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Abstract. It will be shown that a locally compact group has a finite bound for
the dimensions of its irreducible unitary representations if and only if it has a closed
abelian subgroup of finite index. It will further be shown that a locally compact group
has all of its irreducible representations of finite dimension if and only if it is a pro-
jective limit of Lie groups with the same property, and finally that a Lie group has this
property if and only if it has a closed subgroup H of finite index such that //"modulo
its center is compact.

1. Let G be a locally compact group; a (unitary) representation of G is by
definition a strongly continuous homomorphism n of G into the group of unitary
operators on some Hubert space H(tt) [11]. One says that 77 is irreducible if the
only closed subspaces of 7/(77) invariant under all the operators 77(g), ge G, are
(0) and H (it). We shall denote by G the set of equivalence classes under unitary
equivalence of irreducible unitary representations [11], and we shall use 77 to denote
both a representation and its equivalence class. Associated with any representation
7T we have a cardinal number d(n), the degree of 77, which is by definition the
cardinality of an orthonormal basis of the Hubert space H(w). It is not assumed
here that the topology of G satisfies the second axiom of countability nor that
d(tr) is restricted to be ^ X0.

Although, in general, examples show that representations with d(n) finite are
rather rare, the purpose of this paper is to investigate two closely related hy-
potheses involving finiteness conditions on d(-rr). To be precise, we say that G
satisfies (1) if there is an integer M<oo such that d(n)-¿M for every -rr eG. We say
that G satisfies (2) if d(n) < 00 for every neG. Our results, which are stated below,
supply simple necessary and sufficient conditions in terms of the structure of G
that a group satisfy either (1) or (2). These questions have been investigated pre-
viously and many results obtained. In particular, Freudenthal [3] in 1936 showed
that a separable (i.e. second countable) connected group G satisfies (2) if and only
if G = K+ F where tí is compact and Fis a vector group. In fact, and this shall be
important for us, Freudenthal showed that G = K+V under the much weaker
assumption that G is maximally almost periodic; that is, that there exist enough
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finite dimensional unitary representations to separate the points of G, or equiva-
lent^ that there is a continuous injection of G into a compact group. Weil [24]
extended this result to arbitrary locally compact connected groups. Finally recent
work of L. Robertson [20] expands and amplifies our results concerning condition
(2). Kaplansky [10] has considered groups G which satisfy condition (1) and proved
many interesting results. Condition (1) has also been treated in recent literature
(see e.g. [7]) in the context of abstract groups and arbitrary (nontopological)
representations.

Finally we mention the results of Thoma ([21], [22]) which completely answer
questions about conditions (1) and (2) for discrete groups. Recall that a group is
type I [11] if for every unitary representation it of G, the von Neumann algebra
R(tt) generated by the operators -n(g), g e G, is type I. Thoma proves that a discrete
group is type I if and only if it possesses an abelian subgroup A of finite index.
We note that the existence of such an A implies that G satisfies condition (1) and
hence (2) above and that (2) implies that G is type I [9]. Thus conditions (1), (2),
type I, and also CCR [11] and existence of an abelian subgroup of finite index
are equivalent in the case of discrete groups. This result supplies the key to the
proof of Theorem 1 below.

With this introduction, we shall now state our results.

Theorem 1. If G is locally compact, then there is an integer M such that d(n) ^ M
< co for all-ne G if and only if there is an open abelian subgroup of finite index in G.

The theorems involving condition (2) involve two definitions. Following [4], we
say that G is a Z-group (or is a central group) if G/Z(G) is compact where Z(G)
is the center of G. It is known ([14], [4], [5]) that a Z-group satisfies (2), namely that
all of its irreducible unitary representations are finite dimensional. Finally we say
that G = proj lim (Ga) (projective limit) if there is a family of normal subgroups Ha
directed by inclusion such that Ga = G/Ha and Ç\a H« = (e) and such that each 77a
is compact (or what is really the same, that a cofinal set of the 77a is compact).

Theorem 2. Let G be a Lie group ; then G satisfies (2) (i.e. d(rr) < oo W e G)
// and only if there is an open subgroup 77 of finite index in G which is a Z-group.

Just to standardize terminology, we say that G is a Lie group by definition if its
component of the identity G0 is open in G, and if G0 is a (connected) Lie group.
This is equivalent of course to saying that G is locally Euclidean [15].

