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GROUPS, MEASURES, AND THE NIP

EHUD HRUSHOVSKI, YA’ACOV PETERZIL, AND ANAND PILLAY

1. Introduction

One of the occasions for writing this paper is the completion of the proof of
the “o-minimal group conjectures” of the third author, from [23]. Among the new
ingredients are (i) the use of invariant measures on definable sets in the presence
of the NIP (failure of the independence property) and (ii) the identification of a
certain property (finitely satisfiable generics) which can be used in an inductive
proof and is of interest in its own right.

The measures appear in Keisler’s paper [13] which is a strong influence on our
work. In Keisler’s work, the theory of forking is in a sense extended from stable
theories to theories without the independence property, but replacing complete
types by measures (on the Boolean algebra of definable sets). It is somewhat
amusing to note that Keisler’s work was roughly contemporaneous with early work
on o-minimality which was also motivated by the attempt to generalize stability to
suitable ordered structures.

Our work may also overlap to some extent with recent papers of Shelah on
theories without the independence property (for example [26], [27]).

In any case, we take the opportunity in this paper to expand on and develop
some theory, not all of which is directed towards the proof of the o-minimal group
conjectures.

Stability and stable group theory are at the core of “pure” or “abstract” model
theory. Recall Shelah’s result that T is stable iff T does not have the strict order
property and does not have the independence property (see [26]). There has been
considerable work on generalizing stability to particularly nice theories without the
strict order property, namely the simple theories. So part of this paper surrounds
developing some theory in an “orthogonal” direction, namely for certain theories
T without the independence property. Another aspect of this paper is the “model
theory of the standard part map”.

In Section 2, we recall and elaborate on some of Keisler’s notions from [13]. In
particular we discuss smooth, definable, and finitely satisfiable measures. In Section
3, we discuss some consequences of NIP, sometimes in the presence of measures.
Included here is a “Borel definability” of coheirs assuming NIP. In Section 4, we
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introduce the “finitely satisfiable generics” property for definable groups G, stating
which aspects of stable group theory are valid in this situation. In Section 5 we
discuss in general “definably amenable groups”, namely groups with a left invariant
measure on the definable sets. In Section 6 we prove various results surrounding
existence of G00 and existence of invariant measures under the NIP assumption. In
Section 7 we take a short diversion to explain how our results can generalize to the
class of “inductively definable” groups. In Section 8 we prove the full conjecture
from [23]:

(*) If G is a definably compact group definable in a saturated o-minimal expansion
of a real closed field, then the quotient G/G00 of G by its smallest type-definable
subgroup of bounded index G00 is, when equipped with the logic topology, a com-
pact Lie group whose dimension (as a Lie group) equals the dimension of G (as a
definable set in an o-minimal structure).

The proof rests on and continues a number of earlier papers [23], [2], [4], [19],
and [7]. We will give below a guide for the reader who is interested in a fast path
to the proof of (*).

In Section 9 and 10, we isolate a new notion, of “compact domination”, and
conjecture that in fact a definably compact group G in an o-minimal structure is
compactly dominated by G/G00. We then prove this in several special cases.

Guide to the proof of (*). The proof is carried out in Section 8. Globally it proceeds
by induction on dim(G). The two extreme cases are when (a) G is commutative
and (b) G is definably simple. The “new” ingredient for case (a) is use of the
amenability of G (namely the existence of an invariant finitely additive measure on
all subsets of G) together with the NIP . The key sequence of preliminary results is
Lemma 2.8, Proposition 3.3, Corollary 3.4 and Proposition 6.3. Case (a) is proved
in Lemma 8.2. Case (b) was proved in [19] under the weaker hypothesis that “G has
very good reduction”. This is discussed in Lemma 8.3 of the current paper. For the
induction step, one may assume G has a normal commutative definable subgroup
N . But we need to know more than simply that (*) holds for G/N and N . Namely
we require that both G/N and N have the “finitely satisfiable generics” property.
The fsg is introduced in Section 4, and Proposition 4.2 is crucial. In Cases (a) and
(b) we actually prove in addition that the relevant groups have the fsg property.
Proposition 4.5 shows that from the fsg for G/N and N we can conclude the fsg
for G. An argument using Corollary 4.3 shows that (*) holds for G.

Our notation is standard. We work in a large saturated model M̄ of a complete
first order, possibly many-sorted theory T in a language L. If we assume that
|M̄ | = κ̄, then by a “small” or “bounded” set we mean a set of cardinality < κ̄.
We let x, y denote finite sequences of variables unless we say otherwise. A, B, . . .
denote small subsets of M̄ , and M, N, . . . denote small elementary substructures of
M̄ . “Type-definable” means the intersection of a small collection of definable sets,
and a “bounded type-definable equivalence relation” is a type-definable equivalence
relation with a bounded number of classes. We refer to [24] for any background on
stability.

T is said to have the NIP (for “not the independence property”) if there is no
formula φ(x, y) ∈ L and 〈ai : i < ω〉 and 〈bw : w ⊆ ω〉 such that |= φ(ai, bw) iff
i ∈ ω. Stable and o-minimal theories, as well as the theory of the p-adic field,
are all examples of theories with NIP, while simple unstable theories all have the
independence property.
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If G is a group definable in M̄ , then G00 is the smallest type-definable subgroup
of bounded index in G, if there is such. If E is a type-definable equivalence relation
on a definable set X with a bounded number of classes, then the logic topology on
X/E is given by: C ⊆ X/E is closed if the pre-image of C in X is type-definable.

In various parts of the paper we will make use of standard facts and techniques
regarding indiscernibles, which the referee has asked us to explain. One of these
facts is that given a complete theory T and cardinal µ there is a cardinal λ such
that if {aα : α < λ} is a set of µ-tuples in some saturated model of T , then
there is an indiscernible sequence (bi : i < ω) of µ-tuples, such that for every
n, tp(b0, . . . , bn−1) = tp(aα0 , . . . , aαn−1) for some α0 < . . . < αn−1 < λ. This
is an application of the Erdös-Rado Theorem. A statement and proof appear
in [10] (Theorem 1.13) for example. When using this fact, we will just say “by
Erdös-Rado”. Another method is “stretching” indiscernibles: namely, given an in-
discernible sequence (ai : i < ω), we can, for any totally ordered set I, find an
indiscernible sequence (bi : i ∈ I) such that for each n and i0 < . . . < in in I,
tp(bi0 , . . . , bin−1) = tp(a0, . . . , an−1). This is of course just by compactness.

2. Definable functions and measures

We consider here functions of one kind or another from sorts, or definable sets
in M̄ , to compact Hausdorff spaces C, such as the closed interval [0, 1].

Definition 2.1. Let X be an A-definable set in M̄ , C some compact Hausdorff
space of bounded size, and f a map from X to C. We will say that f is definable
over A if for any closed subset C1 of C, f−1(C1) ⊆ X is type-definable over A in
M .

Example 2.2. (i) The tautological map s from X to its Stone space SX(A): s(b) =
tp(b/A). Note that a map f from X to a compact Hausdorff space C will be
definable over A just if f = g ◦ s with g a continuous map from SX(A) to C. So
the tautological definable map s is also universal.

(ii) Let A be a small subset of sort X in M̄ , and let φ(x, y) be a formula with
x of sort X and y of sort Y . Identify the power set of A with the compact space
2|A|. Let f : Y → 2|A| be given by f(b) = {a ∈ A :|= φ(a, b)}. Then, as is easy to
verify, f is definable over A.

In Definition 2.1, note that if f : X → C is definable, then f(X) ⊆ C is closed
(because as in Example 2.2(i), f can be identified with a continuous map between
compact spaces; hence its image is closed). So we may assume f to be onto.

In fact definable maps as in Definition 2.1 amount to the same thing as quoti-
enting by bounded type-definable equivalence relations:

Remark 2.3. Let X be definable over A in M̄ .
(i) Let f be a definable (over A) map from X onto the compact Hausdorff space

C in the sense of Definition 2.1. Let E = {(x, y) ∈ X × X : f(x) = f(y)}. Then
E is an A-type-definable equivalence relation of bounded index, and f induces a
homeomorphism between X/E with the logic topology and the space C.

(ii) Conversely, if E is a bounded A-type-definable equivalence relation on X,
X/E is equipped with the logic topology, and M0 is a small model containing A
and a representative for each E-class, then the quotient map f : X → X/E is an
M0-definable map from X onto the compact Hausdorff space X/E.
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Proof. (i) For each pair C1, C2 of closed subsets of C such that C1 ∪ C2 = C, let
EC1,C2 = {(x, y) ∈ X × X such that either f(x) ∈ C1 and f(y) ∈ C1 or f(x) ∈ C2

and f(y) ∈ C2}. So EC1,C2 is type-definable over A. As X is Hausdorff, E is the
intersection of all EC1,C2 and hence is also type-definable. Identifying X/E with
C, we see that the logic topology on C refines the original topology on C. As both
topologies are compact Hausdorff, they agree. E is of bounded index since the
pre-image of each singleton in C is type-definable over a fixed set A.

(ii) If C ⊆ X/E is closed, then by definition f−1(C) is type-definable. But
f−1(C) is also M0-invariant; hence it is type-definable over M0. �

So Definition 2.1 is cosmetic. However it enables some unification of various
notions, as well as some clean statements. For example the conjecture from [23]
can now be restated:

If G is a definably connected definably compact group in a saturated o-minimal
structure M , then there is a definable surjective homomorphism f from G to a com-
pact Lie group G1 where dim(G1) equals the o-minimal dimension of G. Moreover
any other definable homomorphism from G into a compact group factors through f .

We now recall the probability measures on definable sets considered by Keisler
[13]. We will call these Keisler measures. Let us fix again a sort or definable set
X in M̄ which we assume to be ∅-definable. Def(X) will denote the subsets of X
definable (with parameters) in M̄ , and DefA(X) those sets defined over A. (So we
identify Def(X) with DefM̄ (X).)

Definition 2.4. (i) A Keisler measure µ on X over A is a finitely additive prob-
ability measure on DefA(X); namely a map µ from DefA(X) to the interval
[0, 1] such that µ(∅) = 0, µ(X) = 1 and for Y, Z ∈ DefA(X), µ(Y ∪ Z) =
µ(Y ) + µ(Z) − µ(Y ∩ Z).

(ii) A (global) Keisler measure on X is a finitely additive probability measure on
Def(X).

(iii) If µ is a Keisler measure on DefB(X) and A ⊆ B, we write µ|A for the
restriction of µ to DefA(X).

Note that a complete type (of an element of X) over A is precisely a 0-1 valued
Keisler measure on X over A.

For each L-formula φ(x, y) with x a variable of sort X, let Sφ be the sort whose
elements are the subsets of X defined by instances of φ. So a global Keisler measure
on X is given through a family {µφ : φ(x, y) ∈ L} of maps µφ : Sφ → [0, 1].

Keisler observes that any Keisler measure on X over A extends to a global Keisler
measure on X. Moreover any Keisler measure on X over A extends to a unique
countably additive measure on the σ-algebra generated by the A-definable subsets
of X such that the measure of an open set U is the supremum of the measures of
the subsets of U which are definable (over A) (see Theorem 1.2 in [13]). In fact
this Borel measure will be regular. We will point out now a way of extending a
Keisler measure over a model to a global Keisler measure, as the construction will
be useful later on.

Construction (*). Let µ be a Keisler measure on X over a model M0, viewed
as a map from definable in M0 subsets of X(M0) to [0, 1]. Consider the structure
〈M0, [0, 1], +, <, µφ〉φ consisting of Meq

0 , the real unit interval [0, 1], and for each
φ, the map µφ : Sφ(M0) → [0, 1] as well as the ordering and addition (modulo 1)
on [0, 1]. Take a saturated elementary extension 〈M ′

0, [0, 1]′, +, <, µ′
φ〉φ. Then the
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composition of µ′ with the standard part map st : [0, 1]′ → [0, 1] is a Keisler measure
on X over M ′

0 extending µ. We may identify M̄ with M ′
0.

One point of this construction is that the structure M̄ , equipped with the con-
structed measure, has some obvious “saturation” properties.

We have observed that a Keisler measure on X is (among other things) a sequence
of maps from sorts Sφ to [0, 1]. It would be natural to call µ definable if each
µφ : Sφ → [0, 1] is definable in the sense of Definition 2.1. This is precisely (i) in
the next definition.

Definition 2.5. Let µ be a (global) Keisler measure on X.
(i) Then µ is definable over A iff for each L-formula φ(x, y) and closed subset C

of [0, 1], {b ∈ M : µ(φ(x, b)) ∈ C} is type-definable over A.
Let M0 be a small submodel of M̄ .
(ii) We say that µ is finitely satisfiable in M0 if whenever Y ⊆ X is definable

and µ(Y ) > 0, then Y ∩ M0 
= ∅.
(iii) We say that µ is smooth over M0 if µ is the unique (global) extension of

µ|M0 to a measure on X. In this situation we also say that µ|M0 is smooth.

