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GROUPS, SEMILATTICES AND INVERSE SEMIGROUPS

BY
D. B. McALISTERO)

ABSTRACT. An inverse semigroup S is called proper if the equations ea = e = e2
together imply a2 = a for each a, e E S. In this paper a construction is given for a large
class of proper inverse semigroups in terms of groups and partially ordered sets; the
semigroups in this class are called /"-semigroups. It is shown that every inverse semigroup
divides a P-semigroup in the sense that it is the image, under an idempotent separating
homomorphism, of a full subsemigroup of a P-semigroup. Explicit divisions of this type are
given for u-bisimple semigroups, proper bisimple inverse semigroups, semilattices of groups
and Brandt semigroups.

The algebraic theory of inverse semigroups has been the subject of a
considerable amount of investigation in recent years. Much of this research has
been concerned with the problem of describing inverse semigroups in terms of
their semilattice of idempotents and maximal subgroups. For example, Clifford
[2] described the structure of all inverse semigroups with central idempotents
(semilattices of groups) in these terms. Reilfy [17] described all w-bisimple inverse
semigroups in terms of their idempotents while Warne [22], [23] considered I-
bisimple, w"-bisimple and «"-/-bisimple inverse semigroups; McAlister [8] de-
scribed arbitrary O-bisimple inverse semigroups in a similar way. Further, Munn
[12] and Köchin [6] showed that to-inverse semigroups could be explicitly
described in terms of their idempotents and maximal subgroups. Their results
have since been generalised by Ault and Petrich [1], Lallement [7] and Warne [24]
to other restricted classes of inverse semigroups. Munn [14] has also described
various classes of simple inverse semigroups in terms of groups and their
semilattice of idempotents.

A homomorphism 9 of an inverse semigroup S into an inverse semigroup T is
called idempotent separating if 9 is one-to-one on the idempotents of S; that is,
e2 = e,f2 = f, e9 = f9 imply e = /. A congruence is idempotent separating if
it is the congruence of an idempotent separating homomorphism. Howie [5]
showed that

u = {(a,b) E S X S: aTxea = b~xeb for all e2 = e E S}

is the maximum idempotent separating congruence on an inverse semigroup S.
Further, Munn [13] has shown that T = S/p is fundamental; that is, the identity
is the only congruence on T contained in <=¥. The importance of fundamental
inverse semigroups stems from the fact (Munn [11], [13]) that, if T is a
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fundamental inverse semigroup with idempotents E, then T is isomorphic to a
full subsemigroup of the semigroup TE of isomorphisms between principal ideals
of E. (An inverse subsemigroup U of an inverse semigroup V is full if it contains
all the idempotents of V.) Since the kernel of an idempotent separating
homomorphism is a semilattice of groups, it follows that any inverse semigroup
S with semilattice of idempotents E is an idempotent separating extension of a
semilattice E of groups by a full subsemigroup of TE.

Coudron [3] and D'Alarcao [4] have given extension theories similar to the
Schreier theory for groups, for idempotent separating extensions of inverse
semigroups. Thus, assuming that the full subsemigroups of TE can be found,
Coudron and D'Alarcao's extension theories can be regarded as giving the
structure of all inverse semigroups.

In this paper, we present a structure theory for inverse semigroups which is
dual to that of Munn-Coudron-D'Alarcao which is outlined above. Given a
group G acting on a partially ordered set D( by order automorphisms and a
subsemilattice •7/ of % we construct an inverse semigroup P(G, D(, <y) which
depends only on <?/ and the action of G on D(. The main theorem (Theorem 2.4)
shows that any inverse semigroup S, with semilattice of idempotents E, is an
idempotent separating homomorphic image of a full subsemigroup of P(G, % E)
for some G, % Since idempotent separating congruences on inverse semigroups
are known, thanks to Preston [16], our theory can be regarded as giving the
structure of all inverse semigroups (provided that we assume that full subsemi-
groups of the semigroups P(G, % <y) are known). This structure theory can be
regarded as an extension, to infinite inverse semigroups, and refinement of
Rhodes divisibility theory for finite semigroups [19].

H. E. Scheiblich [20] has recently given an explicit description of the free
inverse semigroup Ix on a nonempty set X. The semigroups P(G, % <7/) which we
consider in this paper generalise the semigroup used in his description of Ix. The
results described here point out the fundamental nature of the construction,
which he pioneered in his determination of Ix, to the structure theory of inverse
semigroups in general.

In §§3, 4, 5 we explicitly construct divisions, of the type outlined above, for
semilattices of groups, bisimple inverse semigroups and Brandt semigroups. The
theory also gives rise to many interesting questions concerning partially ordered
sets as well as inverse semigroups. Some of these are listed at the end of the
paper.

