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Figure 1. RANSAC can be significantly sped up if modified to take advantage of additional grouping information between features,

e.g., as provided by optical flow based clustering. Left: one of the two images for which we seek epipolar geometry, with inlier and

outlier correspondences overlaid in blue and red respectively. Middle and Right: Two largest groups of tentative correspondences after

clustering based on feature locations and optical flows. Notice their inlier ratios are much higher than the average ratio in the entire image.

Abstract

We present a novel variant of the RANSAC algorithm

that is much more efficient, in particular when dealing with

problems with low inlier ratios. Our algorithm assumes

that there exists some grouping in the data, based on which

we introduce a new binomial mixture model rather than

the simple binomial model as used in RANSAC. We prove

that in the new model it is more efficient to sample data

from a smaller numbers of groups and groups with more

tentative correspondences, which leads to a new sampling

procedure that uses progressive numbers of groups. We

demonstrate our algorithm on two classical geometric vi-

sion problems: wide-baseline matching and camera resec-

tioning. The experiments show that the algorithm serves

as a general framework that works well with three possi-

ble grouping strategies investigated in this paper, includ-

ing a novel optical flow based clustering approach. The

results show that our algorithm is able to achieve a signifi-

cant performance gain compared to the standard RANSAC

and PROSAC.

1. Introduction

A common problem in computer vision and many other

domains is to infer the parameters of a given model from

data contaminated with noise and outliers. RANSAC [7]

and its many variants [21, 16, 13, 14, 1, 3, 17, 22] have

been a popular choice for solving such problems, owing to

their ability to operate in the presence of outlier data points.

The original RANSAC algorithm works in a hypothesis-

testing framework: it randomly samples a minimum set of

data points from which the model parameters are computed

(hypothesis) and verified against all the data points to de-

termine a fitting score (testing). This process (a trial) is re-

peated until a termination criterion is satisfied.

As the inlier ratio drops, RANSAC becomes exponen-

tially slower. For problems with moderate inlier ratios,

RANSAC is fairly efficient. For instance, for computing

camera poses from points with known 3D positions (cam-

era resectioning) using the 6-point DLT algorithm [10], it

only takes about 60 trials to find the correct parameters with

a 95% confidence from data points contaminated with 40%
outliers. However, with a 20% inlier ratio, it requires over

45, 000 trials to achieve the same confidence. Such low in-

lier ratios exist in many practical problems. For instance,

for the very same resectioning problem when dealing with

internet images [19], one image of interest may observe tens

or hundreds of known 3D points, and many of those point

correspondences are spurious. For these problems, the stan-

dard RANSAC would simply fail because of the extraordi-

narily large number of trials needed.

In this paper, we make an assumption that there exists

a grouping of the data in which some of the groups have

a high inlier ratio while the others contain mostly outliers.

Most problems of interest have such natural groupings. For

example, in the case of wide-baseline matching, one can

group the tentative correspondences according to optical

flow. The motivation of optical flow based clustering comes

from the fact that it is fairly easy for a human to distinguish

inliers from outliers in an image such as Figure 1, without



calculating the underlying epipolar geometry: the optical

flow supplies a strong clue and can be used to group the ten-

tative correspondences. Another natural grouping is derived

from image segmentation, as in Figure 4: only segments

visible in both images will contain inlier correspondences.

The same grouping assumption exists in camera resection-

ing. Typically, the geometries of known 3D points in the

target image were recovered from their 2D measurements

in previously visited images. Hence those 3D points can

be grouped according to which visited images they come

from. All these examples have one thing in common that

they reveal a correlation between the inlier probabilities of

individual data points.

If such a grouping can be identified we propose a novel

algorithm to exploit it, GroupSAC, improving on RANSAC

and its variants by using a hierarchical sampling paradigm.

In GroupSAC, we first randomly select some groups and

then draw tentative correspondences from those groups.

We will show that doing so is beneficial in that minimum

sample sets drawn from fewer groups have a substantially

higher probability of containing only inliers. Because its

theoretical justification relies on several modeling assump-

tions, we adopt the design used in PROSAC [2] and only

change the order in which minimum samples are consid-

ered. Hence the method gracefully degrades to the classical

RANSAC if the assumed model for the data is wrong.

In addition, we show that GroupSAC can be improved

upon if the chosen grouping has the property that larger

groups tend to have higher inlier ratios. For instance, if we

cluster according to optical flow as in Figure 1, most out-

liers are classified into smaller clusters because their flow

is more random, while the the inliers tend to be consistent

with each other and hence clustered into larger groups. As

a result, the larger size of a group often indicates a higher

inlier ratio. The ranking on groups so obtained can be inte-

grated into GroupSAC to further improve its efficiency.

There is a lot of previous work along the lines of modify-

ing the sampling strategy of standard RANSAC. It is usually

achieved by making use of various types of prior informa-

tion. NAPSAC [15] modifies the sampling strategy to se-

lect nearby points to deal with high-dimensional problems.

Lo-RANSAC [4] conducts additional sampling among po-

tential inliers. GASAC [18] adopts ideas from genetic al-

gorithms to form samples with more likelihood of being all

inliers. [20] suggests the use of additional prior information

regarding absolute accuracy of each data point to guide the

sampling procedure. PROSAC [2] uses relative accuracy

information among the data points. Our algorithm differs

from existing methods in the sense that we consider correla-

tions between the inlier probabilities of the individual data

points. While using additional prior information, existing

algorithms have always assumed that data points are statis-

tically independent, i.e., no correlation among the probabil-
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Figure 2. An example of the wide-baseline matching problem.

