City Research Online

City, University of London Institutional Repository

Citation: Kessar, R. and Linckelmann, M. (2013). On the Castelnuovo-Mumford regularity of the cohomology of fusion systems and of the Hochschild cohomology of block algebras. London Mathematical Society Lecture Note Series, 422, pp. 324-330. doi:
10.1017/CBO9781316227343.020

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/6904/

Link to published version: http://dx.doi.org/10.1017/CBO9781316227343.020

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

On the Castelnuovo-Mumford regularity of the cohomology of fusion systems and of the Hochschild cohomology of block algebras

Radha Kessar and Markus Linckelmann
Department of Mathematical Sciences, City University London, Northampton Square, London EC1V 0HB, U.K.
Email: radha.kessar.1@city.ac.uk, markus.linckelmann.1@city.ac.uk

Abstract

Symonds' proof of Benson's regularity conjecture implies that the regularity of the cohomology of a fusion system and that of the Hochschild cohomology of a p-block of a finite group is at most zero. Using results of Benson, Greenlees, and Symonds, we show that in both cases the regularity is equal to zero.

Let p be a prime and k an algebraically closed field of characteristic p. Given a finite group G, a block algebra of $k G$ is an indecomposable direct factor B of $k G$ as a k-algebra. A defect group of of a block algebra B of $k G$ is a minimal subgroup P of G such that B is isomorphic to a direct summand of $B \otimes_{k P} B$ as a B - B-bimodule. The defect groups of B form a G-conjugacy class of p-subgroups of G. The Hochschild cohomology of B is the algebra $H H^{*}(B)=\operatorname{Ext}_{B \otimes_{k} B^{\text {op }}}(B)$, where B^{op} is the opposite algebra of B, and where B is regarded as a $B \otimes_{k} B^{\mathrm{op}_{-}}$ module via left and right multiplication. By a result of Gerstenhaber, the algebra $H H^{*}(B)$ is graded-commutative; that is, for homogeneous elements $\zeta \in H H^{m}(B)$ and $\eta \in H H^{m}(B)$ we have $\eta \zeta=(-1)^{n m} \zeta \eta$, where m, n are nonnegative integers. In particular, if $p=2$, then $H H^{*}(B)$ is commutative, and if p is odd, then the even part $H H^{\text {ev }}(B)=\oplus_{n \geq 0} H H^{2 n}(B)$ is commutative and all homogeneous elements in odd degrees square to zero. The extension of the Castelnuovo-Mumford regularity to graded-commutative rings with generators in arbitrary positive degrees is due to Benson [2, §4]. We follow the notational conventions in Symonds [18]. In particular, if p is odd and $T=\oplus_{n \geq 0} T^{n}$ is a finitely generated graded-commutative k-algebra and M a finitely generated graded T-module, we denote by $\operatorname{reg}(T, M)$ the Castelnuovo-Mumford regularity of M as a graded T^{ev}-module, where $T^{\mathrm{ev}}=$ $\oplus_{n \geq 0} T^{2 n}$ is the even part of T. We set $\operatorname{reg}(T)=\operatorname{reg}(T, T)$; that is, $\operatorname{reg}(T)$ is the Castelnuovo-Mumford regularity of T as a graded T^{ev}-module. See also [3] and [8] for more background material and references. We note that Benson's definition of regularity uses the ring T instead of T^{ev}, but the two definitions are equivalent. This can be seen by noting that [18, Proposition 1.1] also holds for finitely generated graded commutative k-algebras.

Theorem 0.1 Let G be a finite group and B a block algebra of $k G$. We have $\operatorname{reg}\left(H H^{*}(B)\right)=0$.

