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Abstract. Let G be a finite group and write cd(G) for the degree set of the complex
irreducible characters of G. The group G is said to satisfy the two-prime hypothesis if for
any distinct degrees a, b ∈ cd(G), the total number of (not necessarily different) primes
of the greatest common divisor gcd(a, b) is at most 2. We prove an upper bound on the
number of irreducible character degrees of a nonsolvable group that has a composition factor
isomorphic to PSL2(q) for q > 7.
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1. Introduction

Throughout this paper, G will be a finite group, Irr(G) will be the set of complex

irreducible characters of G, and cd(G) = {χ(1) : χ ∈ Irr(G)} will be the degree set

of Irr(G). Following [4], we will say that a group G satisfies the two-prime hypothesis

if whenever a, b ∈ cd(G) with a 6= b, then gcd(a, b) is divisible by at most two

primes counting multiplicity. Solvable groups satisfying the two-prime hypothesis

were studied in [4], [5], where an upper bound was determined for the number of

character degrees for such groups.

In [10], the first two authors started studying nonsolvable groups that satisfy

the two-prime hypothesis. In that paper, we determined that any nonabelian chief

factor of a group satisfying the two-prime hypothesis will be simple or isomorphic
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to A5 ×A5. They also determined which nonabelian simple groups can occur as the

chief factor of a group satisfying the two-prime hypothesis.

In this paper, we continue to study the nonsolvable groups that satisfy the two-

prime hypothesis, and in particular, we focus on bounding the number of character

degrees of such a group. In [11], we showed that when G is a nonsolvable group satis-

fying the two-prime hypothesis, where none of the composition factors is isomorphic

to any PSL2(q) for a prime power q then |cd(G)| 6 21. We also gave an example

of a group G satisfying the two-prime hypothesis where this bound was met. We

note that the group G had one nonabelian composition factor and that composition

factor was isomorphic to A7.

The main purpose of this second paper is to give an upper bound for |cd(G)|

when G is a nonsolvable group satisfying the two-prime hypothesis that has a non-

abelian composition factor that is isomorphic to PSL2(q) for any prime power q > 7.

Theorem 1.1. Let G be a group satisfying the two-prime hypothesis. If G has

a composition factor isomorphic to PSL2(q) for some prime power q > 7, then

|cd(G)| 6 19.

Note that the only composition factor not covered by our Theorem 1.1 and Theo-

rem 1.1 of [11] is A5, so when we combine our Theorem 1.1 with Theorem 1.1 of [11],

we obtain the following theorem.

Theorem 1.2. Let G be a nonsolvable group satisfying the two-prime hypothesis.

If G has no nonabelian composition factors isomorphic to A5, then |cd(G)| 6 21.

In Theorem 1.2 we use the bound in that was found in [11], since there is an exam-

ple of a nonsolvable group satisfying the two-prime hypothesis that has 21 character

degrees and we believe that 21 is likely the best bound.

To prove Theorem 1.2, we first determine which almost simple groups that have

a composition factor of a group that is isomorphic to PSL2(q) satisfy the two-prime

hypothesis. We then see that every group that has a composition factor isomorphic

to PSL2(q) has a quotient that is one of the above almost simple groups. We then

break the possible character degrees that can occur into three different subsets, and

we obtain a bound on each of these possible subsets when q > 7. We make strong

use of the fact that two of q − 1, q, and q + 1 are divisible by many primes, and we

will need to pay special attention to the cases where q is small and the number of

prime divisors of these integers are fewer.

In [11], we handled the groups satisfying the two-prime hypothesis that had a non-

abelian composition factor that is not isomorphic to any PSL2(q). In that paper,

we were easily able to handle the groups having those composition factors that are
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not isomorphic to A7 just using the character degrees of the simple group, degrees of

the projective characters, and the indices of the maximal subgroups. In those cases,

there were character degrees and projective character degrees that were divisible by

at least three primes, and there were relatively few subgroups whose indices were

not divisible by three primes.

Nearly half of [11] dealt with the case where the composition factor is A7. That

case is more difficult since all of the character degrees of A7 are divisible by only

two primes, the representation group for A7 is more complicated and most of the

projective character degrees are divisible by only two primes, and there are several

subgroups whose indices are divisible by only one or two primes. We end up breaking

the set of character degrees into five subsets and bounding the sizes of each of those

subsets.

The difficulty that arose in the case of A7 also arises when bounding the number of

character degrees of a group satisfying the two-prime hypothesis with a composition

factor that is isomorphic to A5. Although A5
∼= PSL2(4) is the smallest in the series

PSL2(q), the situation appears to be the most difficult. The first difficulty is that

there can be two composition factors that are isomorphic to A5, however that case

seems to be relatively easy to deal with. The real difficulty is when there is only

one nonabelian composition factor. This difficulty arises due to the fact that two

of the character degrees of A5 are primes and the third degree is the square of the

third prime, so all the degrees are pairwise relatively prime. Also, there are many

subgroups whose indices are divisible by only one or two primes. All of these make

many of the arguments in [11] and this paper invalid when dealing with A5.

In fact, to get a bound for the case of A5, we essentially find pairs of character

degrees of some Frobenius groups that always occur simultaneously. Since the proof

is quite different from and longer than the proof contained in this paper, we prefer

to deal with it in a future paper.

The notation used in this paper is mostly standard (cf. [1] and [9]). We now fix

some notation that will be used throughout the paper. Let N be a normal subgroup

of G and let θ ∈ Irr(N). As usual, IG(θ) means the inertia group of θ in G, we write

Irr(G | θ) for the set of irreducible constituents of θG, and cd(G | θ) = {χ(1) : χ ∈

Irr(G | θ)}. If n > 1 is an integer, then ω(n) denotes the number of prime divisors

of n counting multiplicity.
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2. Preliminaries

In [10], the first two authors identified the nonabelian chief factors of nonsolvable

groups that satisfy the two-prime hypothesis. The results are encoded in the following

theorem.

Theorem 2.1. Let G be a nonsolvable group satisfying the two-prime hypothesis.

Suppose that M/N is a nonabelian chief factor of G.

(i) IfM/N is simple, then it is one of the following groups: A5, A6, A7, PSL2(q) for

q > 7, PSL3(3), PSL3(4), PSL3(5), PSU3(3), PSU3(4), Sz(8), Sz(32), and M11.

(ii) If M/N is not simple, then M/N ∼= A5 ×A5.

Let G be a finite nonsolvable group satisfying the two-prime hypothesis. Using

the notation in Theorem 2.1 and its proof in [10], we find a normal subgroup N such

that (G/N)/(CN/N) embeds into Aut(M/N), where C/N = CG/N (M/N), which is

almost simple except when M/N ∼= A5 ×A5. Consequently, we can conduct a case-

by-case investigation on the possible nonabelian chief factors M/N of G in order to

obtain a general upper bound for |cd(G)|. In the present paper, we get an upper

bound for |cd(G)| of nonsolvable groups G with nonabelian chief or composition

factors isomorphic to PSL2(q) for any prime power q > 7.

In this section, we consider almost simple groups with socle isomorphic to S ∼=

PSL2(q) for a prime power q > 7. Let q = pf , where p is a prime and f is a positive

integer. The outer automorphism group of S is generated by a field automorphism ϕ

of order f , and if p is odd, a diagonal automorphism δ̄ of order 2. For any groups with

socle PSL2(q), the character degrees have been explicitly computed by D. White.

Lemma 2.2 ([12], Theorem A). Let S = PSL2(q), where q = pf > 3 for a prime p

and a positive integer f , let A = Aut(S), and let S 6 H 6 A. Set Γ = PGL2(q) if

p is odd and δ̄ ∈ H , and Γ = S if either p = 2 or δ̄ 6∈ H , and set d = |H : Γ| = 2am

for a nonnegative integer a and an odd integer m. If p is odd, let ε = (−1)(q−1)/2.

