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GROUPS OF PIECEWISE LINEAR HOMEOMORPHISMS

MELANIE STEIN

Abstract. In this paper we study a class of groups which may be described as
groups of piecewise linear bijections of a circle or of compact intervals of the
real line. We use the action of these groups on simplicial complexes to obtain
homological and combinatorial information about them. We also identify large
simple subgroups in all of them, providing examples of finitely presented infinite
simple groups.

Introduction

The first example of a finitely presented infinite simple group was discovered
in 1965 by R. J. Thompson. This group, G, arose in the study of logic, but
has several other descriptions. One of them is as the automorphism group of
a certain algebraic object, the Jónsson-Tarski algebra. In 1974 G. Higman [9],
using this description, generalized G to an infinite family of groups called G„ t r
(in Higman's notation G = G2t\). G has another description as a group of
homeomorphisms of the Cantor set. It has subgroups, also studied by Thomp-
son, which may be described as homeomorphism groups of the circle and the
unit interval. Using the interpretation as homeomorphism groups, Robert Bieri
and Ralph Strebel, in a set of unpublished notes, considered more general home-
omorphism groups of the real line.

In this paper we will consider a class of groups containing Higman's groups
as well as the groups of Bieri and Strebel which are supported on compact
intervals. We obtain homological and combinatorial information about them,
and extend the known simplicity results.

To define the groups, let P be a multiplicative subgroup of the positive real
numbers, and let A be a ZP-submodule of the reals with P • A = A . Choose a
number I e A, / > 0. Let F (I, A, P) be the group of piecewise linear home-
omorphisms of [0, /] with finitely many singularities, all in A , having slopes
only in P. Similarly, we can define a larger group T(l, A, P) to be the group of
piecewise linear homeomorphims of [0, /]/{o,/> (the circle formed by identify-
ing the endpoints of the closed interval [0, /]) with finitely many singularities in
A and slopes in P, with the additional requirement that the homeomorphisms
send A n [0, /] to itself. Finally, we define G (I, A, P) to be the group of right
continuous bijections of [0, /) which are piecewise linear, with finitely many
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discontinuities and singularities, all in A , slopes in P, and mapping A n [0, /)
to itself. Then we have F (I, A, P) c T(l, A, P) c G(l, A, P). To relate these
to the groups in the literature, we remark that G(l, Z[¿], (2)) is Thompson's
finitely presented infinite simple group, and the T and F subgroups are the
subgroups studied by Thompson. Also, G(r, Z[¿], («)), where r, n e Z, is
Higman's group Gnr.

In [2], K. S. Brown uses the action of G(r, Z[£], («)) and the corresponding
F and T subgroups on simplicial complexes to show that they are all finitely
presented and of type FP^ . He then generalizes the complexes to ones on
which G(r, Z[H \n ], (nx, ... , nk)) and the F and T subgroups act, where
nx, ... , nk and r are positive integers (unpublished). In §1 we will describe
these complexes (we will call them X) and find inside them homotopy equiv-
alent subcomplexes (called A) on which the groups also act. This yields nice
infinite presentations for our groups.

In §2 we restrict ourselves to the F groups with P free abelian of finite
rank, still generated by integers. We collapse the quotient complexes N/F to
complexes with only finitely many cells in each dimension. This shows the
groups to be of type FPX and finitely presented. In the rank one case, this
collapse also easily yields the homology of F .

In §3 we construct a slightly different complex K , homotopy equivalent to
A. We then describe how to more completely collapse the quotient complex
K/F to a homotopy equivalent complex with finitely many cells in each dimen-
sion. This provides smaller finite presentations for the groups, and easily gives
the homology of F in the rank one case and some of the rank two examples.

In §4 we consider the cases of slope group of rank one or two, and compute
the homology of these groups algebraically, using a ring structure with which
the chain complexes are equipped.

Recall that Thompson's group was of interest because it was simple and
finitely presented. In [9], Higman shows that his generalizations of Thompson's
group always have simple commutator subgroups. In [2], Brown extends this
result by showing that the corresponding T subgroups have simple second com-
mutator subgroups, and the F subgroups have simple commutator subgroups.
Furthermore, Bieri and Strebel observe (see the Appendix) that for any choice
of I, A , and P, the subgroup of F (I, A, P) consisting of homeomorphisms
supported on some proper open subinterval of (0, /) has a simple commutator
subgroup. It follows from 4.1 that this subgroup is just the commutator sub-
group of F , so the general F group has simple commutator subgroup. In §5 we
complete this picture by showing that the general G group has a simple com-
mutator subgroup and the general T group has a simple second commutator
subgroup.

In [9], Higman also computes the abelianizations of his groups and finds that
the commutator subgroups have index 1 or 2. In §6 we compute abelianizations
for the G groups with P generated by a finite set of integers, using the action
of G on the complex A. It turns out to be finite, showing that all of the
commutator subgroups are finitely presented infinite simple groups. We note
here that E. Scott has generalized the groups of Higman in another way to obtain
another set of examples of finitely presented infinite simple groups (see [12, 13,
14]).
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We include an Appendix presenting some unpublished results of Bieri and
Strebel. A.l, A.2, and A.3 are all used in §1, and it might be helpful to read
them before beginning §1. A.4 is needed in §4, and A.5 is a simplicity result
which is not needed in this paper, but is referred to above.

I am very grateful to Ken Brown for giving generous support and advice
during the preparation of this work.

1. The complexes
In this section we will describe the complexes of K. S. Brown on which the

F, T, and G groups act in the case where P is generated by the set of integers
{«i, «2, ... , nk} and A = Z[j- ,£-,...,£-]. These complexes are described
in [2] for the case where P is generated by one integer; the generalization to
more than one integer is unpublished. We will then find a homotopy equivalent
G (or F or T) invariant subcomplex which we will use in computations. We
remind the reader that it might be helpful to look at A.l, A.2, and A.3 of the
Appendix before beginning this section.

The complexes are constructed assuming that {nx, ... , nk} form a basis for
P, and that / e Z+ . Before describing the complexes we explain why there is
no loss of generality in making these assumptions. First, we have

Proposition 1.1 (K. S. Brown). P has a basis as a free abelian group consisting
of integers.

Proof of 1.1. Think of Q>o as a free abelian group with the set of primes as
basis. Written additively, Q>0 = L = Z © Z © ■ ■ • and P = W, a finitely
generated subgroup of L whose generators have only nonnegative coordinates.
Choose a maximal independent subset B' of the original generating set for W,
and let W be the group generated by B'. Then W has finite index in W,
so m W C W for some positive integer m. But if we choose any basis for
mW and let Af be the matrix whose rows express the basis for mW in terms
of B', then performing row operations on M just corresponds to changing
the basis for m W. We can do enough of these to make all entries below the
diagonal zero, and then we can make the remaining entries positive. So mW
has a new basis B consisting of Z>o-linear combinations of the elements of
B'. But any element of this basis has all coordinates divisible by m , so ^¡B is
a basis for W, consisting of elements which have all coordinates nonnegative,
which means that it corresponds to an integral basis for P.   D

Now we consider the choice of the interval on which the homeomorphisms
act. Since I e A, I can be written as ^ , where m, n G Z and n e P. Then
if <p is the homeomorphism taking [0, m] to [0, /] with constant slope ¿ ,
conjugation by <p gives an isomorphism between G(l, A, P) and G(m, A, P)
(similarly for F and T). So we need only consider values of / € Z+ .

From now on we may assume that {nx, n2, ... , nk}, n,■ e Z, form a basis
for P and that / 6 Z+. In this situation Brown gives a poset on which the
groups act. Here we will first describe everything for the F groups, and then
indicate the changes necessary for the  T and G groups.   We first set d -
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gcd(«i - l, n2 - l, ... , nk - l). An element of the poset is a piecewise linear
homeomorphism from [0, a] to [0, /], where a e Z, a = I (mod d), which
has finitely many singularities, all in A , and slopes in P. To explain where the
mod d condition comes from, recall from A.l that a PL. homeomorphism with
slopes in P and singularities in A can take [0, a] to [0, /] if and only if a-1 e
IP-A. But A/IP-A ~ Z/i/Z in our situation, so we can have such a map if and
only if a = / (mod d). To make these maps into a poset, given fx : [0, a] —>
[0, /], we say that f2 is a simple expansion of f if for some i 3s : [0, a +
n¡; - 1] -* [0, a] such that f2 = fi°s, where 5 is a homeomorphism which has
slope 1 everywhere except on some interval [x, x + n¡], x e {0, 1, ... , a - 1},
on which it has slope ¡j-. We think of these expansion maps 5 as expanding the
domain of /■ by dividing some unit subinterval of the domain into n¡ equal
pieces and expanding each one to an interval of length one in the domain of
f2. We extend this to a partial ordering by saying that f\ < f2 if f2 can be
obtained from fx by doing finitely many simple expansions. Then F acts on
the poset by composition: given / e F and g in the poset, f(g) is the map
fog . Since the group acts on the range of a poset element, and expansion takes
place in the domain, this action preserves the partial order.

In the case of F(r, Z[£], (n)), this poset is isomorphic to a subposet of the
set of bases of Higman's V(n, r), ordered by expansion (see [9] or [2]). We
will therefore call an element of this poset a basis. If an element / has do-
main [0, a], we will say that / is a basis of size a. If / and g are two
bases with / < g, we will say that g is an expansion of /. We will refer to
the basis which is just the identity map on [0, /] as the standard basis. Then
any expansion of the standard basis of size a takes {0, 1,2,...,a} to some
P-regular subdivision of [0, /] and is linear on each subinterval [i, i + 1] for
i = 0, ... , a - I (for the definition of P-regular subdivision see A.2). So the
subposet of all expansions of the standard basis is in one-to-one correspondence
with the set of P-regular subdivisions of [0, /]. Now if vx and v2 are any two
bases of the same size, then there exists a unique group element / such that
f(vx) = V2. Conversely, using the above interpretation of P-regular subdivi-
sions, A.2 tells us that given any / e F , there exist vx and v2, expansions of
the standard basis of the same size, such that f(vx) — V2. Such ordered pairs
of bases are the analogues of Higmans' symbols.

We call the subposet of all expansions of the standard basis the standard
subposet. Then any group element g translates this whole subposet to an iso-
morphic one consisting of all expansions of the ^-translate of the standard basis.
Conversely, any basis is contained in some translate of the standard subposet.
For if g : [0, a] —» [0, /] is any basis, any choice of a composition of expansion
maps S : [0, a] —> [0, /] reveals g to be an expansion of g o S~x e F, so g
lies in the g o S~x translate of the standard subposet. We can keep track of
the relationships within the standard subposet by associating a forest to each
basis. To the standard basis we associate a row of / dots. Then if / is a basis
in the standard subposet we can inductively represent the simple expansion of
/ obtained by expanding the zth /-interval into n¡ by drawing the forest for
/, and then drawing nj new leaves descending from the zth leaf in the forest
for /. As an example, we provide the picture for the expansion obtained from
the standard basis by dividing the first interval in thirds, and then the second
interval of the result in half, with 1-2:
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A
Now given bases /: [0,a] -» [0, /] and g: [0, b] -» [0, /], we see by a

minor modification of A.3 that g~x of: [0, a] —> [0, b] takes the c subinter-
vals of some P-regular subdivision of [0, a] linearly to the c subintervals of
some P-regular subdivision [0, b]. But we have seen that these subdivisions
correspond to expansions s and / of the identity maps on [0, a] to [0, b].
Or, in other words, the diagram

[0,c] [0,1]

'^[0, el-
commutes, and / and g have a common expansion in the poset. This means
that the poset is directed. Now let X be the simplicial complex associated
to the poset; i.e., X has an zi-simplex for each linearly ordered (n + l)-tuple
fo < f\ < ■■■ < fn in the poset. Then X is contractible since the poset is
directed, and F acts freely on A, so in particular, X/F is a K(F, 1). Now
we briefly indicate the changes for the T and G groups.

(a) For the T groups we attempt to imitate what we did for F. We
take piecewise linear homeomorphisms from [0, fl]/{o,a} to [0, /]/{o,/} which
have slopes in P, finitely many singularities in A, and map A to itself. We
can define expansion maps 5 to be maps from [0, a + n¡■■ - l]/{o,a+f.,—i} to
[0, a]/{o,a} which take 0 to 0, and have slope 1 everywhere except on some in-
terval [x, x + n¡], on which they have slope ¡J-. But now the resulting poset is
not directed. In particular, if / and g differ by a "rotation," i.e., if fop = g,
where p: [0, a]/^0,a} -* [0, a]/{o,a} takes 0 to i e Z, and p has slope 1 ev-
erywhere, then / and g have no common expansion unless p is the identity.
So we modify the poset by taking as bases equivalence classes of the homeo-
morphisms we chose before, where / ~ g if / o p = g for p as above. Then
we can say that one equivalence class is a simple expansion of another if they
have representatives which are simple expansions of each other in the man-
ner described above. Then everything works, and T acts on the contractible
complex X. Notice that the action is not free; the vertex stabilizers are finite
cyclic groups. Since bases are now equivalence classes, two bases of the same
size do not determine a group element. However, given two expansions of the
standard basis vx and v2 of size a, let gx and g2 be the representatives in
the equivalence classes which are order preserving on [0, a). Then any cyclic
permutation p of a elements corresponds to a "rotation" map, and the triple
(vx, v2, p) determines the group element f = g2°P°gx~l ■ This is the analogue
of a symbol of Higman's in this case (see [2] for more explanation).

