
Mathematical Geology, Vol. 37, No. 7, October 2005 ( C© 2005)
DOI: 10.1007/s11004-005-7381-9

Groups of Parts and Their Balances
in Compositional Data Analysis1

J. J. Egozcue2 and V. Pawlowsky-Glahn3

Amalgamation of parts of a composition has been extensively used as a technique of analysis to
achieve reduced dimension, as was discussed during the CoDaWork’03 meeting (Girona, Spain,
2003). It was shown to be a non-linear operation in the simplex that does not preserve distances
under perturbation. The discussion motivated the introduction in the present paper of concepts such
as group of parts, balance between groups, and sequential binary partition, which are intended to
provide tools of compositional data analysis for dimension reduction. Key concepts underlying this
development are the established tools of subcomposition, coordinates in an orthogonal basis of the
simplex, balancing element and, in general, the Aitchison geometry in the simplex. Main new results
are: a method to analyze grouped parts of a compositional vector through the adequate coordinates
in an ad hoc orthonormal basis; and the study of balances of groups of parts (inter-group analysis)
as an orthogonal projection similar to that used in standard subcompositional analysis (intra-group
analysis). A simulated example compares results when testing equal centers of two populations using
amalgamated parts and balances; it shows that, in certain circumstances, results from both analysis
can disagree.

KEY WORDS: simplex, Euclidean geometry, log-ratio analysis, orthogonal projection, subcompo-
sition, amalgamation.

INTRODUCTION

By convention, n-part compositional data are vectors of n strictly positive real
components,[x1, x2, . . . , xn], such that x1 + x2 + · · · + xn = κ > 0. κ is generally
100 (percentages) or 1 (proportions). Compositional data analysis, as introduced
by Aitchison (1982, 2003a), is based on ratios of parts, and this is the essence
of a deeper understanding of the nature of these type of data. A mathematical
justification for the central role of ratios can be found in Barceló-Vidal (2000)
and Barceló-Vidal, Martı́n-Fernández, and Pawlowsky-Glahn (2001). Once the
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relevance of ratios is accepted, the Aitchison geometry of the simplex is a natural
framework for statistical analysis of compositional data (Pawlowsky-Glahn and
Egozcue, 2001). It implies, e.g. that statistical analysis of a single part is mean-
ingless, and that the value of the closure constant κ is irrelevant, as already stated
in Aitchison (1986).

Aitchison geometry in the simplex is based on specific operations such as
perturbation and powering—which take the place of the ordinary sum of vectors
and multiplication by a real constant—and definitions of Aitchison distance, norm
and inner product. They induce a finite-dimensional Hilbert-space structure in
the simplex. The appendix gives a summary of the essential definitions, as well
as of the basic properties of the Aitchison geometry of the simplex. For further
details see Aitchison (2003a), Aitchison and others (2002), Billheimer, Guttorp,
and Fagan (2001), Egozcue and others (2003), and Pawlowsky-Glahn and Egozcue
(2001).

Statistical analysis of compositional data occasionally requires an interpreta-
tion of results in terms of ratios and log-ratios, which are more difficult to interpret
than real vectors in standard multivariate analysis. In order to simplify the analy-
sis, parts can be ordered in such a way that they can be grouped into two or more
subsets, which are interpretable in some way. For instance, chemical compositions
may include a group of anions and another group of cations; rocks may be de-
scribed by proportions of minerals grouped into silicates and other components or,
alternatively, grouped into trace-elements and major-elements; in political survey-
ing, parties may be grouped as left-wing, right-wing and other parties; in analysis
of abundance of animal species, one may consider mammals and other species
and, afterwards, subdivide mammals into carnivores and herbivores. In these and
other similar situations, the analyst may be interested in studying two features of
the sample compositions: (a) the relationship or balance between these groups
of parts or inter-group analysis; and (b) the behavior of parts within a group or
intra-group analysis.

Groups of parts can be viewed either as a subcomposition or as a group inside
the whole composition. Subcompositional analysis is intended to deal with parts
within the group and relations with respect to other groups or parts are obviated.
The concept of subcomposition was established right from the beginning of com-
positional data analysis. To study such relationships between subcompositions,
Aitchison introduced the concept of amalgamation or addition of several parts of
a composition and the concept of partition, which is a set of mutually exclusive
and exhaustive subcompositions together with the amalgamations of each one of
them (Aitchison, 2003a, p. 36–42). Once the partition is obtained, the behavior
of the ratios of amalgamations can be studied. At the CoDaWork’03 meeting
(Girona, Spain, 2003) several contributors, including the present authors, used
amalgamation as a way of reducing the dimension of their respective problems.
Subsequent discussion at the meeting pointed out that the non-linear character
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of amalgamation with respect to the Aitchison geometry in the simplex led to
problems and prompted the present paper.

Amalgamation of parts inside each group or subcomposition may be justified
when the amalgamation has a clear, well-defined sense and interest is centered in
studying the variability of, let us say, (x1 + · · · + xr )/(xr+1 + · · · + xn), or its log-
arithm. Now, when the analysis of amalgamated parts is performed simultaneously
with some compositional analysis of the original—non-amalgamated—parts, one
would expect both analyses to be compatible and their interpretation to be coher-
ent. Unfortunately, these two kinds of analysis (original parts and amalgamated
parts) can be—and frequently are—incompatible.

For instance, let be xj = [xj1, xj2, xj3], j = 1, 2, . . . , J , a sample of a three-
part random composition. The center of this sample is the geometric mean

cen(x) = C




 J∏

j=1

xj1


1/J

,


 J∏

j=1

xj2


1/J

,


 J∏

j=1

xj3


1/J


 ,

where C[·] stands for closure to κ . Let it be amalgamated into two parts,

C




 J∏

j=1

xj1


1/J

+

 J∏

j=1

xj2


1/J

,


 J∏

j=1

xj3


1/J


 . (1)

One would expect that the same center would be obtained by amalgamating
the sample, i.e. C[xj1 + xj2, xj3], j = 1, 2, . . . , J , and then, finding the center.
However, the two-part center obtained is

C




 J∏

j=1

(xj1 + xj2)


1/J

,


 J∏

j=1

xj3


1/J


 ,

which obviously differs from Equation (1). This disappointing behavior of amal-
gamation with respect to the center of the sample is only a partial aspect of
a more general situation: amalgamation does not preserve Aitchison distances
in the simplex and distances of amalgamated compositions have a complicated,
non-monotonic behavior with respect to original distances.

For illustration, we consider three-part compositions and we select as a refer-
ence composition the neutral composition n = [1/3, 1/3, 1/3]. Figure 1(a) shows
the Aitchison distance from each composition, x = [x1, x2, x3], to the reference.
Compositions are represented in the plane of two orthogonal coordinates (Egozcue
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Figure 1. (a) Aitchison distance in S3, from [1/3, 1/3, 1/3] to compositions [x1, x2, x3] whose
coordinates are (x∗

1 , x∗
2 ). It is a conic surface. (b) Aitchison distance in S2, from [2/3, 1/3] to [x1 +

x2, x3]. The surface is not monotonic.

and others, 2003),

x∗
1 = 1√

2
ln

x1

x2
, x∗

2 = 1√
6

ln
x1x2

x2
3

.

In this representation, the Aitchison distance da(x, n) is the ordinary Euclidean
distance; it appears as an inverted, circular cone, which has its vertex at (x∗

1 , x∗
2 ) =

(0, 0). Amalgamation of parts x1 and x2 of each composition x leads to the two-part
composition [x1 + x2, x3]. The Aitchison distance from the amalgamated compo-
sition to the amalgamated reference [2/3, 1/3] is shown in Figure 1(b). One would
expect that, when following lines in the coordinate plane for which the distance
in S3 increases, increasing, or at least non-decreasing, distances for amalgamated
compositions would be obtained. However, there are lines in that plane for which
this does not hold. For instance, Figure 2 represents two cross-sections of surfaces
of Figure 1(a) and (b) for constant coordinate x∗

2 . One corresponds to x∗
2 = +1, the

other to x∗
2 = −1. Distances in the three-part simplex (full-line parabola) are equal

for both cross-sections and are always larger than distances obtained for amal-
gamated compositions. For x∗

2 = +1 (circles) the expected behavior is obtained:
when distance in the three-part simplex increases, so does distance of amalga-
mated compositions. But for x∗

2 = −1 (triangles) the distance of amalgamated
compositions is not monotonic. This behavior equally corresponds to constant x∗

1 ,
i.e. constant ratio x1/x2, which means there is no influence of the subcomposition
constituted by parts 1 and 2.

The change of monotony of distances when amalgamating parts affects mul-
tivariate analysis performed on the amalgamated sample. For instance, the result
of a cluster analysis based on Aitchison distances might be completely different
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Figure 2. Aitchison distance in S3, from [1/3, 1/3, 1/3] to composi-
tions [x1, x2, x3] whose coordinates are x∗

1 in the horizontal axis and
x∗

2 = ±1 (full line), and Aitchison distance in S2, from [2/3, 1/3] to
[x1 + x2, x3] for x∗

2 = +1 (circles) and for x∗
2 = −1 (triangles).

when using original parts or amalgamated parts. Also, measures of dispersion are
strongly affected, and Aitchison distances between sample points are not invari-
ant even for such simple operations as centering and standardization to unit total
variance in the simplex.

An example of non-invariant behavior under perturbation is shown in Table 1.
Two three-part compositions at an Aitchison distance of 1.035 are shown. After
perturbation by [0.2, 0.7, 0.1] they maintain, as expected, the distance. However,
when amalgamation into two parts is carried out, the distance in the two-part
simplex is different before and after perturbation.