Then the set of irreducible character degrees of H is

cd(H) = {1, q, 12 (q + ε)} ∪ {(q − 1)2ai : i | m} ∪ {(q + 1)j : j | d}

with the following exceptions:

(i) If p is odd with H 
 S〈ϕ〉 or if p = 2, then 1
2 (q + ε) is not a degree of H .

(ii) If f is odd, p = 3 and H = S〈ϕ〉, then i 6= 1.

(iii) If f is odd, p = 3 and H = A, then j 6= 1.

(iv) If f is odd, p ∈ {2, 3, 5} and H = S〈ϕ〉, then j 6= 1.

(v) If f ≡ 2 (mod 4), p ∈ {2, 3} and H = S〈ϕ〉 or H = S〈δ̄ϕ〉, then j 6= 2.
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We mention that when p = 3, the conditions of exceptions (ii) and (iv) are the

same. Therefore, if this is the case, then we have both i 6= 1 and j 6= 1.

Theorem 2.3. Let S < G 6 Aut(S), where S = PSL2(q) for q = pf > 7. If G

satisfies the two-prime hypothesis, then G is one of the groups in Table 1.

G cd(G) \ {1} Conditions

S6 {5, 9, 10, 16}

M10 {9, 10, 16}

PGL2(q) {q − 1, q, q + 1}

S〈ϕ〉 { 1
2 (3

f − 1), 3f , (3f ± 1)f} ω(12 (3
f − 1)) 6 2 and

f is an odd prime

Aut(S) {3f − 1, 3f , (3f ± 1)f} ω(3f − 1) = 2 and

f is an odd prime

S〈ϕ〉 {2f − 1, 2f , (2f − 1)f, (2f + 1)f} ω(2f − 1) 6 2 and

f is an odd prime

S〈ϕf/4〉 {2f , 22(2f ± 1), 2f + 1, 2(2f + 1)} 2f + 1 > 5 is a Fermat prime

S〈ϕf/2〉 {2f , 2(2f − 1), 2f + 1, 2(2f + 1)} ω(2f + 1) 6 2 and f is even

S〈ϕf/2〉 { 1
2 (q + 1), q, 2(q − 1), q + 1, 2(q + 1)} ω(q + 1) 6 2,

f is even and q is odd

S〈δ̄ϕf/2〉 {q, 2(q − 1), q + 1, 2(q + 1)} ω(q + 1) 6 2,

f is even and q is odd

PGL2(q)〈ϕ
f/2〉 {q, 2(q − 1), q + 1, 2(q + 1)} ω(q + 1) 6 2,

f is even and q is odd

S〈ϕf/m〉 {2f − 1, 2f ,m(2f ± 1), 2f + 1} ω(2f − 1) 6 2, ω(2f + 1) 6 2 and

m < f is an odd prime dividing f

Table 1. Possible group, character degrees, and necessary conditions

P r o o f. We use the notation in Lemma 2.2. Suppose G = PGL2(q). Since

cd(PGL2(q)) = {1, q − 1, q, q + 1}, it is easy to see that G satisfies the two-prime

hypothesis. So we may assume that G 6∼= PGL2(q). Then we have a > 1 whenm = 1.

We will first deal with the exceptions in Lemma 2.2, and then we will deal with the

general case.

We consider exceptions (ii), (iii), (iv) and (v) of Lemma 2.2 separately. In these

exceptions we have p ∈ {2, 3, 5}. So we may consider the possibilities for p. We will

deal with exception (i) as part of the general case.

(1) p = 5. In this case, we only need to consider exception (iv) of Lemma 2.2.

We have G = S〈ϕ〉, m = f > 1 is odd and 5f − 1, (5f − 1)f ∈ cd(G). Notice

that 5f is congruent to 1modulo 4, so 4 divides 5f−1. Since f > 1, we have 4 < 5f−1
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and this implies that 5f − 1 is divisible by at least three primes. Thus, G does not

satisfy the two-prime hypothesis, so this case does not occur.

(2) p = 3. If exception (ii) occurs in Lemma 2.2, then exception (iv) also occurs.

We have G = S〈ϕ〉, m = f > 1 is odd, and cd(G) = {1, 12 (3
f − 1), 3f , (3f − 1)f,

(3f +1)f}. Since G satisfies the two-prime hypothesis and 2f divides both (3f − 1)f

and (3f + 1)f , it follows that f is an odd prime. Also, we must have 1
2 (3

f − 1)

divisible by at most two primes, as listed in Table 1.

Suppose that exception (iii) occurs. Then G = Aut(S) and m = f is odd.

We observe that both 3f − 1 and 3f + 1 are divisible by at least two primes.

Since G satisfies the two-prime hypothesis, f must be an odd prime and cd(G) =

{1, (3f − 1), 3f , (3f − 1)f, (3f + 1)f} by Lemma 2.2. In addition, we see that 3f − 1

will be divisible by exactly two primes, as listed in Table 1.

We now suppose that exception (v) occurs. Then f ≡ 2 (mod 4), and G = S〈ϕ〉

or G = S〈δ̄ϕ〉. If f = 2, then we have G = S6 or H = M10, which are contained in

Table 1. If f > 2, then 2(3f − 1), (3f − 1)f ∈ cd(G). Observe that 3f is congruent

to 1 modulo 8 since f is even, and so 8 divides 3f − 1. This implies that G does not

satisfy the two-prime hypothesis and this case cannot occur.

(3) p = 2. We need to consider exceptions (iv) and (v) in Lemma 2.2. We also know

that exception (i) of Lemma 2.2 occurs, and so we have that 1
2 (2

f +ε) is not a degree

of G. Suppose that exception (iv) occurs. Then G = S〈ϕ〉, m = f is odd and 2f − 1,

(2f−1)f ∈ cd(G). Since G satisfies the two-prime hypothesis, we have ω(2f−1) 6 2.

We claim that this implies that f is a prime or the square of a prime. To do this, we

apply the Zsigmondy prime theorem which can be found as Theorem IX.8.3 in [7].

Suppose that f is divisible by two distinct primes p1 and p2, then since p1p2 is odd,

we get Zsigmondy prime divisors for each of 2p1 − 1, 2p2 − 1, and 2p1p2 − 1, and this

gives three distinct prime divisors of 2f − 1, a contradiction. Thus, we have that f is

a power of some prime r. If r3 divides f , then we get Zsigmondy prime divisors for

each of 2r−1, 2r
2

−1, and 2r
3

−1, and again this gives three distinct prime divisors of

2f−1. It follows that f is either r or r2, as claimed. Assume f = r2. This implies that

2f−1 is not a Mersenne prime, and so 2f−1 has at least two prime divisors. Also, we

have (2f−1)r, (2f−1)r2 ∈ cd(G), contradicting the two-prime hypothesis. Therefore,

this cannot occur and thus, f is an odd prime and cd(G) = {1, 2f − 1, 2f , (2f − 1)f,

(2f + 1)f}, where 2f − 1 is divisible by at most two primes, as listed in Table 1.

Now, suppose that exception (v) occurs. We have f > 2. Then we have m > 1

and 2(2f − 1), (2f − 1)f ∈ cd(G). Since f is congruent to 2 modulo 4, f is even

and 2f is congruent to 1 modulo 3. This implies that 3 divides 2f − 1. Since f > 2,

we know that 3 < 2f − 1 and 2f − 1 is not a prime. Since f is even, we see that

gcd(2(2f − 1), f(2f − 1)) = 2(2f − 1), which is divisible by at least three primes,

so G does not satisfy the two-prime hypothesis. Therefore this case cannot occur.
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We now consider the general case of Lemma 2.2.

(4) a > 2. By Lemma 2.2 we have (q − 1)2a, (q + 1)2a ∈ cd(G) if either a > 3

or a = 2, m = 1 and q is odd, and that (q − 1)2a, (q − 1)2am ∈ cd(G) if a = 2

and m > 1. In all of these cases, the two-prime hypothesis is violated in G, so they

do not occur. Suppose that a = 2, m = 1 and q is even. Then we have cd(G) =

{1, 2f , 22(2f − 1), (2f + 1), 2(2f + 1), 22(2f + 1)} and G = S〈ϕf/4〉. Since G satisfies

the two-prime hypothesis, 2f + 1 must be a (Fermat) prime, as listed in Table 1.