(b) For the G groups we take as poset elements piecewise linear bijections
from [0, a] to [0, /] with finitely many singularities and discontinuities all in
A and slopes in P. Just as for T, the resulting poset is not directed, but this
time we need to set / ~ g if fop = g, where p: [0, a) —> [0, a) is allowed
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to arbitrarily permute the subintervals {[0, 1), [1, 2), ... , [a - 1, a)} . The
vertex stabilizers for the action of G on X will be finite symmetric groups.
Here the symbols which determine group elements consist of two expansions of
the standard basis of size a and an arbitrary permutation of a elements.

K. S. Brown [2] (and unpublished) has shown that V«, 3 an «-connected
subcomplex of X on which F (or T or G) acts with finite quotient complex,
which shows that all of these groups are finitely presented and of type PPoo •

We will now describe a homotopy equivalent subcomplex A of A which has
an infinite quotient mod the group action, but is useful in computing homology
and obtaining presentations for these groups. Again we will talk about the F
groups, but everything goes through for T and G. In order to define A, we
will need to study intervals in the poset. In preparation for this, we explain
the notation we will use. We will write [/, g] for the closed interval in the
poset; i.e., the subposet {h\f < h < g]. Similarly, we write (/, g) for the
open interval. We write \[f, g]\ and \(f, g)\ for the subcomplexes of X
spanned by these intervals. We will refer to all of these things as intervals.
When studying such an interval, we are concerned with which expansion maps
take you from / to g, rather than the particular basis /. So we will be looking
at the domain of / and how it is divided when expanding to g. Given a basis
/: [0, a] —> [0, /], we will refer to the intervals [i, i + 1 ], i = 0, 1, ... , a - 1 ,
of the domain of / as /-intervals. Given / < /', every /'-interval J' is
mapped by the expansion maps to a subinterval of some /-interval /, and we
can talk about the ratio l(J, J') of the length of J to the length of the image
of J' in /. Since the «, form a basis for P, this is uniquely expressible as
a product of the «,. Notice that gcd's and lcm's of these ratios exist in the
multiplicative monoid generated by the «,.

Next we will establish the existence of certain least upper bounds in the poset.
Proposition 1.2 (K. S. Brown). Given a set of simple expansions {/} of f,
consider each f-interval J . Let mj = 1cm of the set of l(J, J'), where J'
ranges over all f -intervals mapping into J. Let h be the expansion of f
obtained by dividing each J into mj equal pieces. Then h is the least upper
bound for the {/} in the poset.
Proof of 1.2. Clearly h> f. Suppose g is another expansion of the {/} . So
g > /. For each /-interval /, consider all ^-intervals J1 contained in J,
and let Dj = gcd of the set of ratios l(J, /'). Let g' be the expansion of /
obtained by dividing J into Dj even pieces. Then / < h < g'. So we need
only show that g' < g .
Lemma 1.3.  g' < g.
Proof of 1.3. The proof is by induction on the number of simple expansions
of / which are < g. The conclusion is clear if g is a simple expansion of
/. Now suppose that /' is a simple expansion of / which is less than g.
Apply the induction hypothesis to /' and g, obtaining g" with f'<g"<g.
Checking the definitions, we see that g' < g" , so g' < g as well.   D

Now we are ready to study X . It turns out that many of the simplices of X
are inessential, in the sense that removing them does not change the homotopy
type of X. To explain which are essential and which are not, consider an
arbitrary interval [f, g]. Let {/} be the simple expansions of / which are
in the interval. Let h be the least upper bound of the / .
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Definition 1.4. If h = g, then [/, g] (or (/, g)) is an elementary interval.
If h < g, the closed and open intervals are nonelementary. Furthermore, a
simplex (fo, f , ... , fn) is elementary if [/, ff] is elementary Vz < ; . Let
N c X be the union of all elementary simplices.

Another way to describe an elementary interval is: [/, f] is elementary if
in expanding / to f , each /-interval is divided into n equal pieces, where n
is some (possibly empty) product of the n, in which each n¡ appears at most
once. It follows from the definitions that A is an P-invariant subcomplex of
X. It is useful to draw pictures to keep track of what is going on here. Whether
or not a simplex is elementary is independent of the particular basis fo ; it
depends only on the expansions involved in getting to the other / . Keeping
this in mind, recall that if we represent the basis fo by a row of a dots, where
fo has size a, then we can represent expansions of fo as forests with a roots.
We can then draw a picture of the simplex with forests labelling the vertices.
The simplex is then determined by this picture and the basis /o . Notice that F
will translate the simplex to another simplex with exactly the same picture but a
different least vertex. We draw a few examples for the case F( 1, Z[g] ,(2,3)):

Simplices with these pictures are nonelementary:

Simplices with these pictures are elementary:

Theorem 1.5.  A is contractible.

To prove this, we need to know the homotopy type of \(f, g)\ in X .

Lemma 1.6. Let {/}, 1 < i < n, be the simple expansions of f in (/, g).
Let (/, g)t/ be the subposet consisting of all of the lub's of any subset of the
f, as long as these lub's are less than g. Then the inclusion of \(f, g)¡v\
into \(f, g)\ is a homotopy equivalence. In particular, \(f, g)\ is homotopy
equivalent to S"~2 if the interval is elementary, and is contractible if the interval
is nonelementary.
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Proof of'1.6. Make a poset map p from (/, g) to (/', g)n sending any a to
the lub of the subset of those / of which a is an expansion. Since p is a
map of posets, p is just the identity on (f,g)ff, and p(a) <a Va, p induces
a homotopy equivalence between \(f, g)\ and \(f, g)^\, with the inclusion
map as the homotopy inverse (see [12]). But |(/, g)#| is isomorphic to the
barycentric subdivision of an (n - l)-simplex for a nonelementary interval, and
is isomorphic to the barycentric subdivision of the boundary of an (n - 1)-
simplex for an elementary interval, which proves the lemma.   D

We need to make a few remarks for future reference.
(1) Let [/, g]N = (/, g)N u {/, g} . Notice that in the proof above, in the

case of an elementary interval we can extend the poset map to [/, g] by fixing
/ and g, which shows that the inclusion [/, g]x «-* [/, g] is a homotopy
equivalence. Similarly, {/, g}*\(f, g)\N •-> {/, g}*\(f, g)\ (where * denotes
the join) is a homotopy equivalence.

(2) \(f,g)N\CN.
(3) If o = (ho, hx, ... , hr) is a simplex of A, we claim it is a simplex in

|[«o, K]n\ . Clearly (ho, hr) is an elementary interval. If o $. \[ho, «r]/v|, then
for some i, h¡ must not be the lub of a finite collection of simple expansions
of ho. But then (ho, h¡) is a nonelementary interval, which is not true since
CTG A.

Proof of 1.5. Let the height of \(f, g)\ be b-a, where the size of g is b and
the size of / is a . We can build up X by starting with all of the vertices, then
adjoining intervals of height 1, then all intervals of height 2, etc. By remarks
(2) and (3) above, we can build A by adjoining elementary intervals in order
of height; but instead of adjoining the full interval we adjoin |[/, g]^\. Let
X" (respectively A") be the result of adjoining all intervals of height < n.
Now A0 = A0. Suppose by induction that A"-1 <-> Xn~x is a homotopy
equivalence. We would like to extend this to A" <—► X" . We do this in two steps.
First adjoin all nonelementary intervals of height n to X"~x . If \[f, g]\ is one
such, notice that |[/, gJlnA"-1 = {/, g)*\(f, g)\, which is contractible, since
it is the suspension of something which is contractible by Lemma 1.6. Since
\[f < g]\ is also contractible, this adjunction does not change the homotopy type
of X"~x . Since two height n intervals intersect only in Xn~x , we can make
this argument for each nonelementary interval of height n . If we let A"-1
be the result of adjoining all of these intervals to X"~x , we have shown that
A"-1 <-> X"~x is a homotopy equivalence. Now if (/, g) is elementary, we
have by remark ( 1 ) above the following commutative diagram:

\[f,g]N\   -   \[f,gh\nN"-x   =   {f,g}*\(f,g)N\   -   A""1
I I I

\[f,g]\    -    \[f,g]\nx»~l    =    {f,g}*\(f,g)\    -   Af-1
in which the three vertical inclusions are homotopy equivalences. Hence the
inclusion

Nn~l U |l/, g]N\ - A,"-1 U |I/, g]\
is a homotopy equivalence [5, 7.5.7]. Repeating this for each elementary in-
terval of height n , we see that A" ^-> X" is a homotopy equivalence. So, by
induction, A <—► X is a homotopy equivalence. But X is contractible, which
proves the theorem.   D

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUPS OF PIECEWISE LINEAR HOMEOMORPHISMS 485

When we turn to the T and G groups, everything works the same way. In
the proof above we were only interested in what goes on inside some interval
(/ ,~g), so we can choose / as the representative of /, and then choose repre-
sentatives for the other poset elements in the interval which are just / composed
with some of the expansion maps. Then the same analysis goes through.

We built up our complex A by adjoining subcomplexes \[f, g]¡v\. It turns
out that each such subcomplex is actually a triangulated «-cube, where « is
the number of simple expansions of / which are less than g. To see this,
view {0,1} as a poset with 0 < 1. Taking the product of « copies of this
poset, we obtain a poset C with «-tuples of 0's and l's as elements. Then
the geometric realization of C, \C\, is just a triangulated «-cube. We make a
poset isomorphism between C and [/, g]x , by sending (ex, s2, ... , sn) with
e, G {0, 1} to the least upper bound of {/|e, = 1}, i = 1, 2, ... , n. This
reveals |[/, g]N\ to be a triangulated «-cube. Any ordering of the {/} gives
such an isomorphism, but we will fix one to use from now on. We let / be the
simple expansion occurring at the leftmost /-interval, /> be the one occurring
at the next interval to the right, etc. If / and f¡ both occur in the same
/-interval, then / < / if / is an expansion into «, pieces, and f¡ is an
expansion into n¡ pieces, with «, < n¡. We will call the resulting isomorphism
the characteristic isomorphism. Now if P has rank 1 as an abelian group, any
two of these cubes intersect in a common face, so that the cubes give a CW-
complex structure to A. Moreover, the F groups act freely on A, so in the
case of an F group with rank one slope group, the cubical chain complex for
A will give a resolution for F with one copy of ZP in dimension « for each
P-orbit of «-cubes.

For larger rank P, however, faces of the cubes may be attached to the inte-
riors of the same or higher dimensional cubes. As an example, the following is
a diagram for a square in the complex for P( 1, Z[¿], (2, 3)) :

A

A ■ Ah
Notice that the two sides attached to the vertex with one dot are two of these
cubes, but the other two sides are diagonals of a two-dimensional and a three-
dimensional cube. The problem with this is that we cannot just write down a
chain complex with the cubes as generators; we would have to use simplices
instead. Then we have many more cells and a complicated boundary operator,
making homology computations difficult.

For the purpose of obtaining a presentation for F, however, we can use the
cell structure of A given by the cubes. We first choose a maximal tree in the
quotient complex consisting only of edges corresponding to simple expansions,
and then we have one generator for each P-orbit of intervals [/, g], where g
is a simple expansion of / (these are the one-dimensional cubes of A). Then
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we choose a lift of the tree to A, which gives us specific homeomorphisms
which these generators correspond to. We do not need generators for the other
edges because they are all diagonals of cubes, so the homeomorphisms which
they correspond to can be expressed in terms of our generating set. We then
get a relation for each P-orbit of intervals [/, g], where / has two simple
expansions which are < g (these are the two-dimensional cubes of A). Since
the boundary of some two-cubes contains diagonal edges of higher dimensional
cubes, we need to choose a path beginning and ending at the endpoints of the
diagonal which goes over only one-dimensional cubes of A in order to express
the relation in terms of our generators. If we do this systematically, we obtain
regular looking presentations for any of our F groups. For T and G groups,
we do a similar thing, but we also need to add to our presentation stabilizers of
the bases on the tree and certain conjugation relations among them (see [4]).
Example 1. For F (I, Z[j], (2)), A is actually a cubical complex. We lift a
maximal tree in N/F to A by lifting the vertex of size one in N/F to the
standard basis, and then making a tree by taking successive expansions at the
leftmost interval. From this we obtain the following presentation:

(Xo , XX , X2 , . ■ ■ \XjXj = X¡Xj+\ Vz < j).
This is the well-known presentation for this group [1].
Remark. In this example, as for any F group with P generated by one integer,
Brown constructs essentially the same resolution as the one given by the chain
complex of A in a different way, using the known presentation and viewing it
as a rewriting system for words in the generators (see [3]). This method does
not seem to generalize to more than one integer.
Example 2. For P(l, Z[¿], (2, 3)). using the same tree as above, we obtain

(xo, xx, ... ; yo, yx, . ■ ■ ; yQ , y* , ■ ■ ■ \xjx¡ = x¡Xj+x, yjX¡ — XiyJ+x,
y+x¡ = x¡yj+l, Xjy+ = ytxJ+2,

yjyt = ytvj+i, yjyî = ytyj+2 v/ < ; ;
y,+\yt = yiXi+xx,, x¡y++ly+ = y+xi+2Xi+xXi Vz).

