmetric semigroups S(n) where n denotes 

the set (a1, …, an) or (1, 2, 3, …, n) and S (n) is the set of all 

maps of the set (1, 2, 3, …, n) to itself. Clearly Sn � S (n) and Sn

is the symmetric group got from the one to one maps of (1, 2, 3, 

…, n). 

 Thus S(n) is a S-semigroup and Sn gives the special identity 

graph. Infact S(n) will have several identity graphs depending 

on the proper subgroups of Sn including Sn.

 We illustrate this situation by the following example. 

Example 3.1.48: Let S(4) be the set of all maps of (1 2 3 4) to 

itself. Clearly S(4) is a S-semigroup as S(4) contains the 

symmetric group of degree 4 viz. S4. Some of the subgroups of 

S(4) are as follows:

A4, H1 = 
1 2 3 4 1 2 3 4

,e
1 2 4 3 1 2 3 4

� � �  �� �
	� �� � � �

� �� � � �� �

H2 = 
1 2 3 4 1 2 3 4

e, ,
1 2 3 4 2 3 4 1

� �  ��
	�� � � �

�� � � ��

1 2 3 4 1 2 3 4
,

3 4 1 2 4 1 2 3

� �  ��
�� � � �
�� � � ��

H3 = 
1 2 3 4 1 2 3 4

, ,
1 2 3 4 2 1 4 3

� �  ��
�� � � �
�� � � ��

1 2 3 4 1 2 3 4
,

4 3 2 1 3 4 1 2

� �  ��
�� � � �
�� � � ��

 and so on.  
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The special identity graphs associated with the subgroups A4,

H1, H2 and H3 are as follows. 

THEOREM 3.1.6: Let Zn be the semigroup under multiplication 

modulo n, n � N. Zn has atleast one special identity graph 

associated with it. 
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Proof: The result follows from the fact that every Zn is a S-

semigroup hence every Zn has atleast one proper subset P which 

is a group; P being a group one can find the special identity 

graph associated with it. 

Example 3.1.49: Let 3Z15 = {0, 3, 6, 9, 12} be a semigroup 

under multiplication. Clearly P = {3, 6, 9, 12} is a group under 

multiplication modulo 15. P is given by the following table. 

 6 3 9 2 

6 6 3 9 12

3 3 9 12 6 

9 9 12 6 3 

12 12 6 3 9 

 The special identity graph associated with P is as follows. 

Example 3.1.50: Let 3Z24 = {0, 3, 6, 9, 12, 15, 18, 21} be the 

semigroup under multiplication modulo 24. P = {9, 3, 15, 21} is 

a proper subset of 3Z24 and is a group under multiplication 

modulo 24 with 9 acting as the identity. The special identity 

graph for this group is as follows.  

 Now having seen the graphs associated with semigroups we 

now proceed onto define or extend these notions to loops and 

commutative groupoids. 
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3.2 Special Identity Graphs of Loops  

 We define the special identity graph of a loop identical to 

that of a group as the associativity operation has no role to play. 

Thus taking verbatim the definition for groups to be true for 

loops we proceed onto give only examples. 

Example 3.2.1: Let L be the loop given by the following table. 

* e a1 a2 a3 a4 a5

e e a1 a2 a3 a4 a5

a1 a1 e a4 a2 a5 a3

a2 a2 a4 e a5 a3 a1

a3 a3 a2 a5 e a1 a4

a4 a4 a5 a3 a1 e a2

a5 a5 a3 a1 a4 a2 e

The special identity graph related with L is as follows. 

Example 3.2.2: Consider the loop L5 (2) = {e, 1, 2, 3, 4, 5}. The 

composition table for L5 (2) is given below 

* e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e 

a2

Figure 3.2.1 
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a4
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e



130

 The special identity graph is as follows.  

