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GROUPS OF LINEAR OPERATORS DEFINED BY
GROUP CHARACTERS

BY

MARVIN MARCUS AND JAMES HOLMES(l)

ABSTRACT.   Some of the recent work on invariance questions can be re-
garded as follows:   Characterize those linear operators on  Horn (I7,  V) which
preserve the character of a given representation of the full linear group.   In
this paper, for certain rational characters, necessary and sufficient conditions
are described that ensure that the set of all such operators forms a group  £.
The structure of £ is also determined.   The proofs depend on recent results
concerning derivations on symmetry classes of tensors.

1.   Statements.  Let  G be any subgroup of the full linear group  GL (n, C)

over the complex numbers, and let  21 denote the linear closure of G in the total

matrix algebra M (C).   Let  K: G —> GL ÍN, C)  be a representation which is ex-

tended to a representation of the multiplicative semigroup of 21 in  M  (C).   Let

pK(X) = tr K(X) be the corresponding character.   Next, let Jl(G,  K) denote the

multiplicative semigroup of all linear transformations J : ?i —' 21 having the prop-

erty that J   preserves the character of the representation   K; that is,

(1) pKC3(X)) = pK(x),       X e 21.

The two central questions which will concern us in this paper are:

(i)   Under what circumstances is  Íl(G, 7C)  a group,  i.e., under what circum-

stances is it true that if (1) holds, then J   is nonsingular?

(ii)   If i_(G, K) is a group, then what is its structure?

Probably the first instance of a question of this kind was discussed by

Frobenius [3] who proved that if G = GL in, C), so that 21 = M (C), and if K(X) =
det(X),  then i(G, K) is a group.   He proved, in answer to question (ii), that for

J   € MG, K) there exist fixed matrices  17  and  V in  GL (n, C)  such that

J(X) = UXV,    X e M (C),    or    J(X) = UXTV,    X e M (C),

Received by the editors March 25, 1971.
AMS (MOS) subject classifications (1970).   Primary 20G05, 15A15, 15A69; Secondary

20B05.
Key words and phrases.   Representations, characters, linear transformations, elemen-

tary divisors, symmetry classes of tensors, derivations on symmetry classes.
(1)   The work of the first author was supported by the U. S. Air Force Office of Sci-

entific Research under AFOSR 72-2164.   The work of the second author was supported by
the National Science Foundation under NSF GP-20632.

Copyright © 1973, /American Mathematical Society
177

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



178 MARVIN MARCUS AND JAMES HOLMES [October

where detiUV) = 1  (X     is the transpose of  X).

A related problem was discussed by I. Schur [12].   Let  3 <_ m < 72  and J :
M (C) —> M  (C) be a linear transformation satisfying the following condition.    For

each  X e M (C), the  772th order subdeterminants of J (X)  are fixed linearly indepen-

dent linear homogeneous functions of the 772th order subdeterminants of X.   Schur

proved that for such a J   there exist fixed matrices  U, V € GL (72, C)  such that

3\X) = UXV,    X e MniO,    or    J(X) = UXTV,    X £ M(\C).

This problem can be reformulated in terms of the  772th  Grassmann compound C (X)

of X.   Let S be a nonsingular linear transformation from  M      (C) to itself.   Char-
(m)

acterize those linear transformations J   on  M  (C) which satisfy
72 J

cj5(x)) = s(cm(x)),     X £ Mn(C).

This reformulation and a proof depending on more recent results appear in [9]-

Let   P = [ y   A, and let G  be the group consisting of all  X £ GL (2, C) for
which  X* = PXTP.   Let  K(X)= det(X).   As can be readily verified,  £(G, K) is
isomorphic to the set of linear transformations mapping the real space R     into

itself and holding fixed the quadratic form

/(x) = x2 + x2-x2-x2.

In [8] it is proved that  2! consists of all  X e M2(C) of the form

[; ;]■

and that  J_(G, A\)  consists of all  J   of the form

3"(X) = UXV,    X e Mn(C),    or    J(X) = UXTV,    X e M([Q,

where det(<7K) = 1,  and  U* = PUTP,   V*= PVTP.
In [lO] it is proved that L(G, K) is a group when  G = GL (72, C)  and  K(X) =

C   (X) tot 3 < 772 <^ 72.   In this instance, p„(X) = tr C   (X) is the  772th  elementary

symmetric function of the eigenvalues of  X,  or equivalently, the sum of all

i" ) 772-square principal subdeterminants of X.   In case m < n,   the group

MGL (t2, C), C  ) consists of precisely those linear transformations  J   of the form
772 * J

JiX) = UXV,    X e MniC),    or    3"(X) = UXTV,    X e MÍ.C),

where   UV ■ e'^A    and 772c/) = 0(277).   This result was recently extended to include

the case  772 = 3 in [21.