Despite this undesirable behavior, amalgamation techniques are very frequent
because they are an easy and apparently intuitive way of grouping parts, especially
to obtain a reduction of dimensionality of compositional data. Therefore, when
interest lies in analyzing both the whole composition and lower-dimensional rep-
resentations, an alternative and coherent way of analyzing grouped parts inside a
composition is needed. The main requirement of such an alternative technique is

Table 1. Effect of Perturbation by [0.2, 0.7, 0.1] on Aitchison Distances, da , Before (left) and
After (right) Amalgamation

x1 x2 x3 da in S3 x1 + x2 x3 da in S2

Unperturbed 0.1 0.8 0.1 0.9 0.1
0.3 0.6 0.1 1.035 0.9 0.1 0.000

Perturbed 0.034 0.949 0.017 0.983 0.017
0.123 0.857 0.020 1.035 0.980 0.020 0.134
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that it should, if possible, be easily interpretable and that it should be compatible
with the Aitchison geometry of the simplex, e.g. invariance of distances under
perturbation (before and after grouping parts). This is our goal.

The next section introduces the concept of orthonormal basis of a sequential
binary partition of a composition and illustrates the procedure with some exam-
ples. Linked to this orthonormal basis, the concept of balance between groups of
parts is introduced and connected to the subcomposition of a group of parts. A
separate section is devoted to study formally some properties of projections, bases,
subspaces and balances necessary for a detailed understanding of balances and
subcompositions. Finally, the last section describes how to analyze grouped parts
in practice, and provides guides to the use of these new techniques. An example
on testing centers of two populations for equality compares techniques based on
amalgamations and those based on balances.

ORTHONORMAL BASIS OF A SEQUENTIAL BINARY PARTITION

Sequential Binary Partitions

As mentioned in the “Introduction” section, compositional vectors of n parts
are frequently partitioned into groups of parts presenting a certain affinity. Any
grouping of parts can be viewed as an intermediate state of a sequential binary
partition. Initially, we have a compositional vector [x1, x2, . . . , xn] in the simplex
of n parts, Sn. A first-order binary partition consists of making two groups of
parts. A second-order partition is obtained by subdividing one of the first-order
groups into two groups; the procedure is iterated until all groups contain only a
single part. The number of binary divisions of a group to attain the end of the
process is n − 1. We take into account the order in which the binary partitions
have been done and, therefore, call them sequential binary partitions. We point
out that the concept of partition used by Aitchison (2003a, p. 40), although similar,
differs from the present one. Here we use partition in the usual sense: separation
of a whole—the parts of a composition—into non-overlapping sets or groups of
parts. Aitchison attached the amalgamations of each group of parts to this ordinary
sense partition of a vector of parts.

In order to denote a sequential binary partition, we separate the grouped
parts by one or more vertical bars. The number of separators between contiguous
parts points out the order in which the separation was done: if ν is the number of
vertical bars between two parts, the sequential order of the separation is n − ν;
the larger ν, the more important the separation and the lower the sequential order.
For instance, [x1||x2|x3] means that we first divide [x1|x2, x3] and the first-order
partition is made of two groups. Then, we subdivide group {x2, x3} into two
single-part groups. Then, the second-order partition is made of three groups of a
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Table 2. Sequential Binary Partition of a Seven-Part Composition

Order

0 x1 , x2 , x3 , x4 , x5 , x6 , x7

1 x1 , x2 , x3 | x4 , x5 , x6 , x7

2 x1 , x2 , x3 || x4 , x5 | x6 , x7

3 x1 | x2 , x3 ||| x4 , x5 || x6 , x7

4 x1 || x2 , x3 |||| x4 , x5 ||| x6 | x7

5 x1 ||| x2 | x3 ||||| x4 , x5 |||| x6 || x7

6 x1 |||| x2 || x3 |||||| x4 | x5 ||||| x6 ||| x7

single part. The most important division is the first one, which separates part 1
from the other two parts. The sequential order of the separation is then 3 − 1 = 2.

The following example is used to illustrate the ideas in this section. Let n = 7
be the total number of parts and assume they have been ordered conveniently. We
start with a partition into two sets, e.g. [x1, x2, x3|x4, x5, x6, x7]. We now proceed to
again subdivide the vector of parts by adding a new separator. The original partition
is now denoted by two vertical bars, recalling that it was the first separation in the
sequential binary partition. An example of a complete sequential binary partition
is shown in Table 2.

As the order of parts in compositional data analysis is arbitrary, at least in the
mathematical sense, any grouping of parts into � + 1 sets of parts can be obtained
as an �-order partition. In practice, this process requires an intuitive ordering of
parts so that the sequential partitions maintain the affinity between contiguous
parts and inside the desired groups. Also, in practice, interest may be centered on
a limited number of groups, and they can be attained as a partition at a sequential
order less than n − 1. In those cases, for computational purposes, the sequential
binary partition should be arbitrarily completed up to order n − 1. Note that the
last row in Table 2 , corresponding to order 6, contains all the coded information
necessary to reconstruct the whole process of the sequence of binary partitions.

Orthonormal Basis of a Partition

The idea underlying the next development is to associate an orthonormal
basis of the n-part simplex, Sn, with a sequential binary partition. The corre-
sponding coordinates are the balances between the groups of parts separated in
each step of a binary partition, and they allow us both subcompositional anal-
ysis, i.e. intra-group ratios, and grouped parts analysis, i.e. inter-group ratios.
The main results on orthonormal bases in the simplex and how they are asso-
ciated with a single partition were developed by Egozcue and others (2003).
Coordinates of a composition with respect to a given orthonormal basis were
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called ilr-coordinates by those authors, who noted the isometric character of
such a representation by coordinates. Here we drop the qualifier ilr because the
isometric character of the representation holds whenever the reference basis is
orthonormal.

We associate one unit norm compositional vector with each order of a binary
partition. The n − 1 unitary compositional vectors so associated with the whole
sequential binary partition constitute an orthonormal basis of Sn. Assume that, in
the �-order binary partition, we separate parts xk+1, xk+2, . . . , xk+r (r parts) from
xk+r+1, xk+r+2, . . . , xk+r+s (s parts). Furthermore, assume the remaining parts, if
any, were separated in previous sequential order partitions. They are represented
by x1, . . . , xk (k parts), respectively xk+r+s+1, . . . , xn (j parts). This means that
n = k + r + s + j , � ≤ n − r − s + 1 and that k and j can be null. The unitary
vector associated with the �-order binary partition, called the balancing element,
is defined as

e� = C


exp


0, 0, . . . , 0︸ ︷︷ ︸

k elements

, a, a, . . . , a︸ ︷︷ ︸
r elements

, b, b, . . . , b︸ ︷︷ ︸
s elements

, 0, 0, . . . , 0︸ ︷︷ ︸
j elements





 , (2)

where

a =
√

s√
r(r + s)

and b = −√
r√

s(r + s)
.

The unit norm and orthogonality of these vectors is easily checked using Equa-
tion (A.3) (see the appendix).

In order to build up the basis associated with the sequential binary partition
of Table 2, we proceed from order 1 to 6. For each order, the balancing element
of the last partition is included in the basis. In our example, six basis elements are
built up in this manner, leading to the following associated orthonormal basis:

e1 = C
[

exp
( √

4√
3·7 ,

√
4√

3·7 ,
√

4√
3·7 , −√

3√
4·7 , −√

3√
4·7 , −√

3√
4·7 , −√

3√
4·7

)]
e2 = C

[
exp

(
0, 0, 0,

√
2√

2·4 ,
√

2√
2·4 , −√

2√
2·4 , −√

2√
2·4

)]
e3 = C

[
exp

( √
2√

1·3 , −1√
2·3 , −1√

2·3 , 0, 0, 0, 0
)]

e4 = C
[

exp
(

0, 0, 0, 0, 0, 1√
1·2 , −1√

1·2

)]
e5 = C

[
exp

(
0, 1√

1·2 , −1√
1·2 , 0, 0, 0, 0

)]
e6 = C

[
exp

(
0, 0, 0, 1√

1·2 , −1√
1·2 , 0, 0

)]

(3)
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The values inside the square roots (previous equation) have not been simplified
in order to facilitate the identification of the terms in Equation (2). For each
sequential binary partition, (2) uniquely defines an associated orthonormal basis.
However, the signs of the parts can be changed to obtain a basis which differs
from the former in orientation. Also, different sequential binary partitions can be
associated with orthogonal bases which only differ in the order of the elements
or in some permutation of parts. In the example of Table 1, the three last binary
partitions can be permuted and the associated orthonormal basis remains the same,
except for the fact that elements e4, e5, e6 are also permuted accordingly.

Projections of an arbitrary composition x ∈ Sn on unitary compositional
vectors like those in Equation (2) are obtained from the inner products, x∗

� =
〈x, e�〉a (Egozcue and others, 2003). They are the coordinates of x with respect to
the basis elements e�, � = 1, 2, . . . , n − 1, and they are the log-ratios

x∗
� =

√
rs

r + s
ln

[
g(xk+1, . . . , xk+r )

g(xk+r+1, . . . , xk+r+s)

]

= ln

[
(xk+1 · · · xk+r )

√
s/(r(r+s))

(xk+r+1 · · · xk+r+s)
√

r/(s(r+s))

]
, (4)

where g(·) denotes geometric mean of parts in the argument.
The form of log-ratios in (4) intuitively shows why x∗

� has been called balance
between the groups of parts xk+1, xk+2, . . . , xk+r and xk+r+1, xk+r+2, . . . , xk+r+s ,
and why e� has been called the balancing element for the two sets of parts (Egozcue
and others, 2003).