The notion of a smooth measure was also introduced by Keisler ([13]) although
his definition is weaker than the above, for certain technical reasons. In any case,
if µ is a 0-1 measure given by a complete type, then it is smooth if and only if the
type is algebraic.

Here is a “nonalgebraic” example of a smooth Keisler measure: Let M̄ be a
saturated real closed field, and take X to be the interval [0, 1] in the sense of M̄ .
The field of reals R is an elementary substructure of M̄ . The standard measure on
the real unit interval [0, 1]R gives a Keisler measure on X over R which is easily
seen to have a unique extension over M̄ . (This will be subsequently generalized in
the last section.)

Lemma 2.6. Let µ be a (global) Keisler measure on X. Suppose that µ is smooth
over M0. Then µ is both finitely satisfiable in M0 and definable over M0.

Proof. Finite satisfiability is immediate from [13], Lemma 2.2 (which is itself based
on Lemma 1.6 there), but for the sake of completeness we repeat the argument
here.

It is clearly sufficient to prove that if X is a definable set in M̄ with µ(X) > 0,
then it contains an M0-definable Y with µ(Y ) > 0. Assume not, namely that all
M0-definable subsets of X have µ-measure zero. By the smoothness assumption,
it is sufficient to show that there is some finitely additive Keisler measure µ′ on
M̄ , extending µ|M0, with µ′(X) = 0. By compactness, this amounts to showing,
given finitely many M0-definable sets Y1, . . . , Yk, that there is a finitely additive
probability measure µ′ on the Boolean algebra generated by Y1, . . . , Yk, X, which
agrees with µ on the Yi’s. Let B0 be the Boolean algebra generated by the Yi’s.
Without loss of generality, the Yi’s are atoms in B0 and hence each Yi ∩ X is an
atom in the Boolean algebra generated by B0 and X. We now let µ′(Y ) = µ(Y ) for
all Y ∈ B0 and µ′(Yi ∩ X) = 0. This gives the desired measure µ′ and proves that
µ is finitely satisfiable.

The definability of µ over M0 is more or less explained by a “Beth’s Theorem for
continuous logic”. But we will be more direct. We make use of Construction (*)
above. Consider the structure 〈M0, [0, 1], +, <, µφ|M0〉φ from there, equipped with
constants for all elements (of M0 and of the unit interval). Let T1 be its theory.
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We saw that in a saturated model M̄1 of T1, {st ◦µ′
φ : φ ∈ L} gives rise to a Keisler

measure µ′′ extending µ|M0. We may assume that M̄1 is an expansion of M̄ , and
by the smoothness assumption, that µ′′ = µ.

Fix an L-formula φ(x, y) where x is of sort X. Given a closed set C ⊆ [0, 1], we
want to show that the set X1 = {b : µ(φ(x, b)) ∈ C} is type-definable in M̄ over
M0. Note that the standard part map st : [0, 1]′ → [0, 1] (where [0, 1]′ is the unit
interval in M̄1) is definable in M̄1 (over the empty set) in the sense of Definition
2.1, and by the definability of µ in M̄1, the set X1 is type-definable over M0 in M̄1,
via a type Σ(y).

Now, the smoothness assumption implies that Σ(y) does not depend on the
particular expansion M̄1 of M̄ . We can now apply the classical Beth Theorem
(for types rather than formulas) and conclude that X1 is type-definable in M̄ , over
M0. �

Remark 2.7. Let µ be a global Keisler measure on X. Let us define µ to be an heir of
µ|M0 if for each L-formula φ(x, y) and r ∈ [0, 1), if for some b ∈ M̄ , µ(φ(x, b)) > r,
then for some b ∈ M0, µ(φ(x, b)) > r. Then the proof above shows that µ is the
unique heir of µ|M0 over M̄ if and only if µ is definable over M0.

The following relationship between Keisler measures and indiscernibles will be
useful. It also appears in [14].

Lemma 2.8. Let µ be a Keisler measure on X. Let x be a variable of sort X, let
φ(x, y) ∈ L, and let 〈bi : i < ω〉 be an indiscernible sequence such that for some
ε > 0, µ(φ(x, bi)) ≥ ε for all i. Then {φ(x, bi) : i < ω} is consistent.

Proof. Let Ybi
denote the set defined by φ(x, bi). By Construction (*) above and

Ramsey’s theorem, we may assume that the sequence 〈bi : i < ω〉 is also indis-
cernible with respect to the map µ, in particular that for each i1 < . . . < in < ω
and j1 < . . . < jn < ω, µ(Ybi1

∩ . . . ∩ Ybin
) = µ(Ybj1

∩ . . . ∩ Ybjn
) = rn say. So by

assumption, r1 > 0.
Suppose for a contradiction that some finite intersection of the Ybi

’s is empty.
Choose maximal k such that rk > 0. For j ≥ 0 let Zj = Yb1∩Yb2∩. . .∩Ybk−1∩Ybk+j

.
Then each Zj has measure rk > 0 and their pairwise intersections have measure 0,
a contradiction. �

3. NIP and some consequences

The definition of NIP (failure of independence property) was given in the Intro-
duction. A well-known equivalence (see Theorem 12.17 of [25]) is

Lemma 3.1. T has the NIP if and only if for any sequence 〈bi : i < ω〉 which is
indiscernible over ∅ and formula φ(y), possibly with parameters, there is an i such
that |= φ(bj) for all j > i, or |= ¬φ(bj) for all j < i.

Notation: If φ(x), ψ(x) are formulas, let φ(x)∆ψ(x) denote the symmetric dif-
ference (φ(x) ∧ ¬ψ(x)) ∨ (¬φ(x) ∧ ψ(x)) of φ and ψ.

Corollary 3.2. Suppose T has NIP. Let φ(x, y) be an L-formula and 〈bi : i < ω〉 an
indiscernible sequence. Then the set {φ(x, b2j)∆φ(x, b2j+1) : j < ω} is inconsistent.

Proof. Otherwise, let c realize {φ(x, b2j)∆φ(x, b2j+1) : j < ω} and the formula
φ(c, y) contradicts Lemma 3.1. �
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We now give some consequences of the NIP for Keisler measures. The main
insight is due to Keisler ([13], Theorem 3.14). We are back to the context of M̄ a
saturated model of T and X a sort or ∅-definable set in M̄ .

Proposition 3.3. Assume T has the NIP. Let µ be a (global) Keisler measure on
X. Let φ(x, y) be a formula with x of sort X, and let ε > 0. Then there do not
exist 〈bi : i < ω〉 such that i 
= j implies µ(φ(x, bi)∆φ(x, bj)) ≥ ε.

Proof. Suppose otherwise. Then by Construction (*) from Section 2 and Ramsey’s
theorem, we may assume in addition that 〈bi : i < ω〉 is indiscernible. By Lemma
2.8, {φ(x, b2j)∆φ(x, b2j+1) : j < ω} is consistent, contradicting Corollary 3.2. �
Corollary 3.4. Assume T has NIP and let µ be a global Keisler measure on X.
For definable subsets Y, Z of X, define Y ∼µ Z if µ(Y ∆Z) = 0. Then there are
only boundedly many ∼µ-classes of definable subsets of X. In particular there is a
small model M0 such that every definable subset Y of X is ∼µ to some M0-definable
subset of X.

Proof. If there are unboundedly many definable subsets of X modulo ∼µ, then we
can clearly find a formula φ(x, y) and large set 〈bi : i ∈ I〉 such that the measures
of the pairwise symmetric differences of the φ(x, bi) are > 0. By Construction (*)
from Section 2, we may assume that 〈bi : i ∈ I〉 is an indiscernible sequence with
respect to µ as well, whereby µ(φ(x, bi)∆φ(x, bj)) ≥ ε for some fixed ε > 0 and all
i 
= j. This contradicts Proposition 3.3. �

Our next result is in a somewhat different spirit.

Theorem 3.5. Suppose T is countable with NIP. Let M0 be a countable elementary
substructure of M̄ . Let p(x) be a complete 1-type over M̄ which is finitely satisfiable
in M0. Let U = {X ∩ M0 : X ∈ p}. Then U is a Borel (in fact an Fσ) subset of
the Polish space 2M0 .

Before going into the proof, we give an easy example to illustrate the technique.

Remark 3.6. Let T be countable, and let M0 be a countable model. Then the
following hold.

(i) The set {X ∩M0 : X a definable subset of M̄} is an Fσ (as a subset of 2M0).
(ii) Let p(x) ∈ S1(M̄) be definable. Then {X ∩ M0 : X ∈ p} is an Fσ.

Proof. (i) Fix an L-formula φ(x, y), and let n < ω. Let Uφ = {X ∩ M0 : X is
defined by φ(x, c) for some c}. By Example 2.2(ii), Uφ is closed. Then U =

⋃
φ Uφ

is Borel and coincides with {X ∩ M0 : X a definable subset of M̄}.
(ii) Suppose again φ(x, y) ∈ L and let ψ(y, d) be a formula defining p|φ. Then

define Uφ just as above but requiring also that c realizes ψ(y, d). �
The proof of Theorem 3.5 will go through several lemmas.
For now let T be an arbitrary complete theory with NIP.

Lemma 3.7. For any φ(x, y) ∈ L, there is some N = Nφ, such that for any
indiscernible sequence 〈ai : i < ω〉 and c, there do not exists i0 < i1 < . . . < iN
such that for each j < N , |= φ(aij

, c) ↔ ¬φ(aij+1 , c).

Proof. Otherwise, by compactness we find an indiscernible sequence 〈ai : i < ω〉
and c such that for each i < ω, |= φ(ai, c) iff |= ¬φ(ai+1, c), contradicting Lemma
3.1. �
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Recall that a type p(x) ∈ S(M̄) is called finitely satisfiable in a model M0 ⊆ M̄
if every formula in p(x) is satisfiable in M0. If p(x) ∈ S(M̄) is finitely satisfiable
in a small model M0, then we can build an indiscernible sequence I = 〈a0, a1, . . .〉
over M0 by letting a0 realize p|M0 and ai+1 realize p|(M0∪{a0, . . . , ai}). Although
the sequence I is not unique, its type tp(〈ai : i < ω〉/M0) IS unique, and we call
this type Qp,M0 .

Let us now fix a type p(x) ∈ S(M̄) which is finitely satisfiable in M0, and let
Q = Qp,M0 . (So Q is a complete type over M0 in variables (xi : i < ω)). Let Qn

be the restriction of Q to the variables (x0, . . . , xn). Fix an L-formula φ(x, y) and
some c from M̄ . We will say that a realization (a0, . . . , an) of Qn is good for φ(x, c),
if

(i) |= φ(ai, c) ↔ ¬φ(ai+1, c) for all i < n, and
(ii) there does not exist an+1 such that (a0, . . . , an, an+1) realizes Qn+1 and
|= φ(an, c) ↔ ¬φ(an+1, c).
With this notation, we have the following:

Lemma 3.8. For p as above, the following are equivalent:
(i) φ(x, c) ∈ p,
(ii) there is k ≤ Nφ and there is a realization (a0, . . . , ak) of Qk which is good

for φ(x, c) such that |= φ(ak, c),

Proof. Note first that by Lemma 3.7, for any c there is k ≤ Nφ and realization
(a0, . . . , ak) of Qk which is good for φ(x, c).

Now suppose (a0, . . . , ak) realizes Qk and is good for φ(x, c). Let M1 be a
small model containing M0 ∪ {a0, . . . , ak, c} and let a realize p|M1. Note that
(a0, . . . , ak, a) realizes Qk+1. By the “goodness” of (a0, . . . , ak) for φ(x, c), it follows
that |= φ(ak, c) ↔ φ(a, c). But |= φ(a, c) iff φ(x, c) ∈ p.

This is enough to prove the lemma. �

Let us now assume T and M0 to be countable. We introduce some more nota-
tion: Fix k, and let (Qi

k : i < ω) be an enumeration of the formulas in Qk. Let
ψi

k(x0, . . . , xk, y) be the formula “Qi
k(x0, . . . , xk) ∧

∧
j<k(φ(xj , y) ↔ ¬φ(xj+1, y))”.

Let χj,i
k (y) be

“∃x0, . . . , xk(ψj
k(x0, . . . , xk, y) ∧ (¬∃xk+1(ψi

k+1(x0, . . . , xk+1))) ∧ φ(xk+1, y))”.

Corollary 3.9. For any c ∈ M̄ , φ(x, c) ∈ p if and only if there is k ≤ Nφ and
there is i < ω such that c satisfies the formula χj,i

k (y) for all j < ω.