Another minor modification of our problem occurs in [5]-   Let  Uin, C) denote

the subgroup of GL (?2, C) consisting of all unitary matrices.   Then the semigroup
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1972] GROUPS OF LINEAR OPERATORS 179

£ of all linear transformations  3" on  M  (C) which satisfy  J (llin, C)) C U(n, C)  is

a group.   It is shown that J   £ i if and only if there exist fixed matrices  U, V £

U(n, C)  such that

J(X) = 17X1/,     X e Mn(C),     or    J(X) = UXTV,     X £ M([C).

Observe that £(U, K) is not always a group. Let G = GL (n, C) and K(X) be

the 777th Kronecker power Um(X) of X [14]. Then uR(X) = (tr(X))m. The annihil-

ator map J   which sends each  X - (x ..) into  J (X) = (y ..) where y.."8. X.. andr 77 J '7 y 77 z;   l;

which clearly belongs to  i(2I,  Tv), has no inverse.

In this paper we shall discuss problems (i) and (ii) for a certain class of ra-

tional representations of the multiplicative semigroup of 21 which are in fact com-

ponents of the 777th  Kronecker product representation  Ilm(X).   It is somewhat eas-

ier to state our results in an invariant setting.

Let 77 be a subgroup of the symmetric group of degree ttz  and let  v bea char-

acter of 77 of degree   1.   Let  V be an ra-dimensional vector space over C;  let  U

be any vector space over C   and  <p(f j, • • • , v   )  an m-multilinear function on the

Cartesian product XmV to   U.   Then  </> is said to be symmetric with respect to

H and y if

^o-u)'---' Vo-tm^xio^ivy--* vj

holds for any  a £ H and arbitrary vectors  v. £ V.   A pair (P, v) consisting of a

vector space   P over C  and a fixed  TTZ-rnultilinear function v. X mV —> P,   symme-

tric with respect to  77 and  X,  is a symmetry class of tensors associated with  7/

and  x if
(i)   (rng v) = P,   i.e., the linear closure of the range of v is   P;

(ii)   (universal factorization property) for any vector space  17 over C   and any

777-multilinear function  <p: KmV —» U,   symmetric with respect to  77  and  y,   there

exists a unique linear function h: P —» 17  such that <f> = hv;  i.e., the following

diagram is commutative.

777

X   V->P

>.      "
U

For any linear transformation  X: V —> V the preceding universal factorization prop-

erty permits us to define a unique linear transformation  K(X): P —> P,   the induced

transformation on   P,   which satisfies the following identity.   For arbitrary vectors

vx,...,vm  in   V
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180 MARVIN MARCUS AND JAMES HOLMES LOctober

(2) K(X)vivy, ...,vm) = v(Xvv • • • , XvJ.

By the spanning property of the range of v (i.e., (i) above), (2) immediately implies

that  AC(X) is multiplicative and in fact if 772 <^ 72  and  X € GL  (V), the group of all
linear bijections on   V,  then  A\(X) e GL.,(P)  where N = dim P.    If G  is any sub-

group of GL  (V) and  21 is the linear closure of G  in  Horn (V, V), we are thus in

a position to discuss the structure of X.(G, K),  which for the class of representa-

tions  K(X) just defined depends on the group  AY  and the character )¿.   If we iden-

tify  V with the space of 72-tuples over C,  then of course GL (v) can be identi-

fied with  GL (72, C)  and we can ask for the structure of the semigroup  Íl(G, K)

for the preceding class of representations  A\(X) of  21.

Our main results follow.

Theorem 1.   Let dim V= n,   AY C 5   ,   y a character of degree   1  072  AA.    Let
(P, v) be the symmetry class associated with AY  and y and X —> K(X) be a rep-

resentation of G = GL  (V)  by induced transformations on  P.    If m <^n  or y = 1,

then £(GL (v), K) is a group if and only if AY 4 \e\-

Theorem 2.   Let  dim V = 72,   H = S   ,   m > 1,   y s 1.    Let  G be a subgroup of
GL  (v).   If the algebra  21 has the property that the conjugate transpose X    of

each  X in  21 is again in 21, then £(G, Av)  is a group.

Theorem 3.   A72 Theorem 1, take AY = S   ,   m >  3 and y s 1.   Let S.AGL (v), Av)
771 ■— '*• in

denote the subgroup of JtvGL^V), K) of those J: Horn iV, V) -* Horn ÍV, V) sat-
isfying  3\/„) = if/„.    Then  X  (GL  (v), K) consists precisely of those linear trans-

formations J which have the form

(3) 3(X) = ÇU-1XU,      XeHom(v,V),

(4) J(X) = ¿jU-lXTU,       XeHom(V, V).

Theorem 4.   In Theorem 1, take AY = A     C S     to be the alternating group,

772 >  3,   and y = 1.   The group Jc.(GL  iv), K) consists precisely of those linear

transformations  7 of the form (3) or (4).

Corollary 1.   Let dim V - n,   AY = S   ,   m > 1,   % s 1.   If G is the group of all
nxn permutation matrices iso that  21  is the algebra of generalized doubly sto-

chastic matrices), then X.ÍG, K)  is a group.