1. The semigroups P(G, % <y). Let D( be a partially ordered set. For A, B G %
we shall denote by A A B the meet of A and B if it exists. If «7/ is a subset of %
the statement "A A B E <7/' means that the meet of A and B exists and belongs
to <y. A subset nj of D( is called a subsemilattice of D( if A, B G «7/ implies
A A B E «T/forahM, B E % «2/is an ideal of D(iî A E <7/and5 < A together
imply B E %
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Let £Y be a partially ordered set and let G be a group which acts (on the left)
on 9(by order automorphisms; let <y be a subsemilattice of £Y. Then

P = P(G,%<y)

= {(A,g) E<yxG:A A gB,g~x(A A B) E <y for all B E <7/}

under the multiplication (A,g)(B,h) = (A A gB,gh). Lemma 1.1 shows that P
is an inverse semigroup; we shall call it a P-semigroup. When <]/ is not only a
subsemilattice but an ideal of £Ythe definition of P simplifies considerably; in this
case P = {(A,g) E <7/X G: A,g~xA E <7/}. Thus P-semigroups are generalisa-
tions of the inverse semigroups constructed in [9, §4]. In particular, free inverse
semigroups are P-semigroups [20], [9].

Lemma 1.1. P = P(G,D(, cy) is an inverse semigroup with semilattice of idempo-
tents isomorphic to (lj. For each (A,g) E P, (A,g)~x = (g~xA,g~x).

Proof. Suppose (A,g), (B,h) E P and let C G «Î/. Then

(A A gB) A ghC = A A g(B A hC)

= A A gD   where D = B A hC E <y since (B,h) G P

G <y   since (A,g) E P and D G <]/.

Further

(gh)~x[(A A gB) A C] = h~x[B A g~x(A A C)]

= h'x[B A F]   where F = g~x(A A C) G <]/

since (A,g) E P

E <y   since (B,h) E % F E %

Hence P is closed under multiplication.
Next

[(A,g)(B,h)](C,k) = (A A gB,gh)(c,k) = (L4 A gB) A ghC,ghk)

= (A A g(B A hC),ghk) = (A,g)[(B,h)(C,k)].

Hence the multiplication is associative.
Further (A,g)2 = (A A gA,g2) = (A,g) if and only if g = 1 and (A, l)(B, 1)

= (A A B, 1). Hence P has idempotents {(A, 1): A E <7/} and these form a
semilattice isomorphic to "T/.
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Let (A,g) G P; then it is easy to see that (g~xA,g~l) G P and

(A,g)(g-xA,g-*)(A,g) = (A,\)(A,g) = (A,g),

(g-lA,g-x)(A,g)(g-iA,g-x) = (g-lA,g-x)(A,l) = (g-M.g-1).

Hence P is inverse and (A,g)~l = (g~'i4,g-1)-
In the remainder of this section, we concentrate on describing the structure of

full subsemigroups of P-semigroups.
Suppose that Tis a full subsemigroup of P(G, % <y) and let A E <y. Then we

shall denote by GA the set (g G G: (A,g) E T); HA = {g G G: gA = A) is the
stabilizer of yi.

Proposition 1.2. Ler T 6e a full inverse subsemigroup of P(G, % (¡J). Then in T,
(i)(A,g)*R(B,h)*>A =B;
(Ü) (A,g) X (B,h)**g-XA = h~xB;
(iii) (A,g) <=# (A,\) <*> gA = A ** g E GA n HA; the maximal subgroup con-

taining (A, 1) is isomorphic to GA D HA ;
(iv) (A, 1) 2i (5, 1) <=> v4 = gfi/or some g E GA;
(v) 04,1) <¿ (B, 1) <=> /I < gBfor some g E GA.

We omit the straightforward proof; it is similar to that of [9, Proposition 2.6].
When <7/ is an ideal of £Kand T = P(G,%<y), we can omit the requirement that
g G GA in each of (iii), (iv), (v).

Munn [10] has shown that the relation a = {(a,b) G S X S: ae = be for some
e2 = e G S) is the finest group congruence on any inverse semigroup.

Proposition 13. Let T be a full inverse subsemigroup of P(G, % <7/) and let
G' = {g G G: (/l,g) G T for some A E <7/}. 77mtj G' is isomorphic to the
maximal group homomorphic image of T.

Proof. First of all, from the definition of multiplication in T, the map y: T -* G
defined by (A,g)y = g is clearly a homomorphism with image G so that G is a
group. Further, from the definition of o,

(A,g)o(B,h) **g = h<* (A,g)y = (B,h)y.

Hence, by the fundamental homomorphism theorem for semigroups, G' « r/o.
We shall say that an inverse subsemigroup T of an inverse semigroup S is a

large subsemigroup of S if T is a full subsemigroup of S and each o^-class of S
meets T. Thus, if T is a large subsemigroup of S, T and S have isomorphic
maximal group homomorphism images; note that, since Tis full, aT = (Tx T)
n as.