Equation (5) shows the coordinates of x corresponding to the basis (3). Note
that powers in the log-ratios are equal whenever the number of parts in each
balanced group (numerator and denominator) are equal. Conversely, a different
number of parts implies re-scaling powers of the ratio.

x∗
1 = ln

[
(x1x2x3)

√
4/21

(x4x5x6x7)
√

3/28

]
, x∗

2 = ln

[
(x4x5)1/2

(x6x7)1/2

]
,

x∗
3 = ln

[
x

√
2/3

1

(x2x3)
√

1/6

]
, x∗

4 = ln

[
x

√
1/2

6

x
√

1/2
7

]
, (5)

x∗
5 = ln

[
x

√
1/2

2

x
√

1/2
3

]
, x∗

6 = ln

[
x

√
1/2

4

x
√

1/2
5

]
.
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Intra-Group Analysis: Subcompositions

An orthonormal basis of a sequential binary partition can be used to de-
fine an orthonormal sub-basis associated with a group of parts. Let ei , i =
1, 2, . . . , n − 1, be the orthonormal basis of a sequential binary partition and
let xk+1, xk+2, . . . , xk+r be a group of parts obtained in the �-th sequential order of
the binary partition. We focus on the r-part subcomposition, or R-subcomposition,
defined by the subscripts in R = {k + 1, k + 2, . . . , k + r} (see Equation (A.1) in
the appendix for details),

sub(x; R) = C[xk+1, xk+2, . . . , xk+r ].

The basis element ej is in the sub-basis of the R-group if sub(ej ; R) �= nr , where
nr = [1/r, 1/r, . . . , 1/r] is the neutral element in Sr . Basis elements such that
sub(ej ; R) = nr are not associated with the R-group because they do not inform
about its internal structure.

The basis elements obtained for a sequential order less than or equal to
� are not associated with the R-group. Only r − 1 of the remaining elements
e�+1, . . . , en−1 are associated with the R-group: those which parts with subscripts
k + 1, k + 1, . . . , k + r are not equal.

Continuing with the example, let us inquire about the sub-basis associated
with the group defined by R = {4, 5, 6, 7} in Table 2. This group of parts is
obtained at the first-order partition and, then, e1 in (3) is not associated with the
R-group. Among the higher order basis elements only three are associated with
the R-group: e2, e4, and e6. The other two, e3 and e5, are associated with group
{1, 2, 3}.

The sub-basis of the R-group generates a subspace of r − 1 dimensions
Sn(R) ⊂ Sn. The main property of such a subspace is that orthogonal projections
of compositions fromSn into it do not affect the R-subcomposition. In other words,
ratios of parts in the R-subcomposition can be studied directly in Sn(R), after a
projection that reduces the dimension from n − 1 to r − 1. This is coherent with
an analogous assertion by Aitchison (1986) when introducing subcompositional
analysis, although at that moment the algebraic–geometric structure of the simplex
was not yet completely defined.

There are two possible ways to study the R-subcomposition of a data set:
either to extract the R-subcomposition from raw data and then to carry out the
analysis or, alternatively, to first obtain the coordinates (4) with respect to the
basis (2) and then to extract those coordinates which correspond to the R-sub-
basis. In this latter alternative, let the coordinates with respect to the R-sub-basis
be x∗

i , i ∈ R∗, where R∗ is a set of r − 1 subscripts for the coordinates. Note these
subscripts can be ordered arbitrarily. The projection of data into Sn(R) is given
by ⊕i∈R∗ (x∗

i � ei); it is still a compositional vector of n parts although it is in
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the r − 1-dimensional subspace Sn(R). In order to obtain an effective reduction
of the dimensionality we have to represent it in Sr . To do this, we look for a
representation basis hi ∈ Sr such that, for any x ∈ Sn,

sub(x; R) =
⊕
i∈R∗

(x∗
i � hi).

A sensible representation basis is hi = sub(ei ; R), where ei are the sub-basis
elements associated with the R-group. Its advantage is that there is no need
to re-calculate coordinates after taking subcomposition, as they are just those
corresponding to the sub-basis elements associated with the R-group (see Equa-
tion (A.2) in the appendix).

From coordinates with respect to the sub-basis associated with the R-group,
we easily reconstruct associated subcompositions. For instance, in the example,
the subcomposition with R = {1, 2, 3} is associated with elements e3 and e5 in the
basis (3), i.e. R∗ = {3, 5}. We have

C[x1, x2, x3] = sub((x∗
3 � e3) ⊕ (x∗

5 � e5); {1, 2, 3}) = (x∗
3 � h3) ⊕ (x∗

5 � h5),
(6)

where the representation basis in S3 is

h3 = sub(e3; {1, 2, 3}), h5 = sub(e5; {1, 2, 3}).

Representation basis allows us to reconstruct the parts of the {1, 2, 3}-sub-
composition as shown in (6). This apparently trivial fact is important when plot-
ting data in a ternary diagram; for instance, the corners of the diagram should
be labeled with the reconstructed part, in this case x1, x2, x3, where the closure
constant is obviated.

Inter-Group Analysis: Balances

In order to represent relationships between groups of parts, we use the appro-
priate coordinates, the balances. This generally causes a reduction of dimension—
there are less groups than parts—and we accordingly need a representation in
a lower-dimension simplex. Although apparently similar to a subcompositional
analysis, normalization constants appear because of the possibly different number
of parts in each group.

Assume we are interested in balances between � + 1 groups which consti-
tute a partition of the whole set of n parts. This partition can be obtained as a
binary partition of sequential order �. Let be ei , i = 1, . . . , �, the basis elements
(2) associated with the binary partition up to the required sequential order. The
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corresponding coordinates, x∗
i , i = 1, . . . , �, are the balances between groups of

parts and contain all the information about the relationships between such groups
of parts. The explicit expression of the orthogonal projection of a composition on
the balancing element, x∗

i � ei , for any i ≤ �, allows us a better insight into what
a balance is representing. We assume that in the partition of order i we separate
two contiguous groups of parts, made of r and s parts respectively, as in (2). Then,
from expressions (2) and (4),

x∗
i � ei

= C




(
k+r+s∏
i=k+1

xi

) 1
r+s

︸ ︷︷ ︸
k repeated elements

,

(
k+r∏

i=k+1

xi

) 1
r

︸ ︷︷ ︸
r repeated elements

,

(
k+r+s∏

i=k+r+1

xi

) 1
s

︸ ︷︷ ︸
s repeated elements

,

(
k+r+s∏
i=k+1

xi

) 1
r+s

︸ ︷︷ ︸
j repeated elements


 (7)

with k + r + s + j = n, where we realize that each original part in a group is
substituted by the geometric mean of the parts included in that group. Outside
the groups, each element is substituted by the geometric mean of all parts in-
cluded in both groups. In order to interpret (7) we need to intuitively under-
stand why each component of the original composition has been replaced by a
geometric mean in this projection on the balancing element. Compositional vec-
tor (7) should not carry any intra-group information—we are dealing with three
groups of parts—and, therefore, parts within the same group should be equal.
A simple but relevant exercise shows that the closest composition of the form
[a, a, . . . , a, xr , xr+1, . . . , xn] to [x1, x2, . . . , xn], in the sense of Aitchison dis-
tance da , is that one with a = g(x1, . . . , xr ), the geometric mean of the replaced
components. This is an intuitive argument which would lead to Equation (7),
favoring the geometric mean against other alternatives like the arithmetic mean.

Balancing elements ei , i = 1, 2, . . . , �, constitute an orthogonal basis of a
subspace and projection of x onto it is a composition of n parts in which only
inter-group relationships are taken into account and information about intra-group
ratios has been removed. The expression of such a projection is

�⊕
i=1

(x∗
i � ei) = C





 r1∏

j=1

xj




1
r1

︸ ︷︷ ︸
r1 repeated elements

,


 r2∏

j=1

xr1+j




1
r2

︸ ︷︷ ︸
r2 repeated elements

, . . . ,


 r�∏

j=1

xn+1−j




1
r�+1

︸ ︷︷ ︸
r�+1 repeated elements


 ,

(8)
where r1, r2, . . . , r�+1 are, respectively, the number of parts of each one of the

� + 1 groups obtained in the �-order binary partition.
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Equation (8) can be proved by induction. For � = 1, it reduces to (7) with
k = j = 0. Assume (8) holds for order � and that the t-th group is divided into
two groups of, respectively, s1 and s2 parts (s1 + s2 = rt ) in the (� + 1)-order
binary partition. We should perturb (8) with (7) taking k + j = n − rt , r = s1, and
s = s2. After removing irrelevant equal factors, we obtain the desired expression
equivalent to (8) updated to order � + 1.

As an example, the sequential binary partition in Table 2 defines, at order
� = 2, three groups of parts, namely {1, 2, 3}, {4, 5}, and {6, 7}. Information of
balances between these three groups is conveyed by coordinates x∗

1 and x∗
2 in

(5) with respect to the associated orthonormal basis (3). Projection of x onto the
balancing elements e1 and e2 are

x∗
1 � e1 = C


 (x1x2x3)1/3︸ ︷︷ ︸

three repeated elements

, (x4x5x6x7)1/4︸ ︷︷ ︸
four repeated elements


 ,

x∗
2 � e2 = C


 (x4x5x6x7)1/4︸ ︷︷ ︸

three repeated elements

, (x4x5)1/2︸ ︷︷ ︸
three repeated elements

, (x6x7)1/2︸ ︷︷ ︸
two repeated elements


 .