(5) a = 1. In particular, f is even. If m > 1, then cd(G) ⊇ {2(q − 1),

2m(q − 1), 2(q + 1), 2m(q + 1)}. Since q > 5, it follows that q − 1 and q + 1 cannot

simultaneously be a Mersenne prime and a Fermat prime. Thus, either 2(q − 1) or

2(q+1) is divisible by at least three primes, and this violates the two-prime hypothe-

sis, so this case cannot occur. We now assume m = 1. If q is even, then G = S〈ϕf/2〉

with cd(G) = {1, 2f , 2(2f − 1), 2f + 1, 2(2f + 1)}; if q is odd and G 6 S〈ϕ〉, then

G = S〈ϕf/2〉 with cd(G) =
{

1, 12 (q + 1), q, 2(q − 1), q + 1, 2(q + 1)
}

; and if q is odd

and G � S〈ϕ〉, then G = PGL2(q)〈ϕf/2〉 with cd(G) = {1, q, 2(q− 1), q+1, 2(q+1)}

or G = PSL2(q)〈δ̄ϕf/2〉 with cd(G) = {1, q, q + 1, 2(q ± 1)}. Since G satisfies the

two-prime hypothesis, it follows that q + 1 is divisible by at most two primes for

every case, as listed in Table 1.

(6) a = 0, so m > 1. If q is odd, then as we have seen, either q − 1 or q + 1 is

divisible by at least three primes since q > 5. By Lemma 2.2 we have {q−1, (q−1)m,

q + 1, (q + 1)m} ⊂ cd(G). This implies that G does not satisfy the two-prime

hypothesis, so this case does not occur. Suppose that q is even. If m is composite

with a proper divisorm1, then {(2f−1)m1, (2
f−1)m, (2f+1)m1, (2

f+1)m} ⊂ cd(G)

by Lemma 2.2. Observe that 2f is congruent to 1 modulo 3 when f is even and −1

when f is odd. Since 2f > 8, we have that 2f − 1 is divisible by at least two primes

if f is even and 2f +1 is divisible by at least two primes if f is odd. It follows that G

violates the two-prime hypothesis, so this case cannot occur. We may assume that

m is an odd prime. Then G = S〈ϕf/m〉 and cd(G) = {1, 2f , 2f − 1, (2f − 1)m, 2f +1,

(2f + 1)m}. Since G satisfies the two-prime hypothesis, both 2f − 1 and 2f + 1 are

divisible by at most two primes, as listed in Table 1.

Now the proof is complete. �

We will need the maximal subgroups of PSL2(q) for q > 7. According to Dickson’s

list of subgroups of PSL2(q) (cf. [6], Hauptsatz II. 8.27), we have a list of the maximal

subgroups of PSL2(q). We first list the maximal subgroups when the characteristic

is even.

Theorem 2.4 ([3], Theorem 2.1). If q = 2f > 8, then the maximal subgroups of

PSL2(q) are:

(i) Cf
2 ⋊ Cq−1, that is, the stabilizer of a point of the projective line,
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(ii) D2(q−1),

(iii) D2(q+1),

(iv) PGL2(q0), where q = qr0 for some prime r and q0 6= 2.

Here is the list of maximal subgroups when the characteristic is odd (we shall

directly refer to the Atlas [1] when q = 7, 9, 11.)

Theorem 2.5 ([3], Theorem 2.2). If q = pf > 13, where p is an odd prime, then

the maximal subgroups of PSL2(q) are:

(i) Cf
p ⋊ C(q−1)/2, that is, the stabilizer of a point of the projective line,

(ii) Dq±1,

(iii) PGL2(q0) for q = q20 ,

(iv) PSL2(q0) for q = qr0 , where r is an odd prime,

(v) A5 for q ≡ ±1 (mod 10) with either q prime, or q = p2 and p ≡ ±3 (mod 10),

(vi) A4 for q = p ≡ ±3 (mod 8) and q 6≡ ±1 (mod 10),

(vii) S4 for q ≡ ±1 (mod 8) with either q prime, or q = p2 and 3 < p ≡ ±3 (mod 8).

The following four results from [9] are used repeatedly and underlie most of the

arguments in the rest of the paper. They will often be used without further reference.

The first is the Clifford correspondence which can be found in [9], Theorem 6.11.

Theorem 2.6 (Clifford correspondence). Let N be a normal subgroup of

a group G. Fix θ ∈ Irr(N) and write T for the stabilizer of θ in G. Then the

map ψ 7→ ψG is a bijection from Irr(T | θ) to Irr(G | θ).

This next result is Gallagher’s theorem which is found in [9], Corollary 6.17.

Theorem 2.7 (Gallagher). Let N be a normal subgroup of G. Assume that

χ ∈ Irr(G) satisfies θ = χN ∈ Irr(N). Then Irr(G | θ) = {βχ : β ∈ Irr(G/N)} and

βχ = γχ if and only if β = γ for β, γ ∈ Irr(G/N).

The following well known result appears in [9], Corollary 11.22.

Theorem 2.8. Let N be a normal subgroup of a group G so that G/N is cyclic.

If θ ∈ Irr(N) is G-invariant, then θ extends to G.

Finally, we mention the following result regarding character triples that appears

in [9], Theorem 11.28.

Theorem 2.9. Let (G,N, θ) be a character triple and let Γ be the Schur repre-

sentation group for G/N and write A for the central subgroup of Γ that corresponds

to the Schur multiplier of G/N . Then there is a character λ ∈ Irr(A) such that

(G,N, θ) is a character triple isomorphic to (Γ, A, λ).
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3. G/N ∼= PSL2(q)

In this section, we prove the following theorem.

Theorem 3.1. Let G be a group satisfying the two-prime hypothesis. If G/N

is an almost simple group with simple socle M/N ∼= PSL2(q) with q > 7, then

|cd(G)| 6 19.

Assume the hypothesis of Theorem 3.1. Let A1 ⊆ Irr(N) be a set consisting of all

θ ∈ Irr(N) such that θ is M -invariant and let A2 ⊆ Irr(N) be the set consisting of

all θ ∈ Irr(N) which is notM -invariant. For i = 1, 2 let Bi be the union of all cd(G |

θ)\ cd(G/N) for all θ ∈ Ai. Then Irr(N) = A1∪A2 and cd(G) = B1∪B2∪cd(G/N).

When q is odd, fix ε ∈ {±1} such that q ≡ ε (mod 4). Then q−ε is divisible by at

least three primes. Notice that G/M is always cyclic unless G/N ∼= PGL2(q)〈ϕf/2〉

with f even and q odd, where G/M ∼= C2
2 . Moreover, if q is odd, then |G : M | ∈

{1, 2, f, 22}.

Lemma 3.2. Under the hypothesis of Theorem 3.1 we have |B1| 6 4 if q 6= 9.

P r o o f. Let θ ∈ A1 and let I = IG(θ). Then M 6 I 6 G. We consider the

following cases.

Case (1): I 6= G. Write θM =
∑

eiϕi, where ϕi ∈ Irr(M | θ).

Subcase (a): Assume that q = 2f > 8. As the Schur multiplier of M/N is trivial

and M/N is perfect, θ has a unique extension θ0 ∈ Irr(M). So θ0 is I-invariant

and since I/M is cyclic, θ0 extends to I and hence θ extends to I. As I/N has an

irreducible character γ of degree q which is the extension of the Steinberg character

of M/N of degree q, we are able to apply Gallagher’s theorem to see that I has

an irreducible character ϕ ∈ Irr(I | θ) of degree qθ(1). Thus, ϕG ∈ Irr(G) and

ϕG(1) = |G : I|ϕ(1) = |G : I|qθ(1). However, this violates the two-prime hypothesis

since q ∈ cd(G/N) and q is divisible by three primes.