For example, if, with the notation of Proposition 1.3, G' = G then Tis a large
subsemigroup of P = P(/f",£Y,(7/). Indeed we have
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Proposition 1.4. Let S be an inverse semigroup with semilattice of idempotents E
and maximum group homomorphic image G. If S can be embedded in a P-semigroup
then S is isomorphic to a large subsemigroup ofP(G, ¡X, E) for some partially ordered
set £V; in fact, D( can be chosen so that D( = G • E.

Proof. Suppose 5 Q P(G,2,(y); then {A G «7/: (A, 1) G S}, being the set of
idempotents of S, is a subsemilattice of <7/ isomorphic to E. Further, since
S" Ç P(H,2,<y) and £ ç «2/ we clearly have S Ç P(H,2,E) as a full subsemi-
group.

Since G « [h G H: (A,h) G S for some A E E}, we can regard G as acting
on 2and, from the form of the elements in S ç P(H,2,E) we see that, in fact,
S ç P(G,2,E) as a large subsemigroup.

Finally, let D( = G • E Q 2. Then, from the definitions of P(G, 2 E) and
P(G, % E), it is clear that P(G,%E) = P(G,2E). Hence S Ç P(G,%E) with
D( = G • E.

Many important examples of P-semigroups arise by taking £Y = 2X to be the
set of subsets of a set X, G to be a subgroup of the symmetric group on X, acting
on D( by g • A = Ag~x (G acts on the left, maps act on the right) and «2/ to be a
subsemilattice of D( under intersection. As we shall see in the next section, these
P-semigroups are closely related to úx.

2. The division theorem. Munn's structure theory [11], [13] for inverse semi-
groups can be described as follows: every inverse semigroup S, with semilattice
of idempotents E, has an idempotent separating homomorphic image which is a
full subsemigroup of TE. Diagramatically,

i. s. -»
full

s/n
where i.s. denotes idempotent separating.

The main theorem of this section, and the paper, shows that if S is an inverse
semigroup, then there is a P-semigroup P = P(G,%<y) such that S is an
idempotent separating homomorphic image of a full (large) subsemigroup T of
P. This theorem is dual to Munn's theorem mentioned above. This is seen by
considering our theorem in diagramatic form.

P

full

7-±±-»S

In order to prove the main theorem, we first investigate the semigroups
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P(G,% <7/) where D( = 2X and G is a subgroup of the symmetric group on X for
some set X.

Lemma 2.1. 9: P(G,%<y) -> ßx defined by (A,g)9 = g\A is an idempotent
separating homomorphism of P into úx.

Proof. Firstly, 9 is clearly a map of P = P(G,%<y) into ßx.
Let (A,g), (B,h) E P. Then

(A,g)9(B,h)9 = (g\A)(h\B) = gh\(Ag n B)g"'
= gA|/l n Bg~x = g/i|04 n gB)
= (A,g)(B,h)9.

Hence 0 is a homomorphism.
Further, since (A, 1)9 is the identity on A, 9 is clearly idempotent separating.

Lemma 2.2. If G is the symmetric group on X then Im 9 = [a E jjx: \X\Aa\
= lA^Va^Aa, Va G ty and a induces an order isomorphism of [B E <7/: B Q Aa}
onto {C G <7/: C Ç Va}}.

Proof. Suppose a = (A,g)9. Then a = g|/i is the restriction of g to a map of
A onto Ag and so \X\Act\ = |AV| = \(X\A)g\ = |*V4g| = |*\Va|. Fur-
ther, from the definition of P, (A,g) E P implies A, g~lA = Ag E <7/. Suppose
B E <y, B Q A. Then Ba = Bg = g~xB = g~\B n A) G «7/ and fia C Va.
Hence the map B i-» B is a one-to-one order preserving map of [B E <lj: B
Q Aa} into (C G <7/: C ç Va}. Similarly, the map C i-» Ca-1 is a one-to-one
order preserving map of [C E <7/: C Q Va} into [B E <lj: B Q Aa}. Since these
maps are inverses of one another, it follows that a induces an order isomorphism
of {B E <y: B Ç Aa} onto {C E <TJ: C Q Va}.

Conversely, suppose that a is in the right side of the equation for Im 9 and let
A = Aa. Since |JV\Aa| = lA^Val there exists g E G with a = g\A. We claim
(A,g) E P. Then, since a = g\A, a E Im 9. Let B E <7/. Then

A n gB = (Ag D B)g~x = (Aa n fi)a_1 e «7/

since Aa H B E <7/(<7/is a subsemilattice of llanda-1 induces an isomorphism
of {C G <7/: C Ç ,4a} onto {B E Of: B Q A}. Likewise g_1(^ n B) =
(^ D 5)a G <7/. Hence (,4,g) G P.

Because of the relationship between P(G, % <7/) and ûx, every representation
of an inverse semigroup 5 is connected with a P-semigroup. This relationship is
made precise for faithful representations in the next proposition.