Theorem 3. 7/G is locally compact, then G satisfies (2) if and only if G = proj lim Ga
where each Ga is a Lie group which satisfies (2) and thus, equivalently, the structural
condition of Theorem 2.

It would be pleasant indeed if Theorem 2, which makes perfect sense for any
group G, were valid in general. This is unfortunately not the case, and we shall give
a simple counterexample in §5.
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One may regard the content of Theorems 1 and 2 as saying that the only groups
satisfying the relevant conditions on their representations are the obvious ones.
In fact the sufficiency of the structural conditions is rather trivial. Theorem 3 is
less satisfactory, although it does present necessary and sufficient conditions, and
in fact the proof of sufficiency here lies a bit deeper.

2. In this section we want to consider the "if" parts of Theorems 1, 2, and 3.
We mention first the following well-known fact.

Proposition 2.1. Let G be locally compact, and H an open subgroup of finite
index. Then d(ir) -¿M<co W e G (resp. d(rr) < oo W e G) if and only if d(ir) ̂  M1
< oo W e H (resp. d(rr) < oo Vw e 77).

Proof. If 770 = D xHx '1 (x e G), H0 is open and of finite index. So by using our
result twice, it suffices to consider the case when 77 is normal. If 77 is any unitary
representation of G, tt\h will denote its restriction to 77 and if A is any unitary
representation of 77, UÁ will denote the induced representation which can be
defined with no trouble in this simple situation. As in [13] or as in [19] one can
establish a Frobenius reciprocity law of the form HomG (Uk, 7r)s;Homíí (A, tt\h)
where Horn denotes the space of bounded intertwining operators.

If A e 77, let us take tt=Ua\ then, as is clear, UK\H is the sum of n = [G:H]
irreducible representations all conjugate to A. Therefore Horn,, (A, UX\H) has
dimension at most n, and so does HomG (Ux, UK). This says that Ux is a finite
direct sum of irreducible representations, in fact of at most n irreducible representa-
tions. Thus if d(n)<:M Vtt e G, d(UA)^nM, but on the other hand, d(UK) = d(X)n
and so d(X) á M VA e 77. Similarly if d(rr) < 00 for all 77 e G, it follows immediately
that d(X) < 00 for all A e G.

Conversely suppose that cf(A)<oo for all A £ 77, and let neô. Then if Z(7r|w)
is the center of the von Neumann algebra generated by n\H, G/H acts as a group of
automorphisms of Z(tr\H). Any operator in Z(tr\H) invariant under this action is a
commuting operator for 77 and hence is a scalar. It is immediately clear, then, that
the dimension of Z(tt\h) is at most n=[G:H]. Thus Z(rr\H) is finite dimensional,
and it follows that ir\H is a finite sum of primary representations. Since 77 is type I,
77^ has an irreducible subrepresentation A.

We apply the Frobenius reciprocity theorem above to A and 77, and conclude
that HomG (t/\ tt)^(O). A nontrivial commuting homomorphism is necessarily
surjective since 7r is irreducible so that d(TÍ)^d(UA) = n d(\)<co. Moreover if
d(X) ¿ M < 00 for all A e 77, d(rr) ̂  nM for all -neu. This completes the proof of the
lemma.

We can dispose of the "if" parts of Theorems 1 and 2 at this point by noting
first that d(\) = 1 for every A e 77 if 77 is abelian. Thus if G has an open abelian
subgroup of finite index, then d(n) ^ M for some M and all tt eG. Finally if 77 is a
central group, then <f(A)<oo for all A e 77 by [5] and hence if G has such an open
central subgroup of finite index, then d(rr) < 00 for all tt e G.
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We turn now to the "if" part of Theorem 3 (on projective limits). The following
fact accomplishes this and perhaps has some independent interest.

Proposition 2.2. Let G = proj lim Ga with Ga = G/Ha where Ha is compact.
Let 77 be a primary representation of G. Then there exists a such that tt(H¿) = (1).