In both examples,

ai+i(t)
\ai(2t)   ifiG[0,i],
t if?G[i,l],

where t e [0, 1] and a = x, y, or y+ , and Xo, yo - and y£ are the homeo-
morphisms graphed below:

vo
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2. Collapsing to complexes of finite type

In this section we restrict ourselves to the groups F (I, Z[w xn ] ,(nx, ... , nk)),
and show how to collapse the complex N/F to a homotopy equivalent com-
plex with finitely many cells in each dimension.   We follow the method de-
scribed in [3, 1].  Recall that d = gcd(«i - I, ... , nk - I), and assume that
«i < «2 < • ■ • < nk . We need to set up some notation before we begin.

We will view A as a "cell complex" with the cubes \[f, g]N\ as the cells.
Remember that with this cell structure, the attaching maps do not always go into
lower dimensional skeleta, so this is not a CW-complex structure. This means
that we cannot build A by adjoining cells in order of dimension. There is a
natural concept, called degree, which replaces the notion of dimension. For any
cell \[f, g]ff\, each /-interval is expanded into p pieces, where p is a product
of the «, in which each «, appears at most once. We say that \[f, g]x\ has
degree (ax, ... , ak), where a¡ is the number of /-intervals which are divided
into p pieces; here p is a product of k-j+1 of the n¡. Then the dimension of
a cell of degree (ax, ... , ak) is kax +(k-l)a2-\-\-3ak_2 + 2ak_x +ak . The
degrees may be ordered lexicographically. Then we note that each geometric
face of |[/, g]n\ is contained in a cell of smaller degree, even though it may
have larger dimension. Thus we can build A by adjoining cells in order of
degree. Notice that in the case k = 1, the degree of a cell is just a one-tuple
which is the dimension of the cell, so this order of adjunction is just the standard
order of adjoining the cells in a CW-complex.

The action of F is cellular and preserves both dimension and degree. If
we look at the action of F on one cell o of A, we see that the only set of
points of a which are identified are zero cells, so the quotient complex consists
of cubes with perhaps some 0-faces identified. We will give each such cube in
the quotient complex a symbol. First notice that there is one zero cell for each
natural number 5 = / (mod d) (corresponding to all bases of size s). We call
the zero cell corresponding to the number 5, Vs (we will also write this as a
string of 5 v's, and will call this a symbol of length s). Now for each «-cell ct
in the quotient we may choose a lift [/, g]^ in A. g is obtained by expanding
certain /-intervals into p pieces, where pisa product of the «, in which each
«, appears at most once. We encode this information in a symbol of length s ,
where s is the number of /-intervals. Our symbol has one letter for each /-
interval, with the leftmost letter corresponding to the leftmost /-interval, etc.
We put v if there is no expansion at an interval, and xj if the interval is
divided into «,,«/2 • • • «,, equal pieces, where J = {ix, i2, ... , ir} . In the case
k — 1, we may omit the subscripts on x . This symbol is independent of the
choice of lift of o . For example, v2xxxx,2v is a three-cell of N/F such that
any lift of it to A, written [/, g]x , has / a basis of size 5. When expanding
from / to g , the third /-interval, [2, 3], is divided into «i equal pieces; and
the fourth /-interval, [3,4], is divided into «i«2 equal pieces.

Notice that these symbols are just another way of writing the forest symbols
we used in the last section. If we are given a cube [/, #]# G A, we associated a
forest to g which described how it was related to / in the poset. The forest had
5 roots, where / was a basis of size s , and each letter used above corresponds
to a tree at a single root. Notice that we only have a finite number of possible
such trees because (/, g) is elementary.
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We now define face operators on the cells of N/F. An «-cell o will have
2« faces, A¡(o) and B¡(o) for z G {1,...,«}. Suppose a = SxjR, where
S is an 5-cell and J = {ix, i2, ... , ir}, with r > 1 and ix < ■■ ■ < ir. We
may think of v as x0 for this definition. Choose ; with 1 < j < r, and let
J' = J\{ij} ■ Then we define

As+j(o) = Sxj'R,        Bs+j(o) =S xj'-xj- R.
'i

Now each «-cell is a cube, with 2« geometric faces which are (« - l)-cubes,
though not necessarily «-cells. Choosing any lift of o to A, say t , we have a
characteristic isomorphism from In to t. Each face cti of ct is the image of
a face of I" under the composition of the characteristic isomorphism and the
quotient map. We call cti the geometric A¡ or B¡ face of ct if it is the image
of the A i or B¡ face of I" . The A,-faces of a cell defined above are precisely
the geometric ^,-faces of the cell, whereas the P,-faces defined above are the
geometric P,-faces of the cell only if r = 1. Otherwise, the geometric P,-faces
of the cell are diagonals of the P,-faces defined above.

We are now going to classify the cells as essential, redundant, or collaps-
ible. We will then give a bijection c from the set of redundant cells of degree
(ax, ... , ak) to the set of collapsible cells of degree (ax, a2, ... , ak_x, ak + 1)
such that ct is a geometric face of c(o). We then build up our space by a series
of adjunctions, first adjoining all essential cells of a given degree a and then
attaching each redundant cell ct of degree a along with c(o). We then move
on to the next greatest degree and repeat the process. Our setup will ensure that
there is some order in which to adjoin the redundant cells of a given degree
such that when we adjoin ct , all other faces of the collapsible cell c(o) will
have been already adjoined. Then this adjunction will just be an elementary
expansion, and will not change the homotopy type. This argument yields a
quotient complex Y of N/F with one cell for each essential cell of N/F,
where the quotient map is a homotopy equivalence. For more detail, see [3] or
[1].
Definition 2.1. A collapsible pattern is an xx not preceded by v . A redundant
pattern is «i w's in a row. A cell is essential if it contains no collapsible or
redundant pattern. An inessential cell is collapsible if the first (always from
the left) such pattern is collapsible, and redundant if the first such pattern is
redundant.

Definition 2.2. Let ct be a redundant cell of degree a . Then o = Rv"'S, where
R is a symbol with no redundant or collapsible patterns which does not end in
v . Let c(o) = RxxS.

One can now verify the following:

Claim 2.3. c gives a bijection between the set of redundant cells of degree
a = (ax, ... , ak) and the set of collapsible cells of degree (ax, ... , ak + I),
such that ct is a geometric face of c(o), and all other faces of c(o) are ^ o .
In addition, suppose ct has degree a = (ax, ... , ak), and let t ^ ct be another
face of c(o). Then t has degree a' - (a\, ... , a'k) with a' < a. So if t is
essential, t was adjoined before ct . If t is collapsible, then c_i(t) has degree
(a[, ... , a'k - I) < a, so that t was adjoined before a .
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We call x' an immediate predecessor of t if t' is another redundant face of
c(x) with the same degree as x. We now need to show that there is some order in
which to attach the redundant cells of a given degree, along with their collapsible
partners, which ensures that all the immediate predecessors of x have already
been adjoined when we adjoin x. We will first show that there are no infinite
chains of immediate predecessors, by which we mean a sequence xx, x2, x-¡, ...
of redundant cells such that t,+i is an immediate predecessor of t, Vz . If this
is true, then any set of cells of degree a contains minimal elements, where a
minimal element is one which has no immediate predecessors. We can therefore
factor the adjunction of the redundant cells of degree a into stages. We first
adjoin all minimal redundant cells, along with their collapsible partners. We
then attach the minimal cells amongst the remaining redundant cells, and so
on. This ensures that if we build our complex in the manner described above,
all steps except the adjunctions of essential cells are elementary expansions.

To show that there are no infinite chains, we first define x(r) to be the symbol
for x with all of the v's deleted. We now put a partial order on the *'s by
setting xx < xj, whenever J ^ {1}, and ordering the #'s lexicographically,
reading from the right. Since the length of ;j(t) for x of degree a is at most
a, this partial order has no infinite descending chains of ^'s for cells of degree
a. Then we have:

Claim 2.4. Suppose x' is an immediate predecessor of x.   Then either (1)
X(*') < #(t) - or (2) x(t') = /(t) , in which case x' = RvS and x - Rvn,S.

It follows that there are no infinite chains of immediate predecessors. So we
see that we can carry out this collapse of our complex onto a quotient complex
Y with one cell for each essential cell. Checking the definition of essential,
we see that the number of u's in an essential symbol of a given dimension is
bounded, so there are only finitely many essential symbols in each dimension.
So F is a K(F, 1) with finitely many cells in each dimension, establishing:

Theorem 2.5. F(l, Z[w '.„ ], («i, ... , nk)) is finitely presented and of type FPX

This has been shown in a more abstract way using the complex X by K. S.
Brown (unpublished).

Now recall that if the slope group is generated by only one integer, the at-
taching maps for an «-cube of A do go into the (« - l)-skeleton, and the
degree of an «-cell is just («). So we are just thinking of A as a CW-complex
with the cubes as cells. Y is therefore a CW-complex with one cell for each
essential cell of N/F. Since A is a regular CW-complex, it is easy to compute
the boundary operator in the chain complex of N/F . Each cell which is in the
image of the attaching map must appear with coefficient ± 1. In this case, the
face operators in A always give the geometric faces, and one checks that the
face operators satisfy the usual identities for cubical face operators. Therefore,
if we set d(o) = £(-1)'04/(ct) - B¡(o)), then d2 = 0. It follows that this is
the boundary operator in the chain complex of N/F (see [6, Chapter 3]). The
chain complex for Y is obtained by taking the quotient complex of this by the
subcomplex generated by the collapsible cells.

To compute the boundary in the chain complex of Y, we choose as a lift
of a given cell of Y the corresponding essential cell ct of N/F, and compute
its boundary. Any collapsible cells which appear in d(o) will be zero in the
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quotient complex, so we can ignore them. For each redundant cell x, we find
c(x), and substitute x-d(c(x)) for t in the formula for <9(ct) . Again, any new
collapsible cells may be ignored, and we keep replacing redundant cells in this
manner. The process will end (because a cell has only finitely many immediate
predecessors, and there are no infinite chains of immediate predecessors) with
only essential cells in the expression for d(o) ; and the corresponding cells in
Y, with the same coefficients, will be the boundary of the cell we started with.
One can then check that if a is an essential cell of N/F, A ¡(a) - B¿(o) = 0
in the quotient chain complex, by induction on the number of non- v's to the
left of the xx at which the z'th faces occur. But then the boundary maps in the
quotient complex are zero, so the homology of F is just computed by counting
the essential cells, yielding

Theorem 2.6. If F, = F(i, Z[±], («)), then Hk(F,) = Z"("-"'"' for k > 1.
We record here the finite presentation provided by this collapse which corre-

sponds to one of the infinite presentations we gave in § 1.

Example 1. For P(l, 1[\], (2)) we have

(Xo , XX \x2Xo = XqX-} ,   Xt,Xx = XxXi) ,

where xf_}2Xj-\Xi-2 = x¡ Vz > 2 .

We will not give the finite presentation corresponding to our infinite presenta-
tion for P(l, Z[|], (2, 3)), which has six generators and 22 relations, because
in §3 we will do a more complete collapse and obtain a smaller one consisting of
four generators and ten relations. This will be shown to be the most economical
one possible.

We remark that the homology result above, as well as the corresponding finite-
ness results for a slope group generated by one integer have been obtained by
C. Squier (unpublished). He constructs essentially the same chain complex by
a different method, making use of the known infinite presentation for the one
integer case. The result in the case of slope group generated by 2 is due to
K. S. Brown and R. Geoghegan [1], also using the known presentation and yet
another method to construct essentially the same resolution. The homology re-
sults can also be deduced from work of P. Greenberg [8]. The methods here are
completely different, coming from the theory of foliations. They lead to homol-
ogy results in this and other cases but do not give presentations or information
about finiteness properties.

3. More collapsing

In the last section we saw how a collapse of the complex A led easily to a
computation of the homology of F in the case where the slope group of F has
rank one. For a slope group of higher rank, the boundary maps are not zero,
so to compute the homology of F from Y would involve some work. In this
section we will show that we can do much more collapsing, provided that we
replace A by a homotopy equivalent complex K. The latter will be a CW-
complex with one cell for each cube of A . Recall that A is not a CW-complex
with the cubes as cells because some of its cubes have faces which lie in higher
dimensional cubes.
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We begin by setting up the collapsing scheme we would like to use. We
classify the cubes of N/F as collapsible, redundant, or essential. First recall
from §2 that we have symbols for the cells which are words in the letters v
and xj , where / is some subset of {1,2,... , k}, and k is the rank of the
slope group. In the following two definitions, we may think of v as xj , where
7 = 0. Elsewhere, we will always mean J to be nonempty.

Definition 3.1. A collapsible pattern is an xj not preceded by v , where I e J .
A redundant pattern is nx - I = rx v's followed by xj where 1 ^ /. A cell is
essential if it contains no collapsible or redundant patterns. An inessential cell
is collapsible if the first such pattern is collapsible, and redundant if the first
such pattern is redundant.