Proposition 23. Let p: S -* ûz be a faithful representation of an inverse
semigroup S by one-to-one partial transformations of a set Z. Let X = Y U Z where
Y = Z if Z is finite and otherwise rnZ=D, \Y\ = \Z\. Then S is an
idempotent separating homomorphic image of a full subsemigroup of P(G, £Y, fy)
where G is the symmetric group on X, CK = 2X and <7/ = (A Q X: A = Apa for
some a E S).
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Proof. We regard p as a representation of S by one-to-one partial transforma-
tions of X; this can clearly be done since Z Q X.

Let a = ptt; then |*\Aa| = \Y\ = 1*1 = |A"\Va| if Z is infinite, while
lA'XAa] = |Z\Aa| = |Z\Vo| = |*\Va| if Z is finite since a is a one-to-one map
of Aa onto Va. Further, if B E % B Q Aa, then B = Ape for some idempotent
e and Ba = Bpea = Vpea G <7/ so that a induces a one-to-one order preserving
map of [B E <7/: B Q Aa} into {C G <]/: C Q Va}. Similarly, since Va = Aa-1,
a-1 induces a one-to-one order preserving map of {C G Ü/: C Q Va} into
{B E <7/: B Q Aa}. Since these maps are inverses of one another, we conclude
that aelmi where 9: P(G,D(,<y) -» úx is defined by (A,g)9 = g\A. Hence
Sp ç Im 9.

Let T = Sp9~x; then T is an inverse subsemigroup of P = P(G,%üf) and
9p~x is an idempotent separating homomorphism of Tonto S. Let A E «7/; then
y4 = Ap„ for some e2 = e E S. Hence (A, \)9 = pe E Sp and so (A, 1) G P.
Hence T contains all the idempotents of P and so is a full subsemigroup T of P.

The Preston-Vagner representation [16], [21] is a faithful representation for
each inverse semigroup S. Hence, as an immediate consequence of Proposition
2.3, we have

Theorem 2.4. Let S be an inverse semigroup. Then S is an idempotent separating
homomorphic image of a full subsemigroup T of P(G, % <7/) for some G, % <7/.

Note. Since T is a full subsemigroup of P(G, % <]/) and the homomorphism
T -* S is idempotent separating, S and P have isomorphic semilattices of
idempotents. Thus «T/ « E, the semilattice of idempotents of S.

An inverse semigroup 5 is called proper if ae = e = e2 implies a = a2 for each
a G S. By the proof of Proposition 2.3, each P(G, ¡X, <7/) is proper and so are its
inverse subsemigroups. Hence

Corollary 2.5. Every inverse semigroup is an idempotent separating homomorphic
image of a proper inverse semigroup.

Corollary 2.5 shows, in particular, that the free inverse semigroup I(X), on a
set X, is proper. Further, it is easy to see from the freeness of I(X) and
Proposition 2.3, that I(X) is a full subsemigroup of P(G, % <y) for some % <y
where G is the free group on X. By analysing the embedding, one can obtain the
structure theorem for free inverse semigroups due to Scheiblich [20]; cf. [9].

3. Semilattices of groups. Let S = ö{Ge: e G E} be a semilattice of groups
with semilattice E of idempotents. According to Theorem 2.4, S is an idempotent
separating homomorphic image of a full subsemigroup T of P(G, % E) for some
G, % Since S is a semilattice of groups, so is T. Hence, for (A,g) G T,
(A,g)(g-xA,g-x) = (g-xA,g-x)(A,g); that is (g~xA,\) = (,4,1). Thus (A,g)
E Pimplies .4 = gA.

For any B E P, we have (B, 1) G Tand so (A,g)(B, 1) G T. Hence (A A gB,
g) E T which implies g~x(A A gB) = A A gB;  that is, since g~xA = A,
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A A B = A A gB for ail B G E. It follows that, for (A,g)(B,h) G T,

(A,g)(B,h) = (A A B,gh).

Hence T is isomorphic to a full subsemigroup of E X G. This shows that S is
isomorphic to an idempotent separating homomorphic image of a full subsemi-
group of EX G for some group G.

In this section, we give a direct proof of this result by constructing such a
division for S = \J{Ge: e E E). First we characterise subsemigroups of E X G.

Proposition 3.1. Let S — U [Ge : e E E) be a semilattice of groups with linking
homomorphisms 9e¿, e > f, and let G = lim Ge be the direct limit of the directed set
9e,f: Q ~* Gf. Then the following are equivalent:

(i) S is proper.
(ii) Each 9ej is one-to-one .

(iii) 5 is isomorphic to a large subsemigroup of ExG.
(iv) S is isomorphic to a subsemigroup of P(H, % E) for some group H and

partially ordered set D(.

Proof. Clearly (iii) => (iv) => (i) so we need only show (i) =* (ii) => (iii).
(i) ■* (ii). Let a E Gg, f < e, and suppose a E Ker 9ef. Then af = a9ej = /.