Subcase (b): q is odd and |G/M | is a prime. Then I = M . It follows that

cd(I | θ) = {1, 12 (q + ε), q, q ± 1}θ(1) or { 1
2 (q − ε), q ± 1}θ(1). Hence, cd(G | θ) =

{1, 12 (q+ε), q, q±1}θ(1)|G : I| or { 1
2 (q−ε), q±1}θ(1)|G : I|. Since gcd(q−1, q+1) = 2

and |G : I| > 1, we have θ(1) = 1. Therefore, cd(G | θ) \ cd(G/N) ⊆ {1, 12 (q + ε)}×

|G : M |.

Subcase (c): q is odd and |G/M | is not a prime. Then G/N ∼= PGL2(3
f )〈ϕ〉 with f

an odd prime and 3f − 1 a product of two primes; or PGL2(q)〈ϕf/2〉, where f is

even, q is odd and q + 1 is divisible by at most two primes.

Since |G : M | is divisible by two primes and (q ± 1)θ(1) ∈ cd(M | θ), we deduce

that I 6=M. Let ψi ∈ Irr(I | θ) such that q− (−1)i divides ψi(1) for i = 1, 2. Clearly
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ψ1(1) 6= ψ2(1), so ψ
G
i (1) = |G : I|ψi(1), i = 1, 2 are two distinct degrees of G. It

follows that θ(1) = 1.

Assume first that G/N ∼= PGL2(3
f )〈ϕ〉. If θ extends toM , then it is extendible to

θ0 ∈ Irr(I) as I/M is cyclic. So by Gallagher’s theorem, γ = θ0µ ∈ Irr(I | θ) where

µ is an extension of the Steinberg character of M/N to I/N. Then γG ∈ Irr(G | θ)

with γG(1) = |G : I|qθ(1) > q = 3f . Since f > 3, we obtain a contradiction.

Thus, θ is not extendible to M and hence if θM =
∑

fiψi with ψi ∈ Irr(M | θ),

then {fi} = { 1
2 (q + 1), q ± 1}. Notice that q = 3f ≡ −1 (mod 4). It follows that

cd(I | θ) ⊆ { 1
2 (q + 1), q ± 1} ∪ { 1

2 (q + 1), q ± 1} · |I :M | and so

cd(G | θ) ⊆ { 1
2 (q + 1), q ± 1} · |G : I| ∪ { 1

2 (q + 1), q ± 1} · 2f.

Since cd(G/N) = {1, q − 1, q, (q − 1)f, (q + 1)f} and G satisfies the two-prime hy-

pothesis, we deduce that cd(G | θ) \ cd(G/N) ⊆ {2(q − 1)}.

Assume next that G/N ∼= PGL2(q)〈ϕ
f/2〉, where f is even, q is odd and q + 1 is

divisible by at most two primes. In this case

cd(I | θ) ⊆ {1, q, 12 (q ± 1), q ± 1} ∪ {1, q, 12 (q ± 1), q ± 1} · 2

and so

cd(G | θ) ⊆ {2, 2q, q ± 1, 2(q ± 1)} ∪ {4, 4q, 2(q± 1), 4(q ± 1)}.

Since cd(G/N) = {1, q+ 1, q, 2(q± 1)} and G satisfies the two-prime hypothesis, we

deduce that cd(G | θ) \ cd(G/N) ⊆ {2, 4, 2q, 4q}. The last two degrees cannot occur

at the same time as q is divisible by at least two primes.

Case (2): I = G.

Subcase (a): θ extends to θ0 ∈ Irr(G). Using Gallagher’s theorem and the fact

that cd(G/N) contains a degree divisible by three primes, we have θ(1) = 1 and

cd(G | θ) ⊆ cd(G/N).

Subcase (b): θ extends to θ0 ∈ Irr(M) but θ is not extendible to G. It follows

that G/M is noncyclic. Then G/N ∼= PGL2(q)〈ϕf/2〉 with q odd, f even. Let

T/N ∼= PGL2(q). Then θ extends to θ0 ∈ Irr(T ). So cd(T | θ) = {1, q, q ± 1}θ(1).

Since cd(G | θ) contains a degree divisible by (q − 1)θ(1), where q − 1 is divisible by

three primes and 2(q − 1) ∈ cd(G/N), we deduce that θ(1) = 1 or 2. If θ(1) = 1,

then cd(G | θ) \ cd(G/N) ⊆ {2, 2q}; and if θ(1) = 2, then cd(G | θ) \ cd(G/N) ⊆

{2, 4, 2q, 4q}. The last two degrees cannot occur at the same time.

Subcase (c): θ is not extendible to M. Then q is odd. Write θM =
∑

fiψi. Then

cd(M | θ) = {q ± ε, 12 (q − ε)}θ(1). In particular, cd(G | θ) contains a degree, say d,

divisible by (q − ε)θ(1). We consider the following cases.
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(i) G/N ∼= PSL2(q) or PGL2(q). Then q − ε ∈ cd(G/N). It follows that θ(1) = 1

as q − ε is divisible by at least three primes. Since |G :M | 6 2, we have

cd(G | θ) ⊆ {q ± ε, 12 (q − ε)} ∪ {q ± ε, 12 (q − ε)} · |G :M |.

As {q ± ε} ⊆ cd(G/N), we deduce that cd(G | θ) \ cd(G/N) ⊆ {2(q + ε), 12 (q − ε)}.

(ii) f is even and |G :M | = 2. In this case, ε = 1 and {q+ ε, 2(q± ε)} ⊆ cd(G/N).

Since d ∈ cd(G | θ) is divisible by (q − ε)θ(1), we see that θ(1) = 1 or 2.

If θ(1) = 2, then

cd(G | θ) ⊆ {2(q ± ε), q − ε} ∪ {4(q ± ε), 2(q − ε)}.

Hence cd(G | θ) \ cd(G/N) = ∅. Notice that 2(q + ε) is divisible by at least three

primes.

If θ(1) = 1, then

cd(G | θ) ⊆ {q ± ε, 12 (q − ε)} ∪ {2(q ± ε), q − ε}.

Hence cd(G | θ) \ cd(G/N) ⊆ { 1
2 (q − ε)}.

(iii) G/N ∼= PSL2(3
f )〈ϕ〉 or PGL2(3

f )〈ϕ〉 with f an odd prime. Then ε = −1 and

{f(3f ± ε)} ⊆ cd(G/N). Since d ∈ cd(G | θ), θ(1) = 1 or θ(1) = f .

Assume θ(1) = f. As |G :M | divides 2f , we deduce that

cd(G | θ) ⊆ {f(3f ± ε), 12f(3
f − ε)} · {1, 2, f, 2f}.

Hence cd(G | θ) \ cd(G/N) = ∅.

Assume θ(1) = 1. As |G :M | divides 2f , we deduce that

cd(G | θ) ⊆ {3f ± ε, 12 (3
f − ε)} · {1, 2, f, 2f}.

Hence, if G/N ∼= PGL2(3
f )〈ϕ〉, then cd(G | θ) \ cd(G/N) ⊆ { 1

2 (3
f − ε), 2(3f + ε)}

and if G/N ∼= PSL2(3
f )〈ϕ〉, then cd(G | θ) \ cd(G/N) ⊆ { 1

2 (3
f − ε), 3f + ε}.

(iv) G/N ∼= PGL2(q)〈ϕf/2〉, q odd, f even. Then ε = 1 and {q + 1, 2(q ± 1)} ⊆

cd(G/N). In this case, we obtain that θ(1) ∈ {1, 2} and

cd(G | θ) ⊆ {(q ± 1)θ(1), (q − 1)12θ(1)} · {1, 2, 4}.

In both cases, we have that cd(G | θ) \ cd(G/N) ⊆ { 1
2 (q − 1)}.

We now find the upper bound for |B1| for each possibility of G/N . Assume first

that G/N ∼= PGL2(3
f )〈ϕ〉 with f an odd prime. It follows from cases 1(c) and 2c(iii)

that B1 ⊆ {2(3f − 1), 12 (3
f + 1)} and so |B1| 6 2.