Example 3.2.3: L9 (8) be the loop given below by the following 

table

* e 1 2 3 4 5 6 7 8 9

e e 1 2 3 4 5 6 7 8 9

1 1 e 9 8 7 6 5 4 3 2

2 2 3 e 1 9 8 7 6 5 4

3 3 5 4 e 2 1 9 8 7 6

4 4 7 6 5 e 3 2 1 9 8

5 5 9 8 7 6 e 4 3 2 1

6 6 2 1 9 8 7 e 5 4 3

7 7 4 3 2 1 9 8 e 6 5

8 8 6 5 4 3 2 1 9 e 7

9 9 8 7 6 5 4 3 2 1 e

 The special graph identity of L9(8) is given below: 

THEOREM 3.2.1: Let Ln(m) be the loop where n > 3, n is odd 

and m is a positive integer such that (m, n) = 1 and (m – 1, n) = 

1
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1 with m < n. Then the special identity graph of these loops are 

rooted trees of special type with (n + 1) vertices. 

Proof: We know Ln(m) = {e, 1, 2, …, n} is a loop of order n+1 

with every element x � Ln(m) a self inversed element of Ln(m). 

Thus we see the special identity graph of these loops are special 

rooted trees with (n + 1) vertices given below. 

 We can have for the new classes of loops only rooted trees 

of special form. However for general loop this may not be true. 

Now we proceed onto define the special identity graph the zero 

divisor graph and the combined special identity-zero divisor 

graph in case of commutative monoids with identity. If the 

commutative monoids do not contain 1 then we do not have 

with it the associated special identity graph consequently the 

notion of combined special identity-zero divisor graph does not 

exist.

Thus throughout this book we only assume all the groupoids 

are commutative groupoids. 

 The notion of special identity graph, zero divisor graph and 

the combined special identity-zero divisor graph are defined for 

commutative groupoids as in the case of commutative 

semigroups. 

We illustrate these situations by some examples. 

Example 3.2.4: Let G be a groupoid given by the following 

table.
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* 0 1 2 3 4

0 0 2 4 1 3

1 2 4 1 3 0

2 4 1 3 0 2

3 1 3 0 2 4

4 3 0 2 4 1

 This groupoid contains the elements 0 and 1 but however 

under the operation * described in the table this groupoid is 

commutative but  

 0 * x = x * 0 = 0 does not hold good for all x � G. 

 Also 1 * x = x * 1 = x does not hold good for all x � G.

 Thus we have class of groupoids which are commutative 

but for which no graph can be associated. This is explained by 

the following theorem. 

THEOREM 3.2.2: Let Zn = {0, 1, 2, …, n-1} n   3; n < �. Define 

* on Zn as a * b = ta + tb, t < n, t � Zn. Then (Zn, *) is a 

commutative groupoid which has no zero divisors graph or 

special identity graphs associated with it. 

Proof: These groupoids by the very binary operation defined on 

it are commutative and 0 is such that 0 * x = x * 0 = 0 does not 

hold good. For any a � Zn; a * 0 = ta + 0t = ta = at � 0 as a � 0 

and t � 0 

 Also if a � Zn then 

  1 * a  =  a * 1   

=  ta + t   

=  t (a+1) 

    =  t + at  �  1 

as t � 1 and a � 1. 

 So these groupoid do not contain zero or identity. Hence we 

cannot associate with these groupoids the notion of zero divisor 

graphs or special identity graphs. 

 However we can define commutative groupoids with zero 

divisors and units. 
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Example 3.2.5: Let G be a groupoid given by the following 

table:

 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 5 7 1 4 3 3

3 0 3 7 6 5 4 2 0

4 0 4 1 5 5 2 2 4

5 0 5 4 4 2 1 5 6

6 0 6 3 2 2 5 2 0

7 0 7 3 0 4 6 0 0

 Clearly G is commutative groupoid. The zero divisor graph 

associated with G is as follows: 

The special identity graph of G is given below. 

 Here it is pertinent to mention in case of groupoids there are 

elements which are either zero divisors or units. Interested 

reader can further study about graphs related with commutative 

groupoids and loops.  
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3.3 The identity graph of a finite  
commutative ring with unit 

Let R be a finite commutative ring with unit we define here the 

notion of identity graph of R. The graph of R is formed with 

elements of R which are units in R. This notion will bring in a 

nice relation between the graphs and commutative ring with 

unit. We know already a study relating to zero divisors of a ring 

with graphs were introduced in 1988 by Beck.  