Let 7?z  and 72 be positive integers.   Let Q        (resp.  G      ) denote the set of

all strictly increasing (resp. nondecreasing) sequences of length  772  chosen from

the set i 1, 2, • • • , n\.   If fiXy, • ■ ■ , A )  is a polynomial symmetric in the indeter-
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1972] GROUPS OF LINEAR OPERATORS 181

minâtes À., • • • , A    and X € Horn (V, V), we shall denote by /(X) the value of

/ at the eigenvalues of X.    For m >_l,  let h   (À,, • • • , À ) denote the  777th com-

pletely symmetric polynomial

772

aeG t = \

and let k   (A., • • • , A ) denote the symmetric polynomial
?n

k (a.,.-.,x ) = h u,,-..,x )+   y   nu,77!       1' '       n 772        1' '       7! *-- 11        &(Z)
<X€Q [-1

772,7Z

= ¿m(A1,..., XJ+EJX^..., XJ,
where E   (A,, • • • , A ) is the mth elementary symmetric function of A., • • • , A

when  m <^n and 0  if ttz > 72. *

Corollary 2.   Let m >  3.   Any linear transformation J : Horn (V, V) —'

Hom(V, V) satisfying J(/v) = £/,, cW A   (J(X)) = i   (X), X 6 Horn (V, V), ¿as1 j       o y y m 772

¿¿e form (3) or (4).

Corollary 3.   Let 772 >^ 3-   Any linear transformation J : Horn (V, V") —'

Horn (V, V) satisfying J(/,.) = <f /,,  and k   (J(X)) = ¿   (X), X € Horn (V, V), has'J     ° V ^    V m m

the form (3) or (4).

We conjecture that in fact £.(GL   (V), K) = £(GL   (V), Tv) in Theorems 3 and' in n
A.   This amounts to showing that if J: GLn(v) —» GL^ÍV)  and pKCJ(X)) = pK(X)
holds for all  X 6 Horn (V, V),  then J(7V) = £¡v where  <fm = 1.

2.   Partial derivations.  In [6] the standard notion of a derivation on a tensor

algebra [4] is extended to higher order derivations on a general symmetry class

(P, v).   We shall further extend the idea of a derivation induced by a single linear

transformation to partial derivations induced by two linear transformations [ll].

Let  T  and S be in  Hom(V, V)  and let r + s = m.    For co € Q        define*- 7-,777

777

(5) UjT, S) =  <g) X .
2=1

where  X. = T fot i € rng (o and X. = S otherwise.   In other words (5) is the ten-

sor product of the linear transformations  T and S in which   T appears in posi-

tions numbered a>  and S appears elsewhere.   The linear transformation (5) acts

on QsCTV,   which of course is the   symmetry class associated with 77 = \e\.  Define

8rjT,S)=      Z    njT,5).
coeQ

r, 772
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182 MARVIN MARCUS AND JAMES HOLMES [October

In order to simplify subsequent notation we make the following convention.   Let

f: O       x 0        —» R  be any function into a set  R  having an associative addition.

We shall let  S ' f(oj) denote the summation of /(&), y) over all sequences  co €

Q      ,   y e Q such that  rng co n rng y = 0.   Next, define

M(xv...,xm)=   £ x¿     ®.-.® x^,m).
<peS

Then it is easy to show that

(6) Mrs(T, S) = rls\8r(T,S),

where M     (T, 5) denotesr, s

r s

M(T, •■■ ,T, S, ~-.-~S).

It is also a standard fact concerning symmetry classes that if the symmetry oper-

ator associated with  AY  and  \ (a linear transformation on (^TV) is defined by

I"I o-eH

(oivy® ■ ■ • ® vm) ■ izff.i       ® • • ^f^-l^))'  then the pair (P, v),  P = rng rx

C(^)TV,   v(v,, •••,77   )« r (t7,® ■•• ® t;   )is the symmetry class associated

with  AY  and  y*.   It is also easy to show that the transformation  M     (T, S)  satis-

fies M     (T, S)a = oMr   ÍT, S) fot all  a € S   ;  hence any symmetry class is an

invariant subspace of M     (T, S).   But then in view of (6), each symmetry class
is an invariant subspace of 8     (T, S).r r,s

We define the  (r, s) partial derivation associated with  T and S on   (P, v)

to be the restriction of 8r    (T, S) to the invariant subspace   P.    We denote this

by Clr    (T, S).   The reason for calling Qr    (T, S) the  (r, s) partial derivation on
(P, v) is the following formula:

(7) A<(x1T- + x2^)=     £    xlx2Qr,s^T' &'
r+5 =777

In order to verify (7) we compute that

K(xyT + x2S)v(vy, ■ • •, vm) = iX(xjT + x2S)i7j, • • •, (xjT + x2S)v   )

=     H    x\x\ ¿2'"(•••> Tve»(iy"r'> Svy(ï)'---> Tva>(Ty'> Svy(s)>---Ï>
r+s=m

where in the inside summand on the right side of (8) the   T occurs in precisely the

positions numbered co  and the S in positions numbered  y.   On the other hand,
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ilrjT, S)v(vx, ■ - •, vj » 8rs(T, S\(vx ® • • • ® vj = rxSrs(T, S)ivx ® i v  )m

(9)      =Tx Z (-"® T^(i)®---® ^r(i)®---® T^(r)®"-® Svy(s)>

- S »*•••» t^(1 j,..., Si/r(1)>.", rw^y.., 5t7r(s),---).