Proof. Let Xa denote the restriction of tra to 77a. Then as 77K is compact \a is the
sum of copies of various irreducible representations of 77a, Aa = 2«<,o- (oeHa)
where na are cardinal numbers. Let Xg denote the subspace of 77(77) which is the
range of the projection onto the summand n„a. Now, just as in [14], G acts as a
permutation group on Ha and ir(g) - X£ = Xg'°. Thus if O is an orbit of G on Ha
and if Z° = 2 X£ (<* e O) then X° is an invariant subspace for w. Moreover the
projection P¡¡ onto XI and hence the projection PS onto XS are in the von
Neumann algebra R(tt) generated by w. Thus PS is in the center of R(tt) and, since
77 is primary, PS is either zero or one. Thus there is a unique orbit O such that
Aa = 2 nao (0 e O), with each a e O of the form g-a for some fixed a e O. Let 77'
be the kernel of a in 77a. Then Ha/H' is a Lie group and since 77a = proj lim (H„/He),
ß^a it follows from general facts about projective limits and Lie groups that there
exists ß such that HB<=-H'. Thus o'(h)= 1 for « e Hß, but 77,, is normal in G and
(g-o')(h) = tr'(ghg-1)=l. We find that a(h)=l for all heHß and aeO, and
finally that tt(«) = \a(h)= 1 for « g Hß. This completes the proof.

The "if" part of Theorem 3 is clear, for if G = proj lim Ga, where each Ga has
all irreducible representations finite dimensional then, by the proposition above,
G has the same property.

Remark. This proposition tells us that the representation theory of a projective
limit G = proj lim Ga is determined almost completely by the representation theory
of the Ga's. For instance it follows at once that G is type I iff each Ga is type I, and
that G is CCR iff each Ga is CCR. Moreover G = ^Ja Ga, and similarly for the
primitive ideal spaces of the associated C*-algebras.

3. It will be convenient at this point to take care of the " only if" part of Theorem
1 ; that is, we must show that if G is any locally compact group with d(-rr)^M<oo
for some M and all 77 e G, then G has an open abelian subgroup of finite index.

Proposition 3.1. If d(n) ^ m < 00 W e G, then G has an open abelian subgroup
of finite index.

Proof. Let Gd denote the underlying group of G (with the discrete topology).
Then any unitary representation of G is a priori a unitary representation of Gd
and hence can be viewed as a representation of the algebra A(Gd) where A(Gd) is
the group algebra of the discrete group Gd. Of course A(Gd) is the algebra of all
complex measures on G which are supported on a finite set of points with con-
volution as multiplication. It is clear that the representations of A(Gd) obtained
from the irreducible unitary representations of the topological group G separate
the elements of A(Gd). Therefore A(G„) has a separating family of representations
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all of which have degrees no larger than m. The "Godement principle" says now
that any suitably irreducible representation of A(Gd) can have degree at most m.
More precisely, there is a standard polynomial in 2m noncommutative variables
P2m such that P2m(X1- • -X2m) = 0 is satisfied identically when the x¡ are nxn
matrices n ¿ m, but such that this fails for (m+ l)x(rw+ 1) matrices [8]. Since A(Gd)
has a separating family of representations of degree at most m, it follows at once
that the identity 7>2m=0 is satisfied identically in A(Gd).

Now if tt is any representation of A(Gd) on a Banach space F, it is clear that the
identity P2m = 0 holds in the algebra of operators Tr(A(Gd)). If n is completely
irreducible in the sense that Tr(A(Gd)) is dense in the strong operator topology in
the algebra of all bounded operators L(V) on F, it follows by standard limit
arguments that P2m=0 holds identically in L(V). The only way this can happen is
of course that dim V=d(Tr)^m. In particular let tt be any representation of A(Gd)
obtained from an irreducible unitary representation of the discrete group Gd. It is
evident that 7r is completely irreducible and hence d(Tr)^m. Therefore the discrete
group Gd is type I and by Thoma's results it has an abelian subgroup B of finite
index. The closure of B in the original topology on G, say A, is clearly abelian and
of finite index and hence open. This completes the proof of Theorem 1.

We should remark that we could also have appealed to the results of Isaacs and
Passman in [7] and obtained the same result. Moreover if G were separable, we
could then find a countable dense subgroup D of G. We could then have replaced
Gd above by D with the discrete topology and the same argument would work;
we would find an abelian group B of finite index in D. A simple argument shows
again that the closure of B in G is abelian and of finite index in G. Thus to prove
Theorem 1 for separable G, Thoma's result for countable discrete groups would
suffice.