Hence, since S is proper, a is idempotent; thus a = e. This shows that 0ejis one-
to-one.

(ii) => (iii). Let 9e : Ge -* G be the natural homomorphisms Ge -» G = lim Ge
induced by the 9ej; thus each diagram

e > /, commutes. Since each 9ej is one-to-one, so is each 9e.
Define 9: S -» E X G by

s9 = (e,s9e)   if s G Ge.

Then 0 is well defined and one-to-one. Further, if s E G* t E Gf,

s9t9 = (e,s9e)(f,t9j) = (ef,s9et9j)

= (<f,<rVMif)
= (ef,(s * t)9j) = (s * t)0

where s * / denotes the product of s and t in S. Hence 0 is an isomorphism of S
onto a subsemigroup T of ExG. Finally, for e E E, (e, 1) = (e, e9e) = e9,soT
is full and, for each g G G, g = (e,g,)0 for some e G £, ge G G„ so that, in fact,
T is large.
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Suppose now S = U{Ge: e E E} is not necessarily proper. It follows, from
Proposition 3.1, that in order to obtain a division

EXG

full
T-is"    »S

we need only find a semilattice of groups T = \J{Ke: e > /} with one-to-one
linking homomorphisms $tif> e > f, and an idempotent separating homomor-
phism t// from T onto S.

Lemma 3.2. For each e E E, let Ke = Yl{Gf: f $* e} and, for each e,fwith e >f
define <beJ: Ke -> Kfby (gy)<beJ = (hs) where

h = g», S< e,
= &4*.       « < e.

Then each <bej is a one-to-one homomorphism and [<bej: e > /} is a directed set of
homomorphisms.

Proof. That each <j>e¡f is a one-to-one homomorphism is clear. Suppose
e > f > g and let (uy) E Ke. Then

= «,<^»      5 < e;

= (/ce) where A:e       = v„ e < /,

= t'A,       e < /.
Then

= UA*> e < f, £</,

= "AA> £ < /,

= M„ £ < t?,

= ue9„, £ < e.

Hence (uy)<¡>ef<¡>¿g = (t/r)<kg; that is <bej<f>ftg = </>er Finally, for each e E E,
is the identity on Ke
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Lemma 33. Define \¡/: T-* S, where T = \J{Ke: e E E} is semilattice of
groups with linking homomorphisms <f>ej, by

tif> = t%,   if t E Ke,
where % is the projection Kt -» Ge. Then ip is an idempotent separating homomor-
phism of T onto S.

Proof. \¡> is clearly an idempotent separating map of Tonto S. Let u,v E T
with u = (mt) G T„ v = (u,) E 1}; then

(« * V)$ = (u<¡>e¿fV<bM)$ - (ufetfVfytffref

= u^jir^v^ir^

= ue9ejeJVj9M =u$*v4>

where * denotes the product in S, T. Hence ^ is a homomorphism.
Remark. Suppose that S = U {Ge: e G E} is a finite chain of groups and let p

be the regular representation of S. Then, by Proposition 2.3, S is an idempotent
separating homomorphic image of a full subsemigroup of P(G, % <y) where
D( = 2s, <7/ = (5a: a G S) and G is any subgroup of the symmetric group on S
such that, for each a E S, there exists a G G with a | Sa = p«.

For each a G S define p'a: S -* S by

xp'a = x,        x & Sa,

= xa,      x G Sa.

Then pa is a permutation of S which extends pa so we may take G to be the group
generated by the pB, a E S.

For each e E E, the group Pe of all p = T/g such that

xp = x, x & Ge,

= xpg,      x E Ge,   for some g G Ge,

is isomorphic to Ge. Further, each p'a belongs to the subgroup T[Re of the
symmetric group on S; for if a G S, p'a = u {l<w: e ^ aa-1}. On the other hand,
if a G S and aa~x = e and e covers/in E then

XPaPfa-l = X, X & Sa,

= xa,        x G So\S/,

= *, x G S/;

= xa, je G Ge,

= x, otherwise;

= JUía.
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Hence Re Q G for each e E E and so G = T[ Re « T[ Ge.
Since E is finite, Tl Ge = Um Ke where Ke is as in Lemma 3.3. Hence the

division obtained using the regular representation in this natural way is the same
as that contructed explicitly in this section.

4. Bisimple inverse semigroups. In this section we provide an explicit division
for bisimple inverse semigroups. In fact, we show that proper bisimple inverse
semigroups are P-semigroups and we obtain a structure theorem for these
semigroups. This theorem generalises the structure theorem for bisimple inverse
monoids which was given in [9]. We shall use Reilly's theory [18] of bisimple
inverse semigroups in terms of /IP-systems with which we assume familiarity in
content, terminology and notation.