Replacing (9) in (8) we have (7).
We observe a number of elementary facts concerning the partial derivation

0     (T, S):
(i)   If X  and  Y  are in  Horn iV, V), then

(10) KiX)aTiSiT, S)K(Y) = Clr<siXTY, XSY).

This follows immediately from (7).
(ii)   If  V is a unitary space, then &>XV is also a unitary space.   Thus there

is a natural inner product induced on the symmetry class  (P, v) associated with

77 and y.   Moreover, if T    is the conjugate dual of T € Horn (V, V), then the

conjugate dual of fl     (T, S) with respect to the induced inner product in  (P, v)
is

(11) QrtS(T,S)*-QrtS(T*,s\

(iii)   A,        ,(T, S) is linear in  T and fl      ,  ,(T, S) is linear in S.1,772— 1' 777— 1,1

A somewhat more combinatorially involved description is necessary to item-

ize the eigenvalues of flr   (T, S).   In order to describe a basis for an arbitrary

symmetry class associated with  77  and  x>  we regard the elements of 77  as per-

mutations acting on the functions (i.e., sequences) in T        = Z   m,  where  Z    =° ^ 772,72 77        ' q

il, 2, • ■ • , q\ and for a € 77,  a e T

a((a))(í) = a.((7-1(í)))        ¡«Z

777,72

Let  A denote a system of distinct representatives for the orbits in  T induced
_ 772,72

by 77,   and let A denote the set of all of those elements  a e A for which the char-

acter x is identically    1  on the stabilizer subgroup 77    = \a € 77: o(a) = a}.   Let

«(a) = |77j.   It is routine to verify that if \ex, ■• ■ , ej, is a basis of  V,   then the

decomposable elements viea,xy • ■ ■ , ea(m)), a e A form a basis for  P.    In fact,

¡Mej, • • • , en\ is an orthonormal (hereafter abbreviated o.n.) basis of V, then the

|A|   decomposable elements  i\H\/n(a))ï/2 v(e a(1), •■•, e        )  form an o.n. ba

for  P with respect to the induced inner product in (g)™V defined by
3asis

(*! ® • • • ® *ra. ?! ® ■ ■ • ® yj = n K- y¡>-
2- = l
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If we choose the system of distinct representatives  A  so that each sequence

a € A is lowest in lexicographic order in the orbit in which it lies, then it is easy

to see that 0 C A  and  G        C A,  whatever the group  AY  and character  y may*~m,n m,n c       *

be [7].
If we use the fact that for any pair (T, S) of commuting linear transformations

there exists a common triangular o.n. basis, then it is not difficult to prove the

following [ll]:
(iv)   If ST = T*¡ and the eigenvalues of  T and 5  are A., • • • , A    and

k., • • • , K    respectively, then after a suitable reordering of the  K-'s, the eigen-

values of Q     ÍT, S) ate the numbers

(12) Z' nW)Il «ay (,)>        aeS-
7 = 1 7 = 1

In particular, if r = 1  and s = ttz — 1,  then the eigenvalues of fi, .(T, S) ate

z = l j-t

Some additional combinatorial maneuvering will be required:   if a e T

and   1 < t < 72,   then let 772 (a) denote the number of integers  i in  j 1, 2, • • • , m]

fot which  a(z) = t;  i.e.,  m (a) is the multiplicity of occurrence of t in the range

of a.   More generally, if p, + • ■ • + p   = 72  is a partition of 72  into positive parts,

we define

p

ltio-) =       ¿        772 (a)

where P   = p. + •••+ p ;  i.e.,   r/((a) is the number of times any integer k  satis-

fying   R,_j < k <^ P    occurs in the range of a.   We can write the eigenvalues (13)

of O, m_ AT, S) in a form somewhat more suitable for our subsequent computations.

Suppose that the eigenvalues of  T ate given by

(14)     Aj =..-= Ap   = lx; Kp   .,=•••= A      = l2; •••; A ...,= Ap=/f
1 1 2 r-l+ r

where the numbers /    are distinct.   Suppose, moreover, that fix) is an arbitrary

scalar polynomial and  S = f(T).   In this case the ordering (14) of the eigenvalues

of  T induces a corresponding ordering of the eigenvalues K., •• • , K    of S,   i.e.,

Kj   =• ••= Kp^   =  ky-,  Kp^+y   =•• •= Kp^  = k2,   ■ ■■ ;  Kpr_i+1   =■■ ■= Kn=  kr.