The perturbation of these two projections is the orthogonal projection of x onto
the subspace generated by the two balancing elements e1, e2. This projection is

2⊕
i=1

(x∗
i � ei) = C


 (x1x2x3)1/3︸ ︷︷ ︸

three repeated elements

, (x4x5)1/2︸ ︷︷ ︸
two repeated elements

, (x6x7)1/2︸ ︷︷ ︸
two repeated elements


 . (9)

Balance coordinates x∗
i , i = 1, . . . , �, can be represented in a lower-

dimension simplex with � + 1 parts and dimension �. In order to do so, we
need to choose an orthonormal basis and to assign to each balance coordinate x∗

i ,
i = 1, . . . , �, a vector of a representation basis hi as was done for subcompositions.
Then, the balances between groups can be represented in S�+1 as

⊕�
i=1(x∗

i � hi).
Although the representation basis is arbitrary, we propose selecting it in the fol-
lowing way: At the sequential partition of order � we have got the desired groups
of parts. Each of these groups can be treated as a single part and, then, the se-
quential binary partition up to the order � is readily identified with a sequential
binary partition of � + 1 parts; the associated orthonormal basis of S�+1 can thus
be taken to be the representation basis hi , i = 1, . . . , �.

Coming back to the sequential binary partition in Table 2 at order 2, we have
the three groups of parts {1, 2, 3}, {4, 5}, and {6, 7}. Three balances between these
three groups can be defined, but two of them are enough to describe inter-group
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ratios. The selected sequence of partitions in Table 2, up to order 2, determines
the respective balance coordinates x∗

1 and x∗
2 in (5). Note that these balances can

be represented in a simplex of three parts. As proposed, we choose the repre-
sentation basis in S3 defined by the sequential binary partition [g1||g2|g3], where
grouped parts have been denoted by gi . Consequently, the representation vectors
are

h1 = C
[

exp

(
2√
6
,
−1√

6
,
−1√

6

)]
, h2 = C

[
exp

(
0,

1√
2
,
−1√

2

)]
, (10)

where the first vector represents the balance between the first group and the second
and third ones as a whole, and the second vector represents the balance between
the second and third groups.

The grouped parts in S3 are then

x∗
1 � h1 =

( √
3 · 4√

3 + 4
· 3√

6

)
� C

[
(x1x2x3)

1
3 , (x4x5x6x7)

1
4 , (x4x5x6x7)

1
4

]
,

x∗
2 � h2 =

( √
2 · 2√

2 + 2
· 2√

2

)
� C

[
(x4x5x6x7)

1
4 , (x4x5)

1
2 , (x6x7)

1
2

]
,

[g1, g2, g3] = x∗
1 � h1 ⊕ x∗

2 � h2

= C
[
(x1x2x3)

2√
14 , (x4x5)

3√
56

+ 1√
8 (x6x7)

3√
56

− 1√
8 , (x4x5)

3√
56

− 1√
8 (x6x7)

3√
56

+ 1√
8

]
,

where some algebra is required to compute all constants. The main tool to obtain
such an expression is the fact that closure allows us to multiply all components
in the vector by a common factor. We realize that the expression of reconstructed
parts in S3 is not simple, but all parts in a group appear in this expression with
the same power. However, we prefer to look at the projections on the balancing
elements (7) or on the whole subspace of balance (8) because they reduce to
compositions in which all parts of a group are equal and depend only on the
geometric mean of the parts in the group, as illustrated in (9). These expressions
do not provide a simple way of labeling the vertices of a ternary diagram when
representing these balances in S3. We should recognize that the lack of simplicity
of reconstructed parts in reduced dimension is mainly due to the possibly different
number of parts in each group, which imply normalization powering in order to
preserve distances.

An alternative example shows that an equal number of parts in each group
results in simple expressions of reconstructed parts. Consider x ∈ S6 and the three
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groups obtained at the second-order binary partition [x1, x2||x3, x4|x5, x6]. The
first and second balances are

x∗
1 = ln

[
(x1x2)

√
4/(2·6)

(x3x4x5x6)
√

2/(4·6)

]
, x∗

2 = ln

[
(x3x4)1/2

(x5x6)1/2

]
,

where again we have avoided simplification of fractions. If we use h1, h2 (10) as a
representation basis, we obtain a simpler expression of reconstructed parts in S3

(x∗
1 � h1) ⊕ (x∗

2 � h2) = C
[
(x1x2)1/

√
2, (x3x4)1/

√
2, (x5x6)1/

√
2
]
.

After these two examples, it appears that the simplest labeling of parts in reduced
dimension, for instance in a ternary diagram, is just the product of grouped parts—
or some generic function of the product—so ignoring scaling powers. As shown
in the next section, scaling powers are needed to preserve distances. Balances
fully represent inter-group relationships, and Aitchison distances between sample
compositions in this representation are dominated by distances in the original
sample space, as desired.

Finally, a conceptual example can improve our understanding of what a
balance is and how balances do appear in a process of exponential decay or
growth of mass. Imagine that n different radiogenic isotopes disintegrate with no
interaction, i.e. the products of disintegration are not accounted for and they do
not correspond to any originally considered isotope. Assume that in a time t the
remaining mass of the ith isotope is zi = exp[αi + λit] for i = 1, 2, . . . , n. In the
mass decay case the constants λi are negative but this is irrelevant for our purposes.
It is known that the corresponding composition of masses, C[z1, . . . , zn], follows
a line in the simplex (Egozcue and others, 2003). Assume now that the involved
isotopes are classified into two groups of affine isotopes in a first-order partition,
e.g. because the decay constants λi are similar. Let R0 = {1, 2, . . . , r0} and Q0 =
{r0 + 1, r0 + 2, . . . , n} be the subscripts of these two groups. Furthermore, assume
that the group Q0 is also partitioned into two groups of isotopes, the second-order
partition, which subscripts are R1 = {r0 + 1, . . . , r0 + r1} and R2 = {r0 + r1 +
1, . . . , n}, which have respectively r1 and r2 elements. Suppose we are mainly
interested in the compositional relations of these three groups obtained in the
second-order partition and intra-group compositions of mass are not aimed at in
such a study.

Based on the affinity of isotopes within a group, we accept to approach
the mass of these isotopes within the group Rj by zi � exp[βj + νj t], where
βj = ∑

i∈Rj
αi/rj and νj = ∑

i∈Rj
λi/rj , i.e. the masses of all isotopes within a

group behave equal to the average constant of decay. This assumption removes
all intra-group compositional information. After this simplification and in order
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to study inter-group behavior of masses, we express the exponential decay of
masses as

zi � exp [β0 + ν0t] exp [0 t] , if i ∈ R0,

zi � exp
[

r1(β1+ν1t)+r2(β2+ν2t)
r1+r2

]
exp

[
β1 + ν1t − r1(β1+ν1t)+r2(β2+ν2t)

r1+r2

]
, if i ∈ R1,

zi � exp
[

r1(β1+ν1t)+r2(β2+ν2t)
r1+r2

]
exp

[
β2 + ν2t − r1(β1+ν1t)+r2(β2+ν2t)

r1+r2

]
, if i ∈ R2.

This expression decomposes the exponential mass decay of each isotope into
the product of two exponential models. From the compositional point of view,
the process is expressed as the perturbation of two linear processes. The first
column of exponentials accounts for mass decay in the group R0, with initial
mass exp[β0] and rate ν0, and the group Q0 = R1 ∪ R2, with initial average mass
exp[(r1β1 + r2β2)/(r1 + r2)] and average rate (r1ν1 + r2ν2)/(r1 + r2). For a fixed
t—and after closure—we readily assign the values of this first model to (7) when
applied to the partition into the two groups R0 and Q0. In fact, the terms of
this first column are the geometric means of the parts within their respective
groups R0 and Q0. The second column of exponentials represents a composi-
tional process, that again corresponds to (7), now applied to the partition of Q0

into the groups R1 and R2, while R0 remains unchanged. In fact, (7) can be
re-written as

C


 1︸︷︷︸

r o terms

,
g(xi ; i ∈ R1)

g(xk; k ∈ Q0)︸ ︷︷ ︸
r1 terms

,
g(xj ; j ∈ R2)

g(xk; k ∈ Q0)︸ ︷︷ ︸
r2 terms


 ,

where g(·) is the geometric mean of the arguments. The quotients of geometric
means are now identified to the minus signs in the exponentials of this second
column. The conclusion is that the simple decomposition of the exponential decay
of mass, just corresponds to a decomposition into two decay of mass (orthogonal)
processes from the compositional point of view. Generalization to higher-order
sequential partitions is straightforward.

Subcompositional and Balance Dominance for Distances

An important property of the analysis of groups of parts is that the desired
properties of distances in the simplex are preserved. Egozcue and others (2003)
have shown that the Aitchison distance in Sn between two compositions x and y
can be expressed as an ordinary Euclidean distance in terms of coordinates with
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respect to an orthonormal basis, like those given in (4), resulting in

d2
a (x, y) =

n−1∑
i=1

(x∗
i − y∗

i )2. (11)

Let us assume that we are interested in the � + 1 groups defined in the �-sequential
order partition. The basis associated with the sequential binary partition can be
separated into groups of elements: (a) Those containing balancing elements be-
tween groups of the partition; for instance, ei , i = 1, . . . , �. (b) Those sub-bases
associated with each group in the partition; let ej , j ∈ R∗

k be the sub-basis associ-
ated with the Rk-group of rk parts. The number of subscripts in R∗

k is then rk − 1,
being

∑�+1
j=1(rk − 1) = n − � − 1 and

⋃�+1
k=1 Rk = {� + 1, � + 2, . . . , n}.