Assume next that G/N ∼= PGL2(q)〈ϕf/2〉 with q odd and f even. It follows from

cases 1(c), 2(b) and 2c(iv) that B1 ⊆ {2, 4, 2q, 4q, 12 (q − ε)} and so |B1| 6 4.

For the remaining cases we can check that |B1| 6 4. The proof is now complete.

�
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Lemma 3.3. Theorem 3.1 holds if q = 8.

P r o o f. We have that G/N ∼= PSL2(8) or PSL2(8) ·3 and cd(G/N) = {1, 7, 8, 9}

or {1, 7, 8, 21, 27}, respectively. Moreover, the Schur multiplier of PSL2(8) is trivial.

Let θ ∈ A2 and let I = IG(θ). Then M � I and since G/M is trivial or cyclic of

prime order, we have G = MI, so |G : I| = |M : I ∩ I|. Let M ∩ I 6 T 6 M such

that T/N is maximal in M/N.

If |M : T | is divisible by three primes, then every degree in cd(G | θ) is divisible

by |M : T |, so |cd(G | θ)| = 1. Notice that M/N has two such maximal indices

which are 22 · 7 and 22 · 32. If |M : T | is divisible by at most two primes, then

T/N ∼= 23 : 7, a Frobenius group of order 56. If M ∩ I 6= T, then every degree in

cd(G | θ) is divisible by 2 · 9 = 18 or 7 · 9 = 63, so |cd(G | θ)| 6 2 in this case.

Otherwise T =M ∩ I. If θ extends to T, then cd(M | θ) = {1, 7} · 9θ(1), so θ(1) = 1

and cd(G | θ) ⊆ {9, 9 · 7} ∪ {9 · 2, 2 · 7 · 9}. If θ is not extendible to T, then θ is not

extendible to N1, where N1/N ∼= 23. So every degree in cd(T | θ) is even and thus

every degree in cd(G | θ) is divisible by 2 ·9. Therefore every degree in B2 is divisible

by 22 · 7, 2 · 32, 7 · 32 (one degree each) or is the degree 9. Hence |B2| 6 4.

Since |B1| 6 4 by Lemma 3.2 and |cd(G/N)| 6 5, we have |cd(G)| 6 5+4+4 = 13.

�

Lemma 3.4. Theorem 3.1 holds if q = 9.

P r o o f. We have that G/N ∼= A6, S6 = A6 ·21, PGL2(9) = A6 ·22, M10 = A6 ·23
or A6 · 22.

Let θ ∈ A2 and let I = IG(θ). Then I 6 IM 6 G and M � I. We see that |G : I|

is divisible by |IM : I| = |M : I∩M |. LetM∩I 6 T 6M such that T/N is maximal

in M/N. From [1] we have that T/N ∼= A5, 3
2 : 4 or S4 with index 2 · 3, 2 · 5 and

3 · 5, respectively in M/N . Observe first that |G : M | = 1, 2 or 4.

If T 6= M ∩ I, then every degree in cd(G | θ) is divisible by one of the numbers

{5, 2 · 3, 2 · 5} · 2 · 3, {2, 32} · 2 · 5 or {2, 3, 22} · 3 · 5. So every degree in cd(G | θ) is

divisible by 2 · 3 · 5, 32 · 5, 22 · 32 or 22 · 5.

Assume that T = M ∩ I. Suppose further that θ extends to T. If T/N 6∼= S4,

then cd(G | θ) contains characters of degree divisible by 8 but not a power of 2,

which is impossible as 8 or 16 is a degree of G/N . Assume now that T/N ∼= S4 .

Then cd(M | θ) = {1, 2, 3} · 3 · 5 · θ(1). It follows that θ(1) = 1 and cd(G | θ) ⊆

{3 · 5a, 2 · 3 · 5a, 32 · 5a : a = 1, 2, 4} since |G : M | divides 4. By the two-prime

hypothesis, cd(G | θ) contains possibly 3 · 5, 32 · 5 and a degree divisible by 2 · 3 · 5.

Assume that θ does not extend to T. Then every degree in cd(T | θ) is divisible

by 2, 3 or 2, respectively. So every degree in cd(G | θ) is divisible by 22 · 3, 2 · 3 · 5

or 2 · 3 · 5, respectively.

932



Therefore if θ ∈ A2, then every degree in B2 is divisible by 2 · 3 · 5, 22 · 3, 22 · 5,

32 · 5 or equals 3 · 5 and thus |B2| 6 5.

Let θ ∈ A1 and let I = IG(θ). Then M 6 I.

Assume that θ extends to M. Then cd(M | θ) = {1, 5, 23, 32, 2 · 5}θ(1). Since 8

or 16 is in cd(G/N), we deduce that θ(1) = 1 or 2. So cd(G | θ) ⊆
⋃

16a|8

{1, 5, 23,

32, 2 · 5} · a. Moreover, {9, 10} ⊆ cd(G/N), we deduce that cd(G | θ) \ cd(G/N) ⊆

{2, 4, 5, 18, 36, 20}. Notice that 18 and 36 cannot occur at the same time.

Assume next that θ is M -invariant but not extendible to M. Then cd(M | θ) =

{4, 8, 10}θ(1), {3, 6, 9, 15}θ(1) or {6, 12}θ(1). Since 4 | 8 and 6 | 12, we deduce that

θ(1) = 1 in the first or the last case and θ(1) = 1 or 2 in the second case. Since 8

or 16 is a degree of G/N, 8, 16, 24 6∈ cd(G | θ) \ cd(G/N). It follows that cd(G | θ) ⊆

{3, 4, 6, 12, 15, 20, 18, 30, 36, 40, 60}. Recall that {9, 10} ⊆ cd(G/N).

Thus B1 ⊆ {2, 3, 4, 5, 6, 12, 15, 18, 20, 30, 36, 40, 60}. Since 30 and 60 are divisible

by 2 · 3 · 5, 12 and 36 are divisible by 22 · 3; 20 and 40 are divisible by 22 · 5 and 15 is

possibly in B2, we see that |B1∪B2| 6 10+5−4 = 11. Therefore, since |cd(G/N)| 6 5,

we deduce that |cd(G)| 6 |cd(G/N)|+ |B1 ∪ B2| 6 5 + 11 = 16. �

Lemma 3.5. Assume the hypothesis of Theorem 3.1 and suppose that q = 2f > 8.

Then |B2| 6 5.

P r o o f. Let θ ∈ A2 and let I = IG(θ). Then M � I, so I 6 MI 6 G and thus

|G : I| is divisible by |M : T |, where M ∩ I 6 T 6 M such that T/N is a maximal

subgroup of M/N ∼= PSL2(2
f ) with f > 4.

If T/N ∼= D2(q±1) or PSL2(q0) with q = qr0, q0 6= 2, r a prime, then |M : T | is

divisible by at least three primes, so |cd(G | θ)| = 1.

So, assume that T/N ∼= 2f : (2f − 1), which is a Frobenius group with kernel 2f .

Observe that M ∩ I/N is a cyclic subgroup of a cyclic group of order 2f − 1, an

elementary abelian 2-group of order 2e with 1 6 e 6 f or a Frobenius group of order

2e · d, where d divides gcd(2e − 1, 2f − 1) and 1 6 e 6 f. Moreover, since f > 4,

q2 − 1 = 4f − 1 is divisible by at least three primes.

We claim that every degree in cd(G | θ) is divisible by q2 − 1 or 4(q + 1). In both

cases, |cd(G | θ)| 6 1. Let L/N ∼= 2f . Assume that L � M ∩ I. Then |T : M ∩ I| is

even.

If |T : M ∩ I| is divisible by 4, then |cd(G | θ)| = 1 and every degree in cd(G | θ)

is divisible by 4(q + 1).

Assume that |T : M ∩ I|2 = 2. Then every degree in cd(G | θ) is divisible by

2(q + 1). If θ is not extendible to the Sylow 2-subgroup of M ∩ I/N, then every

degree in cd(M ∩ I | θ) is even, so every degree in cd(G | θ) is divisible by 4(q + 1).
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Therefore we can assume that θ extends to the Sylow 2-subgroup of M ∩ I/N and

thus it extends to M ∩ I. Hence, cd(G | θ) contains a degree divisible by q2 − 1.