Since the ploynomial f(x) can be chosen arbitrarily, it follows that the numbers

kt may be chosen arbitrarily.   Regarding the k(  as momentarily all different from

zero, we see that the eigenvalues (13) become
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rn m m    Xa¡  .    772 772    A   ...     77       772. (a )

Z  Aa(z)   IT   "a(7) ■   X   «- u  *a(,) = Z T- IT «, ?
i = l )Vi i = l   Ka(t) ; = 1 < = lKa(i)/=l '

(15) 2 A       72        7,7.(a) r ?,      r

z=i Kz y=i z=i *z y=i

r ,, (a\_ [       r        T, .(a)

7 = 1 ;>Z

If we interpret 0    as   1,  then (15) holds even when some of the numbers  k    ate

zero.   We now have the following formula for the trace of fl.     _yiT, S):

r ri   (a)_ 1    _T_    77. (a)

"«1,777-1^= L i^)',v    ny
ifi   1 = 1 ;Vt

(16) r / 77   (a)_l     r       7?.(a)\z^z^C    n*,' )•
z = l        \ ai A ;V< /

3.   Proofs.

Lemma 1.  Ler G  t?e any subgroup of GL  (V) aw«? 3" t" £(G, K).   T6t?7z if A
€ ker J ,

(17) tr0lm_1U, X) = 0,      Xe2I.

Proof.  Let  x.t x    be indeterminates over C.   From (7) we have

m
K(x{A + x2X) =  Z    *l*7~rßr m-M> X)-

r = 0

Thus, if 3(A) = 0  we have
777

tr   Z x\xm-rür m_TiA, X) =» pKixxA + x 2X) = pK(3"UjA + x2X))
r = 0

(18)
= pK(J(x2X)) = pK(x2X) = x2"pK(X).

If we equate coefficients in (18) we obtain

tzÇîr,m-M' X) = °' r=  1, 2,---,  777,

and hence (17) follows.
Proof of Theorem 1.   Assume  77 4 \e\  and let A € ker j .   We show that A =

0.   By (10) we can assume that (17) holds for all  X  and that A  is in Jordan nor-

mal form.

Lemma 2.   If every elementary divisor of A   is linear and A € ker J ,   then

A = 0.
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Proof.  By (iii) of § 2, (17) becomes

(19) IX^I.TTI-I^ZZ'^0' '«".(C).
7 = 1

We first assume that  y ■ 1.   The eigenvalues of Eu ate  A¿ = 1  and  A^ = 0,

7 4 z;   while those of  Ekk  ate Kfe = 1  and #c. = 0,  j 4 k.   Hence

mm 771

™    "ñi,772-i(£^b»*)- z z*«<o n **<,•>= z «r-*
aeä   ( = 1 ;¡¿Z 7 = 1

because the only term which survives in the inner summation in (20) is the term

corresponding to that  a for which  ofl) = a{2) = • • • = 0.(772) = k.   We remark that

this sequence is always in   A  since, as we remarked,   G        C A  when   y = 1.

If i 4 k,    we again compute that

(21) tr Qltm.t(E.., BJ =   T   Z KU) Il **</> =^1-1
ae\  z = l ;*< P£û

777-1

where the inner summation in (21) is over precisely those ß € A for which mk(ß) =

772-1   and 772 (jS) = 1.   Once again, since  G        C A,  such sequences exist and we

let p.,   denote their number.   We assert that p.,   is independent of the pair (i, k);

tot if  P is an arbitrary permutation matrix we have from (10)

7?..=tri2,        .(A-.., E,,) = trO,        APT E ..P, PTE ,,P).clk 1,772—1 ll' kk 1,777—1 77 kk

Obviously if i 4 k,   we can choose  P  so that  I'   E ..P = B,-'.-'   and  P   E ,,P =
E, 1, 1   for any preassigned distinct integers  i , k .   We set p  equal to the com-

mon value of the  p.,.   We next assert that  p < m,   for since  AY 4 \e\, there must

exist at least two sequences  a.4 ß in the same  AY-orbit for which  rn,(a) = m,(ß) =

772 - 1  and 772 .(a) = m .(ß) = 1.   Thus there are at most  772 - 1  elements of  A with

that property.   If we set  X  successively equal to  E, ,,   k = 1, 2, • • • , n,  in (19)

we obtain the following system of linear equations:

maa+ Z Pakk= °>    l -1-n-
k-*i

Since p < 772,   the coefficient matrix in this system is nonsingular and we conclude

that a.. = 0  for  1 <_ z' <_ w.   Thus since the elementary divisors of A   ate linear we

conclude A = 0.

We now consider the case in which  \ 4 I.   If * is an indeterminate, then

since  E .. and  /   + xE, ,   commute we have from (13) thatiz 77 11 v  •"

m
tt*i.-i<*ii.'.+**ii>- z_ z Aa(l) n *«(,->

afA  z = l jVz
(22)

777.(a)z n «7 z -&
o-eZ  ; = 1 2 = 1 *z
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where  A., • • • , A    are again the eigenvalues of E .. and k, , • • • , k    ate the eigen-

values of 7   + xEx,.   In case  i = 1,  the right side of (22) becomes

/«M V- 7     w ,77Z,(<X)-1(23) Z »«jiaKl + x)   '
aeà

which we denote by  </>.(*).   If  i > 1,   we see that the value of (22) (which is of

course the same for i = 2, 3, • • • , n) is

(24) <p2ix)=   Z m2(a)(l + xf1     .