Definition 3.2. Let ct be a redundant «z-cube. Then ct = Rvr'xjS, where R
is an essential cube and 1 <£ / . Then let c(o) = RxJU{XyS.

Then one easily verifies:

Claim 3.3. c is a bijection between the set of redundant «z-cells and the set of
collapsible (m + l)-cells. If ct is redundant, ct is contained in a face of c(a),
where here we mean face as defined in §2.

Keeping in mind that the cubes of K are going to give a CW-complex struc-
ture to K, we are going to build up K in order of dimension, instead of degree.
So we will first adjoin all essential «z-cells, then the redundant w-cells together
with their collapsible partners, and then move on to dimension m + 1.

In order to carry out the collapse as in §2, we need ct to be a geometric face
of c(a). We also will need to know that there is some order in which to attach
the redundant «z-cells such that all other cells on the boundary of c(o) (which
are all «z-cells) are adjoined before ct . If the cells are essential or collapsible,
this is now automatic. So if we say that ct' is an immediate predecessor of ct
if it is another redundant face of c(o), then we need to show that there are no
infinite chains of immediate predecessors. Then it will follow exactly as in §2
that we will be able to carry out our collapse.

We will now show
Theorem 3.4. There is K(F, 1) which is a CW-complex with one cell for each
cube of N/F. Hence we can classify the cells of this CW-complex as redundant,
collapsible, and essential, using the one-to-one correspondence between the cells
and the cubes of N/F. Then the complex has the property that if o is a redun-
dant cell, then a is a geometric face of c(o). In addition, there are no infinite
chains of immediate predecessors.

We will prove the theorem by constructing a contractible, regular CW-complex
K which has one cell for each cube of A, such that F acts freely on K and
K/F has the properties in the statement of the theorem. We are going to con-
struct K by adjoining an «z-cube ct' for each «z-cube ct of A. We will adjoin
the ct' in order of the degree of a .

In preparation for describing our attaching maps, we define face operators
for the cube \[f, g]rv\ as in §2. These are just the lifts of the face operators of
N/F to A. Let dx, d2, ... , dn be the simple expansions of / which are less
than g, in the standard order. Set

d¡ = lub of {dx,d2, ... ,d,, ... ,d„}.
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We then set At(\[f, g]N\) = \[f, dt]N\ and Bt(\[f, g]N\) = \[ditg]N\. One
checks that if x is a face of a, then x has smaller degree than a . As before,
the geometric faces of the cube \[f, g]N\ have names A¡ and B¡ coming from
the characteristic isomorphism from I" to |[/,g]/v|. Notice that the A¡ faces
always coincide with the geometric faces of the cube, whereas the B¡ faces only
coincide with the geometric faces if d¡ corresponds to an /-interval which is
divided into exactly n¡ pieces, for some j, in expanding /to g. An interval
divided into p pieces, where p is the product of more than one of the n¡ , gives
Bj and Bi+X faces which are cubes containing the geometric faces as diagonals.

In order to construct K, we also need to define some maps between standard
cubes. First we define d'2 : I —> / x / by

d&W-i*0'0'        '€[^]'
\(2r-l,l),    /G[i,l].

We will use this to move the diagonal of a square out to a path in the boundary.
Now we extend this to one-dimensional diagonals of higher dimensional cubes.
Define d'n: I —> I" for « > 2 inductively by

d'„(t) = (d2XÍdIn-2)0d'n_l.
In order for things to fit together properly, we have to change scale here. We
define

d„ = d'noc„,
where c« : / —> I is just the piecewise linear homeomorphism of I which takes
the subdivision  (0, x-, \, ... , *=± , 1)  linearly to  (0, \, f.Çr, 1).
Now we extend to maps for higher dimensional diagonals by defining d¡ t n : Ij —»
(IJ)n by

dj,n = Tj<no(dn)J ,
where 7}>n: I"J —► In> just shuffles the coordinates by sending

(#n , •••, a\n\ ••• ; fl/i, ••• > Ojn) —* (flu ,... ,üj\;... ;a\„,..., aj„).

We are now ready to construct K. For each «z-cube ct of A we adjoin a
copy of Im , ct' , to K. We adjoin in order of the degree of ct' , and after each
adjunction of a cell ct' we will have a characteristic map from Im to ct' g K.

Now consider an «z-cube ct of A, and suppose that we have already ad-
joined cells to K for the cubes of lower degree in A. In order to adjoin a copy
of Im , which will be called ct' , we need an attaching map from the boundary
of Im to the part of K which has already been constructed. We describe this
map one face at a time. If, for some z, the geometric A¡ (or B¡) face of ct
coincides with A¡(o) (or B¡(a)) in A, we will just use the characteristic map
for (Ai(a))' (or (P,(ct))') as our attaching map. We have this map already
since A i (a) (or B¡(a)) has lower degree than a .

This takes care of all of the faces except some B faces. Suppose ct is a cube
of N with image SxjR in N/F, where R is an r-cube, S is an s-cube, /
has i elements with i > 2, and r + i + s — m. Let n be nt, where t is the
7th smallest integer in J. For 1 < j < i, the geometric Bs+j face of ct is a
diagonal of Bs+j(o), so we need to explain how to attach the Bs+j face of Im .
It is just an («z - l)-cube, which we write Is x I'~x x V . We attach it via

/* x /''-' x/'^fx (/'->)" x r - (Bs+j(o)Y,
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where the first map is id/* xd¡-x,, x id/r, and the second map is the characteristic
map for (Bs+j(o))'. As before, Bs+j(o) has lower degree than ct , so if we attach
in order of degree this attaching map makes sense. Now one checks that the
maps agree on the intersections of faces. This is almost immediate for two faces
corresponding to two faces of ct arising from different letters in the symbol for
the image of ct in N/F . Agreement on the intersection of an A and a B face
arising from the same letter is also easy to see. For the case of two B faces
arising from the same letter, agreement on the intersection follows from the fact
that

(di,p)m odiym = di>pm = (diim)p odi<p.
These attaching maps give a one-to-one map from the boundary of an «z-cell

to a union of (m - l)-cells of smaller degree. One can check inductively that
the characteristic maps are isomorphisms, so that A is a regular CW-complex
with the interiors of the cubes partitioning the points of K into open cells.

Now we claim that K is contractible. In fact, this does not depend on any
choices we made in defining the d¡•, „ , but only on the fact that K has one cell
ct' for each cube ct of A, with boundary contained within the union of the
(Bi(o)Y and the (A¡(a))'. For we have:
Proposition 3.5.  K is homotopy equivalent to A.
Proof of'3.5. We prove this by contractible carriers [11, Chapter 2, Theorem
9.2]. Let a be a simplex in A, say a = (f0, ... , f„) with /0 < / <•••</„ ,
so a c |[/o, /,]/v| = a (a). Let dx, ... , dr be the simple expansions of fi,
which are less than /„. Let

W'(a) = (a(a))'ö\J[Bi(a(a))]'cK.
í=i

W(a) may be built by gluing the cubes in the union to the main cube (o(a))'
via the attaching maps. One checks that these cubes can be adjoined one by
one along contractible intersections, so that W(a) is contractible. On the other
hand, given a cell b' of K corresponding to a cube b of A, let

W(b') = bU l\jBi(b)\ c A.

Now there exists \[go, gs]\ *->• X such that W(b') «-* \[go, gs] ■ But we had a
retraction of \[go, &]|onto \[go, &]/■/! = b inside X. Under this retraction
B¡(b) stayed inside itself, so the retraction restricted to W(b') takes place within
A. W(b') retracts to b, which is contractible. We now have two systems of
contractible subcomplexes in K and A :

{W(b')}b,eK   and   {W'(a)}aeN.
Now by construction if ax is a face of a , &'(ax) C ^'(a) ; and if b\ is a face
of V, W(b\) ç W(b'). So there exist maps a: N ^ K and ß: K-> N carried
by these systems of contractible complexes. Notice that if V G K, a o ß(b') is
contained in V u ({J[Bj(b)])' = %"(b), which also contains id*^') = V . This
shows that a o ß ~ id# . Similarly, ß o a ~ id^ , and so A ~ K.   D

Notice that the vertices of K are in one-to-one correspondence with the
vertices of A, so this gives an action of F on the vertices of K. But the group
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action on all of A takes cubes to cubes, and one checks that this induces a free
cellular action on the whole complex A extending the action on the vertices.
This means that the quotient complex K/F is a K(F, 1). If h e F, then
(«(ct))' = h(o'), so K/F has one cell for each cube in N/F .

We will now drop the primes and use the symbols for the cubes of N/F for
the corresponding cells of K/F . To check that K/F has ct as a face of c(o)
for any redundant cell ct , we need to figure out which cells are on the geometric
faces of our cubes. This can be done by examining the attaching maps. We will
later on give the explicit formula for the boundary maps in the cellular chain
complex of K/F in the case of a rank two slope group. As a more general
illustration, we give an example of how one traces back through the attaching
maps to find out which cells appear on some geometric face.

We consider the case of a rank three slope group with «■ = 2, «2 = 3, and
«3 = 5. Let J = {1, 2, 3}, and consider the geometric Bx face of Xj . It is the
union of two-cells in the boundary of the four-cell xjiXj* , where J1 = {2, 3} .
Examining the attaching map for the Bx face, we see that it is attached to four
squares: vxj*, xj*vx5, and certain diagonals of x2x\ and x^x2 . But now trac-
ing through the attaching maps for the boundary of xj'Xj*, we see that on the
Pi face we have vxj>, xj>vX5, x2v2x?,, x2vx^v5, x2x^vx0, x^v4x2, Xiv3x2v3,
XiV2x2v6, x-}VX2v9 , and x^x2vx2.

Notice in this example that ct = vxj* is redundant, and c(o) = xj. One
checks that in general ct is on the boundary of c(a). So all that remains to be
verified is that there are no infinite chains of immediate predecessors. To do
this we will first need to define a partial order on the /(ct)'s, for a an «i-cell,
as in §2. First we define a partial order on the letters xj, with J ^ 0. If
\J\ < \J'\, then we set Xj < Xj>, unless \J'\ = \J\ + l, I e J', and 1 $ J, in
which case we set x'j < Xj . We take the transitive closure of this order. Now
we again order the /'s lexicographically, reading from the right. Again, since
the number of xfs in an w-cell is bounded, there are no infinite descending
chains of Xs f°r «i-cells. Now one checks:

Claim 3.6. Suppose x' is an immediate predecessor of x. Then either ( 1 )
X(t') < x(t) , or (2) ^(t) = #(t7) , in which case x' = RvaxjvbS and x =
RvcxjVdS, where either a < c, or a — c and b < a .

Notice in the example of the three-cell above that all of the faces listed above
other than ct and xj>vX5 fall into case (1) of the claim, and xj*vX5 falls into
case (2). It follows from the claim that there are no infinite chains of immediate
predecessors. So we may collapse K/F to a complex Y with one cell for each
essential cell of K.

While this is a more complete collapse than the collapse of §2, the boundary
maps in the cellular chain complex of Y are not always zero. In the cases
where d ^ nx-l, the complex would have more than one vertex, so clearly the
boundary maps cannot all be zero. In these cases one could collapse a maximal
tree, but it is not clear how to do further collapsing systematically. If d — nx -1 ,
the boundary maps are zero. This follows from a homology computation which
may be deduced from the work of P. Greenberg [8]. If k - 2 and d = rx , we
have checked directly that the boundary maps are zero. In all cases, though, this
collapse does provide smaller finite presentations for the groups than the ones
obtained in §2.  We give as an example the finite presentation corresponding
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to the infinite presentation of Example 2 of §1.  Notice that in this example
d = «i - 1, so this presentation is the smallest possible one.

Example. For P(l, Z[\], (2, 3)) we obtain

(xq , xx, yo, y\\x2xo = xqXt, , x^xx = .xix*, y2xo = xoy^,
A3Pi = y^4, JCiJ'o = ^o *3 » x2yx+ = yx+x4,

yiy¿ = y^y*, yiy\ = y\y*,,
xoytyo = yox2XiX0, xxy¿yf = y^x^x2xx),

where x~x2Xj-Xx¡-2 = x¡   Vz > 2,  x~x2yi-Xxi-2 = y¡   Vz > 2, and yf =
y~+\yiXl+iXj vz.

We would like to be able to compute f/*(P) = H*(K/F) in any of our
examples. If the slope group has rank one, the collapse always gives the answer.
If the slope group has rank two, the collapse only gives the answer if d = nx -1.
In the next section we compute the homology of K/F for any slope group of
rank two. We have found the computations too complicated for slope groups of
higher rank. To do this computation, we would like a description of the cellular
chain complex of K/F , C(K/F).

A is a regular CW-complex with cubes as the cells. Sometimes an «-cube has
a union of (« - l)-cubes as a geometric face, rather than just one (« - l)-cube,
as in a normal cubical complex. Cn(K/F) is a free abelian group with the set
of all symbols for «-cubes as a basis. Given a cell ct of K, we can list the cells
which appear in d(o) by seeing which ones appear in the image of the attaching
maps. Since A is a regular CW-complex, each one appears with coefficient ± 1,
and one only need check that d2 = 0 and that the two endpoints of an edge
have opposite sign to ensure that one has the correct boundary operator (see [6,
Chapter 3]).