Assume L 6 M ∩ I, where L/N ∼= 2f . We can assume that θ is not extendible

to L as otherwise q2 − 1 divides some degree in cd(G | θ). In this case, M ∩ I/N ∼=

(C2)
f : Cd where d | 2f − 1.

By Theorem 2.7 of [8], θ determines a unique subgroup A with N 6 A 6 L

satisfying that θ extends to A and every character in Irr(A | θ) is fully ramified with

respect to L/A. This implies that |L : A| = 22a for some integer a. We know that 2a

will divide every degree in cd(L | θ). If a > 1, then 4(q + 1)θ(1) divides all degrees

in cd(G | θ). Thus, we may assume that a = 1. Since f > 4 and |A : L| = 2f−2a,

we conclude that L < A. Let H/N be a Frobenius complement for T/N . Since H

stabilizes θ and A is determined by θ, we see thatH will normalizeA. Because T/N is

a Frobenius group, H/L will have a regular orbit on Irr(A/N). Applying Gallagher’s

theorem, this yields a regular orbit for H/N on Irr(A | θ), and thus, a regular orbit

for H/N on Irr(L | θ). In particular, there exists a character θ̂ ∈ Irr(L | θ) whose

stabilizer in I is L. It follows that θ̂I ∈ Irr(I | θ), and so θ̂G ∈ Irr(G | θ). We now

have (q + 1)(q − 1)2θ(1) = |G : L|2θ(1) = θ̂G(1) ∈ cd(G | θ), and this proves that

(q2 − 1)θ(1) divides all degrees in cd(G | θ).

In summary, we deduce that |B2| 6 3 + 2 = 5. �

Lemma 3.6. Assume the hypothesis of Theorem 3.1 and suppose that q =

pf > 13 with p > 2. Then |B2| 6 9.

P r o o f. Let θ ∈ A2 and let I = IG(θ). Then M � I, so I 6 MI 6 G and

thus |G : I| is divisible by |M : T |, where J := M ∩ I 6 T 6 M such that T/N is

a maximal subgroup of M/N ∼= PSL2(p
f ) with f > 1.

(1) T/N ∼= Cf
p : 1

2Cpf−1. We claim that p(q + 1) divides every degree in cd(G | θ)

and since p(q + 1) is divisible by three primes, we have |cd(G | θ)| 6 1.

We have |M : T | = q + 1. Recall that either ω(q − 1) > 3 or ω(q + 1) > 3 and

both q − 1 and q + 1 divide 1
2 (q − 1)(q + 1), and q ± 1, f(q ± 1) or 2(q ± 1) are in

cd(G/N). Thus, by the two-prime hypothesis, we cannot have 1
2 (q−1)(q+1) dividing

some degree in cd(G | θ). Let N1/N 6 T/N with N1/N ∼= Cf
p . If J ∩ N1 < N1,

then p divides every degree in cd(G | θ), and the claim follows. Thus, we may assume

N1 6 J . If J = N1, then |T : J | = 1
2 (q− 1) and 1

2 (q− 1)(q+1) divides the degrees in

cd(G | θ), a contradiction. Thus N1 < J . Notice that J/N is a Frobenius group with

Frobenius kernel N1/N . Let H/N be a Frobenius complement for J/N . If θ does not

extend to N1, then p will divide every degree in cd(G | θ). We assume that θ extends

to N1. By Glauberman’s lemma (see [9], Lemma 13.8 and Corollary 13.9), there

will be a unique extension θ̂ ∈ Irr(N1 | θ) that is H-invariant. It follows that θ̂ is
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J-invariant, and since J/N1 is cyclic, θ̂ extends to J . This implies that θ extends

to J , and by Gallagher’s theorem we have |J : N1| ∈ cd(J | θ). This implies that

|M : N1| =
1
2 (q − 1)(q + 1) divides some degree in cd(G | θ), a contradiction.

(2) T/N ∼= PGL2(q0), where q = q20 . We claim that every degree in cd(G | θ) is

divisible by p(q + 1) or 1
2p

2(q + 1). Clearly, q0 > 3. Note that this implies that f is

even and |M : T | = 1
2q0(q + 1). Observe that ω(|M : T |) > 2.

Observe next that 1
4 (q − 1)(q + 1)q0 is divisible by either q − 1 or q + 1 and thus

cd(G | θ) has no degree divisible by 1
4q0(q

2−1) as cd(G/N) has degrees q±1, 2(q±1)

or f(q ± 1).

Let N1/N ⊳ T/N with N1/N ∼= PSL2(q0). If N1 6 J , then {q0 − 1, q0 +1} · θ(1) ⊆

cd(N1 | θ). Recall that N1 E J E I. Now if cd(I | θ) has two distinct degrees, one

divisible by q0 − 1 and the other divisible by q0 + 1, then cd(G | θ) has two distinct

degrees divisible by q0(q−1), violating the two-prime hypothesis. Thus, cd(I | θ) has

a degree divisible by 1
2 (q0 − 1)(q0 + 1) which is lcm(q0 − 1, q0 + 1). Hence, cd(G | θ)

has a degree divisible by 1
4 (q − 1)(q + 1)q0 which contradicts the observation above.

Assume N1 � J. Then p divides |JN1 : J | = |N1 : N1 ∩ J | or |JN1 : J | = q0 + 1,

which implies that every degree in cd(G | θ) is divisible by either 1
2q0(q + 1)(q0 + 1)

or 1
2q0(q + 1)p. In particular, every degree in cd(G | θ) is divisible by p(q + 1) or

1
2p

2(q + 1).

(3) T/N ∼= PSL2(q0) with q = qr0 , where r is an odd prime.

We see |M : T | = qr−1
0 (q2 − 1)/(q20 − 1). Since r > 3, |M : T | is divisible by at

least three distinct primes and thus |cd(G | θ)| 6 1. Notice that qr−1
0 (q2−1)/(q20−1)

and 1
2p

2(q + 1) have at least three prime divisors in common.

(4) T/N ∼= Dq−δ with δ = ±1 > 1. We have |M : T | = 1
2q(q + δ).

If 1
2q(q + δ) is divisible by at least three primes, then |cd(G | θ)| = 1. So, assume

1
2q(q+δ) is divisible by at most two primes. Then q = p is a prime, δ = ε and 1

2 (q+ε)

is a prime, where q ≡ ε (mod 4). It follows that G/N ∼= PSL2(q) or PGL2(q) and

so I/N 6 H/N , where H/N ∼= D2n with n = 1
2 (q − ε) or q − ε, respectively. Since

q > 13, H/N is nonabelian and cd(H/N) = {1, 2}.

If θ extends to H, then cd(G | θ) = { 1
2q(q + ε), q(q + ε)}θ(1) which implies that

θ(1) = 1.

If θ is H-invariant but not extendible to H, then every degree in cd(G | θ) is

divisible by q(q + ε).

Finally, assume that θ is not H-invariant. Then I/N is a proper subgroup of H/N.

It follows that I/N is cyclic and its order divides n or I/N ∼= D2d with d | n. If |H : I|

is even, then every degree in cd(G | θ) is divisible by q(q + ε). So, assume |H : I| is

odd, which implies that either I/N is a nonabelian dihedral group of order 2d with

n 6= d | n or I/N ∼= C2 or C
2
2 . In all cases, |G : I| is divisible by at least three primes,

so |cd(I | θ)| = 1. If I/N is a nonabelian dihedral group, then θ is not extendible
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to I and so cd(G | θ) = {q(q+ ε)}θ(1) as cd(I | θ) = {2θ(1)}. For the remaining two

cases we see that the degree in cd(G | θ) is divisible by 1
8q(q − 1)(q + 1).

(5) T/N ∼= A5, where q ≡ ±1 (mod 1)0 with either q prime, or q = p2 and p ≡ ±3

(mod 10). Then |M : T | = 1
120q(q

2 − 1) and gcd(q, 10) = 1. Observe that if p is any

odd prime, then p2 ≡ 1 (mod 8), so 16 | p4 − 1.