With  X = /   + xEn   in (19) we have from (23) and (24) that

ayy4>yix) + <k2^  T, a ii
i^l

(25) 777,(cx)_l I   n .   .   >• 772, (a)\
= «u      £«,,(0X1  +  *)      ' +    (   Z  fl22      (    L    »»Z^1   +   ̂  )=°-

aeï \7=2       / \ae5 /

We observe that
v-       t  \

(26) '     at5    '

is independent of /'  and we denote this common value by  q.   A proof of this can

be based on the fact that the eigenvalues of  K(X)  are

J» JL.    mXa) r
n xa(j)=n *j ' .  aeK'
7-1 7=1

where x,, ■ •• , x     ate the eigenvalues of X.    Thus
1 72 °

"       772 Xa) «       9 .
det(x(x))= n n y ■ ny

0.6Ä , = 1 ; = 1

Since  det (K(PXP)) = det(K(X)) for any permutation matrix   P,   we conclude that

2       9 ■       JL     q ■ny = nyr-  °esn
7=1 7=1

And since x., • • • , x    are arbitrary,  qx = q2~'''~1  '   ^or example, it is easy

to compute that

-«*-«.? -i(a)=t:0;
and since  X(X) is the familiar mth compound martix  C   (X) we see that

7?7 (n~X)

det Cm(X)= f]  x^ídetíX))7""1 ,
= l
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and we have as a corollary to our computations the well-known Sylvester-Franke

theorem [l]. For x m 0, (25) becomes q tr A = 0 and hence tr A = 0; we there-

fore rewrite (25) as

(27) (cpy(x)-cp2(x))ayy=0.

Clearly,

deg <t3j(x) = max 772 j(a) - 1.
aeA

Now y 4 1,  and thus there exists ß € A and  I < ;' < n  such that

/ £ rng ß,       7?2,(/8) = max my(o),
af A

fot otherwise max     -772,(a) = ttz  and  a= (l, 1, • • • , l) e" A.   But the stabilizer of
<xeA   1

this  a is obviously all of AY and it would follow that ^■a-eH y(o") 4 0   so that

£     „ y(ff) = IAA]-.   This can only happen if  y_ « 1,   since  y is a character of de-

gree   1.   Hence

deg ç6,(x) = my(ß) - 1     and    deg c52(x) = my(ß),

so that <f>.(x) - (f) (x) 4 0. From (27) it follows that a., (and hence any a..) is

0. Thus A = 0, completing the proof of Lemma 2. We can now remove the con-

dition that A  has linear elementary divisors.

Lemma 3.  If  A e ker J,   z-ie72 A = 0.

Proof.   From (11) we know that

Ûi>w_1U.'x)*-Ûlf)1,_1(A*.X%

Since (17) holds for all  X,   we have  tr fi.     _ A.A  , X) = 0  and hence
tr fî, ,(A + A  , X) = 0.   Now A + A     is normal and hence has linear elemen-1 ,777 — 1 - '—

tary divisors.   Applying Lemma 2, we conclude that A +_ A    =0  and therefore
A = 0.

We have proved that if H 4 \e] and ttz < 72 or  y = 1,  then any J e

J-(GLn(V), Av) is nonsingular; since we have observed that this set obviously

forms a semigroup, it is in fact a group.   Conversely, if AA = [ei, then the symmetry

class  P is just the  772th tensor space (&™V and  Av(X) = W(X).   As we saw in

§ 1,  1(G, K) is not a group.   This completes the proof of Theorem 1.

Proof of Theorem 2.  We observe that if A e 21 and f(x)  is any scalar poly-

nomial, then f(A) e 2L   The eigenvalues of fij        X(A, f(A)) ate given by (13)
where  Aj, • • •, A^  are the eigenvalues of A   and  k. , •••,><„ are the eigenvalues

of f(A).   Moreover, it is clear that the values of f(x) may be arbitrarily assigned
at the distinct eigenvalues of A.
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Since  77 = S     and  y s 1,  the symmetry class   P is precisely the  TTZth com-

pletely symmetric space, usually denoted by   V        [A],  and the sequence set  A

is precisely  G       .   Once again the problem is to show that if J(A) = 0,  then