This will be shown as a consequence of a statement on Scott modules. Given a finite group G and a p-subgroup P of G, there is up to isomorphism a unique
indecomposable $k G$-module $S c(G ; P)$ with vertex P and trivial source having a quotient (or equivalently, a submodule) isomorphic to the trivial $k G$-module k. The module $S c(G ; P)$ is called the Scott module of $k G$ with vertex P. It is constructed as follows: Frobenius reciprocity implies that $\operatorname{Hom}_{k G}\left(\operatorname{Ind}_{P}^{G}(k), k\right) \cong \operatorname{Hom}_{k P}(k, k) \cong$ k, and hence $\operatorname{Ind}_{P}^{G}(k)$ has up to isomorphism a unique direct summand $S c(G ; P)$ having k as a quotient. Since $\operatorname{Ind}_{P}^{G}(k)$ is selfdual, the uniqueness of $S c(G ; P)$ implies that $S c(G ; P)$ is also selfdual, and hence $S c(G ; P)$ can also be characterised as the unique summand, up to isomorphism, of $\operatorname{Ind}_{P}^{G}(k)$ having a nonzero trivial submodule. Moreover, it is not difficult to see that $S c(G ; P)$ has P has a vertex. See [7] for more details on Scott modules, as well as [11] for connections between Scott modules and fusion systems. For a finitely generated graded module X over $H^{*}(G ; k)$ we denote by $H_{m}^{*, *}(X)$ the local cohomology with respect to the maximal ideal of $H^{*}(G ; k)$ generated by all elements in positive degree. The first grading is here the local cohomological grading, and the second is induced by the grading of X.

Theorem 0.2 Let G be a finite group and P a p-subgroup of G. We have

$$
\operatorname{reg}\left(H^{*}(G ; k) ; H^{*}(G ; S c(G ; P))\right)=0 .
$$

Remark 0.3 Using Benson's reinterpretation in [1, §4], of the 'last survivor' from [5, §7], applied to the Scott module instead of the trivial module, one can show more precisely that

$$
H_{m}^{r,-r}\left(H^{*}(G ; S c(G, P))\right) \neq\{0\},
$$

where r is the rank of P. It is not clear whether this property, or even the property of having cohomology with regularity zero, characterises Scott modules amongst trivial source modules.

For \mathcal{F} a saturated fusion system on a finite p-group P, we denote by $H^{*}(P ; k)^{\mathcal{F}}$ the graded subalgebra of $H^{*}(P ; k)$ consisting of all elements ζ satisfying $\operatorname{Res}_{Q}^{P}(\zeta)=$ $\operatorname{Res}_{\varphi}(\zeta)$ for any subgroup Q of P and any morphism $\varphi: Q \rightarrow P$ in \mathcal{F}. If \mathcal{F} is the fusion system of a finite group G on one of its Sylow- p-subgroups P, then $H^{*}(P ; k)^{\mathcal{F}}$ is isomorphic to $H^{*}(G ; k)$ through the restriction map $\operatorname{Res}_{P}^{G}$, by the characterisation of $H^{*}(G ; k)$ in terms of stable elements due to Cartan and Eilenberg. In that case we have $\operatorname{reg}\left(H^{*}(P ; k)^{\mathcal{F}}\right)=0$ by [18, Corollary 0.2]. If \mathcal{F} is the fusion system of a block algebra B of $k G$ on a defect group P, then $H^{*}(P ; k)^{\mathcal{F}}$ is the block cohomology $H^{*}(B)$ as defined in [14, Definition 5.1]. It is not known whether all block fusion systems arise as fusion systems of finite groups. There are examples of fusion systems which arise neither from finite groups nor from blocks; see [10], [13].

Theorem 0.4 Let \mathcal{F} be a saturated fusion system on a finite p-group P. We have

$$
\operatorname{reg}\left(H^{*}(P ; k)^{\mathcal{F}}\right)=0
$$

The key ingredients for proving the above results are Greenlees' local cohomology spectral sequence [9, Theorem 2.1], results and techniques in work of Benson [1], [2], [4], and Symonds' proof in [18] of Benson's regularity conjecture. We use the properties of the regularity from [18, §1] and $[19, \S 2]$.

Lemma 0.5 Let G be a finite group and V an indecomposable trivial source $k G$ module. Then $\operatorname{reg}\left(H^{*}(G ; k) ; H^{*}(G ; V)\right) \leq 0$.