At this point Theorem 1 is completely proved and the "if" parts of Theorems
2 and 3 are proved. It remains to prove the more nontrivial parts of Theorems 2
and 3, namely, to prove structure theorems about a group G starting from hy-
potheses about its unitary representations.

Thus we assume that G is a Lie group and that d (tt) < oo for all tt eG. Since we
want to show that G has an open central subgroup of finite index, we are clearly
free to replace G by any subgroup of finite index. Our hypothesis on G is preserved
by Proposition 2.1. Let G0 be the connected component of G. Since the irreducible
unitary representations of G separate points of G, and hence of G0, G0 is maximally
almost periodic. By the classical result of Freudenthal and Weil, G0 = K+ F where
K is compact and F is a vector group.

Since our hypothesis on G inherits to any quotient group, G/G0 satisfies the same
hypotheses. As we have remarked, the hypothesis that c7(7r)<oo for all tt e G
implies that G is type I. Thus G/G0 is type I and, as G0 is open in G (G is a Lie
group), G/G0 is discrete. Thus Thoma's theorem implies that G/G0 has an abelian
subgroup of finite index. We may then simply assume that G/GQ is abelian.
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Let N be the derived group of G0 = K + V so that N is also the derived group of K
and is hence a semisimple Lie group. Since K is normal in G, N is also normal in
G and G acts by automorphisms of N. Since the group of all automorphisms of N
modulo its inner ones is finite there is a subgroup of G of finite index which acts
by inner automorphisms of N. Thus again we can simply assume that all of G acts
by inner automorphisms of N.

We consider the quotient group H=G/N; it is an extension of the discrete
abelian group G/G0—77/770 by 770~G0/Ar which is an abelian connected Lie group.
The group 77/770 acts on 770 and hence on H0, the dual group. It follows by a
trivial modification of Mackey's theory in [14], taking account of the fact that
77/770 need not be countable (the extra difficulties here are negligible), that if there
is any orbit of 77/770 on 770 which is infinite, then 77 has an infinite dimensional
irreducible unitary representation. Thus if for À e 770, 77(A) is the stability group of
A, then 77(A) is of finite index in 77. Now since 770 is the sum of a vector space and a
finitely generated discrete group, there is a dense finitely generated subgroup, say
with generators A¡, i= 1,..., «. Then (~)t=, H(X/) is of finite index in 77 and, if «
is in this subgroup, it acts trivially on a dense subgroup of 770, hence on H0, and
hence on 770. Thus we may in addition assume that 770 is central in 77.

It remains to analyze the central group extension 1 -> 770 -> 77-> 77/770 -> 1.
Since 77/770 is discrete we can essentially treat this as an extension of abstract
groups. It is described by a cohomology class a e H2(H/H0, 770). Now for each
A e 770 = Hom (770, T) where T is the circle group, let A^a) be the image of a in
772(77/770, T) and let 77(A) be the corresponding extension of 77/770 by T. There is a
homomorphism t/>(\) of group extensions of 77 into 77(A) such that T-</>(X)(H)
= 77(A). Thus if 77 is any irreducible representation of 77(A), tt is scalar on T, and
hence 77 o <£(A) is an irreducible representation of 77. Since all irreducible representa-
tions of 77 are finite dimensional, the same is true of 77(A) (see [25], [17]).

Now by a standard argument, it follows from this (and, in fact, from the weaker
assumption that there is some irreducible representation of finite degree of 77(A)
nontrivial on T) that the cocycle a(X) defining 77(A) has finite order, say m, in
772(77/770, T). Since T is divisible we can find some cocycle representative a(A)
for a(A) which takes values in Zm, the set of «tth roots of 1 in T. It follows that there
is a subgroup 77i(A) of 77(A) of the form 1 ->ZM -* H,(\) -> 77/770 -*- 1.

It is clear that any irreducible representation of TT^A) extends trivially to an
irreducible representation of 77(A). Thus all irreducible representations of 77j(A)
are finite dimensional and, moreover, 77i(A) is a discrete group. Thus by Thoma's
theorem, there is an abelian subgroup ^i(A) of finite index in H,(X) and, since Zm
is central, we may assume that A,(\)^>Zm. Now A(X) = T-A,(X) is an abelian sub-
group of finite index in 77(A) since T is central in 77(A).