Now the squared distance (11) is readily decomposed into squared terms asso-
ciated with inter-group balances, and terms associated with intra-group coordinates,

d2
a (x, y) =

�∑
i=1

(x∗
i − y∗

i )2

︸ ︷︷ ︸
inter-group distance

+
�+1∑
k=1

∑
j∈R∗

k

(x∗
j − y∗

j )2

︸ ︷︷ ︸
intra-k-group distance

. (12)

The sum of terms for i = 1, . . . , � is the inter-group contribution of balances to
the square distance. The sum of terms for j ∈ R∗

k is the intra-Rk-group contri-
bution; it is equal to the Aitchison distance between x and y measured in the
Rk-subcomposition.

A first conclusion is that subcompositional contribution to the square distance
(12) is dominated by the distance in Sn as stated by Aitchison (1992), i.e.

d2
a (x, y) ≥

∑
j∈R∗

k

(x∗
j − y∗

j )2.

A second conclusion is that balance or inter-group contribution to the square
distance (12) is also dominated by it, i.e.

d2
a (x, y) ≥

�∑
i=1

(x∗
i − y∗

i )2.

These two properties give the necessary consistency to statistical analysis of com-
positional data when dealing with grouped parts, both as balances between them
and as subcompositions. Moreover, all terms in (12) are square distances measured
along orthogonal directions—the directions of the elements of the orthonormal
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basis—and, therefore, decomposition (12) should be interpreted as the Pythagoras
theorem: square distances are obtained by adding square distances of orthogonal
contributions.

SUBCOMPOSITIONS AND BALANCES AS
ORTHOGONAL PROJECTIONS

To better understand balance coordinates and subspace associated with a
group—as well as their properties—a more formal description than the intuitive
presentation in the previous section is needed. Here we intend to give such a
description. The main concepts are subspace associated with a group of parts and
subspace associated with a balance of two groups of parts. The first one gives rise
to projections used in intra-group or subcompositional analysis; the second one
allows us to face inter-group analysis as an orthogonal projection.

The concept of subspace associated with an R-group has been used in the
previous section. Now, we redefine it formally. Let be R a non-empty set of
indexes from the set {1, 2, . . . , n}, and r the number of indexes in R, i.e. 1 ≤ r =
Card(R) ≤ n − 1.

Definition 1. A composition x ∈ Sn is associated with the R-group if

sub(x; R) �= nr , sub(x; R̄) = nn−r , (13)

where R ∪ R̄ = {1, 2, . . . , n}, R ∩ R̄ = ∅, and nr , nn−r are the neutral elements
in Sr and Sn−r respectively. The set of compositions associated with the R-group,
complemented with the neutral element of Sn, nn, is denoted by Sn(R).

As an example, consider a composition C[1, 1, 1, 2] in S4. It is associated
with groups {1, 4} and {1, 2, 4}, while it is not associated with group {1, 3}.

Proposition 1. Sn(R) is an (r − 1)-dimensional subspace of Sn.

Proof: If r = 1 we have nr = [1] and, for all compositions, x ∈ Sn, sub(x; R) =
nr against (13). Then, the only element in Sn(R) is nn; therefore, it is a degenerate
subspace of null dimension. For 2 ≤ r ≤ n − 1, by Definition 1, Sn(R) is closed
under perturbation and powering and, therefore, Sn(R) is a subspace of Sn. In
order to determine the dimension of Sn(R), let ei , i = 1, 2, . . . , r − 1, be an or-
thonormal basis of Sr and assume that the R-parts have been placed at the r-first
positions. We complete these vectors to n parts by adding n − r equal constants ai

to obtain zi = [ei1, ei2, . . . , eir , ai, . . . , ai] such that ‖zi‖a = 1. The constant ai

is fully determined by this condition for each i = 1, 2, . . . , r − 1. Compositions
zi are orthonormal and they are in Sn(R). Therefore, the dimension of Sn(R) is
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greater than or equal to r − 1. If that dimension were s1 ≥ r , the same argument
assures that dimension of Sn(R̄) is s2 ≥ n − r , but s1 + s2 ≥ n > n − 1. Since
Sn(R̄) and Sn(R) are orthogonal, the sum of their dimensions should be less than
or equal to n − 1. Therefore, dimension of Sn(R) is r − 1. �

Proposition 1 points out that compositions associated with an R-group have
equal parts for subscripts in R̄, provided that parts with subscripts in R are not
equal.

Definition 2. Sn(R) is called subspace associated with the R-group.

Proposition 2. Let R define a group of r parts, 2 ≤ r ≤ n − 1, obtained in a
sequential binary partition at the order �, � < n − 1, and let ei , i = 1, 2, . . . , n − 1
be the associated orthonormal basis. Let x∗

1 , x∗
2 , . . . , x∗

n−1 be the coordinates of
x ∈ Sn with respect to this basis. It holds that

(a) there are r − 1 elements in the basis that constitute a sub-basis forSn(R),
let them be ej , j ∈ R∗;

(b) the orthogonal projection of x on Sn(R) has coordinates x∗
j for j ∈ R∗

and null otherwise;
(c) hj = sub(ej ; R), j ∈ R∗, constitute an orthonormal basis of Sr ;
(d) the coordinates of sub(x; R) with respect to the basis hj , j ∈ R∗, are x∗

j .

Proof: Basis elements associated with the sequential binary partition up to or-
der � are not associated with the R-group. To attain a partition of the R-group
in single part sub-groups, r − 1 binary partitions inside the R-group are required
and those binary partitions generate the sub-basis mentioned in (a). Statement
(b) is a direct consequence of (a). Taking R-subcomposition on vectors associ-
ated with the R-group do not modify their inner products as a consequence of
Definition 1; this implies (c). Statement (d) is obtained from (c) and basic proper-
ties of subcompositions (A2). �

Example 1. Assume n = 5, R = {1, 3, 4}, and thus r = 3. The subspace S5(R),
which dimension is 2, is generated by any two independent vectors associated
with the R-group, e.g. C[1, 1, 2, 2, 1] and C[2, 1, 1, 2, 1]. An orthonormal basis of
S5(R) is readily obtained as described in the previous section; an example is

e1 = C
[

exp

(
1√
6
, 0,

1√
6
, −

√
2√
3
, 0

)]
,

e2 = C
[

exp

(
1√
2
, 0, − 1√

2
, 0, 0

)]
,
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in agreement with (2) up to the order of parts; in this case we take R∗ = {1, 2}.
The representation basis in the R-subcomposition is

h1 = C
[

exp

(
1√
6
,

1√
6
,−

√
2√
3

)]
, h2 = C

[
exp

(
1√
2
,− 1√

2
, 0

)]
.

A consequence of Proposition 2 is that the orthogonal projection on the
associated subspace to the R-group does not affect the R-subcomposition. This
means that such a projection filters out all information that is not related to the
R-subcomposition and, in practice, we can identify the projection with the oper-
ation of taking R-subcomposition. This is reformulated in the next proposition,
where the orthonormal basis is not necessarily that associated with a sequential
binary partition.

Proposition 3. Let {ej , j ∈ R∗} be a set of r − 1 orthonormal elements in Sn.
This set is an orthonormal basis of Sn(R) if and only if, for all x ∈ Sn, it satisfies

sub(x; R) = sub
( ⊕

j∈R∗
(x∗

j � ej ); R
)
, (14)

where x∗
j = 〈x, ej 〉a .

Proof: Assume ej , j ∈ R∗, constitute an orthonormal basis of Sn(R) and com-
plete it to an orthonormal basis inSn with n − r elements ek , k ∈ R̄∗. These vectors
satisfy sub(ek; R) = nn, because the dimension of Sn(R) is r − 1. Property (14)
is obtained by taking the R-subcomposition in the expression of x and using (A.2)
of the appendix.

Assume now that (14) holds. Since ej , j ∈ R∗, are r − 1 orthonormal vectors,
they constitute an orthonormal basis of Sn(R) only if they are in Sn(R). To show
this, we complete the orthonormal basis of Sn with n − r elements ek , k ∈ R̄∗.
Each composition x ∈ Sn is expressed as x = ⊕

i(x
∗
i � ei). Particularly, this is

true for ek , k ∈ R̄∗, and (14) is reduced to sub(ek; R) = nr . This implies that
ek , k ∈ R̄∗, are not in Sn(R), and they constitute an orthonormal basis of the
orthogonal complement of Sn(R). Since we assume ej , j ∈ R∗, are orthogonal to
ek , k ∈ R̄∗, they are in Sn(R). �

Example 2. Assume n = 3 and R = {1, 2}. An orthonormal basis of S3 is

e1 = C
[

exp

(√
1

6
,

√
1

6
,−

√
2

3

)]
, e2 = C

[
exp

(√
1

2
,−

√
1

2
, 0

)]
, (15)
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which is associated with the sequential binary partition [x1|x2||x3]. Element e2

is associated with the R-subcomposition and it is an unitary basis of the one-
dimensional space S3(R). Consider a composition x = C[5, 2, 3] and its R-
subcomposition C[5, 2]. Note that the projection on S3(R) is x∗

2 = 〈x, e2〉a � e2 =
C[5, 2,

√
10] which, after taking subcomposition returns again C[5, 2]. The co-

ordinates of x = C[5, 2, 3] in the basis (15) are x∗
1 = 6−1/2 ln(10/9) and x∗

2 =
2−1/2 ln(5/2). If we only retain x∗

2 , which is associated with the {1, 2}-
subcomposition, we readily reconstruct a composition in S3 by 〈x, e2〉a � e2,
whose {1, 2}-subcomposition is C[5, 2] as was obtained previously.