 This study was fancied as the vertex coloring of a 

commutative ring. Beck defined this notion as follows: “A 

commutative ring with unit is considered as a simple graph R 

whose vertices are all elements of R such that two different 

elements x and y in R are adjacent if and only if x.y = 0; (x � 0, 

y � 0). The ‘0’ is adjacent with every element in R. 

In a similar way we define the new notion of identity graph of a 

commutative ring with 1 of finite order. 

DEFINITION 3.3.1: Let R be a finite commutative ring with 1. 

We take U(R) the set of units in R (clearly U (R) � ) as 1 �
U(R)). Now the elements of U(R) form the vertices of the simple 

graph. Two elements x and y in R are adjacent if and only if x.y 

= 1. We assume that 1 is adjacent with every unit in R. The 

graph associated with U(R) is defined to be the unit graph of R.

Remark: In case of zero divisor graph we take for the simple 

graph the vertices as all the elements of R. Here for the identity 

or unit graph of R we take the vertices as its unit elements of R. 

Remark: If R has no element other than 1, i.e., U (R) = {1} 

then the identity or unit graph is just a point. 

1
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Example 3.3.1: The identity or unit graph of Z8 is given below.  

Now we can compare the unit or identity graph of Z8 with the 

zero graph of Z8.

Thus we see the zero divisor graph alone is 

Example 3.3.2: Let Z12 = {0, 1, 2, …, 11} be the ring of 

integers modulo 12. The identity or unit graph associated with 

Z12 is as follows:
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However the zero divisor graph of Z12 is 

Example 3.3.3: Let Z10 = {0, 1, 2, …, 9} be the ring of modulo 

integers 10. The identity graph of Z10 is 

Figure 3.3.4 
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Example 3.3.4: Let Z9 = {0, 1, 2, …, 8} be the ring of integers 

modulo 9.  

The identity graph of Z9 is 

The zero divisor graph of Z9 is 

Example 3.3.5: Let Z15 = {0, 1, 2, …, 14} be the ring of 

integers modulo 15.  

The identity graph of Z15 is 

The zero divisor graph of Z15 is given in the following: 

Figure 3.3.7 
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Example 3.3.6: Let Z16 = {0, 1, 2, …, 15} be the ring of 

integers modulo 16. The unit graph of Z16 is as follows:

The zero divisor graph of Z16 is as follows: 
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Example 3.3.7: Let Z25 = {0, 1, 2, …, 24}be the ring of integers 

modulo 25. The identity graph of Z25 is as follows:  

The unit center is just 1. The zero divisor graph of Z25 is 

 Now we proceed onto define the notion of combined 

identity zero divisor graph for a commutative ring with unit. 
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DEFINITION 3.3.2: Let R be a commutative ring with unit. The 

combined identity zero divisor graph when it exists is the two 

graphs namely the zero divisor graph of R and the special 

identity or unit graph of R. 

 We illustrate this situation by some simple examples and 

also justify the definition. 

Example 3.3.8: Let Z7 = {0, 1, 2, …, 6} be the ring under 

multiplication and addition modulo 7. The zero divisor graph of 

Z7 does not exist as x.y = 0(mod 7) is impossible for any x, y �
Z7 \{0}. 

 The special identity or unit graph of Z7 is as follows: 

The unit center is 1. 

Example 3.3.9: Let Z11 = {0, 1, 2, …, 10} be the ring of 

integers modulo 11. This ring too has no zero divisor graph only 

this ring has special identity graph associated with it which is as 

follows:
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In view of these examples we can prove the following theorem. 

THEOREM 3.3.1: Let Zp = {0, 1, 2, …, p – 1} be the ring of 

integers modulo p. Zp has no zero divisor graph only special 

identity graph. Hence Zp has no combined special identity zero 

divisor graph associated with it. 

Proof: We know Zp is a field hence, Zp has no nontrivial zero 

divisors. So Zp cannot be associated with a zero divisor graph. 

Since every element in Zp \ {0} has inverse, Zp has a special 

identity graph with p – 1 vertices. 