Proof. By Lemma 3.8 and the notation. �

Note that Corollary 3.9 gives us an Fσ-definition for p over M0.
In any case Theorem 3.5 follows from Corollary 3.9 as in the proofs of Remark

3.6. Note that the only real assumption on p we need is that it is finitely satisfiable
in some small model (not necessarily M0).

4. Groups with finitely satisfiable generics

Here we introduce a certain desirable property of definable groups which we call
fsg (standing for “finitely satisfiable generics”). In Section 7 of the paper we prove
that definably compact groups definable in o-minimal expansions of real closed
fields have fsg.
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Again we fix a saturated model M̄ of T , and G will denote a group, definable in
M̄ over ∅.
Definition 4.1. G has fsg (finitely satisfiable generics) if there is some global type
p(x) and some small model M0 such that p(x) |= “x ∈ G”, and every left translate
gp = {φ(x) : φ(g−1x) ∈ p} of p with g ∈ G is finitely satisfiable in M0.

The basic example of such a group is a stable group. (If G is stable, then there
exists a global generic type p of G in the sense of stable group theory, namely every
translate of p does not fork over ∅. But then by the characterization of forking in
the stable context, every translate of p is finitely satisfiable in any submodel M0.)
In simple theories, however, definable groups will not, as a rule, have fsg. Also,
the ordered group 〈R, <, +〉 does not have fsg. On the other hand the generically
metastable groups from [12] which were introduced in connection with definability
in algebraically closed-valued fields do have fsg.

For the remainder of this paper we call a definable subset X of G (or the formula
defining it) left generic if finitely many left translates of X cover G and likewise
with right generic. X is generic if it is both left and right generic. A partial type
Σ(x) implying x ∈ G is left (right) generic if every formula in Σ(x) is. Although
this is in accordance with established vocabulary in the case of stable theories, one
should be aware that there is a discrepancy in the case of simple theories. Notice
that if p is a global type in G and if X is a definable left generic subset of G, then
some left translate of X (i.e. of the formula “x ∈ X”) is in p.

Proposition 4.2. Suppose that G has fsg, witnessed by p and M0, and let X ⊆ G
be definable. Then the following hold.

(i) X is left generic iff X is right generic (so we just say generic).
(ii) X is generic if and only if every left (right) translate of X meets M0.
(iii) p is a generic type, as is any left or right translate of p.
(iv) If X is generic and X = X1 ∪ X2 where the Xi are definable, then one of

X1, X2 is generic.

Proof. Before we start, let us note that
(*) p−1 = {φ(x) : φ(x−1) ∈ p} has the property that every right translate of it

is finitely satisfiable in M0

(i) Suppose X to be left generic. Then for any c ∈ G, cX is also left generic,
so some left translate of cX is contained in p whereby cX is contained in some left
translate gp of p. By the assumption (on p, M0), cX meets M0, namely there is
b ∈ G(M0) such that b ∈ cX, so c−1 ∈ Xb−1. We have shown that every element
of G lies in Xb for some b ∈ G(M0). Compactness implies that finitely many right
translates of X cover G; namely X is right generic. The other direction (right
generic implies left generic) follows from (*) in this proof and symmetry.

(ii) follows from the proof of (i).
(iii) If X is in p, then every left translate of X is in a left translate of p and so

meets M0, whereby X is generic by (ii).
(iv) If X is generic, then X is in a translate of p. Thus one of X1, X2 is in the

same translate of p. By (iii) one of X1, X2 is generic. �
Notice that Proposition 4.2 implies that G has fsg, witnessed by M0, if and

only if every definable generic subset of G meets M0 and the complement of every
nongeneric set is generic (the latter implies the existence of a generic type, while
the first implies that a generic type is finitely satisfiable).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



572 EHUD HRUSHOVSKI, YA’ACOV PETERZIL, AND ANAND PILLAY

It follows from (iv) that, assuming that G has fsg, the set of nongeneric definable
subsets of G forms an ideal I in the Boolean algebra of all definable subsets of G.
So for a definable subset X of G, the stabilizer of X modulo this ideal, namely
StabI(X) = {g ∈ G : gX∆X is nongeneric}, forms a subgroup of G. Note also
that StabI(X) is type-definable (by countably many formulas). On the other hand
for any global type q of G, Stab(q) is defined to be the set of g ∈ G such that
gq = q. This is clearly a subgroup of G, but on the face of it, it has no definability
properties.

Corollary 4.3. Suppose that G has fsg. Then the following hold.
(i) There is a bounded number of (global) generic types.
(ii) G00 exists.
(iii) For each (global) generic type p(x), Stab(p) = G00 =

⋂
{StabI(X) : X ∈ p}.

Proof. (i) Each generic type is finitely satisfiable in M0 by Proposition 4.2(ii). So
there are a bounded number of them. (Any global type p which is finitely satisfiable
in a model M0 is determined by {X ∩ M0 : X ∈ p}.)

(ii) Let (by part (i)) λ be the number of global generic types of G. Fix a generic
type p. Let H be a type-definable subgroup of G of bounded index. So each coset of
H is in a translate of p. The index of H in G is thus bounded by the number of (left)
translates of p, which is at most λ. So we have an absolute bound (independent
of the monster model) on the index of type-definable subgroups of G of bounded
index, which clearly implies that G00 exists.

(iii) Fix a global generic type p of G. As G00 has bounded index, some translate
of G00 is in p (namely for some translate C of G00, p(x) implies x ∈ C), whereby

(a) Stab(p) ⊆ G00.
On the other hand clearly
(b)

⋂
{StabI(X) : X ∈ p} ⊆ Stab(p), as p only contains generic definable sets.

So to conclude the proof of (iii), it suffices to prove the following.
(c) For each definable X ∈ p, StabI(X) ⊇ G00.
Suppose X is defined over a small model M containing M0. Note that if g, h ∈ G

and tp(g/M) = tp(h/M), then gX ∩G(M) = hX ∩G(M), whereby gX∆hX is not
satisfiable in M0 and hence is nongeneric. It follows that the index of StabI(X) in
G is bounded by the number of types over M , that is to say, StabI(X) has bounded
index in G and hence contains G00. This proves (c) and completes the proof of the
corollary. �

Remark 4.4. If G has fsg and M ′
0 is any model, then all generic definable sets meet

G(M ′
0).

Proof. Fix a formula φ(x, y) and let k < ω. By compactness there is a finite subset
D of G(M0) such that if X ⊆ G is defined by an instance of φ(x, y) and if k left
translates of X cover G, then X meets D. Let d be a finite tuple enumerating D.
Then the above property of d can be expressed by a formula without parameters.
As this formula is realized in every model M ′

0, we are done. �

The following will be helpful in carrying out inductive proofs:

Proposition 4.5. Let G be a ∅-definable group and N a ∅-definable normal sub-
group of G. Suppose that G/N and N both have fsg. Then so does G.
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Proof. Fix a small model M0 witnessing that each of G/N and N have fsg. (In
fact by Remark 4.4, M0 can be any submodel of M̄ .)

We will freely use Proposition 4.2, applied to each of G/N and N .
For X a definable subset of G, let us define YX to be {g/N ∈ G/N : g−1X ∩ N

is generic in N}. Now YX is not necessarily definable, so we cannot apply directly
Proposition 4.2. But YX =

⋃∞
i=1 Y i

X , where Y i
X is the set of g/N ∈ G/N such that

i left translates of g−1X ∩ N by elements of N cover N . Each Y i
X is of course

definable.
By compactness and the fact that G/N is fsg we have:

Claim 1. Finitely many left translates of YX cover G/N iff finitely many right
translates of YX cover G/N iff for some i < ω, Y i

X is generic in G/N .

We will simply say “YX is generic in G/N” if the equivalent conditions of Claim
1 hold.

Claim 2. If YX is generic in G/N and h ∈ G, then each of YhX and YXh are generic
in G/N .

Proof. Just notice that YX = (h/N)−1YhX = YXh(h/N)−1. �
Claim 3. Suppose X = X1 ∪ X2 where the Xi are definable. Then

(i) YX = YX1 ∪ YX2 , and
(ii) if YX is generic in G/N , then one of YX1 , YX2 is generic in G/N .

Proof. (i) As N has fsg, for each g ∈ G, g−1X ∩ N is generic in N if and only if
g−1X1 ∩ N or g−1X2 ∩ N is generic in N .

(ii) Assume that YX is generic in G/N , so there are h1, . . . , hn ∈ G/N such that⋃
j=1,...,n hjYX = G/N . By part (i), G/N is covered by the hjYX1 together with

the hjYX2 for j = 1, . . . , n. Writing YX1 as
⋃

i<ω Y i
X1

and likewise for YX2 and
applying compactness, we see (as G/N has fsg) that either some hjY

i
X1

is generic
in G/N or some hjY

i
X2

is generic in G/N . This suffices. �
Claim 4. If YX is generic in G/N , then X ∩ M0 
= ∅.
Proof. By Claim 1, let i be such that Y i

X is generic in G/N . Hence Y i
X ∩ M0 
= ∅.

This means precisely that there is h ∈ G(M0) such that h/N ∈ Y i
X . So h−1X ∩ N

is generic in N and h ∈ G(M0). Now, since N has fsg, the set h−1X ∩N contains
an element of G(M0), which clearly implies that X does. �

To conclude the proof, for X a definable subset of G, let us call X *-generic if YX

is generic in G/N . By Claims 2 and 3, the family of *-generics is closed under (left
or right) translation, and the family of non-*-generics forms a proper ideal. Hence
there is a global *-generic type p of G, and moreover by Claim 4, every translate
of p is finitely satisfiable in M0. This shows that G has fsg. �
Remark 4.6. The fsg property can also be formulated in terms of measures. Namely,
we say that a group G has fsgm if there is a Keisler measure µ on G and there is
some small model M0 of M̄ such that for every g ∈ G, the measure gµ (defined as
gµ(X) = µ(gX)) is finitely satisfiable in M0. It turns out that these formulations
are equivalent:

If G has fsg, then the generic type gives the desired 0-1 measure. For the converse,
one goes through the proof of Proposition 4.2, using the fsgm assumption instead
of fsg.
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One could ask if the results of this section hold under the weaker assumption
that there exists a type over a large saturated model, with a small number of left
translates. However variants of the following example will show that various lemmas
can fail, even for rank one simple theories with a translation invariant type.

Example 4.7. Let T0 be the theory of vector spaces over GF (2) with a symmetric
irreflexive binary relation R (bearing no particular relation to +). Let T be the
model completion of T0, M |= T . Let C ⊆ M and D ⊆ M \ {0} be arbitrary
subsets. Then {R(x + b, c) : c ∈ C} ∪ {¬R(x + b, c) : c /∈ C} ∪ {R(x + c, x + b) :
b − c ∈ D} ∪ {¬R(x + c, x + b) : b − c /∈ D} determines a complete type, which is
M -translation invariant. But there are essentially no generic formulas.

5. Definably amenable groups

It is a convenient time to introduce the notion of “definable amenability”. Recall
that an abstract (or discrete) group G is said to be amenable if there exists a left
invariant finitely additive probability measure on the family of all subsets of G.
Any solvable group is amenable.

Definition 5.1. Let G be a definable group. We call G definably amenable if there
is a left invariant Keisler measure on G.

Remark 5.2. (i) Any amenable group is definably amenable.
(ii) Suppose T has a model M0 such that G is defined over M0 and G(M0) has a

compact (Hausdorff) group topology such that every definable subset of G is Haar
measurable. Then G is definably amenable.

(iii) If K is a (saturated) algebraically closed-valued field and n > 1, then
SL(n, K) is not definably amenable.

(iv) If R is an expansion of a real closed field, then PSL(2, R) is not definably
amenable.

(v) SO(3, R) is definably amenable, but not amenable as a pure group.

Proof. (ii) is proved by Construction (*) applied to the (unique) normalized Haar
measure on G(M0).

(iii) This follows by a similar proof to that in [12] showing that SL(n, K) has no
definable left generic type.

(iv) Suppose µ1 is a left invariant Keisler measure on PSL(2, R). Recall the
transitive action of SL(2, R) on P1(R) = R ∪ {∞}. Define a Keisler measure µ
on P1(R) by µ(X) = µ1({g ∈ PSL(2, R) : g · 0 ∈ X}). Then µ(hX) = µ1({g ∈
PSL(2, R) : h−1g ·0 ∈ X}) = µ(X). But let U be a small ball around 0; then using
inversion, we find gU , a ball around ∞; while using multiplication, we can find hU
such that P1(R) = gU ∪ hU . So µ(U) ≥ 1/2µ(P1(R)). This is true for an arbitrary
small ball around any point, e.g. 0, 1,∞, giving 3/2 ≤ 1, a contradiction.