Proof Since V is a direct summand of $\operatorname{Ind}_{P}^{G}(k)$, we have

$$
\operatorname{reg}\left(H^{*}(G ; k) ; H^{*}(G ; V)\right) \leq \operatorname{reg}\left(H^{*}(G ; k) ; H^{*}\left(G ; \operatorname{Ind}_{P}^{G}(k)\right) .\right.
$$

By [12, Lemma 4], the right side is equal to $\operatorname{reg}\left(H^{*}(P ; k)\right)$, hence zero by [18, Corollary 0.2].

Lemma 0.6 Let G be a finite group and V a finitely generated $k G$-module. If $H_{0}(G ; V) \neq\{0\}$, then $\operatorname{reg}\left(H^{*}(G ; k) ; H^{*}(G ; V)\right) \geq 0$.

Proof It follows from the assumption $H_{0}(G ; V) \neq\{0\}$ and Greenlees' spectral sequence [9, Theorem 2.1] that there is an integer s such that $H_{m}^{s,-s}\left(H^{*}(G ; V)\right) \neq$ $\{0\}$, which implies the result.

Proof of Theorem 0.2 Set $V=S c(G ; P)$. By Lemma 0.5 we have

$$
\operatorname{reg}\left(H^{*}(G ; k) ; \operatorname{Ext}_{k G}^{*}(k ; V)\right) \leq 0
$$

Since V has a nonzero trivial submodule, we have $H_{0}(G ; V) \neq\{0\}$, and hence the other inequality follows from Lemma 0.6.

Theorem 0.1 will be a consequence of Theorem 0.2 and the following well-known observation (for which we include a proof for the convenience of the reader; the block theoretic background material can be found in [20]).

Lemma 0.7 Let G be a finite group, B a block algebra of $k G$ and P a defect group of B. As a module over $k G$ with respect to the conjugation action of G on B, the $k G$-module B has an indecomposable direct summand isomorphic to the Scott module $S c(G ; P)$.

Proof Since the conjugation action of G on B induces the trivial action on $Z(B)$ and since $Z(B) \neq\{0\}$, it follows that the $k G$-module B has a nonzero trivial submodule. Moreover, B is a direct summand of $k G$, hence B is a p-permutation $k G$-module, and the vertices of the indecomposable direct summands of B are conjugate to subgroups of P. Thus B has a Scott module with a vertex contained in P as a direct summand. Since $Z(B)$ is not contained in the kernel of the Brauer homomorphism Br_{P}, it follows that B has a direct summand isomorphic to the Scott module $S c(G ; P)$.

Proof of Theorem 0.1 By [12, Proposition 5] we have $\operatorname{reg}\left(H H^{*}(B)\right) \leq 0$. Recall that $H H^{*}(k G)$ is an $H^{*}(G ; k)$-module via the diagonal induction map, and we have a canonical graded isomorphism $H H^{*}(B) \cong H^{*}(G ; B)$ as $H^{*}(G ; B)$-modules where G acts on B by conjugation; see e. g. [17, (3.2)]. It follows from [12, Lemma 4] that

$$
\operatorname{reg}\left(H H^{*}(B)\right)=\operatorname{reg}\left(H^{*}(G ; k) ; H^{*}(G ; B)\right) .
$$

Kessar, Linckelmann: On Castelonuovo-Mumford regularity

By Lemma 0.7 , the $k G$-module B has a direct summand isomorphic to $V=$ $S c(G ; P)$, where P is a defect group of B. Thus as an $H^{*}(G ; k)$-module, $H^{*}(G ; B)$ has a direct summand isomorphic to $H^{*}(G ; V)$. It follows that

$$
\operatorname{reg}\left(H H^{*}(B)\right) \geq \operatorname{reg}\left(H^{*}(G ; k) ; H^{*}(G ; V)\right)=0
$$

where the last equality is from Theorem 0.2 . This completes the proof of Theorem 0.1 .