Example 3.3.10: Let Z12 = {0, 1, 2, …, 11} be the ring of 

integers modulo 12. 

The identity graph of Z12 is as follows: 

The unit center is 1. 

The zero divisor graph of Z12 is

The zero center of Z12 is 0 only.  
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Thus we see Z12 has both zero divisor graph as well as the 

special identity graph. 

Further it is interesting to note that these properly divides Z12

into two disjoint classes. 

Example 3.3.11: Let Z10 = {0, 1, 2, …, 9} be the ring of 

integers modulo 10.  

The zero divisor graph of Z10 is as follows: 

The zero centers are 0 and 5. 

The special identity graph of Z10 is as follows: 

We see Z10 also has both the zero divisor graph and the two 

graphs are disjoint. 

 The unit center of Z10 is just one. 

Example 3.3.12: Let Z15 = {0, 1, 2, …, 14} be the ring of 

integers modulo 15.  

The zero divisor graph of Z15 is  
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This graph too has only 0 as its zero center. The special identity 

graph of Z15 is as follows: 

The unit center of the graph is just 1. 

Example 3.3.13: Let Z14 = {0, 1, 2, …, 13} be the ring of 

integers modulo 14.  

The zero divisor graph of Z14 is 

The zero center of Z14 is 0 and 7. 

The special identity graph of Z14 is as follows: 
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The unit center of Z4 is just one. 

Example 3.3.14: Let Z22 = {0, 1, 2, …, 21} be the ring of 

integers modulo 21. The zero divisor graph associated with Z22

is

The zero center of this zero divisor graph is 0 and 11. 

 The special identity graph of Z22 is as follows: 
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Clearly the unit center of Z22 is 1. 

Example 3.3.15: Let Z30 = {0, 1, 2, …, 29} be the ring of 

integers modulo 30. The zero divisor graph of Z30 is as follows: 

This graph too has only 0 to be its zero center. Now we draw the 

unit graph of Z30.

The unit center of Z30 is just 1. 

In view of all these examples we have the following 

theorem. 

THEOREM 3.3.2: Let Z2n = m = {0, 1, 2, …, 2n – 1 = m – 1} be 

the ring of integers modulo 2n = m where n is a prime number. 

Then Z2n has both the zero divisor graph as well as the special 

0

25

24

Figure 3.3.27

5

21

15
4

16

14

28

8

18

2

14

26

22
27

9

10
20

12

3

19

1

13 237

17

Figure 3.3.28

11 29



146

identity graph such that the zero center of the zero divisor 

graph is n and 0 and the unit center of Z2n is just 1.

Proof: We see the zero divisors are contributed by the even 

numbers and the number of even number is n and they also 

contribute to zero divisors as n as zero center as well as 0 as 

zero center. Hence the vertices 0 and p have same number of 

edges going out of them. The case of unit center is obvious. 

Remark: We see this is not true when n is a non prime. Also 

this theorem does not hold good if m = 3p where p is again a 

prime such (3, p) = 1.

All these claims in the remark are substantiated by examples.  

DEFINITION 3.3.3: Let R be a commutative ring or a non 

commutative ring. The additive inverse graph of R is the special 

identity graph of R using 0 as the additive identity. 

Example 3.3.16: Let Z8 be the ring of integers modulo 8. The 

additive inverse graph of Z8 is as follows: 

Clearly the identity (unit) center of Z8 is 0. 

Example 3.3.17: Let Z7 = {0, 1, 2, …, 6} be the ring of integers 

modulo 7. The additive inverse graph of Z7 is 0 which is the unit 

center of Z7.
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Example 3.3.18: Let Z15 = {0, 1, 2, …, 14} be the ring of 

integers modulo 15. The additive inverse graph of Z15 is  

Clearly 0 is the unit (inverse) center of Z15.

Thus we see with a ring we can in general have three graphs 

associated with them. 

(1) additive inverse graphs which always exists and all 

vertices are included. 

(2) zero divisor graph, it may or may not exist. For Zp has 

no zero divisors for p a prime. 
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(3) The special identity graph may or may not exist for if 1 

( R then the question of special identity graph becomes 

superfluous.