One checks that the following boundary formula works:

o(CT) = ¿(-l)i(^(-7)-5,(CT)),
7=1

where A¡ and B,  are defined as follows.   Suppose ct = SmR, where m e
{xx, x2, -*{i,2}} anc- 5 is a (j - l)-cell. Then if m = x¡,

Aj(o) = SvR,        Bj(o) = Svn'R;

and if «z = X{Xi2], then

Aj(o) = SxxR,        AJ+x(o) = Sx2R,
Bj(o) = Svr>xxR + Svr*-[xxvr<+xS + ■■■ + Sxxvr*ir>+XÎR,

BJ+x(o) = Svr>x2R + Svr'-Xx2vr2+XR + ■■■ + Sx2vr'{r'+X)R.

4. Homology calculations
In this section we compute the homology of any P group with rank two

slope group. The homology of P is the homology of the cellular chain complex
of K/F . We will compute this algebraically, using a product structure on the
chain complex. We will first give the argument for the rank one case, using the
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chain complex of N/F , which is due to Ken Brown. We will then extend this
to the rank two case.

First we explain the product. We first fix a choice of slope group P and a basis
for P, {«i,«2}. Wedenote P(/,Z[^],(«!,«2)) for I e {1, 2,... , d} (or
F (I • ^[«]> (")) m the rank one case), by F¡. Then we define a map m: Fa x
Fb -* Fa+b . If g e Fa and « G Fb , we define

I     UM ^     / *(*) ifxG[0,a],
^.*)W = {Ä(x_a) + a  ifxe[«,« + ö].

If we denote the complex for F¡ by K¡ (we use A/ in the rank one case), the
map m induces a map m' among the vertices of the K¡, i.e., if / : [0, tx] —>
[0, a] and f2: [0, i2] -* [0, b], so that / G Ka and f2 e Kb, then define
m'(/,,/2):[0,i1+/2]-[0,a + /3] by

m'(/i, £)(*) = |
f(x) ifxG[0,?i],
f2(x-t2) + a   ifxe[tx,tx + t2].

One checks that this extends in the obvious way to a map from Ka x Kb to
Ka+b in which the product of an w-cell and an «-cell is an (m + «)-cell. This
product is also compatible with the group action, in the sense that if ct is a cell
of Ka , x is a cell of Kb , g e Fa, and h e Fb , then

m'(ga, hx) = (m(g, h))(m'(o, x)).

This implies that we have an induced product among the quotient spaces A//P/.
These maps are defined among an infinite collection of spaces. For compu-

tations it would be helpful to be able to consider only finitely many of them.
Recall that if we set d = gcd(«- - 1, «2 - 1), then A/IP ■ A ~ Z/dZ. But
then A. 1 tells us that we may choose for each / a map g¡: [0,1] —> [0, i],
where i e {1,2,... , d} and i = / (mod d), which induces by conjugation
an isomorphism between F¡ and P,. Then this isomorphism induces a homo-
topy equivalence between K¡ and K¡, which induces a homotopy equivalence
between A//P/ and A,/P,. Notice that in the quotient spaces, these homo-
topy equivalences are independent of the choice of the g¡. Using them, our
product among all of the quotient spaces becomes a product among the finite
set of spaces Kx/Fx, ... , Kd/Fd . It is an associative product with no identity,
and extending by linearity gives a product among the chain complexes of the
Kj/Fj, C(Ki/Fi). Checking the definitions, we see that this is compatible with
the boundary maps in the C(Kj/Fi), in the sense that

d(m'(o, x)) = m'(d(o), x) + (-l)d{mam'(o, d(x)).

We summarize this product in terms of our description of C(Ki/F¡). Let
Y = C(KX /P. ) © C(K2/F2) © • • • © C(Kd/Fd). Then F is a graded ring without
identity freely generated by v , xx, x2, and ^{1,2} = z ; of dimensions 0, 1, 1,
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and 2, respectively.  Y also has a boundary operator d defined by:

ct(ctt) = d(o)x + (-lYAima)od(x),
d(v) = o,

d(xx) = w"1 -v,
d(x2) = v"2 -V,

d(z) = vni~xxx + v"2~2xxvni +■■■ + xxv{"2-x)ni -xx
+ x2- v"l~lx2 - vn2~2x2vn2-x2v(ni~x)n2,

where we write the product in Y as multiplication is usually written. Note that
in the rank one case, we have a product in the direct sum of the C(N¡/F¡),
which we will also call Y, with the same description except for the fact that we
have no x2 or z generators.

Now we want to use Y to compute the homology of the P,, but H*(Y) =
01=1 ff»(P,). This is not a problem, however, because if we let B, be the
subgroup of P, consisting of homeomorphisms which are the identity in neigh-
borhoods of 0 and i, then B¡ = B¡ (see A.4), and we have:

Lemma 4.1 (K. S. Brown). H*(F¡) S. H*(Bi)®H*(PxP). In particular, H.(F¡) -=
H,(Fj), i,je{l,...,d}.
Proof of 4.1. If we let p: F¡ —> P x P be the map which records the slope at the
two ends of a homeomorphism, then we have a split exact sequence

0-tBi^Fi APxP^O.

Then we can form the following commutative diagram:

0    _» B¡ J^> Ft -£     PxP   —    0
I m\B¡ i (m,p) | id

0    _» ß, Ï5ËV    B,x(PxP)    ^    />x/>   _»    o

where to define «z we choose a piecewise linear homeomorphism <p with slopes
in P and singularities in A taking [0, z] to some proper closed subinterval
[0 + «i, i - e2]. If he F¡, let

,.w  v      Í Jc, xG[0,e1]U[z'-e2, /],
m(h)(x) = \ _

( pfloç)  ',    x G [ei, z - e2].

Now «î|^ induces the identity on H»(B¡), for if z is a cycle in the standard
resolution for B¡ representing the homology class z, z involves only finitely
many elements of B¡ and the union of the supports of all of these homeomor-
phisms is contained in some open subinterval of [0, i]. So 3/ G B¡ such that
f°g°f~l = <P°g°<P~l for all geB, appearing in z. So (m\B,)*Çz~) = /*(z),
where /, is the map on homology induced by conjugation by /. But /* = id|ß,,
so (m\s,)* is just the identity map. The commutative diagram then induces the
identity maps between the E2 pages of the spectral sequences for the two exact
sequences, so (m, p) induces an isomorphism on homology, and

H*(Fi) * //*(£, xPxP)^ H.(Bi) ® H.(P x P).
Since B¡ = B¡, this proves the lemma.   G
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We will now find the homology of Y, keeping in mind that it is d copies
of the homology of P, for any z. We first consider the case of one integer,
and compute the homology of Y, using an argument of K. S. Brown. Now
the slope group P = («), and recall that d — n — I. We first make Y into a
graded ring R with identity by setting R = Y © Z, where the extra Z is just
generated by the identity for R . Consider the following chain subcomplex C
of R : Co is generated by v" - v = w , Cx is generated by x , mx = vx - xv ,
z«2 = v2x - xv2, ... , m„_i = v"~xx - xv"~x. Notice that d(m¡) = 0 Vz,
and d(x) = w , so that Hq(C) = 0 and HX(C) — Zd . Now given an arbitrary
monomial in R, i.e., a string of v's and x's, we can almost rewrite it as a
sum of monomials involving only x, w , and m¡. Start at the left end of the
monomial, and leave any x's that you see alone. If you see a v, count the
number which occur in a row, say i. If i > «, replace the leftmost v" by
w + v , which you can think of as reducing the number of v's. Continue, until
you are reduced to the case i < « . If this is the end of the word, stop. If you
see v'x, replace it by m¡ + xv', which you can think of as moving v' past the
x . Continue until you have the sum of monomials only in the m¡■, w , and x ,
except possibly with vj at the right ends for j e {1, 2, ... , d} .
Claim 4.2. The monomials described above form a basis for R as an abelian
group.
Proof of 4.2. Let S be the free graded ring with identity generated by w', x',
and m\, with gradings «, «, and n + i, respectively. Let Sv', for i e
{1, ... , d} , be an isomorphic copy of S, where if m e S is a monomial of de-
gree r, the copy of m in Sv' has degree r + i. Then S? = S®Sv ®Sv2 © • • • ©
Svd is a graded ring, and we let Fr(¿?) c S? consist of all sums of monomials
of degrees < r. Map y to Ä via a map a, where if m is a monomial in
S, so that m = m(w', x', m[, ... , m'f), then a(m(w', x', m\, ... , m'd)) =
m(w, x, mx, ... , md) e R. Extend this to 5? by sending the copy of m in
SvJ to m(w , x, mx, ... , mf) - vJ e R . The argument of the previous para-
graph shows that this map is surjective. To show that it is injective, we give R
a new grading by setting dim(v) = 1 and dim(x) = « . We let Fr(R) c R con-
sist of all sums of monomials of degree < r. Then our map a takes Fr(S?)
to Fr(R), so we have an induced map a on the associated graded objects.
One easily checks that a is still surjective (it differs from a only in that w
is now sent to v" instead of v" - v). So a takes Fr(S?)/Fr~x(SP) onto
Fr(R)/Fr~x(R). But these are both finitely generated free abelian groups, so
if they are of the same rank for every r, then a is an isomorphism. So we
count basis elements on both sides, recording the information in power series
P(t) = 2^ a¡t', where a¡ is the rank of the subgroup of dimension z. We have

Ps(t) = 1 + (2r" + tn+x + tn+2 + ■■■ + t2"-x)
+ (2tn + tn+x + tn+2 + ■■■ + t2"-x)2 + ■■■

1
" \ -2t" - tn+x - tn+2-t2"-[ '

P   <t\= l+t + t2 + --- + td
r¿f\l)        j _ 2¡n _ ¿rt+1 _ ¡n+2 _ ... _ (2n-l '

PR(t) =l+(t + t") + (t + tn)2 + ■■■=  x_)_t„ ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GROUPS OF PIECEWISE LINEAR HOMEOMORPHISMS 499

and we see that P$>(t) = Pr(í) , so â is an isomorphism, which implies that
the original map a is also an isomorphism.   D

We can now think of R as S © Sv © Sv2 © • • • © Svd , where S = Z © C ©
(C<g>C)©(C®C®C)©--- . Now by the Kiinneth formula, H0(S) = Z and
Hk(S) = Zd", k > 1 ; and so H0(R) = Z" and //¿(P) = Z"*"-1)*, k > 1. But
remember that we put an extra Z into dimension zero when changing Y to
R, and //»(F) was really « - 1 copies of the homology of P,. So we have
algebraically recovered the result of Theorem 2.6.
Remark. For future reference, notice that if we convert some cycle in R to
its normal form, meaning a sum of monomials in only x, w , and «z,, except
possibly fewer than « n's at the right, the sum of the terms having at least one
x or w must be a boundary in R.

Now we would like to do this algebra in the rank two case, to determine the
homology of P, in all cases. Again we form R = Y © Z to give our ring an
identity, and again we would like to find a small chain complex C with easily
computable homology which freely generates the ring. To do this we need to
change the basis for R to make the boundary maps simpler. We begin with the
two slope group generators, «i and «2, and assume «i < «2. Let rx = nx - I
and r2 = «2 - 1, and perform the euclidean algorithm on rx and r2. After the
first step we obtain r-i, with 0 < r¿ < rx and r2 = axrx + r$. Then we replace
x2 by x2 - xxvr>~r2 - xxvri~2r2-xxvr* in the basis for R. Continuing in
this manner, performing the euclidean algorithm and making a corresponding
change in the basis for R, we obtain:

r2     = axrx+r3
rx     = a2r3 + r4

rf_2    = af_2rf_x+rf
¡7-1      = af-\rf>

X3     = x2 - xxvri~ri-xxvri
X4        - XX - XiVr2~r}-XT,Vr*

Xf       =     Xf_2 - X/_1Wr(/-2)-''(/-i)-Xf_xVrf
Xf+X      = Xf_x- XfVr^-^-ri-Xf,

where zy = d. We then replace x- and x2 by Xf and Xf+X in our basis for
R. The advantage to this is that d(xf+x) = 0 and d(Xf) - vd+x - v , so that
when we add Xf+X and xf to C, we only have to add one boundary, vd+x -v ,
in order to make the homology of C easy to compute. Our problem now is that
d(z) is an expression in Xi, X2, and v , and when we rewrite it in terms of the
new basis it is quite a bit longer and messier. To handle this, we notice that if
d(z) = Rf + Rf+X, where Rf is the sum of all terms in X/ and v and Rf+X
is the sum of all terms in Xf+X and v , then d(Rf+x) = 0. But this means that
Rf is also a cycle. It would be nice if Rf were actually a boundary, for then
we could change basis again to eliminate it from d(z). In fact, this is true.
Proposition 4.3. Rf is the boundary of Bx, where Bx is some expression in-
volving only Xf and v .
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Proof of 4.3. Rf is a sum of terms of the form veXfVh . Notice that Rf is in
the chain complex generated by v and xy, with d(xf) = vd+x - v . But this
is just the chain complex Y for the rank one case with « = d + 1, which we
already understand. Recalling the remark made after the proof of 5.2, if we can
show that when we rewrite Rf as a sum of strings of X/, w - vd+l - v , and
«z, = v'Xf - XfV', with perhaps as many as d v's on the right, that no terms
of the form m¡vJ appear, then Rf is a boundary. So we need to keep track of
these terms as they appear as we rewrite Rf, and check that in the end they all
cancel. To see what happens to a typical term veXfVh , let e = i (mod d) and
« = j (mod d), with i, j e {1,2, ... , d} . Then we see that reducing veXfVh
yeilds:

(i) no msvp term if e = 0,
(ii) m, if <? ,¿ 0 but « = 0,

(iii) m¡vj if both e, h > 0.
One can check that the following two claims hold.