Remark 0.8 The above proof can be adapted to show that the regularity of the stable quotient $\overline{H H^{*}}(B)$ of $H H^{*}(B)$ also equals zero. Recall that $\overline{H H^{*}}(B)$ is the quotient of $H H^{*}(B)$ by the ideal $Z^{\operatorname{pr}}(B)=\operatorname{Tr}_{1}^{G}(B)$ of $Z(B) \cong H H^{0}(B)$. Note that $Z^{\operatorname{pr}}(B)$ is concentrated in degree 0 . Alternatively, $\overline{H H^{*}}(B)$ may be defined as the non-negative part of the Tate Hochschild cohomology of B. Our interest in $\overline{H H^{*}}(B)$ comes from the fact that Tate Hochschild cohomology of symmetric algebras is an invariant of stable equivalence of Morita type. We briefly indicate how the regularity of $\overline{H H^{*}}(B)$ may be calculated. Let $B=\oplus_{i} M_{i}$ be a decomposition of B into a direct sum of indecomposable $k G$-modules M_{i}, where G acts by conjugation on B. The canonical graded $H^{*}(G ; k)$-module isomorphism $H H^{*}(B) \cong H^{*}(G ; B)$ induces an isomorphism

$$
H H^{0}(B) \cong H^{0}(G ; B)=\oplus_{i} H^{0}\left(G ; M_{i}\right)
$$

in degree zero. Composing this with the the canonical isomorphisms $Z(B) \cong$ $H H^{0}(B)$ and $H^{0}\left(G ; M_{i}\right) \cong M_{i}^{G}$, it is easy to check that the image of $Z^{\mathrm{pr}}(B)$ in $\oplus_{i} M_{i}^{G}$ is $\oplus_{i} \operatorname{Tr}_{1}^{G}\left(M_{i}\right)$. Since B is a p-permutation $k G$-module, $\operatorname{Tr}_{1}^{G}\left(M_{i}\right)$ is non-zero precisely if M_{i} is isomorphic to the Scott module $S c(G ; 1)$ (which is a projective cover of the trivial $k G$-module). Let M^{\prime} denote the sum of all M_{i} 's in the above decomposition which are isomorphic to $S c(G, 1)$ and let $M^{\prime \prime}$ be the complement of M^{\prime} in B with respect to the above decomposition. Since $Z^{p r}(B)$ is concentrated in degree zero, we have a direct sum decomposition $H H^{*}(B) \cong \oplus H^{*}\left(G ; M^{\prime \prime}\right) \oplus Z^{\operatorname{pr}}(B)$ as $H^{*}(G ; k)$-modules. In particular,
$\operatorname{reg}\left(H^{*}(G ; k) ; H H^{*}(B)\right)=\max \left\{\operatorname{reg}\left(H^{*}(G ; k) ; H^{*}\left(G ; M^{\prime \prime}\right)\right), \operatorname{reg}\left(H^{*}(G ; k) ; Z^{p r}(B)\right)\right\}$.
We may assume that a defect group P of B is non-trivial. By Lemma 0.7, $M^{\prime \prime}$ contains a direct summand isomorphic to $S c(G ; P)$. Hence by Theorem 0.2 $\operatorname{reg}\left(H^{*}(G ; k) ; H^{*}\left(G ; M^{\prime \prime}\right)\right) \geq 0$. It follows from Theorem 0.1 and the above displayed equation that $\overline{H H^{*}}(B) \cong H^{*}\left(G ; M^{\prime \prime}\right)$ has regularity zero.