A = 0.
We have from Lemma 1 and formula (16) that

(28,        i',(x*M*:,w~lmïn-°
<=i    Wa ,vz /

in which the distinct eigenvalues of A   are described in (14) and the numbers

k  , • • • , k    may be chosen arbitrarily.   The first part of the proof is devoted to

showing that all the eigenvalues of A  ate equal (i.e., that  r = 1).   Assume then

that  r > 1.   For a fixed  t,   set k{= I  and k.= 0  fot j 4 t; observe that the co-

efficient of  /    in (28) is

_£. '--C'*:-1).
a€A,   7}   (a.)=772

where the indicated binomial coefficient is just a count of the total number of

sequences  a in  G such that  rng a C \P,    ,+ 1, • ■ • , P J.   The coefficient of
1 772,72 ° t — 1 t

ls,   s 4 t,  in (28) is

(29) aeS, 17   (a)«l, 77 f(a)=777-1

which is a count of the total number of nondecreasing sequences a of length 772

which have the property that rng <x contains precisely 1 integer in the interval

[ps_j + 1, Ps]  and  777-I  integers in  \Pt_x + 1, P,]•   Since there are precisely

(30) (pt + m-2).p

such sequences, the value of (29) is (30).   Thus (28) for the choice k  « 1,  k. = 0

for j 4 t is
(p,+  77Z -  1\ r /ft    +777_2\

77Z — 1
S*t

or

(3D ltiPt+ m~ 1)+ ¿ZA

Consider the system of homogeneous linear equations for I., • • • , I   obtained by

setting  t = 1, 2, ■ • • , r in (31).   By setting  i.«'"«if> 1  in (28) we obtain the
following additional condition on the  I's:
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Now by (26)
P Pt t

Z ^t{a) = Z     Z   mjia> -    Z    *,• - Pt ' i-
ae£ aeA/=P(_1+l ;»#>       +1

Thus (32) becomes

(33) Z lsPs = °-
s = l

Combining the system (31) with (33) we have  (772 - l)Z  = 0,  t = 1, • • • , r,   and thus
1=0,  t = 1, • • • , r,   contradicting the fact that the  /,, • • • , /    are distinct.   Hence

7=1.   In other words, the condition

(34) ttÜy¡m_y(A, X)= 0,      Xe2I,

implies that all the eigenvalues of A   ate equal.   If we set  X = A    in (34) we then

see that

777 "

« "1,777-1^'0= Z ZA*(z)= Z Z-/a)Az
ae5 i = l ae7i t-\

n
= Z q ■ Xt = 1 tr A = °-

z=l

Thus we conclude that if tr Í2, AA, X) = 0,  X € 21,  then all the eigenvalues of
A   ate zero.   By repeating precisely the same argument as we gave in Lemma 3, we

can conclude that the eigenvalues of both of the normal matrices A +_ A     ate zero

and hence A = 0.   This completes the proof of Theorem 2.

The proof of Corollary 1 is now obvious, since the conjugate transpose of a

generalized doubly stochastic matrix is a matrix of the same kind.

Proof of Theorem 3.  We are assuming that  J: Hom(V, V) —> Horn (V, V) sat-

isfies

(35) pK(CJ(X)) = pK(X),       X £ Hom(V, V).

Since pA¿;X) = ¿;mpAX) it is clear that we may assume  J (/  ) = A .    From (35)

we have

tr KCJ(ln + xX)) = pK(7iln + xX)) = pKiln + xX) = tr K(ln + xX).

From (7) with  T = / ,  S = X,  x, = 1, x, = x we have77 1 2
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and thus

(36)

r/trû (7 , J(X)) = Y xT tr fl (7 , X)t—i m-T,r    7i' t—* m-r,r    n
r=0 r=0

^m-7A-^=^m.r;'„,^

Let K., • • • , K    be the eigenvalues of X.   Then as we know from (12), the eigen-

values of fl (/ , X) are
772—7,7      72

i    r

(37) Z nVy(/)'     aeÄ>
7 = 1

where we recall that the prime indicates that the summation is over all  y £ Q

But the expression (37) is precisely the  rth elementary symmetric function of

Ka(l)''"'%)'   Er(Ka(l)' •••'*a(772))-   ThuS

(38) fl (7 , X) =      Y     E (/<„,,,, • • •, k„,   A,772 -r,rv 72' £—• rv   a(l)' '     0.(772)"
aeC

777 ,72

and an elementary induction argument shows that the right-hand side of (38) is

precisely

(39)
/77Z+   77 -   1\,    ,
I )h\K.,' ' ' '   KJ<
\    m -r    /   r    l '    72 '

where  h    denotes the  rth completely symmetric polynomial in the k's.    From (36)

and (39) it follows that

h tÍk[,' • • , k) = hTÍKv • ■ • , Kn), r = 1, 2, • • •, 777,

where the  k .,•••, k     ate the eigenvalues of J(X).   But by Wronski's relations

[13] we know that the completely symmetric polynomials  h., • • •, h     form an

integral polynomial basis for the space of all integral homogeneous symmetric

polynomials of degree 772.   Thus it follows that

ErU',,.. •, z<^) = EtÍkv • • -, Kn),       r = 1, 2, •• •, 777.