Claim 4.4. Rewrite Xi and x2 in terms of the new basis elements v ,Xf, and
Xf+\ . Let

a = number of terms in X2 of the form Xf+\Vl,
b - number of terms in xi of the form Xf+Xv',
s - number of terms in X2 of the form XfV',
p — number of terms in xi of the form XfV'.

Then r2= pd, rx = sd, and rxa - r2b = d if / is even, and rxa - r2b = -d
if / is odd.
Claim 4.5. (1) If / is even, X2 will have one Xf+Xvj term and one XfVj term
with 7 = 0. All other terms have j > 0, 7 = 0 (mod ). Xi will have one XfVJ
term with 7 = 0, and all other Xf+Xvi and XfV> terms have j > 0, 7 = 0
(mod d).

(2) If / is odd, X2 has one XfVJ term with 7 = 0, and all others with
7 > 0, 7 = 0 (mod d). xx has one XfVj term and one Xf+xvJ term with
7 = 0, and the rest with 7 > 0, 7 = 0 (mod d).

With the aid of these, we can count the m¡v' terms in Rf. The claims
keep track of the number of v's to the right and the total number of terms,
and the formula for d(z) tells us which m, appears in each term.  If we let
A = mdvd + «i(¿-i)t> + rn^_2)v2 -\-h mxv(d~X), we see that the XfVh terms
from x2 contribute

s(p - l)A + (A - md + md) + (s - l)A
to Rf, and the rf terms from Xi contribute

-p(s - l)A -(A-md + md) - (p - l)A
to Rf. We see that they all cancel, which proves 4.3.   D

We can simplify our formulas still further with:

Proposition 4.6.  Rf+X = vdXf+x + vd~~xXf+xv + ■■■ + Xf+Xvd - Xf+X + d(B2),
where B2 involves only v, Xf, and Xf+X.
Proof of'4.6. Notice that

d(xf+xXf) = xf+xv - xf+xv{d+X)
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and
d(XfXf+x) = v^d+lh{f+x) - vxf+x.

We can add boundaries of these two chains, with t/'s on the right and left, to re-
duce Rf+X to a sum of terms of the form v'Xf+xvj, with i ,j G {0, 1, 2... , d}.
Using Claim 4.5, we count what is left and see that we have ±(vdXf+x +
vd~xXf+xv -\-h Xf+Xvd - Xf+x), so if we let #2 be ±(the sum of the terms
whose boundaries we added), we have the statement of the proposition.   □

Now we may change our basis for R again by replacing z by z' = z-Bx-B2.
So now R is a ring freely generated by v , Xf, Xf+X, and z', where d(v) = 0,
d(Xf) = vd+x - v , d(xf+x) = 0, and d(z') = vdxf+x + ■■■ + xf+xvd - xf+x.

Next we need to find cycles to move the tz's to the right of Xf, Xf+X, and
z'. For Xf and Xf+X this is easy. We let

«j, = v'Xf - XfV1   for i e [l ,2, ... , d)

and
yj = vJxf+x   forje {I, 2,..., d- 1}.

Note that we do not need vdXf+x to move d v's past x/+1, since d(z') will
play this role. Now let

i-i i-i
// = ^2vkXfXf+xv'~X~k +'Y^VkXf+xXfVl~X~k .

zc=0 k=Q

Then d(h) = d(v'z' - zV), and we let

d = v'z' - z'v' + /,   for i G {1, 2, ... , d}.

We now make the same argument that we had for the rank one case. Let C
be the chain complex generated by one zero-chain w = vd — v ; the one-chains
Xf, Xf+X, the «z,, the y¡, and d(z'); and the two-chains z' and the c,. We
can now write anything in R as sums of strings of the generators of C, except
for perhaps d or fewer i>'s at the right of the strings. Now we argue exactly as
before, making a map from S © Sv © • • ■ © Svd to R, where 5" is the free ring
on the normal forms with no w's at the right. We give R a new grading with
dim(v) = 1, dim(x/) = d + 1, dim(x/+1) = 1, and dim(z') = d + 1. We can
then give S®Sv® ■■ -®Svd a grading by giving the corresponding generators the
same dimensions as above, and setting the dimensions of the generators which
are mapped to m¡, y, ,c¡,w, and d(z') to be i + d+l, i+l, d + i+l, d+l,
and d +1, respectively. Now our surjective map preserves the filtration given by
this grading and, as before, the induced map on the associated graded objects
is still surjective. By counting one shows it to be an isomorphism, and our
conclusion is

Theorem 4.7. Let P, = F(i, Z[^], («i, n2)), where nx and n2 form a basis
for («i, «2). Let d - gcd(«i - 1, n2- 1). Then Hj(F¡) is a free abelian group,
and if we set hj(F¡) = rkz(//7(P,)), then the ranks are given by

«o(P,) = l,    hx(Fi) = 2(d+l),    h2(Ft) = (l+4d)(d+l),
and

hj(Fi) = dhj.2(Fi) + 2dhj_x(F,)   for 7 > 2.
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Remark. Notice that 0¡=1 H,(F¡), as a ring, is generated by a finite number of
elements in dimensions zero and one in the case of a rank one slope group, and
zero, one, and two in the case of a rank two slope group. Now by the universal
coefficient theorem, computing the cup product in cohomology is equivalent
to computing A» on homology, where A is the diagonal map. Since A, is a
ring homomorphism, all we need to compute are the images of the generators
of 0f=1 H*(F¡). One can also compute the homology and cohomology of the
subgroup B¡, at least in some examples.

5. Simplicity results

In this section we use methods similar to those of [7], variants of which have
been used to establish the simplicity results for T(l ,Z[\], («)), G(l ,Z[\], («)),
and the general F groups. Recall that the subgroup B of F consisting of all
homeomorphisms supported in some proper open subinterval of [0, /] has a
simple commutator subgroup, B'. But from Lemma 4.1 it follows that B' =
F'. So F always has a simple commutator subgroup. The examples of T
groups with P generated by one integer have been shown to have simple second
commutator subgroups [2], and the corresponding examples of G groups have
simple commutator subgroups [9]. We complete this with
Theorem 5.1. For any choice of I, P, and A, T(l, A, P) has a simple second
commutator subgroup, and G(l, A, P) has a simple commutator subgroup.

We will begin by looking at the T groups. Then we have
Theorem 5.2. Define v:T(l, A, P) -» A/(IP -A, I) by v(f) = f(a) - a for
f e T, any a e [0, I). Then v is a well-defined homomorphism, and if K is
the kernel of v , then K', the commutator subgroup of K, is simple.

We prove this with a series of lemmas.
Lemma 5.3.   u is a well-defined homomorphism.
Proofof'5.3. Let a, be [0, I) DA with a < b . Then if f(a) < f(b), we have
(f(a) - a) - (f(b) -b) e IP • A [A.l]. If, on the other hand, f (a) > f(b), then
(fia) - a) - (f(b) - b) - l G IP • A , so v is well defined. But then clearly it is
a homomorphism.    □

Lemma 5.4. K — B, where B is the subgroup of T generated by homeomor-
phisms which fix some nonempty open arc of their domain pointwise.
Proof of 5.4. Clearly B ç K. To see that K ç B , factor f e K into g o /',
where /' fixes 0 and g is a rotation by /(0) = r + nl with r e IP • A and
« G Z. Since rotation by / is just the identity map, g is just rotation by r.
We only need to check that f'eB and g e B . First we look at /'. Choose
m, n e (0, l)r\A, m < n < I, «> f'(m). Now by [A.l], f'(m)-m e IP • A,
so there exists some piecewise linear « with slopes in P and singularities in A
taking [m, n] to [f'(m), «]. Let

ff'(x) if 0 < x < m,
h(x) if «7<X<«,
x if « < X < / .

Now /" G B and (/")"' o /' = id on [0, m], so f'eB. Now for g, write
r = Y\r¡, -/</*,</ Vz, r,eIP-A, which we may do since IP-A is dense in
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A, which is dense in R. So it suffices to show that g e B, where g is a rotation
by r with 0 < r < I. Choose m, n, p e (0, l)DA with m + n+p + r < I.
Then as before, since r e IP • A, there exist piecewise linear homeomorphisms
«i and «2 with slopes in P and singularities in A taking [0, m] to [0, m + r]
and [m + n,m + n + r + p] to [m + n + r,m + n + r + p], respectively. Let

' «,(x)   if 0<x < m,
.... . x + r   if m < x <m + n,
fix) = \

h2(x)   if m + n<x<m + n + r + p,
k X if m + n + r + p<X<l.

Now /" is clearly in B, and (f")~x o g = id on [m, m + n], so belongs to B ,
which implies that g e B . So both factors of / are in B , so f e B, which
implies that K CB .   D

Lemma 5.5. For any e > 0, B is generated by the elements which fix pointwise
arcs of length greater than or equal to I - s.
Proof of 5.5. Suppose g is one of the original generators of B . Choose x e A ,
x e U, where U is an open arc with g\v = id. Conjugation g by a rotation by
x gives a homeomorphism of [0, /] which is supported in some proper open
subinterval. But if this is expressible as a product in the set of elements having
support in intervals of length < e , then so is the original g. So we may assume
g fixes an arc containing 0. Suppose g = id outside of (a, b), with b-a > e .
First we consider the case where g(a +1) < a + e . Then 3x e (a + § , a + e) n A
with g(x) < a + e . As before, we can find a piecewise linear homeomorphism
« with slopes in P and singularities in A taking [x, a + e] to [g(x), a + e].
Let

( g(y)   if0<y<x,
f(y) = I h(y)   ifx<y<a + E,

{ y        if a + e <y < I.
Now / has support on (a, a + e), so it is one of our prospective generators.
Now f~xog is supported in (x, b), and \b-x\ = \b-a\-\x-a\ < \b-a\-\ ,
so we have reduced the length of the arc in which g was supported by at
least |, which proves the lemma in this case. But if g (a + f) > a + e , then
g~x(a + e) < a + f , which implies that g'(a + §) < a + e . So apply the above
argument to g-1 .   D

Lemma 5.6. Suppose N is a nontrivial subgroup of T normalized by B', the
commutator subgroup of B. Suppose f, g e T and there exist some nonempty
open arc on the circle on which both f and g are the identity. Then [f, g] =
fgf~lg-'eN.
Proof of 5.6. Throughout this proof we use the fact that given two open arcs U
and V such that U U V is not the whole circle, we can find a homeomorphism
b e T such that b has support in some proper open subarc of the circle and
b(U) ç V. Let V be some open arc ^ the whole circle such that V d
supp(/) U supp(g), where supp(/) denotes the support of /, or the smallest
open arc outside of which / is the identity. Choose rx, r2 G B such that
'"l(F), r2(K), and V are pairwise disjoint and V U rx(V) U z"2(F) is not all
of the circle. Then if we set /' = [/, rx] and g' = [g, r2], f',g'eB' and
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[/•<?] = [/' ><?']• Choose an open arc V which is not the whole circle, such
that supp(/') U supp(g') c V . Now suppose h e N, « ^ 1. So h(x) ^ x for
some x . Choose some open arc P 3 x such that h(P) n P = 0 and P u P' is
not the whole circle.

Now choose m e B such that m(P) D V . m can be chosen to have support
in a proper open arc since P u V is not the whole circle. We would like m
to be in B'. We can arrange this by choosing r such that r(supp(w) U P) n
(supp(«i)uP) = 0, r e B . Then m' = mrm~xr~x also takes P into something
containing P', and m' e B'. The point of this is that now we can conjugate
h by m' to obtain

tí = m'hm'-x eN   and   tí{V')nV'¿0.

But this means that

[/', «'] = (/'«'/'"') o «'"• G A =* [[/',«'], g'] G A.

But
[ir, a'], g'\ = [f ° (h'(fr\hrx),g'] = w,g'\

since supp(«'(/')~'(«')"') = «'(supp(/'_1)) is disjoint from V , on which /'
and g' are supported. We had at the very beginning that [/', g'] = [/, g], so
[/, g] e N, as claimed.   D

Now we are ready for

Proof of 5.2. Choose £ < ¿. By Lemma 5.5, the set of all elements of T
which are supported in some arc of length e generates B. By Lemma 5.6,
[ga, gß] G A for ga, gß any two of these generators. Now if g e B, then

g[ga , gß]g~X  = [ggag~l , ggßg'1] ■

But the hypotheses of Lemma 5.6 are satisfied for ggag~l and ggßg~x since
they are satisfied by ga and gß, so [ggag~x, ggßg~x] e N, and so all B-
conjugates of commutators of a P-generating set are in A, which implies that
B' c N. In particular, if we take A ç B', we see that B' is simple. But
B = K , so K' is simple.   D

Now T/K is abelian, so V ç K, which implies that T" C K'. But K' is
simple, which means that T" = K', so P" is simple as claimed in Theorem
5.1.