(v) Every definable set is Lebesgue measurable. The pure group statement is
due to Hausdorff, Banach and Tarski; see below. �

Before continuing, we take the opportunity to give a characterization of definable
amenability (and the construction of an invariant Keisler measure on G from a
suitable Grothendieck group of G). Fix a definable group G. By a nonnegative
cycle in G we mean a “finite disjoint union” of definable subsets of G. Notationally,
consider a nonnegative cycle as {k1X1, . . . , knXn} where the ki are nonnegative
integers and Xi are pairwise distinct definable subsets of G. There is the obvious
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notion of a map between two such cycles being definable, 1-1 and given by piecewise
left translations.

Definition 5.3. A definable paradoxical decomposition of G is a definable 1-1
piecewise translation from the disjoint union of G and Y to Y , for some nonnegative
cycle Y .

This is a variant of a notion due to Hausdorff. He actually considered a stronger
notion that would rule out the existence of any invariant finitely additive measure,
not necessarily nonnegative. His construction of a paradoxical decomposition of the
two-dimensional sphere, or of SO(3, R), completed by Banach and Tarski, requires
the axiom of choice and is not represented in a definable way. On the other hand
we have

Proposition 5.4. G is definably amenable if and only if G does not admit a de-
finable paradoxical decomposition.

Before starting the proof, we introduce the relevant Grothendieck (semi)group.
Let Ksemi(G) be the semigroup whose elements are the nonnegative cycles

∑
i kiXi

in G modulo the equivalence relation of being in definable bijection by piecewise left
translations. A typical element of Ksemi(G) can be written in the form ki[X]semi

where [X]semi is the class of the definable set X in Ksemi(G). Addition in the
semigroup is the obvious thing.

Let us make a further identification: let x1, x2 ∈ Ksemi(G). Define x1 ∼0 x2

if there is y ∈ Ksemi(G) such that x1 + y = x2 + y. Then the collection of
∼0-classes, together with formal inverses, constitutes the Grothendieck group K0(G).
The class in K0(G) of a definable subset X of G is denoted [X]0. (Likewise for a
nonnegative cycle Y .)

Proof of Proposition 5.4. Suppose first that µ is a left invariant Keisler measure on
G. Then a definable paradoxical decomposition could not exist since then we would
have µ(G) + µ(Y ) ≤ µ(Y ), contradicting µ(G) = 1.

Conversely suppose G has no definable paradoxical decomposition. Let P0 be
the subsemigroup of K0(G) generated by the sets [X]0 where X is definable.

Claim. −n[G]0 /∈ P0 for all n > 0.

Proof. Otherwise −n[G]0 = [Y ]0 (in K0(G)) for some nonnegative cycle Y . But
then n[G]0+[Y ]0 = 0 in K0(G), so n[G]semi+Ysemi+[Z]semi = [Z]semi in Ksemi(G)
for some nonnegative cycle Z. But then clearly there is a definable injective piece-
wise translation map from the disjoint union of G and Z into Z, contradicting our
assumption. �

Let B be the tensor product of Q with K0(G), and let

P = {αx : α ∈ Q, α > 0, x ∈ P0}.
By the claim −[G]0 /∈ P . Let P ′ be a maximal subset of B containing P , closed
under multiplication by positive rationals and addition and such that −[G]0 /∈ P ′.
Define a partial ordering on B: x ≤ y ⇐⇒ y − x ∈ P ′.

Claim. ≤ is a total ordering on B.

Proof. We have to show that for any a ∈ B, either a ∈ P ′ or −a ∈ P ′. If a /∈ P ′,
let P ′′ = {x + αa : x ∈ P ′, α ∈ Q, α > 0}. Then by maximality −[G]0 ∈ P ′′, i.e.
−[G]0 = x + αa, x ∈ P , so −a = α−1([G]0 + x) ∈ P ′. �
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Now exists a unique order-preserving semigroup homomorphism h : B → R≥0

such that [G]0 goes to 1. (Namely h(b) = α iff [b : [G]0] = [α : 1] in the sense of [9],
V. Def. 5, i.e. for all m, n ∈ N, mb < n[G0] iff mα < n · 1). Let µ(X) = h([X]0);
this is clearly a left invariant Keisler measure on G. �

Definable amenability of volumes. We will see in Section 8 that definably
compact groups in o-minimal structures are definably amenable. The proof uses a
deep structure theory for such groups. In the following paragraphs, not otherwise
used in this paper, we consider a similar amenability property of definable compact
definable sets. We do not know if this property holds in all o-minimal theories, but
when it does, we give a soft proof of definable amenability of definable compact
groups. In particular this is valid for o-minimal expansions of RCF that are finitely
satisfiable in expansions of (R, +, ·).

The proof actually yields more: that any definable group G, not necessarily
definably compact, is definably amenable for compact sets. By definition this means:
let Defbdd(G) be the family of definable subsets of definably compact subsets of
G. Then for any X ∈ Defbdd(G) with nonempty interior, there exists a translation
invariant finitely additive µ : Defbdd(G) → R≥0 ∪ {∞} with µ(X) = 1.

Let T be an o-minimal expansion of RCF, and fix n ≥ 1. By “almost all” we will
mean: away from a definable set of dimension < n. If f : Rn → Rn is definable,
|Jf |(c) denotes the absolute value of the determinant of the matrix of partial deriva-
tives of φ at c; it exists almost everywhere. Let V [n] be the set of bounded definable
functions Rn → R≥0 with bounded support. By an isomorphism φ : f → g we mean
a definable bijection φ from a definable set containing the support of f to one con-
taining the support of g, such that f(x) = |Jφ|(x)·g(φ(x)) almost everywhere. More
generally, define f ∼ g if one can write f =

∑n
i=1 fi, g =

∑n
i=1 gi with fi, gi isomor-

phic. Let [f ] denote the ∼-class of f , and let Ksemi(V [n]) = {[f ] : f ∈ V [n]}. Define
[f ]+[g] = [f +g]. Let K(V [n]) be the corresponding group. We say that T is defin-
ably amenable for volumes if for each n and any f ∈ V [n], either f = 0 a.e. or there
exists an order-preserving semigroup homomorphism I : Ksemi(V [n]) → R≥0∪{∞}
with 0 < I(f) < ∞.

Proposition 5.5. Conditions (1) and (2) are equivalent. (3) implies (1). Each of
(4), (5) implies (3). (1) implies (6) and (6) implies (7).

(1) T is definably amenable for volumes.
(2) If f ∈ V [n] and for some m and g ∈ V [n], (m + 1)f + g ∼ mf , then f = 0

almost everywhere.
(3) If f, h ∈ V [n] and f ∼ f + h, then h = 0 a.e.
(4) Every finite T0 ⊆ T has a complete archimedean model.
(5) T has definable primitives: for every definable function f : R → R in a

model of T , there exists a definable function F such that almost everywhere
F ′ = f .

(6) Every definable group G of T is definably amenable for compact sets.
(7) Every definably compact group in T is definably amenable.

Proof. The proof of the equivalence of (1) and (2) and the implication (3)→ (2) is
similar to the proof of Proposition 5.4.
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If (3) fails, then there exists a finite T0 describing the situation. For instance if
there exists an isomorphism φ : f → f+h, then φ is differentiable away from a set Y
of dimension n− 1; there exist W1, . . . , Wk ⊆ Rn−1 and continuously differentiable
ei : Wi → Y with

⋃k
i=1 ei(Wi) = Y ; and f + h = |J(φ)| · f ◦φ away from Y . T0 can

state this, as well as the boundedness and piecewise differentiability of f, h, and the
fact that h > 0 on some open set. If T0 has a complete archimedean model N =
(R, +, ·, fN , hN , . . .), then fN , hN are bounded integrable functions and φN is C1

away from Y N , so by the change of variable formula
∫

fN =
∫

(f +h)N (where
∫

is
the Lebesgue or Riemann integral). But also

∫
hN > 0, a contradiction. This shows

that (4) implies (3). The proof that (5) implies (3) is similar: by a compactness
argument, a function f(x1, . . . , xn) has a definable primitive F1(x1, . . . , xn) with
respect to the first variable, i.e. ∂F1/∂x1 = f a.e. Now one can define integration
using iterated integrals and prove the change of variable formula and additivity
using o-minimality. The proof of (4) implies (3) used no more than this.

(7) is obviously a special case of (6).
To prove (6) from (1), let n = dim(G). Fix an identification of some neigh-

borhood of 1 in G with an open neighborhood of 0 in Rn. Let K0 be the set of
subsets Y of G contained in b(int(U)) for some injective continuously differentiable
definable map b : U → G, U a definably compact subset of Rn with interior int(U).
We begin by defining a map ψ : K0 → Ksemi(V [n]).

For g ∈ G, let Tg : G → G, Tg(x) = g−1x. Given Y ∈ K0, find a definably
compact set U ⊆ Rn and a definable injective C1 map b : U → G, with Y ⊆
b(int(U)). Let f(x) = 0 for x /∈ b−1(Y ), and for x ∈ b−1(Y ) let f(x) = |Jg|(x),
where g(y) = Tb(x) ◦ b. (Here we use the identification of a neighborhood of 1 with
a neighborhood of 0 in Rn; so g : U → Rn, and the Jacobian Jg is defined.) By
continuity and definable compactness, f is bounded on U . If we pick a different
b′ : U ′ → Y , with corresponding g′, f ′, then b′ = b ◦ e for some e : U ′ → U
(defined on a neighborhood of the support of b), namely e(u′) = b−1(b′(u′)) on
(b′)−1(b(int(U))). We have g′ = g ◦ e, |Jg′|(x) = |Jg|(e(x))|Je|(x) so that f is
isomorphic to f and [f ] = [f ′] ∈ Ksemi(V [n]). Hence [f ] does not depend on the
choice of (U, b) and we can define ψ(Y ) = [f ].

Given h ∈ G, let b′′ = hb; then Tb′′(x) ◦ b′′ = Tb(x) ◦ b, so ψ(hU) = ψ(U). Thus
ψ induces a well-defined map K1 → Ksemi(V [n]), where K1 = {[Y ] : Y ∈ K0} ⊆
Ksemi(G). It is clear that ψ(a + b) = ψ(a) + ψ(b) when a, b, a + b ∈ K1 and that
a + b ∈ K1 implies a ∈ K1. It follows that ψ extends to homomorphism of ordered
semigroups

∑
K1 → Ksemi(V [n]), where

∑
K1 is the semigroup generated by K1.

According to [3], for any definably compact Z ⊆ G there is a C1 group manifold
structure on G with finite chart {bi : Wi → G : i = 1, . . . , r} (with the Wi open
subsets of Rn) and closed bounded Ui ⊆ Wi, such that X ⊆

⋃r
i=1 bi(int(Ui)).

Hence
∑

K1 = Ksemi(G).
If X has nonempty interior, then ψ(X) cannot vanish almost everywhere, so by

(1) there exists a homomorphism µ : Ksemi(V [n]) → R≥0 ∪ {∞} with µ(ψ(X)) =
a > 0. Now (1/a)µ ◦ ψ demonstrates (6).

It is of course possible to combine (4) and (5), i.e. it suffices that every finite
T0 ⊆ T be extendible to an o-minimal theory with definable primitives, or to one
with an archimedean model. �

Question 5.6. Is every o-minimal theory amenable for volumes?
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6. Groups with NIP

Here we concentrate on definable groups in theories with NIP.
Suppose that µ is a Keisler measure on a definable group G. Then for any g ∈ G,

we have another Keisler measure gµ on G, namely gµ(X) = µ(gX). We say that µ
is left invariant if gµ = µ for all g ∈ G. Likewise for right invariant. The existence
of a left invariant type of G is a very strong property. For example if G is stable,
this implies that G is connected and the left invariant type is the unique generic
type of G. However, even if there is NO invariant type, one may hope for there to
exist an invariant measure.

The next proposition, due to Shelah [27], gives the existence of G00 for any
definable (or even type-definable) group G in a theory with NIP. We had originally
proved this under the additional assumption that G was definably amenable. In
any case thanks to Shelah for allowing us to include the result and a proof.

Proposition 6.1. Assume T has NIP. Let G be a definable group in M̄ , defined
over ∅ say. Then G has a smallest type-definable subgroup of bounded index. If G00

is such, then it is type-definable over ∅ and has index at most 2|T |.

Proof. It is easy to see that any type-definable subgroup of G is the intersection of a
family of subgroups each of which is type-defined by countably many formulas (see
for example Remark 1.4(ii) in [4]). So it suffices to prove that any subgroup H of G
which is type-defined by countably many formulas and has bounded index in G has
only a bounded number of distinct conjugates (under automorphisms of the ambient
structure). So let us suppose, for a contradiction, that a is a countable tuple, Ha

is type-definable by a countable partial type Σ(x, a) over a, Ha is a subgroup of
bounded index in G, and that {Ha′ : tp(a′) = tp(a)} is unbounded (where Ha′ is
type-defined by Σ(x, a′)). So by Erdös-Rado we have some indiscernible sequence
〈ai : i < ω〉 of realizations of p = tp(a) such that Hai


= Haj
for i 
= j.