In other words, we have proved that the  rth elementary symmetric function of the

eigenvalues of both  X  and  J (X) are equal,  r = 1, 2, • • • , m;  and we are in a

position to apply a theorem of Marcus and Purves [lO] (recently extended by

Beasley [2]) which states that any such transformation must have one of the two

forms indicated in (3) or (A).   This completes the proof of Theorem 3-

The proof of Corollary 2 is an immediate consequence of Theorem 3.   For,

the eigenvalues of  K(X) when  77 = 5   ,   y = 1,   P = V(m)  are the  (" + m ~  l)
o 771      /x m
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homogeneous products

and hence

"     m da)UV     '        aeG
2 = 1

777,77'

pKix)=ttKix)= z ñ\í(a)=AJv--->v-
aeG (=1

772 ,77

Proof of Theorem 4.  Once again we can assume that Sil ) = A .   Our first task

is to determine the structure of the  A  set for AY = A      and  y = 1.   There are two
777 A.

cases to consider:   m < n and  ttz > 72.   Let a f T       .If the integers in  rng <y- 777,72 b &

are distinct, then let  a be the sequence such that rng a- rng tu  and  a(l) < a(2) <

• • • < aim),  and let  ß be the sequence such that rng ß = rng eu  and /3(l) < /3(2) <

• • • < ß(m - 2) < ß(m) < ß(m - l). It is clear that a and ß lie in distinct A -or-

bits and that any other sequence y e V tot which rng y = rng co is in the same

A   -orbit with either a. or  ß.   Thus each such sequence co e V gives rise to771 _ * n 777,77    &

two elements in  A,  namely  a. and ß.   On the other hand, if tu e V satisfies' ^ ' 777.77

mico) >_ 2  for some   1 <_ t < n,  then it is obvious that there exists a sequence  a.

in  G in the same A   -orbit with  w.   Thus in the case  m < n,   the system of
772.72 772 _ — 7

distinct representatives may be chosen to be  A = G        u Q       ,   where Q'       con-
* J m,n       ^-m,n7 ^ 772,77

sists of precisely those sequences  ß for which ß(l) < ß(2) < • • • < ß(m — 2) <

ß(m) < ß(m - l).   In the case that m > n,   then it is clear that any sequence u> e

A lies in the same A   -orbit with a sequence  aeG       ,   so that we can choose
_ 772 « 777,72'

A = G       .In order to deal with both cases at once we will let Q        = 0  if
77,-77 *~ m    r>m,n

772 > 72

Precisely as in (36) we see that if J e Xj(GL  (v), Av), then

(40) tr 0 (/ , J(X)) = tr ÎÎ (A , X),        X e M (C).v^"7 777—7,7     72' 772 — 7,7     Tí' ' 77

The eigenvalues of fi (/ , X)  are precisely the numbers° m—r,rn r J

E(Ka(1),..., Ka(m)),       aeÄ,

and thus

trii (I , X) =   Y  E (k„,,„•••, Knf   ,)772 — 7,7     72 ■ L^, T      «(I) 0.(772)'
ae~K

= fn+m-1W1,...,/<)+{'"'-^E(K1,...,/c).
\        772   —   7        /      7        1 72 \m   —   T)       7X      1 ' ' 72
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In case m > n,   the elementary symmetric function does not appear in (41) and it

is clear from (40) that

i(J(X))= (n + m~ y1 trflm_r riln, 'SiX))r \     777 - r      ) m-r,r   n

=    /77+77Z-1W   tr0 t¡       x)
\     m — r     ) m-r,r    n'

= hT(X),        r=l,2,-..,m;X £ MniC).

Hence by Corollary 2,  J   has the required form.   On the other hand, if  3 <_ rn <_ n,

then using Wronski's relations we have

trflm_ ltliln. X) = aEx(X),

tr fl      , ,(/. X) = bhAX) + cEAX)

(42)

= b(E2x(X)-E2(X)) + cE2(X)

= (c-b)E2(X) + bE2(X),

trfl      , ,(7 , X) = dh,(X) + eEAX)
771 "~ J t D       71 J J

= d(E\(X) - 2EX(X)E2(X) + F3(X)) + eE^X)

= (d+ e)EA\X) - 2dEx(X)E2(X) + dE\(X),

where  a = (m + »   "  l) + (» ~  \),  b = (" + n 7   l), c = ("   "  l), d = (" + m 7  l)
772    —      1 772—1 777    —    2 772—2 777—3

and  e = (*  ~  ').   Observe that d + e *> 0,  c - b 4 0,  a 4 0;   thus the relations (42)

allow us to express  E,(X)  as a polynomial in  tr fl   _     (/ , X),  r = 1, 2, 3.     It

follows from (40), then, that  F,(3\X)) = E  (X), X £ M^(C)  and hence we can con-

clude as before that J   has the required form.   This completes the proof of The-

orem 4.

By similar arguments Corollary 3 follows from Theorem 4.   For, the eigen-

values of  X(X) when  77 = A   ,  v = 1  are the numbers
777 ^

"      777,(a)
[TA   '    ,       a £ G       m O'     ,11 ' 772 ,72   ^   Ä 772, n'
Z = l

and hence

PK(X) - tr K(X) -       Z      f[X^\      Z       ï\\<{a)
aeG z=l aeQ (=1

777,72 772,72
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