(4) Additive inverse graphs always exists for a ring be it 

commutative or other wise. 

We now find the 3 graphs for the following rings. 

Example 3.3.19: Let Z6 = {0, 1, 2, 3, 4, 5} be the ring of 

integers modulo 6.  

The zero divisor graph of Z6 is 

The special identity graph of Z6 is

The additive zero graph of Z6 is 
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Example 3.3.20: Let Z9 = {0, 1, 2, …, 8}  be the ring of 

integers modulo 9.  

The additive zero graph of Z9 is 

The zero divisor graph of Z9 is 

The special unit graph of Z9 is 

It is important to note that the zero divisor graph of Z9 happens 

to be the subgraph of the additive zero graph of Z9.

Example 3.3.21: Let Z18 = {0, 1, 2, …, 17} be the ring of 

integers modulo 18.  

The zero divisor graph of Z18 is as follows: 
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The additive inverse graph of Z18 is as follows: 

The special identity graph of Z18 is as follows: 
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16

12

3

10

8

2

4

Figure 3.3.38

11

0

7

12

6

13

5

9

15

144

3

16

2 17

1

10

8

5

17
11

Figure 3.3.39

1

7

13



151

Thus we see rings Zn when n is a composite number have all 

the three graphs associated with it. 

Next we proceed onto define the notion of special identity graph 

and the additive inverse graph of finite fields. It is pertinent to 

mention at this juncture that fields have no zero divisor graphs 

associated with them. 

 The zero divisor graph and the special identity graph of a 

field are defined as in case of commutative rings. So we 

illustrate them with examples. 

Example 3.3.22: Let Z2 = {0, 1} be the field of characteristic 

two.

The special identity graph is just a point  

The additive graph of Z2 is just a point  

Example 3.3.23: Let Z3 = {0, 1, 2} be the prime field of 

characteristic three. 

The additive inverse graph is  

The special identity graph is 

We see the additive inverse graph has p vertices. The special 

identity graph has (p – 1) vertices. 
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Example 3.3.24: Let Z5 = {0, 1, 2, …, 4} be the prime field of 

characteristic five. The additive inverse graph of Z5 is a follows: 

The special identity graph of Z5 is 

Example 3.3.25: Let Z7 = {0, 1, 2, …, 6} be the prime field of 

characteristic 7. The identity graph of Z7 is 

The additive inverse graph of Z7 is 
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 We see both the graphs in case of fields have only one unit 

center as 1 in case of special identity graph and 0 in case of 

additive inverse graph. 

 Now we proceed onto define the special identity graph and 

additive inverse graph of a S-ring which we call as the 

Smarandache special identity graph and Smarandache special 

additive graph. 

DEFINITION 3.3.4: Let R be a S-ring F be a proper subset of R 

which is the field. The special identity graph of F will be called 

as the Smarandache special identity graph (S-special identity 

graph) of R. 

 The additive inverse graph of F will be known as the 

Smarandache special additive inverse graph (S-special additive 

inverse graph) of R.

We first illustrate this situation by some examples. 

Example 3.3.26: Let Z12 = {0, 1, 2, …, 11} be the ring of 

integers modulo 12. The proper subset F = {0, 4, 8} � Z12 is a 

field isomorphic to Z3. 4 acts as the unit element. Thus the 

Smarandache additive inverse graph of Z12 is

and the S-special identity graph

Example 3.3.27: Let Z10 = {0, 1, 2, …, 9} be the ring of 

integers modulo 10. Z10 is a S-ring. For take F = {0, 2, 4, 6, 8} 
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is a field isomorphic to Z5. Here 6 acts as the unit or 

multiplicative identity. 

The S-additive inverse graph of Z10 is 

The S-special identity graph of Z10 is   

Now take P = {0, 6} a field isomorphic to Z2. The S- additive 

inverse graph of Z10 is 

The S-special identity graph of Z10 is 

 Thus we see the ring Z10 has two S-special identity graph and 

two S-additive inverse graph. Thus a S-ring can have in general 

more than one S-special identity graph and S-additive inverse 

graph.