Claim 1. Fix i0 < ω. Then
⋂
{Haj

: j < ω, j 
= i0} is NOT contained in Hai0
.

Proof of Claim 1. Suppose otherwise. We can “stretch” the indiscernible sequence
〈ai : i < ω〉 by inserting some (bα : α < κ) in place of ai0 (for any κ). But then
each Hbα

contains
⋂

j �=i0
Hj . But α 
= β implies Hbα


= Hbβ
. So for any κ we can

find at least κ many distinct subgroups of G each of which contain
⋂

j �=i0
Hj . As

the latter has bounded index in G, we get a contradiction, proving the claim.
The claim clearly applies also to any stretching 〈aα〉 of the indiscernible sequence

〈ai : i < ω〉. So for each α, let cα be such that cα /∈ Hα but cα ∈ Hβ for all β 
= α.
Again by Erdös-Rado we may assume that the sequence 〈(aα, cα) : α < κ〉 is
indiscernible.

We may assume Σ(x, a) = {φn(x, a) : n < ω} where n < m implies |= φm(x, a) →
φn(x, a). �

Claim 2. There is n < ω such that for any α and any d1, d2 ∈ Hα, |= ¬φn(d1 · cα ·
d2, aα).

Proof of Claim 2. As tp(aα, cα) does not depend on α, it is enough to prove it for
a fixed α. As cα /∈ Hα, we have the implication:

y1, y2 ∈ Hα |= ∨n¬φn(y1 · cα · y2, aα). Now apply compactness.
We may clearly assume n = 0 in Claim 2. �
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Claim 3. For each finite w ⊂ κ there is dw such that for all α, |= φ0(dw, aα) iff
α /∈ w.

Proof of Claim 3. Let dw be the product of the cβ for β ∈ w. So if α /∈ w, then as
cβ ∈ Hα for each β ∈ w, dw ∈ Hα and hence satisfies φ0(x, aα). On the other hand
if α ∈ w, then we can write dw as d1 · cα · d2 where d1, d2 ∈ Hα (by an argument as
above). So then we apply Claim 2. �

Claim 3 shows that T has the independence property, a contradiction. So G00

exists. Its type-definability over ∅ follows by uniqueness (any type-definable set
which is ∅-invariant is type-definable over ∅, by quantifying out the parameters and
using saturation). The bound on the index is clear too. �

The existence of G00 (for G a definable group in a saturated model of T ) had
been proved earlier in various special cases, for example for o-minimal theories in
[4]. In fact the latter proved in addition that G/G00 is a compact Lie group. For
groups definable over Qp in a model of Th((Qp)an) this was done in [16]. For groups
definable in Pressburger Arithmetics, it follows from work of Onshuus [15].

Here is an application of Proposition 6.1. Let us fix a compact Hausdorff group
〈G, ·, . . .〉 equipped with additional first order structure. We use the term G to
also denote this structure. Let us assume that (i) Th(G) has the NIP, (ii) any
definable subset of G is Haar measurable (with respect to the unique normalized
Haar measure on G), and (iii) there is a neighbourhood basis of the identity of G
consisting of definable sets, say Ui for i ∈ I.

Let G∗ be a saturated elementary extension of G. So
⋂

i∈I U∗
i is the group of

“infinitesimals”, denoted by inf(G∗) of G∗, and the quotient group (with the logic
topology) is precisely G. By Proposition 6.1, (G∗)00 exists, and in fact we have

Claim. (G∗)00 is precisely the group inf(G∗) of infinitesimals of G∗∗.

Proof. By Proposition 6.1, (G∗)00 is type-definable over ∅. As we already know
that inf(G∗) is type-definable and of bounded index, it suffices to prove that any
subgroup H of G∗ which is type-definable over G by a countable set of formulas, and
has bounded index, contains inf(G∗). Let H be such, and suppose H =

⋂
n Xn,

where Xn is definable over G. We may assume that X−1
n ·Xn ⊆ Xn−1 for all n > 0.

Fix n. As H has bounded index in G∗, finitely many translates of Xn(G) cover G
whereby the Haar measure of Xn(G) is > 0.

It follows (cf. the chapter on convolutions in [11]) that (X−1
n ·Xn)(G) has interior

in G, so (X−1
n−1 · Xn−1)(G) contains an open neighbourhood of the identity of G.

Thus Xn−2(G) contains some Uj . Hence H contains inf(G∗), and the claim is
proved. �

Now measures come back into the picture. The following was proved in the
stable case in [14].

Proposition 6.2. Suppose T has NIP and G is a ∅-definable group in M̄ with fsg.
Then there is a left invariant Keisler measure µ on G, which is moreover finitely
satisfiable in some small model M0.

Proof. We will use Proposition 4.2 and Corollary 4.3. Let us fix a global generic
type p of G over M̄ , such that p(x) implies x ∈ G00. The measure we construct will
depend on p. We will first prove the proposition in the case where T is countable.
By Remark 4.4 let us fix a countable model M0 such that all generic definable
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subsets of G meet G(M0). Let m be the (unique) normalized Haar measure on the
compact group G/G00.

Claim. Let X ⊆ G be definable. Then the following hold.
(i) For g ∈ G, whether or not gX ∈ p depends only on the coset of g modulo

G00.
(ii) {g/G00 : gX ∈ p} is a Borel subset of G/G00 (so is Haar measurable).

Proof. (i) follows because Stab(p) = G00.
(ii) By Remark 4.4 let M0 be a countable model such that X is over M0 and

all generic definable subsets of G meet M0. In particular p is finitely satisfiable in
M0. By Corollary 3.9, there are partial types Ψi(y) over M0 for i < ω such that for
g ∈ G, gX ∈ p iff |=

∨
i<ω Ψi(g). Let Ci be the closed subset of G/G00 determined

by Ψi(y), namely the image of the solution set of Ψi under the natural map taking
G to G/G00. Then by part (i) of the claim, {g/G00 : gX ∈ p} is precisely

⋃
i Ci,

hence Borel. �

By the claim, we can define µp(X) = m({g/G00 : gX ∈ p}). Then µp is finitely
additive. For left invariance, let g′ ∈ G. Then {g/G00 : g ∈ g′X} = {g/G00 : g ∈
X}g′/G00, so by right invariance of m, µp(g′hX) = µp(X).

Finally let us note that µp(X) > 0 if and only if X is generic. Right implies left
is true by invariance of µp. But if X is nongeneric, then no translate of X is in p,
so {g/G00 : gX ∈ p} is empty, and hence µp(X) = 0.

As we already know that every generic definable subset of G meets G(M0) for
some small model M0, we obtain finite satisfiability of µp in M0.

So we have proved the proposition when T is countable. For the general case,
given a definable subset X of G, let L0 be a countable sublanguage of L in which G
and X are definable. Let p0 be the reduct of p to L0 and let G00

0 be the smallest L0-
type-definable subgroup of G of bounded index. Let f be the canonical surjective
homomorphism from G/G00 to G/G00

0 . Clearly f is continuous. Let U = {g/G00 :
gX ∈ p} and U0 = {g/G00

0 : gX ∈ p0}. Then U = f−1(U0). But by the claim
in the countable case, U0 is Borel. Hence U is also Borel. So the claim holds in
general, and as above we obtain our measure µp. �

It is natural to ask whether the measure µp defined above indeed depends on the
type p or not. This and related issues will be tackled in a subsequent paper.

Our final result of this section will provide in a sense the missing link in the
proof of the o-minimal conjectures.

Proposition 6.3. Suppose that T has NIP and G is a group definable in M̄ such
that G is definably amenable and the set I of non-(left) generic definable subset of
G forms an ideal. Then

(i) there are only a bounded number of definable subsets of G modulo the equiv-
alence relation X ∼I Y (X∆Y ∈ I),

(ii) for each definable left generic X ⊆ G, StabI(X) (= {g ∈ G : gX∆X is
nongeneric}) is a (type-definable) subgroup of bounded index.

Proof. Let µ be a left invariant Keisler measure on G. Note that if X is a left
generic definable subset of G, then µ(X) > 0 (as finitely many left translates of X
cover G and these have all the same µ-measure as X). So if there are unboundedly
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many ∼I-classes, there will also be unboundedly many ∼µ-classes, contradicting
Corollary 3.4. This proves (i).

(ii) follows immediately. �

7. Interlude: Ind-definable and locally compact groups

As one of the authors remarked, “It seems a pity to lose SL2(R).” So we give
the notion of an Ind-definable group, point out that quotienting by a type-definable
normal subgroup of bounded index yields a locally compact group, and develop
analogues of some of the results so far for Ind-definable groups. We also state an
appropriate version of the o-minimal conjectures from [23]. In any case we will be
brief.

We still work in a saturated model M̄ . Ind-definable stands for “inductive limit
of definable sets”. For notational reasons we will take the index set to be N. So
an Ind-definable set X will be by definition a sequence (Xn : n ∈ N) of definable
sets together with definable embeddings fn : Xn → Xn+1 for n ∈ N . The points
of X correspond to sequences (x, fn0(x), fn0+1(fn0(x)), . . .) for some x ∈ Xn0 and
n0 ∈ N. It is convenient to view the fn as inclusion maps, and so X as the
increasing union

⋃
n Xn. There are natural notions of an Ind-definable relation on

X and Ind-definable functions between Ind-definable sets. For example an Ind-
definable function g between X =

⋃
n Xn and Y =

⋃
n Yn is a function from X to

Y such that for every m, n, {x ∈ Xm : g(x) ∈ Yn} is definable and the restriction
of g to this set is definable. We also have the obvious notion of an Ind-definable
set, function, . . . being defined over a given set A of parameters.

Definition 7.1. An Ind-definable group G is something of the form G =
⋃

n Gn

where Gn are definable sets, m : G × G → G is a group operation and when
restricted to Gn × Gn has values in Gn+1 (and is definable), and inversion when
restricted to Gn has values also in Gn.

We could also say that an Ind-definable group G is a group object in the category
of Ind-definable sets, noting that up to isomorphism G has the explicit form given
in Definition 7.1.

By a definable subset of G we mean a definable subset of some Gn. Likewise a
complete type extending G will be “concentrated” on some Gn.

For various reasons we will assume that
(**) G0 generates G as a group.

Examples. A basic example we have in mind for an Ind-definable group is a
subgroup of a definable group G that is generated by a definable set G0 ⊆ G
(such groups were called “

∨
-definable groups” in [20] and “locally definable” in

[6]). Another is the universal cover of 〈[0, 1), +(mod1)〉, obtained as an increasing
union of intervals [−n, n] and the obvious group operation. The group of definable
automorphisms of a definable group G, say in a countable language, can also be
viewed as an Ind-definable group, where the Gn’s in the definition are obtained
via the various definable families of automorphisms of G. Finally, “an infinite
dimensional” example is, for a definable group G, the increasing union of G, G ×
G, . . . , Gn, . . ., with the group operation acting coordinatewise (such spaces are
called by A. Piekosz, in preliminary notes, “weakly definable spaces”).
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Here are some analogues of the basic notions:

Definition 7.2. Let G =
⋃

n Gn be an Ind-definable group.
(i) Let X be a definable subset of G (i.e. of some Gn). We call X left generic in

G if for each m finitely many left translates of X by elements of G cover Gm.
(ii) By a type-definable subgroup of G we mean a subgroup H of G which is at

the same time a type-definable subset of some Gn.
(iii) By a Keisler measure on G (or on any Ind-definable set for that matter) we

mean a finitely additive real-valued function µ on definable subsets of G; namely
for every definable subset X of G, µ(X) ≥ 0, µ(∅) = 0 and if X, Y are disjoint
definable subsets of G, then µ(X ∪ Y ) = µ(X) + µ(Y ). (But note that we do not
require there be a finite bound on the measures of definable sets).

Note a difference with the usual situation: If G is Ind-definable, it may have NO
type-definable subgroup of bounded index (because G itself is not type-definable).
In any case if G has a smallest type-definable subgroup of bounded index, we will
call it G00 and say “G00 exists”.

As in Section 4, we will say that the Ind-definable (over ∅) group G =
⋃

n Gn

has finitely satisfiable generics if there is a global complete type p(x) of G (namely
p(x) → “x ∈ Gn” for some n) such that every left translate of p by an element of
G is finitely satisfiable in some fixed small model M0.

The material from Section 4 generalizes as follows:

Proposition 7.3. Suppose the Ind-definable group G has fsg. Then the following
hold.

(i) Any definable subset X of G is left generic iff right generic iff every left
(right) translate meets M0.

(ii) There is a complete global generic type of G (in fact p as in the definition of
fsg will be such, as well as any translate of p).