We now turn to the G groups. Here we do not have to pass to a subgroup;
G itself is generated by elements with very small support.

Lemma 5.7. For any e > 0, G is generated by elements which are the identity
except on some interval of length < e.
Proof of 5.7. Given « G G, we may factor « into «' o g, where h' is order
preserving on [0, /), and g has slope one everywhere. Then «' is a product of
our prospective generators by 5.5. Now consider g , and let a be the smallest
number, possibly 0, such that g (a) ^ a. Choose an interval / such that
| < |/| < f , with / = [a, a + \I\). If g(I) = /, then we let

fl ,     / g(x)   ifxel,
/(X) = {x if**/.
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Then / is one of our prospective generators, and go/1 still has slope one
everywhere, and the smallest number a' such that g o f~x(a') ¿ a' is at least
fl + f

If g(I) t¿ /, we reduce to the case above as follows. We may subdivide /
into « intervals Ix, I2 ,...,/„ , open on the right and closed on the left such
that g is linear on /, for all z. Let a be the permutation on « letters such that
{x G g(Ia(i))} are all < {x g g(Ia(2))} are all < • • • are all < {x G £(/«,(„))} »
Now for b G A, using

mb(x) = {

x if 0 < x < a,
x + b if a < x < a + \I\,
x-\I\ if a + \I\ < x < a + \I\ + b,
x if a + \I\ + b < x < I,

we can move / to the right by b. If we choose b < § , then mb will be one
of our prospective generators. If we compose mb with a map which moves
mb(I) to the right, and so on, we can make a composite of our generators, «j1 ,
taking the leftmost point of / to the leftmost point of g(I„(X)). Now if we let
a¡ be the right endpoint of £(/„(,_ij) for 1 < i < «, we similarly form m'
to translate [a,, a, + |/| - |/fl(i)|-|/ff(,-_i)|) to the right until a¡ hits the
left-hand endpoint of g(Ia(i)), fixing [0, a¡). If we set

g' = («z" o mn~x o ■■■ omx)~x o g,

then g' takes / to /, has slope one everywhere, and is still the identity on
[0,a).   D

Now we can mimic the proof of Lemma 5.6 and Theorem 5.2 to prove the
following theorem, which completes the proof of Theorem 5.1.

Theorem 5.8. Any nontrivial subgroup N of G which is normalized by G' con-
tains G'. In particular, G' is simple.

6. Abelianization of G groups

In [9], Higman shows that the abelianization of G„¡r is either trivial or
Z/2Z. Recall that Gnr = G(r, Z[i], («)). In this section we will use the com-
plex A on which the groups G(l, Z[n nx n ], («•, n2, ... , nk)) act to compute
the abelianization of any of these groups. In particular, we show that it is always
finite, which shows that G' is always an infinite simple group which is finitely
presented and of type F Poo .

In analyzing G^, we will want to consider the subgroup n generated by the
stabilizers of the bases. These basis stabilizers are finite symmetric groups, so
n is generated by elements of finite order. Now G' is simple, so Ü' = G', and
we have

G' = W ̂ U^G.
So if we can show that n/TT and G/YI are finite, and compute them, we will
know the size of G/G'. We will actually want an explicit abelianization map,
which we will construct by combining one measuring G/XI and one measuring
n/H . First we consider H/TÏ .
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Lemma 6.1.  |n/n'| <2.
Proof of 6.1. Suppose |n/IT| ^ 1, and suppose g and g1 are two generators of
Il not in IT . Choose two bases v and v' such that g(v) = v and g'(v') - v'.
We can expand v to another basis fixed by g as long as we do the same
expansions to each g-orbit of v -intervals. Taking suitable expansions, we may
assume that v and v' are expansions of the standard basis. Taking further
expansions if necessary, we may assume that v has two intervals ix and z'2
whose images in [0, /) are disjoint from the images of two v' intervals i\ and
i'2. Now let / (respectively /') be the element of G which just interchanges
ix and i2 (respectively /'. and z2). Then g = f and g' = /' in n/IT. Now
choose a common expansion of v and v', w, which is fixed by / and /'.
This is possible because of the disjointness of the images of the intervals which
were moved by / and /'. But now / and /' are in the same copy of a finite
symmetric group in n, so they are equal in Yl/W .   D

We now need to know when |n/IT'| is one and when it is two. Here we
follow Higman's setup from [9]. Suppose that one of the {nx, n2, ... , nk}
is even, say «,. Then if g e Stab(v), g is also in Stab(v'), where v' is
obtained from v by expanding each «-interval into «, equal pieces. But then
g, viewed as a permutation of the v '-intervals has even parity. So g e IT ,
and hence |n/IT| = 1. If all of the integers are odd, we cannot do this trick,
and it turns out that in these cases |n/iT| is always 2. To see this, we will map
G onto Z/2Z in the following way. Given g e G, choose any basis v such
that v and g(v) are both expansions of the standard basis. Then g may be
factored into g'v opv , where pv e Stab(v) and gv is continuous on [0, /). If
we view pv as a permutation of the «-intervals, since all «, are odd the parity
of pv is independent of the choice of v . Now we define m: G —► Z/2Z by

f parity of pv   if all «, are odd,
m(g) =      n -f   *i      ♦(0 if at least one «, is even.

Proposition 6.2.  Ker(«z) nü = W .
Proof of 6.2. From the discussion above this is clear if one «, is even. If all «,
are odd, then given g e G, we can give a set of points 0 = b0, bx, ... , b„, bn+ ■
= / in A n [0, /] such that g has constant slope p¡ on [b¡, b¡+x). We set

n

n(g) = 53&/+i -bi®p¡,
1=0

where a for a e A denotes the coset of a in A/IP ■ A. This is clearly
independent of the choice of the 6,'s. Note that g(b,+x)- g(b¡) = Pi(bi+x-bj) =
(bi+x - bf) mod IP • A . It follows easily that n is a homomorphism.

Notice that the map n is defined for any G(l, A, P), but we only know how
to use it when the slope group is generated by integers. In this situation, recall
that A/IP ' A = Z/dZ, where d = gcd(«i - 1, «2 - 1, ... , nk - 1), so that

A/IP -A®P^ Z/dZ ® Zk =■ (Z/dZ)k .

Also, by the usual arguments, if g e Stab(v) for some basis v, we may as-
sume that v is an expansion of the standard basis. Then g just permutes a
subdivision of [0, /), so 71(g) = 0, and fi ç Ker(7r). We will show
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Theorem 6.3. n = Ker(7r).

This will follow from the following two propositions.

Proposition 6.4. G/U is generated by k - 1 elements, and G/U has exponent
dividing d.
Proposition 6.5. The image of n is isomorphic to (Z/dZ)k~x.

Since n C Ker(7r), these two propositions establish the theorem as claimed.
The following then gives the abelianization of G.

Theorem 6.6. There is an exact sequence

1 _> ff -> G *■$$ (Z/dZ)k © (Z/2Z),

where it has image (Z/dZ)k~x, and m has image Z/2Z if all generators of
the slope group are odd and trivial image if at least one slope group generator is
even.
Proof of 6.6. The fact that Ker(7r©«i) = IT = G' follows from 6.2 and 6.3. The
calculation of the image follows from the definition of m and from 6.5.   o

The rest of this section will be devoted to the proofs of 6.4 and 6.5. To prove
6.4, we first need to obtain a generating set for G/U. The vertices and one-
cubes of A form a connected graph on which G acts. So a generating set for
G is obtained by choosing a maximal tree in N/G and a lift of it to A. Then
each edge e of N/G may be lifted to an edge which has one endpoint on the
tree. The other endpoint, v , of this edge is in the C7-orbit of a unique vertex
of the tree, say v'. Then we may choose a group element ge taking v' to v .
The set of these ge and the stabilizers of vertices of the tree together generate
G, so the ge generate G/Yl. We will then use loops in the one-skeleton of N
to obtain enough relations among these generators to establish 6.4. Having a
basis of size one on the tree complicates the relations we need to consider. This
can be avoided by considering Nh , the subcomplex of A spanned by all bases
of size > « , where « > /. Nh is still a contractible G-complex, and we will
use it instead of A.

We will now describe a maximal tree in Nh/G. Nh/G has one vertex cor-
responding to the set of all bases of size x , x = / (mod d), x > h . We will
call this vertex x. As before, we let r¡ = n¡■ - 1 . Let d¡ = gcd(d¡-X, r¡) with
di-x - b¡di for 2 < i < k, where dx—rx.

Now given a number x > « , x = / (mod d), then x - « can be written
uniquely as ck(x)rk + ck_x(x)rk_x -\-\-cx(x)rx , with 0<c,<e,-l for i > 1 .
Make a path in N^/G from h to x by traversing ck(x) edges corresponding
to simple expansions by nk , then ck^x(x) edges corresponding to simple ex-
pansions by nk_x, etc. At the end, if ci(x) < 0, we traverse edges in a negative
direction, decreasing the size of the endpoints as we move along the path. This
gives a unique path from b to x . Moreover, if this path passes through y on
the way from « to x, then y > h, y = I (mod d). Furthermore, the initial
part of this path, from « to y, is the unique path we have assigned to y . So
we have described a tree as desired.

We think of the A:-tuple (ci(x), c2(x), ... , ck(x)) as labelling the vertex x .
This notation keeps track of the path along the tree from « to x as well as just
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the number x . We can think of the tree inductively as bk smaller trees, one
for each of the groups

G'b+yrk = G[b + yrk,
1

nx--nk-x
, («i, ... , njk_i>

with 0 < y < bk - 1 (using only bases of size > « for each group), joined in a
row by edges corresponding to simple nk -expansions. Then vertices in the yth
subtree are the ones labelled (cx, ... , ck_x, y).

We now turn to the proof of 6.4. Now that we have a tree, a generating set
for G/U consists of one generator corresponding to each edge not on the tree.
Out of each vertex on the tree, we have one edge corresponding to each integer
«i, «2, ... , nk . An «, edge out of a vertex x gives a generator g¡(x). In
order to choose specific homeomorphisms realizing this abstract generating set,
we need to choose a lift of our tree. We lift our tree to Nb by lifting the vertex
« to some basis of size h which is an expansion of the standard basis. We call
the unique basis of size x on this lifted tree vx . Then g¡(x) can be taken to
be a homeomorphism of [0, /) which takes the basis vx+n to a basis obtained
from vx by expanding one interval into «, equal pieces. Since all choices are
equivalent mod n, we write g¡(x) for this Il-coset. Edges on the tree just
give the identity as a generator. In particular, notice that all gx (x) are trivial.
We will write

gi{x) = gi{ci(x), c2(x),..., ck(x)).

To obtain relations among these generators we will use loops which bound
two-cubes of N. Recall from § 1 that these squares do not always have one-
cubes for edges; sometimes the edges are the diagonals of higher dimensional
cubes. But then we can just choose a path from one endpoint of the edge to the
other which contains only one-cubes. There are two basic types of two-cells in
Nh/G which yield relations among the generators. The simple type of square
corresponds to dividing one interval of a basis of size x into «, equal pieces,
and another into n¡, where i ^ j. We draw

x       —       x + rj
I I

x + r,    —   x + r¡ + rj

to keep track of this. The relation given by this square is

g¡(x)gj(x + r.) = gj(x)g¡(x + rj).

The complex type of square (complex because the boundary of the square we
draw is not really the loop we use) corresponds to dividing one interval of a
basis of size x into «,«; equal pieces, where i ^ j. Here we draw

x       — x + r¡
I I

x + r}    —   x + «,«; - 1

To obtain a loop traversing only one-cubes of Nh , we must replace the right-
hand vertical edge by «, edges, each corresponding to dividing one interval of
the appropriately sized basis into nj pieces. Similarly, the lower horizontal
edge is replaced by n¡  edges each corresponding to a simple «,-expansion.
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The relation mod II which this loop yields is independent of the choice of
replacement edges. It is

gi(x) gj(x + r¡) ■ ■ ■ gj(x + r¡ + nrj) = gj(x) g¡(x + r¡) ■ ■ ■ g¡(x + rj + zy,) .
»-v-' *-v-'

n¡ terms n¡ terms

We will now examine enough of these relations to prove the following more
explicit form of Proposition 6.4.

Lemma 6.7.  G/U is generated by

g2 = g2(0,b2-l,0,...,0),
S3 = £3(0,0,/33-l,0,...,0),

gk = gk{Q, ■■■ ,0,bk- 1).
k-\

Furthermore, G/U has exponent dividing d.

We first prove two subsidiary lemmas.