An immediate consequence of this is that the ratios and log-ratios of parts in
an R-subcomposition are, as expected, equal to the ratios and log-ratios of R-parts
in the orthogonal projection onto Sn(R).

The elements of bases associated with sequential binary partitions can also
be interpreted as balancing elements between groups. The element of the basis
obtained at a given sequential order of binary partition is the balancing element
between the two new groups obtained at this step. This allows the analysis of
grouped components just using the corresponding balance coordinates. Next def-
initions and properties formalize these ideas.

We now deal with two non-overlapping, non-empty, groups of parts of com-
positions in Sn. The groups are represented by the corresponding sets of indexes
R1 and R2, R1 ∩ R2 = ∅, Card(Ri) = ri , i = 1, 2, and r1 + r2 ≤ n. Let Q denote
the complement of R1 ∪ R2 in {1, 2, . . . , n}, Card(Q) = q, r1 + r2 + q = n.

Definition 3. A unitary composition e in Sn, ‖e‖a = 1, is said to be an (R1, R2)-
balancing element if: (a) sub(e; Ri) = nri

for i = 1, 2; (b) sub(e; Q) = nq ; and (c)
sub(e; R1 ∪ R2) �= nr1+r2 .

This means that (R1, R2)-balancing elements have equal components in the
parts corresponding to the indexes in R1; this also holds for indexes in R2 and in
Q, if non-empty; but for indexes in R1 and R2 components are not equal. This
is equivalent to say that the (R1, R2)-balancing element is in Sn(R1 ∪ R2), but
that it is neither in Sn(R1) nor in Sn(R2). The (R1, R2)-balancing element can be
considered as an orthonormal basis of a one-dimensional subspace. This concept
was previously introduced by Egozcue and others (2003).

Definition 4. Let e be an (R1, R2)-balancing element. For x ∈ Sn, the inner
product 〈x, e〉a = x∗

(R1,R2) is called the (R1, R2)-balance of x.

Proposition 4. The (R1, R2)-balancing element is unique up to a (−1) powering,
which means change in orientation.

Proof: From Definition 3, the property of being a balancing element is not lost
by (−1) powering. First assume Q = ∅ and, therefore, r1 + r2 = n. Orthogonal
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subspaces Sn(Rj ) have dimensions rj − 1, j = 1, 2. Consequently, their orthog-
onal complement in Sn is one dimensional. Since the (R1, R2)-balancing element
is not associated with the Rj -group, j = 1, 2, from Definitions 1 and 3 it follows
that it is a basis for that one-dimensional subspace; as the balancing element is
unitary, it is unique up to (−1) powering.

Alternatively, assume q ≥ 1. Then, the orthogonal complement of Sn(Rj ),
j = 1, 2, and of Sn(Q), has dimension 2 = (n − 1) − (r1 − 1) − (r2 − 1) − (q −
1). Both the (R1, R2)-balancing element and the (R1 ∩ R2,Q)-balancing element
are in this two-dimensional subspace. These two balancing elements are orthogo-
nal, because they are associated with a sequential binary partition. Therefore, the
(R1, R2)-balancing element is the only element of a basis for the one-dimensional
subspace orthogonal to Sn(Rj ), j = 1, 2, to Sn(Q) and to the (R1 ∩ R2,Q)-
balancing element. �

Proposition 5. The (R1, R2)-balance of x is

x∗
(R1,R2) =

√
r1r2

r1 + r2
ln

[
g(xj ; j ∈ R1)

g(xk; k ∈ R2)

]
= ln




(∏
j∈R1

xj

)√
r2/(r1(r1+r2))

(∏
k∈R2

xk

)√
r1/(r2(r1+r2))


 ,

(16)
where g(·) denotes geometric mean of parts in the argument.

Proof: Just agreeing with (4). �

Example 3. (Example 2 continued) The unitary composition e1 in (15) is a
balancing element for R1 = {1, 2} and R2 = {3}. In this case Q = ∅. Moreover,
using (16), the ({1, 2}, {3})-balance is x∗

1 = 6−1/2 ln(10/9) as obtained previously.
Note that other coordinates do not play any role in the balance. See other examples
in (2).

A consequence of Definition 3 is that orthonormal bases associated with a
sequential binary partition are made of balancing elements. Each element corre-
sponds to groups obtained in each sequential order binary partition. The construc-
tion of bases associated with sequential binary partitions allows us to state the
following proposition.

Proposition 6. Let x be a composition in Sn and define two non-overlapping,
non-empty, groups of parts R1 and R2. Let {ei , i = 1, . . . , n − 1} be an orthonor-
mal basis associated with a sequential binary partition in which, for a given
sequential order, the R1 ∪ R2-group is obtained, and the R1-group and R2-group
are obtained subsequently. Then, this basis contains the (R1, R2)-balancing ele-
ment. Moreover, sub(x; R1 ∪ R2) has the following coordinates with respect to the
basis associated with the R1 ∪ R2-group: x∗

j , j ∈ R∗
1 , are the r1 − 1 coordinates
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of sub(x; R1); x∗
k ∈ R∗

2 , are the r2 − 1 coordinates of sub(x; R2); and x∗
(R1,R2) that

is the (R1, R2)-balance.
Proposition 6 means that the (R1, R2)-balance is the only information we need

to recover the (R1 ∪ R2)-subcomposition from the R1 and R2-subcompositions;
it conveys the information about the weight of each group of parts inside their
union, (R1 ∪ R2).

Example 4. Assume n = 5 and R1 = {1, 2} and R2 = {3, 4}; then Q = {5} and
S5(R1 ∪ R2) is a three-dimensional subspace. Bases for S5(Ri), i = 1, 2, are one
dimensional and the two basis elements are

e1 = C
[
exp

(√
1

2
,−

√
1

2
, 0, 0, 0

)]
, e2 = C

[
exp

(
0, 0,

√
1

2
,−

√
1

2
, 0

)]
,

where R∗
1 = {1}, R∗

2 = {2}, and the remaining dimension corresponds to the
(R1, R2)-balancing element

e(R1,R2) = C
[

exp

(
1

2
,

1

2
,−1

2
,−1

2
, 0

)]
.

The corresponding balance is

x∗
(R1,R2) = ln

[
(x1x2)1/2

(x3x4)1/2

]
.

The sub-basis associated with the R1 ∪ R2-group, e(R1,R2), e1, e2, is obtained at the
sequential orders 2, 3, 4 of the sequential binary partition [x1||x2|||x3|x4||||x5].

GROUPED PARTS ANALYSIS: METHOD AND EXAMPLES

The aim of the two previous sections has been to introduce some algebraic
and geometric ideas on orthonormal basis and their respective coordinates when
analyzing subcompositions and balances of grouped parts. However, one is inter-
ested on how to use these tools in a particular problem. This section is intended to
describe an easy—albeit general—way of carrying out these analysis in practice
and how to interpret them. A simulated example will be used to guide the reader
through this methodological discussion.

Let us state a fictitious and simplified problem in compositional data analysis.
Assume that, in an oil field, we have sampled the ternary composition of rocks
in two different layers from some well-logs. We assume the volume of the rock
is composed of three parts: water, part 1; oil, part 2; and solid, part 3. For layer



818 Egozcue and Pawlowsky-Glahn

X, the sample compositions are xi = [xi1, xi2, xi3], with sample size m = 20;
similarly, samples from layer Y are yi = [yi1, yi2, yi3], again with sample size
m = 20. Previous experiences point out that these compositions are distributed
as additive logistic normal (ALN; see Aitchison, 2003a; Mateu-Figueras, 2003).
Moreover, variabilities of both samples are different and approximately known. We
also fully assume that Aitchison distances are appropriate to model distances be-
tween compositions. This means, for instance, that compositions with an intrinsic
null component are very far (infinite distance) from current compositions; or that
[0.20, 0.01, 0.79] (water, oil, solid) is quite different from [0.20, 0.02, 0.78] (dou-
ble oil content), whereas [0.15, 0.15, 0.70] and [0.15, 0.16, 0.69] are quite similar,
although the per-one (absolute) difference in oil content is exactly the same in both
cases.

Our goal is to decide whether the centers of compositions of three parts in
both layers are equal or not. However, in order to study the possibilities of oil
extraction we are also interested in solid–liquid ratios. Therefore, we propose to
test for equal means the balance between the groups of parts {1, 2} = {water, oil} =
{grouped liquids} and {3} = {solid} obtained in the first-order sequential binary
partitions [x1|x2||x3], respectively [y1|y2||y3]. This test is an univariate one. The
standard approach would be the amalgamation of water and oil (liquid = water +
oil), which also treats the hypothesis testing of equal centers in both layers as an
univariate problem (a single coordinate in S2).

The three proposed tests would thus be as follows:

(A) The bivariate one in S3, which states that, on (geometric) average, both
layers X and Y are equal

H0 : Cen[x] = Cen[y], H1 : Cen[x] �= Cen[y],

where H0 is the null hypothesis and H1 the alternative.
(B) The balance test, which states that, on (geometric) average, the ratio of

grouped liquids and solid in both layers X and Y is equal

H0 : E[x∗
1 ] = E[y∗

1 ], H1 : E[x∗
1 ] �= E[y∗

1 ],

where x∗
1 = (1/

√
6) ln((x1x2)/x2

3 ) in layer X. Analogously, for layer Y.
(C) The test on the log-ratio obtained after amalgamation, which states that,

on (geometric) average, the ratio of (liquid = water + oil) and solid in both
layers X and Y is equal

H0 : E[x∗
am] = E[y∗

am], H1 : E[x∗
am] �= E[y∗

am],
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where x∗
am = (1/

√
2) ln((x1 + x2)/x3) is the only orthonormal coordinate

in S2 after amalgamation in layer X and, analogously, for layer Y.