Example 3.3.28: Let Z30 = {0, 1, 2, …, 29} be the ring of 

integers modulo 30. This is a S-ring. For take F1 = {0, 10, 20} is 

a field isomorphic to Z3, 10 acts as identity. 
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This S-additive inverse graph of Z30 is 

The S-special identity graph of Z30 is  

F2 = {0, 6, 12, 18, 24} � Z30 is the field isomorphic to Z5 with 6 

acting as the multiplicative identity. 

The S-additive inverse graph of Z30 is 

The S- special identity graph of Z30 is

We have the following theorem. 

THEOREM 3.3.3: Let Zn = {0, 1, 2, …, n – 1} be the ring of 

integers modulo n. If n = p1, p2, …, pt, t-distinct primes then Zn
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has t-number of S-special identity graphs and S-additive inverse 

graphs associated with it.

Proof: Given Zn is the ring of integers modulo n where n = p1 p2

… pt, t distinct primes. 

 Let m1 = p2 … pt

  m2 = p1p3 … pt and so on 

  mt = p1 p2 … pt–1.

Take m1Zn = {0, p1, 2p1, …, (p1 – 1)m1} clearly m1Zn is 

isomorphic to the field 
1pZ .

 Likewise miZn = {0, pi, 2pi, …, (pi – 1)mi} is a field 

isomorphic to 
ipZ , 1 � i � t. Thus relative to each field 

1pZ , …, 

tpZ we have t number of S-additive inverse graphs and S-special 

unit identity graphs associated with Zn. Hence the claim. 
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Chapter Four  

SUGGESTED PROBLEMS 

In this chapter we suggest over 50 problems for the reader to 

solve them. 

1. Characterize all groups which are k-colourable normal 

good groups. 

2. Does there exist a group G which is a k-colourable 

normal good group? (The authors think that there does 

not exist a group G which is a k-colourable normal 

good group, i.e., G is a group such that G = i

i

N� ;  Ni

� G with Ni � Nj = {1}, Ni a normal subgroup of G). 

3. Find the special identity graph of S4.

4. Find the special identity graph of A5.

5. Find the special identity graph of G = �g | g25 = 1�.
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6. Find the special identity graph of G = �g | g36 = 1�.

7. Prove or disprove isomorphic groups have identical 

special identity graphs. 

8. Are the special identity graphs of D23 and S3 same? 

Justify your claim. 

9. Find the special identity graph of G = A4 � S3.

10. Find the unit center of the special identity graph D2 15.

11. Find the special identity graph of D2 16.

12. Is it true that the unit centre of the special identity graph 

of a group is always the vertex which is the identity 

element of the group G? 

13. Can a generalized special identity graph of Sn be given, 

n any natural number? 

14. Find the special identity graph of S25.

15. Find the special identity graph of S24. (Compare the 

graphs of S25 and S24.)

16. Find the special identity graph of G = A6 � A3.

17. If G = G1 � G2 is the direct product of two groups. What 

can we say about the graph G = G1 � G2? Is it the union 

of the graphs associated with the two groups? Or is it 

the sum of the graphs associated with the two groups? 

Or there exists no relation between the graphs of G and 

G1 and G2.

18. Let G = S3 � A4 � D27 be the direct product group of S3,

A4 and D27. Obtain the special identity graph of G. Find 

the special identity graphs of A4, S3 and D27 and find 

any possible relations between them. 
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19. Find the special identity graph and the zero graph of the 

semigroup, Z32 under multiplication modulo 32. 

20. Find the zero divisor graph of the semigroup Z30 � Z12 = 

S.

21. Obtain some interesting results about special identity 

graphs of the semigroup. 

22. Let G = S5 be the symmetric group of degree 5. Find the 

conjugate graph of S5.

23. Find the conjugate graph of D29.

24. How many complete graphs does the conjugate graph of 

the group D2 30 contain? 

25. Can a generalization of the conjugate graph of Sn be 

made for any n? 

26. Find the conjugate graph of the alternating group A5.

27. Obtain all the conjugate graph of the group An; n � N. 

28. Obtain some interesting results about the conjugate 

graph of the group Sn.