Lemma 4.1. Let S be a bisimple inverse semigroup, let R be an <=R-class of S with
idempotent e and let P = R f\ eSe. If S is proper and o* is the canonical
homomorphism of S onto its maximal group homomorphic image G then o* \ R is
one-to-one.

Proof. Suppose a, b G R and ao* = Aa*. Then aa-1 = AA-1 and (a, b) E o.
Hence by [9], a = b.

It follows from Lemma 4.1 that we can assume R Q G. Let D( = [Pg: g G G},
<7/ = [Pa: a E R}. Then D( is a partially ordered set under inclusion having «7/
as an ideal and subsemilattice. Further, G acts transitively on D( by A • Pg
= Pgh~l. We shall prove that S « P(G,%<y).

Each element of S is of the form arlb with a, b E R and, by [18],

a-'A = c-'rfin S<*>a~xa = arlb{arlb)~l = c-xd(c~xd)'x = c~xc

and a-1 A = c~xdva G

<&Pa = Pc and arxb = c~xd in G.

Hence 9: S -» P(G,%<Tj) given by (a~lb)9 = (Pa,a~lb) is a well-defined one-
to-one map.

Lemma 42. 9 is an isomorphism of S onto P(G, % (¡J).

Proof. Suppose a~xb, c~xd E S; then

(a~xb)9(c-xd)9 = (Pa,a-xb)(Pc,C-xd)

= (Pa n Pcb-xa,a-lbc-xd)

= ((PA n Pc)b~xa,[(c * b)a]-x(b * c)d)

= (P(c * b)a,[(c * b)a]-x(b * c)d)

= (a-lb)(c-id)9
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where c * b and b * c are as in [18]. Thus f? is a homomorphism.
We have already pointed out that 9 is one-to-one so that it only remains to

show that it is onto. Since P(G, % <y) is an ideal P-semigroup, (Pa,g)
G P(G, £V,«7/)if and only if Pa, g~x • Pa = Pag both belong to «7/; that is, if and
only if a, ag E R. Hence, if b = ag, arxb E S and (a~xb)9 = (Pa,g). Thus 9 is
onto.

Theorem 43. Let E be a uniform semilattice and let G be a group. Then a
semigroup S is a proper bisimple inverse semigroup with semilattice E and maximal
group homomorphic image G if and only if S » P(G,£K,E) for some (uniform)
partially ordered set % having E as an ideal, and transitive action of G on D( such
that for each g E G there exists A G Ewithg~xA E E.

Proof. Suppose that S « P(G,%E); then, because E is an ideal and G acts
transitively, it follows from Proposition 1.2 and Proposition 1.3 that S is a proper
bisimple inverse semigroup with semilattice E and maximal group homomorphic
image G.

The converse is immediate from Lemma 4.1 and Lemma 4.2.
Since the semigroup P(G, E, E), where G acts transitively on E, are particularly

simple examples of P-semigroups, it is of interest to characterise them.

Corollary 4.4. Let E be a semilattice and let G be a group which acts transitively
on E by (order) automorphisms. Then S = P(G,E,E) is a bisimple inverse
semigroup. Further, ifR is an cR-class ofS, o* induces a one-to-one map ofR onto G.

Conversely, suppose that S is a bisimple inverse semigroup with semilattice of
idempotents E and let R be an ¿Jf-class of S. If a* induces a one-to-one map of R
onto G then S « P(G,E,E)for some transitive action of G on E.

Proof. That S is a bisimple inverse semigroup is immediate from Proposition
1.2. Since S has maximal group homomorphic image G and is proper, o* induces
a one-to-one map of R into G by Lemma 4.1. Suppose g G G, and (A, 1) is the
idempotent in R; then (A,g) G S. Further, since (A,g)(A,g)~l = (A,T), (A,g)
E R. But (A,g)o* = g. Hence a* | R is onto G.

Conversely, suppose that a* | R is one-to-one onto. Then, firstly, S is proper.
For, suppose c~xca~xb = c~xc, a,b,cE R; then c = ca~xb and so, multiplying
by a * c,

(c * a)a = a A c = (a * c)c = (a* c)a~xb = (c * a)b.

Thus aa* = bo* so that, since a, b E R,a = b. Hence a~x b is idempotent.
It follows, from Theorem 4.3, that S « P(G,%E) where <X = {Pg: g G G}

and E = [Pg: g G R}. But, since o* | R is onto, <X = E. Hence S « P(G,E,E).
Reilly [17] has shown that any bisimple w-semigroup can be described as
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follows. Let H be a group and a any endomorphism of H and set S1 = Z+ X H
x Z+ under the multiplication

(m,g,n)(r,h,s) = (r V n - n + m,garV"-nhattVr-r,n V r - r + s).

Then 5 is a bisimple w-semigroup with group of units isomorphic to H and any
such semigroup has this form; S is denoted by B(H, a).