Now if s and t are in 77/770, we may pick coset representatives s, i in H for them.
The commutator [s, i] depends only on s and t and is an element of 770 denoted by
[s, t]. Now for each A e 770, we have seen that there is an abelian subgroup A(X)
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of finite index in 77(A). This immediately implies that there is a subgroup 5(A) of
finite index in 77/770 such that X([s, t])=l if s and t are in B(X). As before, we use
the fact that there is a dense finitely generated subgroup of 770 with generators
Aj,..., An, to see that, if s, t e Hf-i B(\i), then [s,t] = l. Thus there is a subgroup
of finite index in 77 which is abelian. Now we note that we can assume that 77 is
abelian.

Let us summarize what we know about our original group G now; G has a
normal subgroup N which is a compact connected semisimple Lie group, H=G/N
is abelian and G acts on N by inner automorphisms. Let Z be the centralizer of N
in G ; then we know that G=ZN and Z n N is finite and Z/Z n N~ G/N is abelian.

We claim now that every irreducible representation of Z is finite dimensional.
Indeed if tt eZ, tt(z) = X(z) -l for z e Z n N since Z n N is central in Z where
A e (Z n N)~. We may find a (finite dimensional) irreducible representation p of
A' with /o(n) = X(n)■ 1 for n eZ n Af. Now on the Hubert space 77(p) <g) 77(77), define
a representation /x of G by 7i(g) = p(n) <g> 7r(z) when g=n-z, neN, zeZ. It is
immediate that p is in fact a well-defined irreducible representation. Since it is
finite dimensional, 77 is finite dimensional. Now by exactly the same arguments
we used for 77 we can show that Z has an abelian subgroup of finite index, which
we may assume contains Z r\ N. Therefore we may assume that Z is abelian in
addition to what we have already.

Finally as G=NZ with Z abelian and centralizing N, it is clear that Z is the
center of G. Then G/Z~N/Zis compact so that G is central. This proves Theorem 2.

4. It remains to prove the second half of Theorem 3, namely that if d(tt) < 00
W e G, then G is a projective limit of Lie groups, G = proj lim Ga. Once we know
this, then each Ga automatically satisfies the same condition that G does and the
result will be proved.

Let us say that a representation 77 of G is finite if the von Neumann algebra R(tt)
generated by tt is a finite von Neumann algebra [2]. This differs somewhat from
Mackey's terminology in [11].

Lemma 4.1. 7/ G is locally compact, then d(n) < 00 W e G if and only if every
representation of G is finite.

Proof. The "if" part is clear for an irreducible representation 7r is finite if and
only if d(-n) <ao. For the converse, we consider the group C*-algebra A of G. Iff
is a two sided primitive ideal, then 7 is the kernel of an irreducible representation tt.
Since i/(7r) = n < 00, A/I has dimension n2. Let Fn be the set of all primitive ideals
7 of A such that A/I has dimension less than or equal to n2 and let F be the primitive
ideal space of A. Then by assumption F=IJ„ Fn. For each subset K of F, the kernel
I(K) of K is f)I (le K). The closure of K in the kernel-hull topology on F is
K={J e F;J^=> I(K)}. Let P2n be the standard polynomial identity characteristic
of the ring of n x n matrices [8]. Then 7J2n = 0 is satisfied in A/I for each I e Fn and
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hence P2n = 0 is satisfied in A/I(Fn). Moreover if JeFn, then P2n = 0 is satisfied in
A/J and hence J e Fn. Thus Fn is a closed subset of F.

Now following Glimm [6], we define for each closed subset K of F and for every
representation A of A, P¡,(K) to be the projection onto Hx(K) = {x : x e 77(A), and
A(a)x=0 for every a e I(K)}. According to Theorem 1.9 of [6], K^*PA(K) extends
to a countably additive projection-valued measure on the Borel sets of F with
7\(7v) in the center of 7?(A). Since F={jnFn, H(\) = J,(HÁ(Fn)-H¿Fn^,)). We
define a subrepresentation Xn of A by restricting A to the invariant subspace
HA(Fn) - Hh(Fn _,). Then A = 2 An, and An(a) = 0 if a e I(Fn). Since P2n = 0 is satisfied
in A/I(Fn) as we have noted above, the algebra Xn(A) and hence its weak closure
7?(An) satisfy P2n = 0. Now any von Neumann algebra satisfying this identity is
finite. Moreover 7?(A) is the direct sum of the 7?(AJ and since the direct sum of
finite algebras is finite [2], R(X) is finite as desired.