Since q > 13, we can assume q > 19. It follows that q 6= 3, 9, so 3 ∤ q and thus

120 | q2 − 1. Write q2 − 1 = 120t for some integer t > 1. Hence |M : T | = qt > q.

If qt is divisible by three primes, then |cd(G | θ)| 6 1. So, assume now that qt is

divisible by at most two primes, which implies that q = p and t is a prime. Hence

G/N ∼= PSL2(p) or PGL2(p). From [3], Theorem 3.5 we can see that the second case

cannot occur. Hence G/N ∼= PSL2(p) and I/N 6 T/N ∼= A5.

If θ is T -invariant, then either cd(G | θ) = {qt, 3qt, 4qt, 5qt}θ(1) or {2qt, 4qt, 6qt}×

θ(1). Clearly, the second case cannot hold and if the first case holds, then θ(1) = 1.

If θ is not T -invariant, then |T : I| is divisible by 5, 6 or 10. So |G : I| is divisible

by 5qt, 6qt or 10qt, which are all divisible by at least three primes. So |cd(G | θ)| 6 1

and every degree in cd(G | θ) is divisible by 5qt or 6qt.

(6) T/N ∼= A4, where q = p ≡ ±3 (mod 8) and q 6≡ ±1 (mod 10). Then |M : T | =
1
24q(q

2 − 1) and since q > 7 is odd, we have 24 | q2 − 1, so 1
24 (q

2 − 1) = r for some

integer r > 1. Notice that G/N ∼= PSL2(q) or G/N ∼= PGL2(q).

If qr is divisible by at least three primes, then |cd(G | θ)| 6 1. So, assume r is

a prime.

Assume first that G/N ∼= PGL2(q) and let I/N 6 H/N , where H/N ∼= S4 . In this

case, H/N ∩M/N ∼= T/N. If θ is H-invariant, then cd(G | θ) = {qr, 2qr, 3qr}θ(1) or

{2qr, 4qr}θ(1). The latter cannot occur and if the former case occurs, then θ(1) = 1.

If θ is not H-invariant, then |H : I| is divisible by 2, 3 or 4, so |G : I| is divisible

by 2qr or 3qr. Hence |cd(G | θ)| 6 1.

Assume next that G/N ∼= PSL2(q). If θ is T -invariant, then cd(G | θ) =

{qr, 3qr}θ(1) or {2qr}θ(1). If the former case occurs, then θ(1) = 1. If θ is not

T -invariant, then |T : I| is divisible by 3 or 4, so |G : I| is divisible by 3qr or 4qr.

Hence |cd(G | θ)| 6 1.

(7) T/N ∼= S4, where q = p ≡ ±1 (mod 8). Then |M : T | = 1
48q(q

2 − 1). Observe

that 16 | q2 − 1. If q = 3f > 9, then f > 4, so 1
48q(q

2 − 1) is divisible by at least

three primes and thus |cd(G | θ)| 6 1. If 3 ∤ q, then q2 − 1 is divisible by 3 and hence

q2 − 1 = 48s for some integer s > 1. (Assume q > 7). If |M : T | = qs is divisible

by at least three primes, then |cd(G | θ)| 6 1. So, assume qs is divisible by two

primes, which implies that both q and s are primes. From [3], Theorem 3.5 we have

G/N =M/N ∼= PSL2(p) and hence I/N 6 T/N ∼= S4.

If θ is T -invariant, then cd(G | θ) = {qs, 2qs, 3qs}θ(1) or {2qs, 4qs}θ(1). Obvi-

ously, the second case cannot occur and if the first case holds, then θ(1) = 1. If θ is
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not T -invariant, then |G : I| is divisible by 2qs, 3qs or 4qs and thus |cd(G | θ)| 6 1

and the degree in cd(G | θ) is divisible by either 2qs or 3qs.

In summary, the first three cases contribute at most three degrees in B2. Case (4)

contributes one degree unless q = p is a prime and 1
2 (q+ ε) is a prime; in this case it

contributes at most three degrees 1
2q(q+ε), q(q+ε) or a degree divisible by

1
8q(q

2−1).

For the last three cases, we see that cases (5) and (6) cannot occur simultaneously;

the similar observation holds for cases (6) and (7). Moreover, if cases (5) and (7)

occur at the same time, then both t and s cannot be primes simultaneously. Therefore

the maximum contribution of the last three cases to B2 is 5 if q = p and 2 if q > p.

Assume first that q = p. Then cases (2) and (3) do not occur, so the first four cases

contribute at most 4 degrees to B2 and the last four cases contribute at most 5 de-

grees, so |B2| 6 4 + 5 = 9.

Assume that q is not a prime. Then the first four cases contribute at most 6 degrees

to B2 and the last three cases contribute at most 1 degree (in case (5) only), hence

|B2| 6 6 + 1 = 7. Therefore |B2| 6 9 in all cases. �

Lemma 3.7. Theorem 3.1 holds for q = 7.

P r o o f. From [2] we see that G/N ∼= PSL2(7) or PGL2(7). Moreover, the

maximal subgroups of PSL2(7) are isomorphic to either C7 : C3 or S4 and maximal

subgroups of PGL2(7) which does not contain PSL2(7) are isomorphic to either

(C7 : C3) : C2, D16 or D12.

(a) Assume first that G/N ∼= PGL2(7).

From Lemma 3.2 we have that |B1| 6 6. We next claim that |B2| 6 3 and since

|cd(G/N)| = 4, we obtain that |cd(G)| 6 |B1|+|B2|+|cd(G/N)| 6 6+3+4 = 13 < 19.

We now show that |B2| 6 3. Let θ ∈ A2 and let I = IG(θ). Then M/N � I/N , so

I/N 6= G/N . Let H/N be a maximal subgroup of G/N containing I/N .

If H/N ∼= (C7 : C3) : C2, then |G : H | = 8, so every degree in cd(G | θ) is divisible

by 8 and since 8 ∈ cd(G/N), this contributes nothing to B2. If H/N ∼= D12, then

|G : H | = 22 · 7, so |cd(G | θ)| 6 1.

Assume that H/N ∼= D16. Then |G : H | = 3 · 7. Since H/N is nonabelian, we can

use the argument as in case (4) of Lemma 3.6 to see that cd(G | θ) = {7 · 3, 7 · 6} or

|cd(G | θ)| = 1 and the unique degree in cd(G | θ) is divisible by 7 · 2 · 3. Therefore

|B2| 6 3.

(b) Assume G/N ∼= PSL2(7). We have cd(G/N) = {1, 3, 6, 7, 8}.

Let θ ∈ A1. Then θ is G-invariant and by using [2], cd(G | θ) = {1, 3, 6, 7, 8}θ(1) or

{4, 6, 8}θ(1). Since 8 ∈ cd(G), we deduce that θ(1) = 1. Hence B1 contains possibly

the degree 4 and thus |B1| 6 1.

Let θ ∈ A2 and let I = IG(θ). Then M/N � I/N , so I/N 6= G/N . Let H/N be

a maximal subgroup of G/N containing I/N .
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As in the previous case, if H/N ∼= C7 : C3, then every degree in cd(G | θ) is

divisible by 8. So, assume H/N ∼= S4 . Then |G : H | = 7.

Assume that θ isH-invariant. Then cd(G | θ) = {7, 7·2, 7·3}θ(1) or {2·7, 4·7}θ(1).

If the latter case holds, then θ(1) = 1. If the first case holds, then θ(1) = 1 or a prime.

Since θ(1) ∈ cd(N) andN is solvable, θ(1) can take at most two distinct prime values.