It is easy to see that B(H, a) is proper if and only if a is one-to-one. Further,
Munn and Reilly [15] have shown that an idempotent separating homomorphism
9 of B(K, ß) onto B(H, a) is given by

(m,g,n)9 = (m,g<p,n)

where <i> is a homomorphism of K onto H such that the diagram

K-ß-->K♦I
H-2->H

commutes. It follows from Theorem 4.3, that, if we wish to construct explicitly a
division, as in Theorem 2.4, for S = B(H, a), we need only construct K, ß, <p such
that <pa = ß<p with <j> onto and ß one-to-one.

Lemma 43. Let H be a group and let a be an endomorphism of H. Define
K = HxHX--- andß.K^Kby

(hx,h2,...)ß = (hxa,hx,h2,...).

Then ß is a one-to-one homomorphism and, if<p:K-*His defined by

(hx,h2,...)tp = hx,

<p is a homomorphism of K onto such that <pa = /?<f>.

Proof. This is straightforward.
Note. Even if H is finite, K, as constructed in Lemma 4.5, is infinite. This is

necessary unless S = B(H, a) is proper. For suppose that K is finite and that
ßK->K

H-2-*H

commutes where ß is one-to-one and <b is onto. Then, since K is finite, 0 is also
onto and thus so is <pa = ßtb. Hence a is onto and so, because H = K<p must be
finite, a is one-to-one.
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If S is a proper bisimple co-semigroup then, by Theorem 4.3, S « P(G,D(,E)
where E is an «-chain, D( is a partially ordered set having E as an ideal and G
acts transitively on D( in such a way that D( is the set of translates of E under G.
It follows that D( is an co-tree; that is each principal ideal of D( is an co-chain. On
the other hand if D( is an «-tree and £ is a principal ideal of D( then P(G, % E)
is a bisimple co-semigroup. Hence we have

Proposition 4.6. Let D( be an u-tree and let G be a group which acts transitively
on D( by order automorphisms; if E is a principal ideal of D( then P(G, % E) is a
proper bisimple ta-semigroup. Each proper bisimple u-semigroup is of this form.

Remark. If E is required only to be an ideal of % P(G, % E) is a proper
bisimple inverse semigroup on the co-tree E; each such also has this form.

co-trees which have a transitive automorphism group are rather special; for
example it is easy to see that they can have no maximal elements. The simplest
co-tree which has a transitive automorphism group is Z; its automorphism group
is isomorphic to Z. To end this section, we characterise the bisimple semigroups
P(G, Z,Z").

Theorem 4.7. Let S = B(H,9) be a bisimple w-semigroup. Then
S « P(G, Z, Z~ ) for some transitive group G of automorphisms of Z // and only if 9
is an automorphism of H.

Proof. Suppose 9 is an isomorphism, and let a = (0, e, 1) where e is the identity
of H and identify H with the set of triples (0, g, 0). Then [15, Corollary 3.6] G is
the semidirect product of H by Z with linking automorphism 9; thus the elements
of G can be represented as ga", g E H, n E Z, under gcThd" = g(h9n)an+m.
Under this representation, P (see Lemmas 4.1, 4.2) corresponds to {ga": n > 0}
and Pga" = {ham+n : m > 0}. Hence the set D( of translates of P in G is a chain
and thus is isomorphic to Z. Thus, by Lemma 4.2, S « P(G, Z,Z~).

Conversely suppose S = P(G, Z,Z~) and let H = [g G G: g • n = n for ail
n G Z}. Then HAG and, since Aut Z«Z, G/H « Z. Hence G is a semidirect
product of H by G; thus we may suppose G = HxZ under

(g,m)(h,n) = (g(hff"),m + n)

where 9 is an automorphism and G acts on Z by (g, m) • n = m + n. Let
(g,m) E G; then we have (g,m)~x = (g~l9~m,-m). Hence

S = P = {(n,g,m): n < 0,m).

Further S has group of units {(g,0): g G H) « H. Let a = (0,(e, 1)); then
aa~x = (0,e,0), a~xa = (—l,e,0) so that a~xa is covered by the identity. Hence,
from [17], S « B(H,<}>) where $: H ^> H is defined by
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(0,g<b,0) = a(0,g,0)a-x

= (0,e,l)(0,g,0)(-l,e,-I)

= (0,g9,l)(-l,e,-l)
= (O,g0,O),

that is S « B(H, 9) where 9 is an isomorphism.

Corollary 4.8. If S is a proper bisimple inverse semigroup with a finite group of
units H then S « P(G, Z, Z~); where G is an extension of H by Z. In particular, the
bicyclic semigroup is isomorphic to P(Z, Z, Z~).

Finally, we can use Theorem 4.7 to characterise those bisimple to-semigroups
B(H, 9) with 9 onto.

Theorem 4.9. Let S = B(H,9) be a bisimple w-semigroup. Then S is an
idempotent separating homomorphic image of P(G,Z,Z~) for some transitive group
G of automorphisms of Z if and only if 9 is onto.