Lemma 4.2. If d(n) < co for all neô, then G has arbitrarily small invariant
neighborhoods ofie.

Proof. We can always find a representation A of G such that A is a homeomor-
phism of G onto a closed subgroup of the unitary group U(R(X)) of 7?(A) in the
strong operator topology (say, the regular representation). If R(X) is finite, which
it is by the previous lemma, it is clear that U(R(X)) has arbitrarily small neighbor-
hoods of e since 7?(A) has enough finite traces. It follows at once that G has the
same property.

The following lemma completes the proof of Theorem 3.

Lemma 4.3. 7/G has arbitrarily small invariant neighborhoods of e, then G is a
projective limit of Lie groups.

Proof. For the sake of completeness we include a proof of this fact (see also
S. P. Wang [23]). We have to show that given any neighborhood U of the identity
in G, there is a compact normal subgroup K of G with 7C<= JJ such that G/K is a Lie
group. We consider first the case when G is totally disconnected. If U is any
neighborhood of the identity, it is known [15, p. 54] that there is a compact open
subgroup L of G contained in U; moreover by assumption there is an invariant
neighborhood V of the identity contained in L. We let K=C\gLg'1 (geG) so
that K is a compact normal subgroup of G. Since V=g Vg ~1 for all g e G, and since
L=> V, K^OgVg'1 (g 6 G)= V and so K is open. Then G/K is a discrete group,
hence a Lie group.

If G is any locally compact group, let G0 denote the connected component of the
identity in G. Then G/G0 is totally disconnected, and since G has arbitrarily small
invariant neighborhoods, so does G/G0. By the above, we can find a compact
open normal subgroup N in G/G0. We denote by 77 the complete inverse image of
A7 in G so that 77 is normal, open and contains G0. Since 77/G0 is compact, it follows
[15, p. 175] that 77 is a limit of Lie groups. Therefore if U is any neighborhood of
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the identity in G, we can find a compact subgroup Ki of G, contained in 77 and
normal in 77, such that H/Kx is a Lie group. Our problem is to replace Kx by a
subgroup K which is also normal in G.

Since 77/7?! is a Lie group, we can find a neighborhood W of the identity in
H/Kx which contains no nontrivial subgroups. If p is the projection of 77 onto
77/Äj we can find by assumption, and the fact that 77 is open in G, an invariant
neighborhood F of the identity in G which is contained in 77 and with p(V)<^ W.
Again since 77 is a limit of Lie groups, we can find a compact normal subgroup K2
of 77 with K2^ V, such that H/K2 is a Lie group. \f g e G, gK2g_1 is a subgroup of
77 contained in gVg'1 = V and hence p(gK2g'1) is a subgroup of 77/^ contained
in p(V)=W. By the choice of W, p(gK2g_1) must consist of one element or,
equivalently, gK2g'1(=-Ku Now let K be the smallest closed subgroup of G con-
taining every gK2g~x for every g eG. Then K is normal in G and K^K^U since
Ki is a subgroup. Moreover K=>K2 by definition and, since H/K2 is a Lie group, so
is H/K. Finally as 77 is open in G, we see that G/Kis a Lie group and this completes
the proof.

5. In [20] L. Robertson has improved considerably the criterion characterizing
non-Lie groups G for which cf(7r) < oo for all ireô. The following example shows
that Theorem 2 is false in general even for separable groups. Let T be the circle
group and let the integers mod two, Z2, act on Thy conjugation and let G0 = T+Z2
be the semidirect product. Then J is a compact open subgroup. Let 7"* be an
infinite product of circles and let Z2°° be the countably infinite direct sum of copies
of Z2. Then Z2 ={(at), a¡ = 0, 1, and 0 except for finitely many i} is a discrete group
and acts on Tx componentwise (a-t^acU where t = (ti)eT'a. Then let G = 7"°
■Z2 be the semidirect product. (G can also be described as the restricted direct
product [18] of a countable number of copies of G0 relative to the compact open
subgroup T.)

It can be seen either from [14] or from [18] that £f(7r)< oo W e G, and in fact that
d(rr) is always a power of 2. Finally it is quite easy to see that no subgroup of finite
index in G can be a central group, so that this is a counterexample to Theorem 2
for general groups.
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