(iii) If X is a definable subset of G which is generic in G and X = X1 ∪X2 with
Xi definable, then X1 or X2 is generic in G.

(iv) There is a smallest subgroup of G which has bounded index and is invariant
over some small set of parameters.

(v) G00 exists and equals Stab(q) for each global generic type q of G. (Hence the
cosets of G00 in G correspond to the translates of q.)

Proof. Let p be the type given by fsg. So for all sufficiently large n, “x ∈ Gn” ∈ p.
Likewise any definable subset X of p is in Gn for sufficiently large n. So given a
definable left generic set X, there is an n such that “x ∈ Gn” ∈ p and X ⊆ Gn.
So (as finitely many left translates of X cover Gn) some left translate of X is in
p and hence X is in some left translate of p, so X meets M0. Likewise every left
translate of X meets M0. Now fix m. Then for every g ∈ Gm, gX meets M0. By
compactness there are g1, . . . , gk ∈ G(M0) such that for every g ∈ Gm, gX contains
one of the gi. But then for every g ∈ Gm, g−1 ∈ Xg1 ∪ . . . ∪ Xgk. As Gm = G−1

m ,
we see that finitely many right translates of X cover Gm. As m was arbitrary, we
conclude that X is right generic. The rest of (i) follows by the same argumentation
(noting that every right translate of p−1 is finitely satisfiable in M0).

(ii) follows from (i).
(iii) Again we may suppose that X ⊆ Gn and p(x) |= “x ∈ Gn”. So some

translate of X is in p, so X is in a translate of p, so X1 or X2 is in the same
translate of p and so is generic.
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At this point we see that the collection of nongeneric definable subsets of G is
an ideal. Call this ideal I.

(iv) Suppose H to be a subgroup of G of bounded index which is A-invariant for
some small set A. Then our given global generic type p determines a coset of H in
G and every other coset of H in G corresponds to a translate of p. So the number
of translates of p bounds the index of H in G. Hence there is a smallest such H
(even as A varies).

(v) requires a little finesse. First let X be any definable subset of G. Let
StabI(X) be as in Section 4, namely {g ∈ G : gX∆X is nongeneric in G}. So
StabI(X) is a subgroup of G but on the face of it has no definability properties.
But we DO know that StabI(X) is invariant over the parameters defining X and
also has bounded index in G (as generics meet M0). Now fix a global generic type
q. By what we have just said, together with (iv),

⋂
{StabI(X) : X ∈ q} = H say

is a subgroup of bounded index invariant over some small set, and H is clearly
contained in Stab(q). But there is an n such that q(x) |= “x ∈ Gn”, and therefore,
as above, Gn and every Gm, m > n, are generic in G.

Clearly Stab(q) is a subgroup of G contained in Gn+1. Thus H ⊆ Gn+1. Now
for X ∈ q, let Stabn+1

I (X) = {g ∈ Gn+1 : gX∆Xis nongeneric}. But this is clearly
type-definable (as we only have to say that finitely many translates of gX∆X do not
cover Gn+2). As H =

⋂
{Stabn+1

I (X) : X ∈ q}, it follows that H is type-definable.
So we have constructed a type-definable subgroup of G of bounded index. By (iv)
there is a smallest one, so G00 exists. As in the earlier proof, G00 must contain
Stab(q). So G00 = H = Stab(q). �

We can easily generalize Proposition 6.1 as well.

Proposition 7.4. Assume that T has the NIP and G =
⋃

n Gn is an Ind-definable
group (Ind-definable over ∅). Suppose that G HAS a type-definable subgroup of
bounded index. Then it has a smallest one, G00, which is moreover normal and
type-definable over ∅.

Proof. Note by assumption (**) that if H is a type-definable subgroup of G, con-
tained in Gn say, then G/H has bounded cardinality iff Gn/H does.

By our assumptions, without loss of generality there is a type-definable subgroup
H of G of bounded index, which is contained in G0. The proof of Proposition 6.1
goes through word for word to give a type-definable subgroup L0 of G of bounded
index which is smallest among those contained in G0. Likewise for each n there is
a type-definable subgroup Ln of G which is smallest among those contained in Gn.
But then Ln ⊆ L0, so Ln is contained in G0, so Ln = L0. Thus L0 = G00. It is
clearly normal and type-definable over ∅. �

Lemma 7.5. Assume that G is an Ind-definable group as above and that G00

is a minimal type-definable subgroup of bounded index. Let π : G → G/G00 be
the projection map and set Y ⊆ G/G00 to be closed if and only if for every n,
π−1(Y ) ∩ Gn is type-definable. Then these closed sets generate a locally compact
topology on G, making it into a topological group.

The compact sets in G/G00 are those closed Y such that π−1(Y ) is contained in
Gn for some n.

Proof. Left to the reader. �
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Remark 7.6. In fact one can formulate the notion of a “type-definable” equivalence
relation E on an Ind-definable set Y , and assuming boundedly many classes, one
can define the “logic topology” on Y/E which will be locally compact. As we will
only require the group case as in Lemma 7.5, we leave details of the general case
to the reader.

Finally we generalize Proposition 6.2 to the Ind-definable setting. Recall first
that a left Haar measure on a locally compact group G is a left invariant Borel
measure µ on G such that µ(X) is finite for X compact and positive for X open (so
it may take value ∞ on some Borel sets). A left Haar measure exists and is unique
up to multiplication by a positive real.

Proposition 7.7. Let G be an Ind-definable group with finitely satisfiable generics.
Assume T has NIP. Then there is a left invariant Keisler measure on G which is
moreover finitely satisfiable in some small model.

Proof. As in the proof of Proposition 6.2, we may assume T to be countable. Let
m be a right Haar measure on the locally compact group G/G00. Let p(x) be a
global generic type extending G00. Without loss of generality G00 is contained in
G0.

We would like (as in the proof of Proposition 6.2) to define a left invariant
Keisler measure µp on G by stipulating that for any definable subset X of G,
µp(X) = m({g/G00 : gX ∈ p}).

So fix a definable subset X of G. Assume X ⊆ Gn. As before, whether or not gX
is in p depends only on g/G00. So the main point is to see that {g/G00 : gX ∈ p}
is Borel and has finite M-measure.

Note that if gX ∈ p, then g ∈ Gn+1 (as g ∈ G0 ·Gn) and so gX ⊆ Gn+2. We copy
the proof of Proposition 6.2 but now defining U to be {Y ∩Gn+2(M0) : Y ∈ p} and
concluding that {g/G00 : gX ∈ p} is a Borel subset of the compact set Gn+1/G00

and hence has finite m-measure. So we can define µp. Left invariance, finite
additivity, and finite satisfiability in M0 are proved as before. �

We conclude this interlude with a result that appears at first sight close to the
conjectures for compact groups, mentioned in the introduction.

Proposition 7.8. Let M̄ be a saturated o-minimal structure (expansion of a real
closed field) and G a definably connected group definable in M̄ . Then there is a
definably compact neighbourhood of the identity G0 = G−1

0 such that putting Gn =
G0·. . .·G0 and G∞ =

⋃
n Gn, then the Ind-definable group G∞ has a unique smallest

type-definable subgroup of bounded index G00
∞ and the quotient L = G∞/G00

∞ with the
“logic topology” is a connected Lie group of the same dimension as the o-minimal
dimension of G.

Proof. We can identify some neighborhood of 1 in G with a neighborhood of 0 in
Rn; write ∗ for multiplication in G. The only possible linear approximation to
x ∗ y is x + y, by associativity and the existence of differentiable inverse. So letting
|x| = max|xi|, for any C > 0, for all sufficiently small e > 0, if |x| ≤ e and |y| ≤ e,
then

(1) |x ∗ y − (x + y)| ≤ C|(x, y)|.
Take C infinitesimal and then e infinitesimal compared to it, and let U = {x : |x| ≤
e}, H = {x : |x| ≤ (1/n)e, n = 1, 2, . . .}. Then by (1) it is clear that H is a type-
definable normal subgroup. Let G0 = U ∪U−1 in the sense of (**), so as to have it
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symmetric. Let G∞ be the Ind-definable group generated by U , or equivalently by
G0. Modulo H, ∗ agrees with + on U , indeed on G∞. In particular G∞/H � Rn.

It remains only to show that H equals G00 precisely, i.e. that G∞/G00
∞ cannot

have dimension bigger than the o-minimal dimension of G. We postpone this to
Section 10; see Corollary 10.10. �

However, note that the locally compact quotient we obtained is abelian; it is
indeed a locally compact manifestation of the Lie algebra of G. We feel that the
canonical compact quotient of a definably compact group K reflects better the
structure of K; for instance K/K00 is nonabelian if K is nonabelian. In the general
case too, there should also be a locally compact quotient whose structure is close
to that of G. We do not at the moment have a precise statement of this, either in
the compact or in the locally compact cases.

Note that the adjoint action G × L → L is definable, in the sense of Section 2.

8. Proof of the o-minimal conjectures

We now use some of the preceding results to complete the proof of the conjectures
on definably compact definable groups in o-minimal structures from [23]. In fact
we will prove a bit more, namely that such groups have fsg and therefore by
Proposition 6.2 are definably amenable. Our main result (stated in the language of
Definition 2.1) is

Theorem 8.1. Let M̄ be a saturated o-minimal expansion of a real closed field.
Let G be a definably connected definably compact group definable in M̄ . Then the
following hold.

(i) G has fsg.
(ii) There is a definable surjective homomorphism π : G → H from G to a

compact Lie group H such that the Lie group dimension of H equals the o-minimal
dimension of G and moreover such that any definable homomorphism from G to a
compact group factors through π.

Of course the H in part (ii) of the theorem is precisely G/G00 equipped with the
logic topology. We know from [4] that G00 exists and G/G00 is, as a topological
group, a compact connected Lie group. As discussed in [19], we may assume that
G is a definable closed subset of some M̄n and that the group operation on G is
continuous with respect to the induced topology on G.

We will prove Theorem 8.1 by proving it when G is commutative and when G
is “semisimple” and then use Proposition 4.5 among other things to conclude the
general case. For the rest of this section M̄ is a saturated o-minimal expansion of
a real closed field.

Lemma 8.2. Theorem 8.1 is true when G is commutative.

Proof. We use additive notation for G. We first prove (ii). T being o-minimal has
NIP. Also as G is commutative, it is amenable, so in particular definably amenable.
Also by [19] the family of nongeneric definable subsets of G forms an ideal I. We
can apply Proposition 6.3 to conclude that StabI(X) is a type-definable subgroup of
G of bounded index for any definable subset X of G. It is explained in [19] how this
implies (ii), but we briefly recall the argument. For each n, we can find a definable
subset Xn of G such that the sets Xn, Xn + c1, . . . , Xn + cr form a partition of G,
where 0, c1, . . . , cr are the elements of order n in G. Then Stabng(Xn) contains no
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n-torsion (except 0). So if we know that each Stabng(X) has bounded index, it will
follow that G00 is contained in every Stabng(Xn) and hence has no torsion. As G00

is divisible (see [4]), it follows that G and G/G00 have isomorphic torsion.
By a theorem of Edmundo and Otero (see [7]), the torsion of G is isomorphic to

the torsion of (S1)dim(G). Hence the compact commutative Lie group G/G00 must
also be (S1)dim(G). So (ii) is proved.

Now for (i). Let ∼I be the equivalence relation: “X∆Y is nongeneric” on defin-
able subsets of G. By Proposition 6.3(i) there are only boundedly many definable
subsets of G up to ∼I . (Note that this already proves that G has a bounded num-
ber of generic types.) Thus there is a small model M0 such that G is defined over
M0 and for every generic definable subset Y of G there is an M0-definable subset
X of G such that Y ∼I X. To prove that G has fsg, it is clearly enough (given
the existence of generic types) to prove that every generic definable subset Y of G
meets G(M0). So let Y ⊆ G be definable and generic.

Claim 1. There exists a definable subset Y ′ ⊆ Y which is closed (in G, so in M̄n)
and still generic.

Proof. First, we may replace Y by its interior. Now, for every ε > 0 we consider
the set Yε of all y ∈ Y whose distance from the frontier of Y is greater than ε (in
the sense of M̄n). Because the frontier of Y is not generic, there is some ε > 0 for
which Yε is generic, and we take it to be Y ′.

So we may assume Y to be closed. Let X be an M0-definable subset of G such
that Y ∼ng X. We may clearly assume X to be closed (as cl(X)\X is nongeneric).
Hence X ∩ Y is closed. Let Z = X \ Y . �

Claim 2. The set of M0-conjugates of X ∩ Y is finitely consistent.