These tests can be carried out using several statistics. For reasons of homo-
geneity, we used the generalized likelihood-ratio test for the three cases, assuming
normality with known, but different, variances–covariances. The sample data and
main parameters are shown in Table 3. In the bivariate test, both couples (x∗

1 , x∗
2 )

and (y∗
1 , y∗

2 ) are assumed independent and their respective standard deviations
are (0.4, 0.4) and (0.05, 0.05). Means of these coordinates and the corresponding
centers are shown in Table 3 under the heading theoretical. Although the standard
way of defining ALN parameters is based on the variances–covariances of alr
log-ratios (Aitchison, 2003a), we use the parametrization in terms of orthonormal
coordinates as introduced by Mateu-Figueras (2003).

For the univariate test on balances, the marginals for x∗
2 and y∗

2 are used. For
the univariate test on the amalgamated compositions, the coordinates x∗

am and y∗
am

were assumed to be normally distributed, being the variances 0.12 for layer X
and 0.0027 for layer Y. We remark that the hypothesis of normality of log-ratios
including amalgamated parts is incompatible with the assumed ALN distribution
of the three-part composition. Although this is an additional inconvenience in
using amalgams, it is not a point in this discussion. The theoretical means of x∗

am
and y∗

am are −1.24 and −1.23, respectively.
From the theoretical parameters used in the simulation, we easily conclude

that the two samples should be centered at quite different points, although part
3 (solid) is approximately the same in the two layers. This is confirmed by the
results of the three tests shown in Table 3.

The bivariate test takes into account the log-ratios of the three parts and
rejects null hypothesis (A, earlier) because the centers are very different (with
respect to dispersion). The univariate test using balance rejects null hypothesis (B)
accordingly. The test statistic is using the information of log-ratios relating the
group {(water,oil)} with the group {(solid)}—i.e. the inter-group information—but
not the intra-group log-ratio corresponding to the subcomposition {water,oil}. This
means, that the test statistic is a function of the log-ratios water–solid and oil–
solid, but not of the log-ratio water–oil. As the ratios of inter-group components,
water–solid and oil–solid, are quite different, it also rejects the null hypothesis.
Contrarily, the univariate test on the amalgamated coordinate does not reject null
hypothesis (C). In fact, the statistic used ignores both the intra-group {water,oil}
or subcompositional information and also most of the inter-group ratios. The
remaining information, the amalgamated coordinates, x∗

am and y∗
am, is quite similar

in both layers and the test passes the null hypothesis.
This example reveals that the amalgamated test may strongly disagree with

the bivariate (A) and balance (B) tests. Although the centers of the two layers
are quite different, this feature is lost in the amalgamation. The question arises,
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which of these tests are appropriate for the analysis. The answer is that they are
best suited to answering different questions and they should not be compared. The
amalgamated problem ignores the existence of two different parts in the liquid
group. Only liquid–solid ratio is considered, for instance, to evaluate drilling
costs roughly based on this proportion. But the amalgamated data cannot explain
anything about compositional problems involving oil and water separately. Ratios
involving these parts are lost after amalgamation.

Alternatively, tests (A) and (B) may be steps in a lattice of hypothesis tests
trying to decide a parsimonious model for the centers of the two layers (Aitchison,
2003a, p. 149). The interest is centered in the whole composition of three parts
(water, oil, solid) and, possibly, in their subcompositions. An example of such a
lattice may start testing (A). Acceptance of such a null hypothesis represents the
simplest model, centers of the two layers are equal. If (A) is rejected, we proceed
with (B). Acceptance of (B) leads to conclude that the ratio of the center of water–
oil subcomposition over solid is not responsible of differences between layers X
and Y. The lattice may conclude by testing the equal center of the subcomposition
{water,oil}. Although this test is not presented here, parameter values directly
suggest rejection of the null hypothesis.

When following this lattice of hypothesis testing, the tests involved should be
compatible and based on the same composition, i.e. the log-ratios involved cannot
change from test to test. This excludes test (C) from such a lattice and test (B)
appears as a natural alternative.

Let us turn back to a more general methodological framework by stating a
general but common problem in compositional data analysis. Each individual in a
sample is characterized by a row vector of n parts x = [x1, x2, . . . , xn]. We would
like to estimate basic statistics: the center, some measure of dispersion or fit a prob-
ability distribution. Additionally, some standard statistics may be required, e.g.
testing equal centers of two samples, cluster analysis, etc. Suppose we also wish to
compare the behavior of two, three, or more groups of parts, and we wish to under-
take compositional analysis within one or more of the groups (subcompositions).
Finally, summary representations of grouped-part data and subcompositional data
are required to complete the exploratory analysis and to show results.

The implicit or explicit goal when grouping parts of a composition is to reduce
dimension to facilitate interpretation. There are three ways of doing this: analyze a
subcomposition, analyze inter-group balances or, alternatively, amalgamate some
parts. This latter alternative, being standard, implies changing the initial problem
and original parts, after amalgamation, do not play any role in the new problem.
This is not the case in subcompositional and balance analysis, where the initial
problem remains unaltered when we deal with it in a reduced dimension. The
reason is simple: within the Aitchison geometry, amalgamation is a non-linear
projection, while subcompositional and balance analysis plays the same role as
usual orthogonal, and thus linear, projections in multivariate analysis.
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Standard techniques in compositional data analysis proceed in two or more
separate steps, although their order may be changed. Analysis unrelated to groups
is then carried out as one of the steps. The other steps deal with questions related
to groups. Some of them are related to subcompositions and they are treated by
extracting subcompositions from raw data and then applying the appropriate sta-
tistical techniques. Other questions are related to groups and they are faced by
amalgamating parts in each group and, then, the compositional data analysis on
the amalgamated sample is carried out (Aitchison, 2003, pp. 38–40). As men-
tioned in the “Introduction” section and previous examples, an analysis based on
amalgamated groups can lead to conclusions which disagree with those obtained
with non-amalgamated data.

The present alternative starts seeking for an intuitive and natural partition of
compositional vectors into groups of parts. These groups should be the target of the
analysis, both from the subcompositional and balance points of view. An adequate
reordering of parts, keeping affine parts contiguous, may facilitate this task. It is
also advisable to decide a sequential order of importance, when separating two
groups of parts, to arrive to the desired partition. Then, the process of subdividing
the partition is continued until a partition in individual parts is obtained. This latter
binary partitions can be done arbitrarily if no additional intuitive criterion is given.
These decisions are equivalent to the design of a sequential binary partition of the
ordered parts. Obviously, these decisions depend on the particular stated problem
and the preferences of the analyst.

From the sequential binary partition, we obtain the associated orthonormal
basis and all sample data can be represented by their coordinates in such a basis.
Note that the particular expression of the used orthonormal basis is not necessary;
coordinates for each individual can be directly obtained using log-ratios (4). Stan-
dard multivariate analysis dealing with original parts can be carried out using this
coordinate representation of the data. Aitchison distances between individuals are
now obtained as ordinary Euclidean distances between vectors of coordinates. The
center of a sample, expressed in coordinates, is readily obtained by averaging these
sample coordinates. A cluster analysis can also be carried out on the coordinates
with standard methods when analyzing real multivariate data. Testing equal cen-
ters of two sub-populations, or testing goodness of fit to an ALN distribution are
reduced to standard tests on equal means, respectively on multivariate normality.

Analysis dealing with subcompositions corresponding to groups defined in
the sequential binary partition can be performed on the coordinates associated
with those groups; neither the closure of data in each step, nor re-computation of
coordinates, is required. This is due to the fact that the basis associated with the
sequential binary partition contains the sub-basis associated with the group, and
they constitute the coordinates of the subcomposition.

The representation of data in coordinates calculated with respect to the basis
associated with the sequential binary partition is also readily used to analyze
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balances between groups. We only need to identify those elements in the basis
which are balancing elements for our groups and, then, to select the corresponding
coordinates. In this way, the analysis of disaggregated parts and grouped parts are
immediately compatible because they are based on a single coordinate system,
which maintains the metric properties of compositional data.

CONCLUSIONS

The introduction of orthonormal bases in the simplex and the corresponding
coordinates by Egozcue and others (2003) allows one to select suitable orthonormal
bases in order to facilitate interpretation of results. We introduce the sequential
binary partitioning of parts of a composition as a tool to design a particular basis in
the simplex. Such bases make the corresponding coordinates directly interpretable
as balances between two groups of parts appearing in some order of the sequential
binary partition.

An important point in these techniques is that they allow for a simultaneous
and compatible analysis of intra-group of parts (subcompositional analysis) and
of inter-group of parts (balance analysis). Both points of view are reduced to or-
thogonal projections into subspaces of the simplex, thus guaranteeing consistency
of distances and statistical analysis when working in a reduced dimension.

We conclude that amalgamation of parts changes the original problem and
cannot be considered as a compatible reduction of dimension. However, the newly
stated problem may make full sense by itself, i.e. anamalgamated part should be
clearly interpretable and the ratio of it with respect to other parts should be relevant
in the new problem.