Assume next that θ is not H-invariant. Let K/N be a maximal subgroup of H/N

containing I/N. Then K/N is isomorphic to S3, D8, or A4 with indices |H : K| equal

to 22, 3, or 2, respectively. Suppose I = K. If K/N ∼= S3, then θ extends to I, so

cd(G | θ) = {1, 2} · 22 · 7θ(1), a contradiction since 23 ∈ cd(G/N). If K/N ∼= D8,

then cd(G | θ) is either {1, 2} · 3 · 7θ(1) or {2 · 3 · 7θ(1)}. In the first case, we have

θ(1) = 1. If K/N ∼= A4, then either cd(G | θ) = {1, 3} · 2 · 7θ(1) and in this case

θ(1) = 1, or cd(G | θ) = {22 · 7θ(1)}. Finally, if I � K, we see that either 2 · 3 or 23

divides |H : I|. Recall that 23 ∈ cd(G). If 23 divides |H : I|, then 23 · 7 divides

every degree in cd(G | θ), which contradicts the two-prime hypothesis. So we have

2 · 3 | |H : I|, and so 2 · 3 · 7θ(1) divides every degree in cd(G | θ).

Since {7, 8} ⊆ cd(G/N), we see that |B2| 6 11.

Therefore |cd(G)| 6 |B1|+ |B2|+ |cd(G/N)| 6 1 + 11 + 6 = 18 < 19. �

Lemma 3.8. Theorem 3.1 holds for q = 11.

P r o o f. We have that either G/N ∼= PGL2(11) or PSL2(11).

(a) Assume that G/N ∼= PGL2(11). We have cd(G/N) = {1, 10, 11, 12}.

From Lemma 3.2 we have that |B1| 6 6. We next claim that |B2| 6 4 and since

|cd(G/N)| = 4, we obtain that |cd(G)| 6 |B1|+|B2|+|cd(G/N)| 6 6+4+4 = 14 < 19.

Let θ ∈ A2 and let I = IG(θ). Then I 6= G and let H/N be a maximal subgroup

of G/N containing I/N. Then H/N does not contain the socle M/N ∼= PSL2(11),

so H/N ∼= (C11 : C5) : C2,D24, S4 or D20 with index |G : H | = 22 · 3, 5 · 11, 5 · 11 or

2 · 3 · 11, respectively.

The first case cannot occur since 12 ∈ cd(G/N) and H/N is nonabelian. If the

last case holds, then |cd(G | θ)| 6 1.

Assume that H/N ∼= D24. If θ is H-invariant, then cd(G | θ) = {1, 2} · 5 · 11θ(1)

or every degree in cd(G | θ) is divisible by 2 · 5 · 11θ(1). If the first case holds, then

θ(1) = 1 and if the second case holds, then |cd(G | θ)| = 1. If θ is not H-invariant,

then |H : I| is divisible by 2 or 3 and hence, every degree in cd(G | θ) is divisible by

2 · 5 · 11 or 3 · 5 · 11.

Assume that H/N ∼= S4 . Assume that θ is H-invariant. Then cd(G | θ) =

{1, 2, 3}5 ·11θ(1) or {2, 4}5 ·11θ(1). The latter case cannot occur and if the first case

holds, then θ(1) = 1. If θ is not H-invariant, then |H : I| is divisible by 2 or 3, so

every degree in cd(G | θ) is divisible by either 2 · 5 · 11 or 3 · 5 · 11. Hence |B2| 6 4.
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(b) Assume G/N ∼= PSL2(11). Then cd(G/N) = {1, 5, 10, 11, 12}.

Assume that θ ∈ A1. Then θ is G-invariant and thus cd(G | θ) = {1, 5, 10, 11, 12}×

θ(1) or {6, 10, 12}θ(1). Since 12 = 22 · 3 ∈ cd(G/N), we deduce that θ(1) = 1 and

thus |B1| 6 1.

Assume that θ ∈ A2. Then I = IG(θ) 6= G and let H/N be a maximal subgroup

of G/N containing I/N. Then H/N ∼= A5, C11 : C5 or D12 with index |G : H | = 11,

|G : H | = 22 · 3 or |G : H | = 5 · 11. As above, the second case cannot happen.

Assume that H/N ∼= D12. In this case cd(G | θ) contains 5 ·11 or a degree divisible

by 2 · 5 · 11 or 3 · 5 · 11.

Assume that H/N ∼= A5. Then |G : H | = 11.

If θ is H-invariant, then cd(G | θ) = {1, 3, 4, 5}11θ(1) or {2, 4, 6}11θ(1). If the

latter case holds, then θ(1) = 1; if the former case holds, then θ(1) = 1 or θ(1) is

a prime and since 22 ·11 divides some degree in cd(G | θ), there is only one possibility

for θ(1).

Assume that θ is not H-invariant and let K/N be a maximal subgroup of H/N

containing I/N . Then K/N ∼= A4, S3 or D10 with |H : K| = 5, 10 or 6, respectively.

If the last two cases hold, then |cd(G | θ)| = 1 and the unique degree in cd(G | θ) is

divisible by either 2 · 3 · 11 or 2 · 5 · 11.

Assume K/N ∼= A4. If I = K, then cd(G | θ) = {1, 3}5 · 11θ(1) or {2 · 5 · 11θ(1)}.

If the first case holds, then θ(1) = 1. If I 6= K, then |I : K| is divisible by either

2 or 3, so every degree in cd(G | θ) is divisible by either 2 · 5 · 11 or 3 · 5 · 11.

Thus |B2| 6 12. Therefore |cd(G)| 6 |B1|+ |B2|+ |cd(G/N)| 6 12+1+5 = 18. �

P r o o f of Theorem 3.1. If q = 7, 8, 9 or 11, then Theorem 3.1 follows from

Lemmas 3.7, 3.3, 3.4 and 3.8, respectively.

Next, assume that q > 8 is even. Then |B1| 6 4 and |B2| 6 5 by Lemmas 3.2

and 3.5, respectively. As |cd(G/N)| 6 6, we see that |cd(G)| 6 |B1| + |B2| +

|cd(G/N)| 6 4 + 5 + 6 < 19.

Finally, assume that q > 13 is odd. Then |B1| 6 4 and |B2| 6 9 by Lem-

mas 3.2 and 3.6, respectively. As |cd(G/N)| 6 6, we see that |cd(G)| 6 |B1| +

|B2|+ |cd(G/N)| 6 4 + 9 + 6 = 19. �

Now we can prove Theorem 1.1.

P r o o f of Theorem 1.1. We are assuming that G satisfies the two-prime hy-

pothesis and has a composition factor isomorphic to PSL2(q) for some prime power

q > 7. In other words, there is a composition series for G that has PSL2(q) as

a composition factor for G. Consider a chief series for G. Recall that we may refine

our chief series to a composition series for G. By the Jordan-Hölder theorem, we

know that all composition series for G have the same composition factors. Thus,

we can find normal subgroups L < K in our chief series so that K/L is one of the
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chief factors and L 6 V < U 6 K so that U is subnormal in K and V is normal

in U and satisfies U/V ∼= PSL2(q). Since K/L is a chief factor, we know that K/L

is the direct product of copies of some simple group S. The composition factors

of K/L will all be isomorphic to S and since U/V is a composition factor of K/L, we

conclude that S ∼= PSL2(q). On the other hand, we know from Theorem 2.1 that all

of the nonabelian chief factors of G that are not isomorphic to A5 × A5 are simple.

Since q > 7, we know that A5 6∼= PSL2(q), so we conclude that K/L is simple and in

particular that K/L is isomorphic to PSL2(q).

Let C/L = CG/L(K/L). Observe that C is normal in G and C ∩ K = L, so

CK/C ∼= K/L. We know that G/CL is isomorphic to a subgroup of Aut(K/L), and

thus, we can conclude that G/CL is an almost simple group. In particular, G now

satisfies the hypotheses of Theorem 3.1, and the conclusion follows from there. �

We can also prove Theorem 1.2.

P r o o f of Theorem 1.2. If G has no composition factors isomorphic to PSL2(q)

for any prime power q, then apply in [11], Theorem 1.1. Otherwise, since G is

nonsolvable, and does not have any composition factors isomorphic to A5, then it

must have some composition factor isomorphic to PSL2(q) for some prime power

q > 7 and we apply Theorem 1.1 to obtain the conclusion. �
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