Proof of Theorem 0.4 By [18, Proposition 6.1] we have $\operatorname{reg}\left(H^{*}(P ; k)^{\mathcal{F}}\right) \leq 0$. For the other inequality we follow the arguments in $[1, \S 3, \S 4]$, applied to transfer maps using fusion stable bisets. For Q a subgroup of P and $\varphi: Q \rightarrow P$ an injective group homomorphism, we denote by $P \times_{(Q, \varphi)} P$ the P - P-biset of equivalence classes in $P \times P$ with respect to the relation $(u w, v) \sim(u, \varphi(w) v)$, where $u, v \in P$, and $w \in$ Q. The $k P$ - $k P$-bimodule having $P \times_{(Q, \varphi)} P$ as a k-basis is canonically isomorphic to $k P \otimes_{k Q}\left({ }_{\varphi} k P\right)$. This biset gives rise to a transfer map $\operatorname{tr}_{P \times_{(Q, \varphi)} P}$ on $H^{*}(P ; k)$
obtained by composing the restriction map $\operatorname{res}_{\varphi(Q)}^{P}: H^{*}(P ; k) \rightarrow H^{*}(\varphi(Q) ; k)$, the isomorphism $H^{*}(\varphi(Q) ; k) \cong H^{*}(Q ; k)$ induced by φ, and the transfer map $\operatorname{tr}_{Q}^{P}$: $H^{*}(Q ; k) \rightarrow H^{*}(P ; k)$. Let X be an \mathcal{F}-stable P - P-biset satisfying the conclusions of [6, Proposition 5.5]. That is, every transitive subbiset of X is isomorphic to $P \times_{(Q, \varphi)} P$ for some subgroup Q of P and some group homomorphism $\varphi: Q \rightarrow P$ belonging to \mathcal{F}, the integer $|X| /|P|$ is prime to p, and for any subgroup Q of P and any group homomorphism $\varphi: Q \rightarrow P$ in \mathcal{F}, the Q - P-bisets ${ }_{\varphi} X$ and ${ }_{Q} X$ (resp. the P - Q-bisets X_{Q} and X_{φ}) are isomorphic. By taking the sum, over the transitive subbisets $P \times{ }_{(Q, \varphi)} P$, of the transfer maps $\operatorname{tr}_{P \times{ }_{(Q, \varphi)} P}$, we obtain a transfer map tr_{X} on $H^{*}(P ; k)$. Following [15, Proposition 3.2], the map tr_{X} acts as multiplication by $\frac{X \mid}{|P|}$ on $H^{*}(P ; k)^{\mathcal{F}}$, hence $\operatorname{Im}\left(\operatorname{tr}_{X}\right)=H^{*}(P ; k)^{\mathcal{F}}$, and we have a direct sum decomposition

$$
H^{*}(P ; k)=H^{*}(P ; k)^{\mathcal{F}} \oplus \operatorname{ker}\left(\operatorname{tr}_{X}\right)
$$

as $H^{*}(P ; k)^{\mathcal{F}}$-modules. A similar decomposition holds for Tate cohomology, and for homology (using either the canonical duality $H_{n}(P ; k) \cong H^{n}(P ; k)^{\vee}$ or the isomorphism $H_{n}(P ; k) \cong \hat{H}^{-n-1}(P ; k)$ obtained from composing the previous duality with Tate duality). By [1, Equation (4.1)], the transfer map $\operatorname{tr}_{Q}^{P}$ induces a homomorphism of Greenlees' local cohomology spectral sequences

where $\left(\operatorname{tr}_{Q}^{P}\right)_{*}$ and $\left(\operatorname{res}_{Q}^{P}\right)_{*}$ are the maps induced by $\operatorname{tr}_{Q}^{P}$ and the inclusion $Q \rightarrow P$, respectively. The isomorphism $\varphi: Q \rightarrow \varphi(Q)$ induces an obvious isomorphism of spectral sequences

Restriction and transfer on Tate cohomology are dual to each other under Tate duality, and hence the dual version of [1, Equation (4.1)] implies that the restriction $\operatorname{res}_{\varphi(Q)}^{P}$ induces a homomorphism of spectral sequences

Composing the three diagrams above yields a homomorphism induced by $\operatorname{tr}_{P \times(Q, \varphi)} P$ on the spectral sequence for P, and taking the sum over all transitive subbisets of
X yields a homomorphism of spectral sequences

where X^{\vee} is the P - P-biset X with the opposite action $u \cdot x \cdot v=v^{-1} x u^{-1}$ for all $u, v \in P$ and $x \in X$. One easily checks that X^{\vee} is isomorphic to a dual basis of X in the dual bimodule $\operatorname{Hom}_{k}(k X, k)$. By [6, Proposition 5.2], $H^{*}(P ; k)$ is finitely generated as a module over $H^{*}(P ; k)^{\mathcal{F}}$. Thus the local cohomology spaces $H_{m}^{i, j} H^{*}(P ; k)$ can be calculated using for m the maximal ideal of positive degree elements in $H^{*}(P ; k)^{\mathcal{F}}$ instead of $H^{*}(P ; k)$. It follows that tr_{X} induces a homomorphism of spectral sequences