APPENDIX: SUMMARY OF AITCHISON GEOMETRY
IN THE SIMPLEX

The fundamental ideas leading to what we call now Aitchison geometry in the
simplex were already set by Aitchison (1982, 1986). Recent results were introduced
in several papers (Aitchison and others, 2002; Billheimer, Guttorp, and Fagan,
2001; Pawlowsky-Glahn and Egozcue, 2001, 2002; Egozcue and others, 2003).

Simplex of n-parts. Compositional vectors, or simply compositions, of n parts
are real vectors whose positive components add up to a closure constant κ > 0.
This set is called simplex of n parts and is formally written

Sn =
{

[x1, x2, . . . , xn]

∣∣∣∣∣ xi > 0, i = 1, . . . , n ;
n∑

i=1

xi = κ

}
,

where square brackets are used to denote row vectors. A first assumption in compo-
sitional data analysis is that the value of κ is irrelevant and only the ratios between
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components convey compositional information. The closure operation transforms
a positive vector of n positive components into a vector in Sn, maintaining all
ratios between components. It is defined as

C(z) =
[

κz1∑n
i=1 zi

,
κz2∑n
i=1 zi

, . . . ,
κzn∑n
i=1 zi

]
,

where z = [z1, . . . , zn] is any positive n-vector. Note that components cannot be
null once accepted that compositional information is based on ratios of compo-
nents.

Perturbation, internal operation in Sn. Perturbation in the simplex plays a
role analogous to the sum in real spaces. If x and y are in Sn, the perturbation is

x ⊕ y = C[x1y1, x2y2, . . . , xnyn].

Perturbation is a commutative group operation, i.e. it is associative and com-
mutative; the neutral element is nn = C[1, 1, . . . , 1] and the opposite element of
[x1, . . . , xn] is �x = C[1/x1, . . . , 1/xn]. Perturbation has been denoted by other
symbols like (◦) in other publications, e.g. Aitchison (1986).

Powering, external operation. It operates real numbers, α ∈ R, with compo-
sitional vectors, x ∈ Sn. It is analogous to constant multiplication in vector spaces.
It is defined as

α � x = C
[
xα

1 , xα
2 , . . . , xα

n

]
.

Powering, also called power transformation, has been denoted by other symbols
(�, ⊗) in other publications, e.g. Aitchison and others (2002), Pawlowsky-Glahn
and Egozcue, (2001, 2002), and Egozcue and others (2003).

Perturbation and powering give to Sn a linear vector space structure, which
dimension is n − 1. Powering is distributive with respect to perturbation, and the
unitary element in R is 1. Moreover, the opposite element of x can be expressed
as �x = (−1) � x.

R-subcomposition. Let R be a subset of the indexes {1, 2, . . . , n} with r =
Card(R) and let x ∈ Sn be a composition. We define R-subcomposition, u, the
closed set of r parts of x, 1 < r < n, which subscripts are in R:

u = sub(x; R) = C[xi, xj , . . . , xk], i, j, . . . , k ∈ R, u ∈ Sr . (A.1)

The R-subcomposition operation is linear with respect to perturbation and pow-
ering, i.e. for any real constants α, β, and for xi ∈ Sn, i = 1, 2,

sub((α � x1) ⊕ (β � x2); R) = (α � sub(x1; R)) ⊕ (β � sub(x2; R)). (A.2)
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Straight lines in Sn. Let be x0 and z compositions in Sn. For real values α,
compositions x = x0 ⊕ (α � z) define a straight line, which direction is given by
z, and contains the point x0.

Inner product in Sn. Let x = [x1, . . . , xn] and y = [y1, . . . , yn] be composi-
tions in Sn. Their inner product is

〈x, y〉a =
n∑

i=1

ln
xi

g(x)
ln

yi

g(y)
= 1

n

∑
i<j

ln
xi

xj

ln
yi

yj

, (A.3)

where g(·) denotes geometric mean of components. The subscript a refers to
Aitchison geometry, in order to distinguish it from the standard inner product in
R

n. It satisfies the standard properties: distributive with respect to perturbation,
linear-powering in both arguments and commutative. The inner product gives an
Euclidean structure to the simplex or, equivalently, a finite-dimensional Hilbert-
space structure.

Norm and distance. The inner product is used to define a norm and a distance
in the simplex. For x and y compositions in Sn we obtain

‖x‖2
a = 〈x, x〉a, da(x, y) = ‖x � y‖a.

Norm and distance configureSn as a finite-dimensional normed (Banach) and met-
ric space. The definition of Aitchison distance (Aitchison, 1986) was previous to in-
ner product and norm. It was defined taking into account remarkable properties that
are naturally associated with compositional data. Among those properties, invari-
ance under perturbation da(z ⊕ x, z ⊕ y) = da(x, y); invariance under permutation
of parts; and subcompositional dominance, da(x, y) ≥ da(sub(x; R), sub(y; R)),
play a major role.

Linear bases and coordinate transformations. Elements of Sn are readily
expressed as perturbation-linear combinations of compositional vectors in a basis
or a set of generators of the space. Coefficients (or coordinates) of compositions in
these combinations represent elements of the simplex as real vectors. Real vectors
of these coefficients are called transformations because they map Sn onto R

n−1 or
a subspace of R

n. The use of orthonormal bases is natural, but, historically, oblique
bases and oblique generator systems have been implicitly used. We mention the
alr basis and the clr system of generators and their respective transformation into
coefficients. Orthonormal bases and ilr transformation are also given.

The vectors,

ealr
i =

√
n − 1

n
� C


exp


 −1

n − 1
, . . . ,

−1

n − 1
, 1︸︷︷︸

i-th element

,
−1

n − 1
, . . . ,

−1

n − 1





 ,



826 Egozcue and Pawlowsky-Glahn

for i = 1, 2, . . . , n − 1, constitute a unitary basis of Sn because these vectors are
perturbation-linear independent. However, they are not orthogonal. In order to
express x as a perturbation-linear combination of ealr

i , the coefficients are obtained
as inner products with the dual basis elements. This dual basis (unitary) is

edalr
i = 1√

2
� C


exp


0, . . . , 0, 1︸︷︷︸

i-th element

, 0, . . . , 0,−1




 , i = 1, 2, . . . , n − 1.

This basis is not orthogonal because, for i �= j , 〈edalr
i , edalr

j 〉a = 1/2; this means
that each couple of vectors in both bases—alr and dalr—form angles of π/3
irrespective of the number of parts. The expression of a composition is then

x =
n−1⊕
i=1

(
calr
i � ealr

i

)
, calr

i = 〈
x, edalr

i

〉
a

= ln
xi

xn

.

The additive-log-ratio transformation (alr) of a composition x ∈ Sn leads to the
real (n − 1)-vector of coordinates

alr(x) = [
calr

1 , calr
2 , . . . , calr

n−1

] =
[

ln
x1

xn

, . . . , ln
xn−1

xn

]
, alr(x) ∈ R

n−1.

Centered log-ratio transformation (clr) is obtained when x is expressed as a
perturbation-linear combination of a unitary generator system

eclr
i =

√
n

n − 1
� C


exp


0, . . . , 0, 1︸︷︷︸

i-th element

, 0, . . . , 0





 , i = 1, 2, . . . , n,

and then x = ⊕n
i=1(αi � eclr

i ). Although the coefficients αi of a generator system
are not unique, they are defined as

clr(x) = [α1, α2, . . . , αn] =
[

ln
x1

g(x)
, . . . , ln

xn

g(x)

]
, clr(x) ∈ R

n,

where g(·) denotes the geometric mean of the arguments. This choice of the
coefficients αi has some remarkable properties, e.g. it gives a straightforward way
of computing Aitchison norms and distances.

‖clr(x)‖ = ‖x‖a; d(clr(x1), clr(x2)) = da(x1, x2),

where ‖ · ‖ and d(·, ·) are the ordinary norm and distance in R
n, respectively.
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Orthonormal bases in Sn allow the expression of compositions in Cartesian
coordinates. Many orthonormal bases can be obtained, see for instance “Orthonor-
mal basis of a sequential binary partition” section. A standard one is

ei = C


exp




√
1

i(i + 1)
, . . . ,

√
1

i(i + 1)︸ ︷︷ ︸
i elements

,−
√

i

(i + 1)
, 0, . . . , 0





 , (A.4)

for i = 1, 2, . . . , n − 1. Then, x is reconstructed using the corresponding coordi-
nates

x =
n−1⊕
i=1

(ci � ei), ci = 〈x, ei〉a =
√

i

i + 1
ln

[
g(x1, . . . , xi)

xi+1

]
.

Transformation of x ∈ Sn into its coordinates with respect to the orthogonal basis
has been called isometric log-ratio transformation, (ilr), and it is

x∗ = ilr(x) = [c1, c2, . . . , cn−1] , ilr(x) ∈ R
n−1.

Coordinates of a composition with respect to (A.4) or any other given orthonormal
basis are denoted using (*) in this development, e.g., ci = x∗

i , i = 1, 2, . . . , n − 1.
The main property of the representation of compositions by their coordinates

with respect to an orthonormal basis is that the whole Aitchison geometry of
compositions in the simplex is reduced to the ordinary Euclidean geometry in
R

n−1 for their coordinates. This allows direct statistical analysis in the simplex
(Pawlowsky-Glahn, 2003). If x, y ∈ Sn and x∗, y∗ are their respective coordinate
vectors with respect to an orthonormal basis, the isometry implies:

ilr(x ⊕ y) = x∗ + y∗; ilr(α � x) = α · x∗,

‖x∗‖ = ‖x‖a; d(x∗, y∗) = da(x, y); 〈x∗, y∗〉 = 〈x, y〉a,

where norm, distance and inner product without subscript refer to ordinary
Euclidean ones in R

n−1.
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