29. Find the special identity graph of S6.

30. Find the special identity graph of S8 and compare it 

with the special identity graph of S27.

31. Find the special identity graph of A8 and compare it 

with the special identity graph of A27.

32. Compare the conjugacy graphs of the groups A8 and 

A27.

33. Find the special identity graph of G = S3 � A4. Find also 

the conjugacy graph of G and compare it with the 
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conjugacy graph of S3 and A4. Does there exist any 

relation between the 3 conjugacy graphs? 

34. Find the zero divisor graph of the group ring Z2G where 

G = {g | g9 = 1}. Find the unit center of the special 

identity graph of Z2G.

35. Let Z3G be the group ring of the group G = {g | g25 = 1} 

over the field Z3.

(1) Find the special identity graph of Z3G.

(2) Find the additive inverse graph of Z3G.

(3) Find the zero divisor graph of Z3G.

36. Let Z8G where G = �g | g5 = 1� be the group ring of the 

group G over the ring Z8. Find the zero divisor graph of 

Z8G. What is the zero center? 

37. Let 2

5 2

Z [x]
F

Ix x 1
	

	
 

, be the field. Find the additive 

inverse graph and the unit special identity graph of F; 

where I is the ideal generated by the polynomial x5 + x2

+ 1, in Z2[x]. 

38. Let Z23 be the field of characteristic 23. Find the 

additive inverse graph and the special identity (unit) 

graph of Z23.

39. Characterize those rings which do not contain the zero 

divisor graph. 

40. Characterize those rings which do not contain the 

special unit or identity graph. 

41. Define special identity (unit) graphs for non 

commutative rings. 
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42. Find the additive inverse graph of Z2S4. Find the zero 

divisor graph and unit graph of Z2S4.

43. Characterize those rings which has two zero centers for 

the zero graph. 

44. Does these exists rings with more than two zero centers 

for the zero graph? 

45. Can a ring with more than one unit center for the unit 

graph exist? Justify your claim. 

46. Find some interesting properties about the zero centers 

of the zero graphs of a ring. 

47. Apply the zero divisor graphs and unit graphs of a ring 

to the theory net working in computers. 

48. Obtain some interesting applications of these special 

graphs of groups and rings. 

49. Find the S-additive inverse graphs and S-special 

identity graphs of Z60.

50. Find the S-special identity graphs and S-additive 

inverse graphs of Z30G where G = �g | g12 = 1�.

51. Find the S-special identity graphs and S-additive 

inverse graphs of Z18G where G = �g | g6 = 1�.

52. Find the S-special identity graphs and S-additive 

inverse graphs of Z20S4.
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Conjugate graph of the conjugacy classes of a non

   commutative group, 79 

Cyclic group, 10 

D

Dihedral group, 10 

F

Field, 15 

G

Graphically bad group, 54 

Graphically good group, 54 

Group, 9-10 

Groupoid, 12 
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Identity graph matrix, 75 

Identity graph of a group, 17-20 

Identity simple graph, 47 

K

k-colourable normal good groups, 65 

L

Loops, 12-3 

M

m-colourable p-sylow subgroups, 73 
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Monoid, 12 

P

Permutation group, 10 

Q

Quotient ring, 16 

R

Ring with unit, 15 

Ring, 15 

Rooted tree with four vertices, 7-8 

Rooted trees, 7-8 

S

Semigroup, 9 

Single colourable bad group, 59 

Special class of loops Ln(m), 14 

Special identity chromatic number, 49-50 

Special identity graphs, 7, 17-9, 140 

Special identity normal subgraph, 47 

Special identity subgraph of a group, 28 

Special identity subgraph, 54 

S-ring, 16 

S-semigroup, 11 

S-special additive inverse graph, 153 

S-special identity graph, 153 

Subgroup, 11 

Symmetric group, 10 

Symmetric semigroup, 9 
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T

t-colourable normal bad group, 66  

Tree, 7 

U

Unit graph of a ring, 134, 140 

Z

Zero divisors in a groupoid, 12 
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