Proof. Otherwise (as X is M0-definable) finitely many M0-conjugates of Z cover
X. But Z is nongeneric in G as is any M0-conjugate of Z. So X is the union of
finitely many nongenerics, while itself being generic. This is a contradiction. �

By Claim 2 and Theorem 2.1 of [19] (which comes out of Dolich’s work [5]),
X ∩Y meets M0, as does Y . This completes the proof of (i) and of Lemma 8.2. �

Let G be definable in M̄ . We will say that G has very good reduction if it is
definably isomorphic, in M̄ , to a group G1 with the following property: There
is a sublanguage L0 of the language L of M̄ which contains +, · and there is an
elementary substructure M0 of M̄ |L0 whose underlying set is R and such that G1

is definable by an L0-formula with parameters from M0, i.e. from R. (But note
that M0 need not be expandable to an elementary substructure of M̄ .)

Remark. This notion of very good reduction is related to, but not identical with,
the algebraic-geometric notion in the case of saturated real closed fields and the
natural valuation. In any case it is important to note that even if R is a saturated
real closed field, there will be definable groups, even real algebraic ones which do not
have very good reduction in the model theoretic sense above. Indeed, as was shown
in [21], if R is a sufficiently saturated real closed field, then not all elliptic curves
over acl(R) are definably isomorphic to each other (as groups). In fact this remains
true even in an expansion of R to a structure Ran elementarily equivalent to Ran.
Now, in Ran all definable compact abelian groups of fixed dimension (defined over
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R) are definably isomorphic to each other; therefore, even in Ran not all elliptic
curves over acl(R) have very good reduction.

Lemma 8.3. Theorem 8.1 holds when G has very good reduction.

Proof. Part (ii) of the theorem is precisely Fact 4.1 of [19]. The fact that the
nongeneric sets form an ideal was proved in [19], but this as well as the rest of
(i) follows directly from Proposition 4.6 in the same paper (which itself depends
on results of Berarducci and Otero [2]). More precisely (with above notation)
Proposition 4.6 of [19] states among other things that if X ⊂ G is definable (in M̄),
then X is left generic iff right generic iff X contains an open set which is L0-definable
over M0. This on the one hand implies that there exists a complete generic type
and on the other hand that if we pick M1 to be any elementary substructure of M̄
which contains M0, then any generic definable subset of X meets M1. Thus G has
fsg. �

Proof of Theorem 8.1. Let G be an arbitrary definable, definably connected, defin-
ably compact group in M̄ . We prove the theorem by induction on dim(G). If G is
“semisimple”, namely has no proper connected infinite definable normal commuta-
tive subgroup, then by [17], G is an almost direct product of finitely many almost
definably simple groups G1, . . . , Gk. (“Almost definably simple” means that the
group is noncommutative and the quotient by some finite normal subgroup is de-
finably simple.) Now by [18] (see the proof of (2) ⇒ (3) in Theorem 5.1 there), any
definably simple group is definably isomorphic to some semialgebraic group defined
over R. In particular, a definably simple group has very good reduction. It easily
follows from Lemma 8.3 that Theorem 8.1 holds for a semisimple G.

Thus we may assume that G has an infinite, definably connected normal com-
mutative subgroup N . By Lemma 8.2, the theorem is true of N , so we may assume
N 
= G. By induction, the theorem is true for G/N , so by Proposition 4.5, G has
fsg.

All that is left to do is to prove that the dimension of the compact Lie group
G/G00 equals the o-minimal dimension of G. Notice first that the image of G00

under the projection onto G/N is necessarily (G/N)00 (on one hand this image
contains (G/N)00; on the other hand the pre-image of (G/N)00 is of bounded index
and therefore contains G00). Thus, it suffices to show that G00 ∩ N = N00. By [4]
it is enough to prove

Claim. G00 ∩ N is torsion-free.

Proof. Fix n. Let us first choose a definable subset X of N such that N is the
disjoint union of the translates of X by the distinct n-torsion points 1, g1, . . . , gr

say of N . (As usual X is obtained by considering the surjective endomorphism
π : x → nx of N with itself, which has finite kernel, and using the existence of
definable Skolem functions.) Likewise, using definable Skolem functions, we can
find a definable subset D of G which meets every coset of N in G in a unique point.
It follows that the definable sets XD, g1XD, . . . , grXD are disjoint and cover G.
By Corollary 4.3, G00 is contained in StabI(X), and clearly the latter does not
contain any of g1, . . . , gr. As n was arbitrary, it follows that G00∩N is torsion-free.
This completes the proof of Theorem 8.1. �
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By Proposition 6.2 we conclude also

Corollary 8.4. Let G be a definably compact group definable in M̄ . Then G is
definably amenable. In fact there is a left invariant Keisler measure on G which is
finitely satisfiable in some small model.

Remark. 1. In the very last step of the above proof we showed that, under the given
assumptions, G00 ∩ N = N00. This is not true in general, even if we assume that
G, G/N and N all have NIP and fsg. Indeed, consider the group G = 〈C, +〉 ⊕ S1

(S1 the circle group), with predicates for S1 and all its semialgebraic subsets (but
not for C!). We have G00 = G, but (S1)00 is nontrivial.

2. Our proof of Theorem 8.1 depends in a crucial manner on the result [7]
describing the torsion in definably compact commutative groups, which itself relies
on quite intricate tools from algebraic topology. It would be desirable to have a
“direct” proof of the latter in the spirit of the current paper. In fact we do have
a reasonably elementary proof of the existence of torsion points (in commutative
definably compact definably connected groups), which we sketch here:

(i) Using definable compactness, find a definable X ⊂ G such that both X and
its complement Xc are generic (this can be done similarly to the proof of Claim 1
above).

(ii) It follows that Stabng(X) 
= G, and thus (as we saw that Stabng(X) has
bounded index), G00 
= G.

(iii) Since G/G00 is a compact connected commutative nontrivial Lie group ([4]),
it has torsion, and since G00 is divisible ([4]), G itself has torsion.

3. Notice that if a definable G in an o-minimal structure has fsg, then it
necessarily implies that G is definably compact. Indeed, if G were not definably
compact, then by [22], G has a definable one-dimensional, ordered subgroup H.
Let D ⊆ G be a definable set containing one representative for each coset of H,
and let I = (0,∞) ⊆ H. Then D · I is nongeneric in G and so is its complement,
contradicting Proposition 4.2.

4. The proof of the o-minimal group conjecture that we give here depends in
the ambient real closed field in two different ways. Firstly, in order to ensure that
our group can be embedded as a topological group into some Rn, see a discussion
in [19]. Secondly (and more substantially) the above count of torsion points by
Edmundo and Otero was only carried out for expansions of real closed fields. The
conjecture was proved separately for groups definable in ordered vector spaces over
division rings (see [15], [8]).

9. Compact domination

The third author has mentioned in previous papers that the o-minimal conjec-
tures (solved in the last section) have the heuristic content that the map G → G/G00

should be a kind of intrinsic “standard part map”. It is reasonable to attempt to
give some concrete mathematical meaning to this, namely to come up with a model
theory of “standard-part-like” maps (in a tame context). So we introduce the no-
tion of “compact domination”. It is analogous to “stable domination” from [12]
which was introduced with algebraically closed-valued fields as a central example.
We relate compact domination to the existence and uniqueness (and smoothness)
of suitable Keisler measures and prove that in the cases we understand well (very

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUPS, MEASURES, AND THE NIP 589

good reduction and dimension 1) definably compact groups in o-minimal structures
are compactly dominated (by G/G00).

We begin by working in a saturated model M̄ of an arbitrary theory. When we
say compact, we mean compact Hausdorff. G denotes a definable (or even type-
definable) group. We use freely the notion from Section 2 of a definable map from X
to a compact space. Also we will assume that every Borel measure µ on a compact
space C that we discuss is regular. Note that Haar measure is regular.

Definition 9.1. (i) Suppose X is type-definable, π : X → C is a definable surjective
map from X to a compact space C, and µ is a probability measure on C. We say
that X is compactly dominated by (C, µ, π) if for any definable (that is relatively
definable with parameters) subset Y of X and for every c ∈ C outside a set of µ
measure zero, either π−1(c) ⊆ Y or π−1(c) ⊆ X \ Y . Namely,

µ({c ∈ C : π−1(c) ∩ Y 
= ∅ and π−1(c) ∩ (X \ Y ) 
= ∅}) = 0.

(ii) Let G be a type-definable group. We say that G is compactly dominated as a
group if G is compactly dominated over by (H,m, π) where H is a compact group,
m is the unique normalized Haar measure on H and π is a group homomorphism.

Note that in (i) above the set {c ∈ C : π−1(c)∩Y 
= ∅ and π−1(c)∩ (X \Y ) 
= ∅}
is a closed subset of C, hence measurable.

When we work with a definable group G, we always refer to compact domination
in the group sense.

Question 9.2. To what extent does the definition of compact domination depend
on the choice of “measure zero” as the notion of “smallness” in C?

It would be interesting to investigate other possibilities. Smallness notions based
on Baire category or dimension are more natural since they depend only on the
topology; but in the context of groups the Haar measure also depends only on the
topology and group structure and connects naturally to the topics discussed in this
paper. It would be nice if for groups these notions turned out to be equivalent.

Let P be compactly dominated via π : P → C, where P and π are (type-)
defined over ∅. We will say “θ(x, b) holds for almost all x ∈ P” if µ(π({x :
¬θ(x, b)})) = 0. We can write (dP x)θ(x, b) for this. Note that this gives a partial
type: {b : (dP x)θ(x, b)} is type-definable over ∅. Indeed let {Wi}i∈I be the set of all
closed subsets of C of positive measure; then π−1(Wi) =

⋂
j Wij for some definable

sets Wij . Now ¬(dP x)θ(x, b) iff µ(π(θ(x, b))) > 0 iff π(θ(x, b)) contains a closed set
Wi of measure > 0, iff for some i, j, π(¬θ(x, b)) contains Wij . The case of Baire
category is similar.

This is again in analogy with the stably dominated case, where one obtains
definable types.

One could ask to what extent C is determined by P . If P is compactly dominated
via πi : P → Ci, there exist continous maps f1 : C ′

1 → C2 and f2 : C ′
2 → C1, where

C ′
i is a large subset of Ci, such that f1π1 = f2 for all x ∈ π−1

1 (C ′
1), and dually.

However in general f1, f2 are not inverses of each other.

Proposition 9.3. Suppose G is compactly dominated by (H, π). Then
(i) G has finitely satisfiable generics, and
(ii) G00 exists and equals Ker(π).
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Proof. Let us assume that G is compactly dominated (over ∅ say) by the data.
We go through various claims which eventually yield (i) and (ii). Y will denote a
definable subset of G and π′(Y ) = {h ∈ H : π−1(h) ⊆ Y }.
Claim 1. π′(Y ) ⊆ π(Y ), π(Y ) is closed and π′(Y ) is open.

Proof. Clear.

Claim 2. m(π(Y )) = m(π′(Y )).

Proof. Because by the definition of compact domination m(π(Y ) \ π′(Y )) = 0.

Claim 3. The following are equivalent:
(a) Y is left (right) generic,
(b) π(Y ) is left (right) generic,
(c) m(π(Y )) > 0,
(d) π′(Y ) is nonempty.

Proof. (a) implies (b) implies (c) is clear. Suppose now that (c) holds. Then by
Claim 2, m(π′(Y )) > 0, so in particular (d) holds. Now assume (d). Then Y
contains a coset of Kerπ, which is type-definable of bounded index, and hence Y
is left and right generic.

Claim 4. If Y = Y1 ∪ Y2 (where the Yi are definable) and Y is generic, then Y1 or
Y2 is generic.

Proof. By Claim 3, m(π′(Y )) > 0, but the compact domination assumption implies
that m(π′(Y )) = m(π′(Y1)) + m(π′(Y2)), so again by Claim 3 we are done.

Let M0 be an elementary substructure of M̄ containing representatives of each
coset of G modulo Ker(π).

Claim 5. If Y is generic in G, then Y meets M0.

Proof. By Claim 3, Y contains a whole coset of Ker(π).
By Claim 4 there is a global generic type p of G. Every translate of p is also

generic so by Claim 5 is finitely satisfiable in M0. Thus G has fsg, giving part (i).
Let I be the ideal of nongeneric definable sets (which exists by Claim 5.)

Claim 6. Ker(π) ⊆ StabI(Y ).

Proof. Let g ∈ Ker(π). Then π(Y ∆gY ) ⊆ (π(Y ) \ π′(Y )) ∪ (π(gY ) \ π′(gY )). By
Claim 2 the latter has Haar measure 0; hence by Claim 3, Y ∆gY is nongeneric.

By Corollary 4.3, G00 exists and equals the intersection of all StabI(Y ). Since
kerπ has bounded index in G, by Claim 6, G00 equals Ker(π). �

Note that it follows that if G is ∅-definable and compactly dominated over some
parameters, then it is compactly dominated over any model (as G00 is type-definable
over ∅). We now aim towards the appropriate analogue of “existence and uniqueness
of Haar measure” for compactly dominated groups. We begin with a group-free
version:

Proposition 9.4. Let X be type-definable over ∅ and compactly dominated over ∅
by (C, µ, π). Then the following hold.