Proof. If S is an idempotent separating homomorphic image of P(G,Z,Z~)
« B(K,<b) then <¡> is an isomorphism, by Theorem 4.7, and, by [15], there is a
homomorphism r¡ of K onto H such that <pr¡ = t\9. Hence 9 is onto.

Conversely, if 9 is onto, let K be the subgroup of H X H X • • • consisting of
all (gi ,g2,. • • ) such that g, = gi+x 9, i — 1,2.Define <f>: K -» K and tj: K
-+Hby

(gi.g2. •••>/> = (gi0,gi,g2».-.)>      (a>&...-)i = 2i>

respectively. Then <f> is an automorphism of K and tj is a homomorphism of K
onto H such that <í>tj = i\9. Hence B(H, 9) is an idempotent separating homomor-
phic image of B(K, <j>). But, by Theorem 4.7, B(K,<f>) « P(G,Z,Z~) for some
group G acting transitively on Z.

5. Miscellaneous results and concluding remarks.
5.1. Brandt semigroups. In §§3, 4, we have given explicit divisions for semilat-

tices of groups and «-bisimple inverse semigroups. Here we give one for Brandt
semigroups.

Let S = JW(G; 1,1, A) be a Brandt semigroup and denote by S¡ the symmetric
group on /. Then K = G X S/ acts on Io = / U {0} by (g,a) • i = far1,
(g, a) • 0 = 0; this action is clearly by order automorphisms.

Define <i>: P(K,I°,I°) -+ S by

(/, (g, a))4> = (i,g, ia),       (0, (g, a))* = 0.
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Then <b is clearly an idempotent separating mapping onto S. Further,

('.(ft «))<*>(/ (h, ß))* = (i,g,ia)(j,h,jß)

= (Ugh,jß)       if/a=/,
= 0 otherwise,

while

[(/,(*, «))U(M))]<Í> = 0" A/or',(i*,a/8))*
= (i,gh,jß)      Ü i "jar1,

= 0 otherwise.

Hence (i,(g,a))<b(J,(h,ß))<t> = [('',(g,«))(/',(M))]<í>. Since {(0,(g,a)): g G G,a
G S/} is an ideal of P(K,I°,I°) which is mapped by <i> to the zero of S, <f> also
preserves the other products in P(K,I°,I°). Hence <f> is a homomorphism and S
is in fact an idempotent separating homomorphic image of P(K, Io, Io).

In §§3 and 4, it was shown that proper bisimple inverse semigroups and proper
semilattices of groups can be embedded in P-semigroups. It can be shown that
the same is true for finite proper inverse semigroups with two ^-classes; is this
true in general? More precisely,

5.2. Is every proper inverse semigroup a full subsemigroup of some P-semigroup!
The theory in §§3 and 4 shows that, in the cases considered there, P could be
taken to be an ideal P-semigroup; this is also the case for finite inverse
semigroups with two ^-classes. Further many important inverse semigroups are
ideal P-semigroups; see [9]. Hence one may ask

5.3. Is every inverse semigroup an idempotent separating homomorphic image of a
full subsemigroup of an ideal P-semigroup! Let E be a semilattice. Then, by
Theorem 2.4, TE the semigroup of isomorphisms between principal ideas of E
divides P = P(G,%E) for some G, % such that each x E D(is of the form g • e
for some e G E. If E is an ideal of £K (as occurs when E is uniform by Theorem
4.3) then any isomorphism between principal ideals of D( is extendible to an
automorphism of % For if a: x9( -* yD( is such an isomorphism a = gßh where
x = g-1 • e, y = h •/, e,f G E and ß is an isomorphism eE = eD( -* f¡X = fE.
Since TE divides P, there exists y G G such that y\eE = ß. Thus a is the
restriction of gyh.

5.4. What can be said about partially ordered seis with the property that each
isomorphism between principal ideals can be extended to an automorphism! Reilly's
structure theorem for bisimple «-semigroups can be regarded as giving an answer
to 5.4 when the partially ordered set D( is an «-tree. For, let £ be a principal ideal
of £V(and thus an «-chain) and let G be the group of order automorphisms of D(.
Then P = P(G,%E) is a bisimple inverse semigroup. Further, if G' = {g
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G G: gE n E =É D} = {g G G: (A,g) E P for some A E E) and DC = G'
• E, then P = P(G',D(',E) and P has maximum group homomorphic image G.
Thus, by the proof of Theorem 4.3, DC is isomorphic to the set of translates in
G of the right unit subsemigroup of P.

It follows that one can use Reilly's theory to describe co-trees D( with the
following properties for some principal ideal E.

(i) Every isomorphism between principal ideals of D( can be extended to an
automorphism of D(.

(ii) If x E % there is an automorphism g of D( such that xg G E and
EgC\ E^n.
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