Lemma 6.8. For any j < k,

gk(0, ... ,0, Cj, cj+x, ... , ck) = gk(0, ... , 0, c'j, cj+x, ... , ck)

in G/U, provided that either ck^bk-l or j = 1.
Proof of 6.S. If bj;- 1 = 0, then c¡ = c'j = 0, so we are done. So assume either
7 = 1 or bj■■- 1 > 0, in which case we assume that c¡ ¿ b¡■ - 1. Look at the
following simple square:

x      —      x + rk

x + rj   —   x + rk + rj

where x = « + c7r7 H-Vckrk. Since either ck^bk-l or j = 1, both vertical
edges correspond to edges on the tree, and so contribute no generators to the
relation. This implies that

&t(0, 0, ... ,0,Cj, Cj+x, ... ,ck) = gk(0, 0, ... , 0, Cj+ I, Cj+x, ... ,ck)

in G/U. The proof is completed by allowing Cj to range over all possible values
except bj - I.   D

Lemma 6.9. Any gk(x) generator with ck / bk - 1 is trivial in G/U.
Proof of 6.9. By repeated applications of Lemma 6.8,

gk(cx,c2, ... ,ck) = gk(0,c2,c3, ... , ck)
= fit(0,0,c3, ... ,ck)

= gk(0, ... ,0,ck),

where equality denotes equality in G/U. But since ck / bk - 1, this last
generator is trivial, which proves the lemma.   □
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Proof of 6.1. We prove this by induction on k. If k = 1, we have no edges
off the tree, and the proposition is true. Suppose it is true for any group with
slope group of rank less than k. We have seen that our tree is made up of
bk smaller trees corresponding to groups with P = («i, ... , n^-i) • So by the
induction hypothesis, the only g¡(x) generators with 2 < i < k - I we need
are g¡(0, ... ,b¡ - 1,0, ... ,0,y), with 0 < y < bk - 1, and they all have
exponent dk„x. Now for y < bk - 1, we have the simple relation

gk(0,..., 0, bi - I, 0,...,0,y)gi(0,...,0,bi-I, 0,...,0, y + I)
= gi(0,... ,0,bj-l,0, ... ,0, y)gk(cx ,...,d-x,0,...,0,y).

But Lemma 6.9 says that both of these gk generators are trivial. So out of all
the gi generators with 2 < í < k — I, we only need the ones with y = 0, which
are gx, g2, •■■ , gk-\ ■ Now Lemma 6.9 shows that the only nontrivial gk(x)
generators have ck(x) = bk - 1. But more simple relations show that

gk(cx,c2, ... ,ck_x, bk- l) = gk(cJx, ... ,c'k_x,bk- l)V,

where V is some expression in g2, ■■■ , gk-x • So we actually only need one
gk(x) generator, gk . This proves the first part of the proposition.

To prove the second assertion, we consider the complex square

x       —        x + rk

x + rx   —   x - 1 +nxnk

where x = h + (bk - l)rk. This yields the relation gr¿' kX = 1, where X
is some expression in g2, gi, ... , gk-x- We may commute the generators
in this relation since we know that G/U is abelian. Now there is some pe-
riodicity in X. If we set m = rx/dk_x, we see that the first gk genera-
tor which appears is gk(l ,0, ... ,0, bk - I), and after mbk edges we see
<?jt(l + rk/d, 0, ... , 0, bk - 1). But Lemma 6.8 says that these two genera-
tors are the same in G/U. So in fact X = Yd, where Y is an expression in
g2, ■ ■ ■ , gk-x ■ So our relation yields

grk'Ydb*=grk'Yd^ = 1.

But by the induction hypothesis, Ydk-< = 1, so gk has order dividing rx ,
and so the group has exponent dividing rx . Now notice that we could have
permuted our k integers before constructing our tree, and could have deduced
that the group had exponent dividing r¡ for any i. So the group has exponent
dividing d - gcd(rx, ... , rk), which completes the proof.   D

Now we can prove 6.5.

Proof of 6.5. Since we know that G/U is generated by g2, ... , gk and n c
Ker(7t), we only need to compute n(g¡) for 2 < i < k to determine the image
of n. Recall that g¡ takes the basis vh+b¡r¡, which we will call v¡, to a basis
v[. v[ is obtained from Vf,+(b¡-X)n by expanding one interval into «, pieces.
It is easy to compute 7i(g¡) if v¡ and v'¡ are both expansions of the standard
basis. This will be true unless cx(v,) < 0. But in this case we can expand both
Vi and v\ by « i  until they are expansions of the standard basis. Now since
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expansions of the standard basis are just P-regular subdivisions, which have
intervals of length 1 in A/IP • A , we see that

n{gi) = h ® Hi - Ci-x(Vi) ® «,■_■-cx(Vi) ® «i.

Recall that A/IP-A®P ^(Z/dZ)k , where we let the zth copy of (Z/dZf be
generated by the image of 1 ® «, under the isomorphism. Then

n(gi) = {-C\(Vi), -c2(Vi),..., -Ci-i(Vi),b~i, 0,...,0),

k-i

viewed as an element of (Z/dZ)k . Let q¡ = (-cx (v¡),..., -c¡~\ (v¡) ,b¡,0,...,0)
in Zk . Let x = (xi, ... , xk) be any element of Zk such that xxrx -\-\-xkrk =
d. Then the q¡ together with x generate Zk , which implies that the n(g¡)
generate a subgroup of (Z/dZ)k isomorphic to (Z/dZ)k~x.   D

Appendix

The purpose of this Appendix is to present some results of Robert Bieri
and Ralph Strebel which we use in this paper. These results appeared in an
unpublished set of notes entitled On groups of PL-homeomorphisms of the real
line. First, recall that given a multiplicative subgroup P and a ZP-module A,
then IP is the augmentation ideal of the group ring ZP and IP • A is the
submodule of A generated by elements of the form (1 - p)a, where a G A
and p e P .

Theorem A.l. Let a, c, a', and d be elements of A with a < c and a' < d.
Then 3f,apiecewiselinearhomeomorphismofR, with slopes in P and finitely
many singularities, all in A , mapping [a , c] onto [a', c'] ■&■ c' — a! is congruent
to c - a modulo IP • A.
Proof of A.l. Assume first that such an / exists. Let a = bo, bx, ... , bn-X,
b„ = c be an increasing sequence of elements of A such that / is linear on
[bi-x , b¡] with slope p¡■, for all i. Then d - a! = Y11=xPi(bi - ¿>/-i). But
c-a = ¿"=1 (bi - bi-x), so (d - a') - (c - a) e IP ■ A.

Conversely, suppose there exist ax, ... , a„ e A and px, ... , p„ e P such
that

n

(c'-a') = (c-a) + Y,V-Pi)ai.
i-\

Set V = d - a' and b — c- a . If we could find / mapping [0, b] to [0, b'],
composing / with translations by -c on the right and d on the left gives the
desired map. Now there exists a permutation n of {1,2,...,«} such that
the partial sums bj = b + J2Ji=x( 1 -PK(i))aK^ are positive for j — 0, 1,...,« .
If fi, f2, ■■■ , fn are piecewise linear homeomorphisms of R with slopes in
P and singularities in A such that f([0, bj-X]) = [0, bj], then fn° ■■ ■ ° fi is
the desired /. Therefore it suffices to prove the claim for « = 1. Moreover,
as (1 -px)a = (1 -pl~x)(-pl~xa), we may assume that px > 1. So we need to
construct / mapping [0, b] to [0, b + (p - l)a], where p > 1 , a ^ 0 (or the
identity works), and b and b + (p - l)a are both positive.
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Suppose first that a > 0. Choose a natural number k with a < pkb, and
set a' = p~ka. Define fx, f2 : R —► R by

' r if f < b - a',
= <  p(t - (b - a')) + (b - a')   ifb-a'<t<b,

t + (p-l)a' if b<t,
t if t < b,

{ pk(t-b) + b ifb<t<b + (p-l)a',
t + (p - l)(a - a')   ifb + (p-l)a'<t.

Then / maps [0, b] to [0, b + (p- l)a'] and f2 maps [0, b + (p- l)a'] onto
[0, b + (p - 1 )a], so f = f2o fi maps [0,6] to [0, ô + (p - 1 )a], and clearly
has slopes and singularities as required.

On the other hand, if a < 0 then there exists / taking [0, b + (p - I)a] to
[0,(b + (p- l)a) + (p- l)(-a)] = [0, b], so /""' will be the map we need.   G

Definition A.2. Let P be a multiplicative subgroup with a finite basis B con-
sisting of integers. Let / G Z. We define a P-regular subdivision of level 1
of [0, /] to be a sequence of the form (0, 1, ... , i, i + A, i + 2A, ..., i +
(n- l)A, i, i+ I, ... , I), where « G B, A = j¡, and i = 0, 1,...,/- 1. If
S' = (0 = bo, bx, ... , b}¡ — I) is a P-regular subdivision of level k - 1, each
sequence S obtained from S' by replacing a pair (bj, bj+x) of adjacent points
by a sequence (bj, bj +A, bj+ 2A, ... , bj+x-A, bj+x) with A = (bj+x -bf)/n
and « G B , is by definition a P-regular subdivision of level k .

Notice that the definition depends on the choice of a basis for P as well as
on P itself. We think of P as being given with a specific basis. If we are given
two P-standard subdivisions of the same size, S and 5" , we can associate to
them a piecewise linear homeomorphism of [0, /] which takes as intervals the
points of the first subdivision to the points of the second, and is linear on the
intervals between subdivision points. We call this the affine interpolation of
S x S'. Then we have:

Theorem A.3. Let S = (0 = b0, bx, ... , bh = /) and S' = (0 = b0, b'x, ... , b'h
= /) be P-regular subdivisions of [0, /] with the same number of points. Then
the ajfine interpolation of SxS' belongs to F (I, Z[P], P). Conversely, if f is a
homeomorphism in F it is the affine interpolation of two P-regular subdivisions
of [0,1].
Proof of A.3. If S and 5" are P-regular subdivisions the intervals [b¡, bi+x]
and [b¡, b'i+l] have as lengths elements of P, so each b¡ is in Z[P] and the
slopes of the affine interpolation are all in P, so it is in F .

Conversely, if / is in F, we first construct a P-regular subdivision con-
taining all the singularities of /. Let do be a common denominator of all
the singularities of /, and let po be a multiple of do which is a product of
elements of B. Let S be the subdivision of [0, /] with Ipo + 1 equidistant
points. Then S is P-regular. Next let

f(S) = (0 = f(bo),f(bx ),..., f(bh) = l)
be the /-image of S. Clearly / is the affine interpolation of S and f(S),
but f(S) is not necessarily P-regular. Say / has slope s, on [b,-, bi+x]. Then
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f(bi+x) - f(bi) = Si(bi+X - bj) which is in P. Now let S' be an equidistant
P-regular subdivision containing all the points of f(S) ; let A = ^ be the step
width of S'. Then the interval [f(b¡), f(bi+x)] is divided into an integral
number m, of subintervals of S'. On the other hand, «z, = psj(bi+x - b¡) and
so is in P. It follows that 3q¡, a product of elements of B, such that <7,«z,
is a product of elements of B . Subdivide each subinterval of step width A of
[f(b¡), f(bi+x)] into q¡ equidistant steps. If this is done for all i one ends
up with a P-regular subdivision S" having the property that its inverse image
f~l(S") is also P-regular. As / is the affine interpolation f~x(S") x S" the
theorem is proved.   D

Theorem A.4. Let B(l, A, P) be the subgroup of F (I, A, P) consisting of
homeomorphisms which are the identity in neighborhoods of 0 and I. Let
B(R, A, P) be the group of piecewise linear homeomorphisms of the real line
with finitely many singularities, all in A, and slopes in P, which are the identity
in neighborhoods of -hoc and -co. Then B(l, A, P) = B(R, A, P).
Proof of A.4. Choose ao > 0, ao e A. Since P contains arbitrarily small
positive elements, we can choose a doubly infinite increasing sequence {b¡\i G
Z} of elements in A n (0, /) such that:

(i) bi+x-bieP-ao Vz'gZ,
(ii) lim/^-oo b¡ = 0 and lim,^+00 b,■ = I.

Let tp: R -» (0, /) be the piecewise linear map taking (iao, (i + l)flo) linearly
to (b¡, bi+x), for all i e Z. Since elements of B(l, A, P) move at most finitely
many of the b¡, and elements of B(R, A, P) move at most finitely many of
the iao, conjugation by cp induces an isomorphism between P(R, A, P) and
B(l,A,P).   U

The final result from the notes of Bieri and Strebel is the observation that the
commutator subgroup of B(l, A, P) is simple. The authors apply the following
restatement of a theorem of G. Higman [10].

Theorem A.5. Let Si be a totally ordered set and let B be a two-fold transitive,
ordered permutation group on Q consisting of bounded elements. Then [B, B]
is a simple group ^ {1}.

Here, two-fold transitive just means that if a < a' and b < b', with a, a', b,
and ¿'eíí, then there is an element of B taking a to b and a' to b'. This
result can be applied with B = B(l, A, P) and Q = IP • A n (0, /). We know
from A.l that F (I, A, P) is two-fold transitive on Q, and since Q is dense
in (0, /) it follows that B is also two-fold transitive on Q.. Hence [B, B] is
simple.
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