(i) There is a unique Keisler measure µ′ on X with the property that µ(D) =
µ′(π−1(D)) for any closed D ⊆ C.

(ii) The Keisler measure µ′ from (i) is smooth (over ∅).
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Proof. We first start with an explanation. When in (ii) we refer to µ′(π−1(D)), we
identify µ′ with the canonical countably additive Borel measure extending it, as
discussed in Section 2, just before Construction (*).

In any case, let us first show the existence of µ′: For Y a (relatively) definable
subset of X, put µ′(Y ) = µ(π(Y )). Note that µ′ DOES satisfy the condition in
(i): for if D ⊆ C is closed and Y = π−1(D), then Y is type-definable so equals⋂

i Yi where Yi are (relatively) definable subsets of X. Let Di = π(Yi). Then Di

is closed in C and
⋂

i Di = D. We may assume that the family (Yi)i is closed
under finite intersections. It follows (by our assumption of regularity of µ) that
µ(D) = inf{µ(Di) : i ∈ I} = inf{µ′(Yi) : i ∈ I} = µ′(Y ).

We must check finite additivity of µ′. But if Y1, Y2 are disjoint definable subsets
of X, then (by compact domination) µ(π(Y1) ∩ π(Y2)) = 0; hence µ′(Y1 ∪ Y2) =
µ′(Y1) + µ′(Y2).

Now for uniqueness: Suppose µ′′ is another Keisler measure on X such that
µ(D) = µ′′(π−1(D)) for any closed D ⊆ C. Let Y be an arbitrary definable subset
of X. Then, since π−1π′(Y ) ⊆ Y ⊆ π−1π(Y ), we have

µ(π′(Y )) = µ′′(π−1π′(Y )) ≤ µ′′(Y ) ≤ µ′′(π−1π(Y )) = µ(π(Y )).

But µ(π′(Y )) = µ(π(Y )); hence µ′(Y ) = µ′′(Y ). So we have proved (i).
Recall that the smoothness of µ′ over ∅ means by definition that µ′|∅ has precisely

one extension to a Keisler measure on (all definable subsets of) X. However, since
µ′|∅ satisfies the assumptions of (i), it follows that it has a unique extension. �
Theorem 9.5. Suppose G is compactly dominated. Then G has a unique left
invariant Keisler measure, which is moreover right invariant and smooth.

Proof. Let π : G → H = G/G00. As before m denotes the Haar measure on H.
Let µ′ be as in Proposition 9.4 and its proof, namely for definable X ⊆ G, µ′(X)

is by definition m(π(X)). Note that µ′ will be both left and right invariant, as m
is. By Proposition 9.4, µ′ is also smooth.

Now suppose µ′′ is another left invariant Keisler measure on G. Let M0 be a
model over which π is definable. By [13], µ′′|M0 extends uniquely to a countably ad-
ditive measure on the σ-algebra of subsets of G generated by the M0-type-definable
sets. We still call this µ′′|M0 and note that it is left invariant. But then µ′′|M0 in-
duces a left invariant countably additive measure on H: namely for B a Borel subset
of H, define its measure to be µ′′(π−1(B)). By uniqueness of Haar measure, this lat-
ter measure has to agree with m. Hence we have shown that m(C) = µ′′(π−1(C)).
By Proposition 9.4(i), µ′′ = µ′. This completes the proof. �

10. o-minimality and compact domination

Let M̄ denote now a saturated o-minimal expansion of an ordered divisible group
R.

Beraducci and Otero, in their paper [2], prove in effect (for o-minimal expansions
of real closed fields) that the unit n-cube In in M̄ is compactly dominated, with
respect to the standard part map to In(R) equipped with Lebesgue measure. This
is not stated explicitly in their paper but follows from it. In any case we give
below another proof of this fact (omitting the real closed field assumption), using
the following beautiful theorem of Baisalov and Poizat (recall that a weakly o-
minimal structure is an ordered structure in which every definable subset of the
linear ordering is a finite union of convex sets):
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Theorem ([1]). If the saturated o-minimal structure M̄ is expanded by any number
of convex subsets of M̄ , then the resulting structure is weakly o-minimal.

Some notation: We let R denote a fixed copy of the reals, which we may assume
is a subgroup of R (in particular, we have a copy of Q in R). Let Fin denote the
set of finite elements of R (i.e. absolute value less than n for some n ∈ N) and Inf
the set of infinitesimals of R (absolute value < 1/n for all n ∈ N). Let π denote
the “standard part map” from Fin onto Fin/Inf . Since Fin/Inf is archimedean
(and M̄ saturated), we can identify Fin/Inf with R.

Let 〈M̄, F in, Inf〉 be the structure M̄ equipped with unary predicates for Fin
and Inf . Then the quotient group Fin/Inf is interpretable in it, and π induces a
canonical bijection i : Fin/Inf → R.

Definition 10.1. By Rind (standing for “R with the induced structure”) we mean
the structure whose universe is R and whose relations are precisely the images under
i of subsets of (Fin/Inf)n which are definable (with parameters) in (M̄, F in, Inf).

Lemma 10.2. Rind is o-minimal (in fact is an o-minimal expansion of the ordered
group of R).

Proof. It is clear that < and the graphs of + and · are among the basic relations
on Rind.

By [1] the structure 〈M̄, F in, Inf〉 is weakly o-minimal. Let X ⊆ R be definable
in Rind. Then clearly π−1(X) is definable in 〈M̄, F in, Inf〉, so it is a finite union
of convex sets. So X has finitely many connected components. Thus Rind is o-
minimal. �
Lemma 10.3. Let X ⊂ Finn be definable in M̄ with dim(X) < n. Then dim(π(X))
< n (in the o-minimal structure Rind).

Proof. The proof is by induction on n and is immediate for n = 1. For an arbitrary
n, we may assume by cell decomposition that X is the graph of a continuous
definable function f : C → R, where C is a definable open set in Rn−1. By o-
minimality of Rind, if dim(π(X)) = n, then it must contain the closure of a subset
U × (q1, q2), for U an open rectangular box of rational coordinates (which we may
assume is contained in C) and q1, q2 ∈ Q.

Consider an arbitrary x ∈ U(R) and r a rational number in (q1, q2). By as-
sumptions, there exist x1, x2 infinitesimally close to x such that f(x1), f(x2) are
infinitesimally close to q1, q2, respectively. But then, by continuity, there exists an
x′ infinitesimally close to x such that f(x′) = r. It follows that π({x ∈ U(R) :
f(x) = r}) = U , which by induction implies that the set {x ∈ U(R) : f(x) = r}
has an interior in Rn−1. This can be done for any rational r ∈ (q1, q2), a contra-
diction. �
Theorem 10.4. Let In be the unit n-cube in Rn, π the standard part map from In

to In(R), and µ the Lebesgue measure on In(R). Then In is compactly dominated
(in M̄) by (In(R), µ, π).

Proof. Let X ⊆ In be definable in M̄ . Let Y be the frontier of X (the set of x such
that every neighbourhood of x contains points both in X and not in X). Then
dim(Y ) < n. So dim(π(Y )) < n by Lemma 10.3. As π(Y ) is definable in the
o-minimal structure Rind, it follows that the Lebesgue measure of π(Y ) is 0. Note
also that π(Y ) is closed. For c ∈ In(R), the type-definable set π−1(c) is definably
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connected (cannot be written as the union of two relatively open relatively definable
subsets). So for c ∈ In(R) \π(Y ), either π−1(c) is contained in X or it is contained
in the complement of X. This proves compact domination. �

We are now in a position to state a rather finer version of the conjectures from
[23]. As before π denotes the homomorphism from G onto G/G00 and m denotes
Haar measure on G/G00.

Compact Domination Conjecture. Any definably compact group G (definable in
a saturated o-minimal expansion of a real closed field) is compactly dominated (by
the compact Lie group G/G00, with its Haar measure m).

Note that, by Proposition 9.3, if G (definably compact in a saturated o-minimal
expansion of a real closed field) is compactly dominated by H, then H has to
coincide with the compact Lie group G/G00.

The following lemma allows us to reduce the Compact Domination Conjecture
to a simpler statement.

Lemma 10.5. Suppose G is definably compact with dim(G) = n, and suppose that
whenever Y ⊆ G is definable and dim(Y ) < n, then m(π(Y )) = 0. Then G is
compactly dominated by G/G00.

Proof. Note that G here is equipped with its “definable topology”. We make use
of a key result from [4] which says that G00 and each translate of it are definably
connected. It follows that if X ⊆ G is definable and if Y is the frontier of X in G
(which has dimension < n), then for all c /∈ π(Y ), π−1(c) is either contained in X
or disjoint from X. Now, just as in the proof of Theorem 10.4, we obtain compact
domination. �

The above conjecture, if proven true, will resolve an intriguing open problem
regarding the connection between generic sets and torsion points.

Proposition 10.6. Assume that G is a definable abelian group in M̄ and that G
is compactly dominated by G/G00 (with its Haar measure). Then every definable
generic subset of G contains a torsion point. In particular, if X ⊆ G is generic,
then there are finitely many torsion points g1, . . . , gk such that G =

⋃
i giX.

Proof. If X ⊆ G is generic, then, by Claims 1 and 3 in the proof of Proposition
9.3, π′(X) = {g/G00 : gG00 ⊆ X} is open in G/G00 and therefore contains a
torsion point. Since G00 is divisible and torsion-free, the coset gG00 and therefore
X contain a torsion point. The rest follows easily. �

There is very little we currently know about the consequences of the above propo-
sition. Indeed, we do not even know that every large set (namely, the complement
of a definable subset of G of small dimension) contains a torsion point.

Theorem 10.7. Let G be a definably compact group definable in an o-minimal M̄ .
Then G is compactly dominated in either of the cases

(i) M̄ expands a real closed field and G has very good reduction,
(ii) dim(G) = 1.
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Proof. Case (i). We assume that there is a sublanguage L0 of L such that G
is defined in L0 over the elementary substructure M0 = 〈R, +, <, . . .〉 of M̄ |L0.
Assume dim(G) = n. Then G has a covering by finitely many charts U1, . . . , Ur,
each of which is definably homeomorphic via some fi to an open definable subset
Vi of In (all definable in L0 over M0). Let Rind be as above. As was pointed out
earlier, G00 is exactly the collection of all elements in G that are infinitesimally
close to e. Thus we identify G/G00 with G(Rind). Suppose Y ⊆ G is definable with
dim(Y ) < n. Then working in the charts and using Proposition 10.3, we see that
dim(π(Y )) < n in the o-minimal structure Rind. Then clearly m(π(Y )) = 0. (For
example, working in the charts, the Lebesgue measure of π(Y ) = 0, so the Haar
measure must be 0 too.) Now apply Lemma 10.5.

Case (ii). If dim(G) = 1, then any definable subset Y of G of dimension < 1
is finite, so π(Y ) is finite too and hence has Haar measure 0. Again apply Lemma
10.5. �

Corollary 10.8. Suppose G is as in Theorem 10.7. Then there is a unique invari-
ant Keisler measure on G, which is moreover smooth.

Proof. By Theorems 9.5 and 10.7. �

Finally we return to the promised completion of the proof of Proposition 7.8,
this time as an illustration of the Compact Domination Conjecture. Actually the
dominating group is locally compact in this case; the modification of the definition
is evident. We show initially that G∞ is (locally) compactly dominated via G∞ →
G∞/H; as a bi-product, this gives H = G00

∞.

Proposition 10.9. Let G, H be as in Proposition 7.8. Then G∞ is (locally) com-
pactly dominated via G∞ → G∞/H.

Proof. Let U(y) = {x : |x| ≤ y}. So U = U(e). Let G̃ =
⋃

N∈N
U(Ne). By (1) of

Proposition 7.8, G∞ ⊆ G̃, and ∗, + coincide on G̃ up to H. In fact G̃ = G∞, since
G̃/H = Rn and U/H contains an open neighborhood of 0 in Rn.

Since ∗, + coincide on G̃ up to H, the proposition reduces to the case G =
(Rn, +), where (R, +) is the underlying additive group of the o-minimal structure.
In this case, add predicates for both {x : (∃N ∈ N)|x| ≤ Ne} and for {x : (∀N ∈
N)|x| < e/N}, obtain weak-o-minimality of their quotient by [1], and proceed as in
the proof of Theorem 10.4. �

Corollary 10.10. G00
∞ = H

Proof. A generic set has generic image in G∞/H, hence contains a nonsmall subset
of G∞/H; hence the pullback contains at least one full coset of H. Since G∞/H is
bounded, G00

∞ = H. �
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