For $i=-j=r$, where r is the rank of P, the edge homomorphism yields a commutative diagram of the form

where the right vertical map is multiplication on k by $\frac{|X|}{|P|}$. By [1, Theorem 4.1], the map γ_{P} is surjective, and hence so is the map $\delta_{\mathcal{F}}$. In particular, $H_{m}^{r,-r} H^{*}(P ; k)^{\mathcal{F}} \neq$ $\{0\}$, whence the result.

Remark 0.9 The fact that transfer and restriction on Tate cohomology are dual to each other under Tate duality can be deduced from a more general duality for transfer maps on Tate-Hochschild cohomology of symmetric algebras induced by bimodules which are finitely generated projective as left and right modules (cf. [16]).

References

[1] D. Benson, Modules with Injective Cohomology, and Local Duality for a Finite Group, New York J. Math. 7 (2001), 201-215.
[2] D. J. Benson, Dickson invariants, regularity and computation in group cohomology, Illinois J. Math. 48 (2004), 171-197.
[3] D. J. Benson, Commutative algebra in the cohomology of groups, Trends in Commutative Algebra, MSRI Publication 51 (2004).
[4] D. J. Benson, On the regularity conjecture for the cohomology of finite groups, Proc. Edinburgh Math. Soc. 51 (2008), 273-284.
[5] D. J. Benson and J. F. Carlson, Projective resolutions and Poincaré duality complexes, Trans. Amer. Math. Soc. 342 (1994), 447-488
[6] C. Broto, R. Levi, and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), 779-856.
[7] M. Broué, On Scott modules and p-permutation modules: an approach through the Brauer morphism, Proc. Amer. Math. Soc. 93 (1985), 401-408.
[8] D. Eisenbud, The Geometry of Syzygies. Graduate Texts Math. 229 (SpringerVerlag, New York 2005).
[9] J. P. C. Greenlees, Commutative algebra in group cohomology, J. Pure Appl. Algebra 98 (1995), 151-162.
[10] R. Kessar, The Solomon system $\mathcal{F}_{\text {Sol }}(3)$ does not occur as fusion system of a 2-block, J. Algebra 296 (2006), 409-425.
[11] R. Kessar, N. Kunugi, and N. Mitsuhashi, On saturated fusion systems and Brauer indecomposability of Scott modules, J. Algebra 340 (2011), 90-103.
[12] R. Kessar and M. Linckelmann, On the Hilbert series of Hochschild cohomology of block algebras, J. Algebra 371 (2012), 457-461.
[13] R. Kessar and R. Stancu, A reduction theorem for fusion systems of blocks, J. Algebra 319 (2008), 806-823.
[14] M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebras Representation Theory 2 (1999), 107-135.
[15] M. Linckelmann, A Note on the Schur multiplier of fusion systems, J. Algebra 296 (2006), 402-408.
[16] M. Linckelmann, Tate duality and transfer in Hochschild cohomology, J. Pure Appl. Algebra 217 (2013), 2387-2399.
[17] S. F. Siegel and S. Witherspoon, The Hochschild cohomology ring of a group algebra, Proc. London Math. Soc. 79 (1999), 131-157.
[18] P. Symonds, On the Castelnuovo-Mumford regularity of the cohomology ring of a group, J. Amer. Math. Soc. 23 (2010), 1159-1173.
[19] P. Symonds, On the Castelnuovo-Mumford regularity of rings of polynomial invariants, Ann. of Math. (2) 174 (2011), no. 1, 499-517.
[20] J. Thévenaz, G-Algebras and Modular Representation Theory (Oxford Science Publications, Clarendon Press, Oxford 1995).