The inlier correspondences are colored in green, and the outliers

are in red. The region G2 in the left image contains part of the

scene also visible in the right image. Hence this region not only

contains more tentative correspondences (3 v.s. 1), but also has a

higher inlier ratio (66.7% v.s. 0%).

ities of the data points being inliers has been exploited.

2. Group Sampling
In this section, we improve on the simple binomial model

used in RANSAC by introducing a binomial mixture model

for the case when a grouping in the data can be identified.

This model suggests a novel hierarchical sampling scheme,

which we term group sampling. The properties of group

sampling are investigated, which establish the foundation

of GroupSAC to be introduced in Section 3.

2.1. Simple Binomial Model of RANSAC

In the standard RANSAC algorithm and many of its vari-
ants, the probability of a data point x being an inlier is
assumed to obey an i.i.d. Bernoulli distribution, i.e., the
inlier probability of one point is assumed independent of
any other data point. In RANSAC we consider the prob-
lem of estimating the parameters of a given model from N
data points {xj} , j = 1 . . . N , contaminated with noise and
outliers. We assume that the minimum number of points
needed for computing the model parameters is m. For any
minimum sample set S with m points, we have

IS ∼ B(m, ǫ) (1)

where IS is the number of inliers in S, and B(m, ǫ) is
the binomial distribution in which ǫ is the parameter of a
Bernoulli trial, i.e., the inlier probability of the set S in
the RANSAC context. Therefore, the probability of all the
points in S being inliers, P (IS = m), is given by:

P (IS = m) =

m
Y

j=1|xj∈S

P (Ij) = ǫm (2)

where Ij is an indicator variable signifying xj is an inlier.

Although a lot of previous work has recognized the fact

that ǫ is not necessarily the same for different data points,

and has exploited this non-uniform property to speed up the

sampling procedure [20, 2], in most if not all cases the inlier

probabilities of different data points in those approaches are

still considered independent of each other.

2.2. Binomial Mixture Model of GroupSAC

In this paper we make use of the fact that, for many prob-

lems, there exist groupings among the data points with the



property that the groups tend to have either a high or a low

fraction of inliers. One such example is the wide-baseline

matching problem as shown schematically in Figure 2, in

which the data points are the tentative correspondences be-

tween feature points in two images. Some regions in the

first image will overlap with the scene seen from the sec-

ond image, hence the corresponding point groups (G2 in

Figure 2) have a high chance to contain inliers, while the

non-overlapping regions (G1 in Figure 2) contribute no in-

liers. More examples from real image data will be discussed

in Section 5.
More precisely, we assume that the probability of the in-

lier ratios in those groups can be modeled by a two-class
mixture: the high inlier class (e.g., the overlapping region
G2 in Figure 2) and the lower inlier class (e.g., the non-
overlapping region G1). An obvious candidate to model
each class is the beta distribution [6], the conjugate prior to
the binomial distribution. However, the inlier ratio of the
second class is usually close to zero, and we found that a
mixture of two delta distributions suffices to model most
problems, with the advantage of being simpler. In particu-
lar, we assume that the inlier ratio ǫi in any given group Gi

is drawn from the following mixture

ǫi ∼ πhδ(ǫ0) + πzδ(0) (3)

where πh and πz are the mixture weights for the high inlier
class and the zero inlier class, with inlier ratios ǫ0 and 0
respectively. Hence the probability of having IGi

inliers in
group Gi can be derived as

P (IGi
) =

Z

ǫi

P (IGi
|ǫi)P (ǫi)

=πhP (IGi
|ǫi = ǫ0) + πzP (IGi

|ǫi = 0) (4)

In other words, the distribution on the number of inliers IGi

in any given group is now a mixture of bimonials:

IGi
∼ πhB(|Gi| , ǫ0) + πzB(|Gi| , 0) = πhB(|Gi| , ǫ0)

(5)
where |Gi| is the number of data points in group Gi. Note

that inliers are yielded by only a fraction πh of the groups,

referred to as inlier groups. So far we assume that each data

point is associated with one group, whereas the multiple as-

sociation case is introduced in Section 6.

2.3. Group Sampling

To deal with data points that can be grouped as described

in Section 2.2, we introduce a novel hierarchical sampling

scheme, namely group sampling, which is a two-step pro-

cess: we first choose k groups yielding a configuration

G = {Gi}, i = 1 · · · k, and then draw data points from

the union of the groups Gi in G. It is worth noting that the

sampling strategy in RANSAC can be considered as a spe-

cial case of group sampling in which all data points belong

to the same group.
In group sampling, the probability of all the points in S

being inliers can be computed as well. First, consider the
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Figure 3. The proportions of combinatorial numbers from

1,2,3...,7 groups, relevant for m = 7 when estimating a fun-

damental matrix. The number is less than 3% when sampling

from one or two groups (the offset piece), and 20% from no more

than three groups. In practice, GroupSAC finds an inlier sample

from at most two or three groups, which results in large savings in

computation time.

easier case in which a set Si contains |Si| samples (at least
one) from a single group Gi. From Eq. (5), the probability
of all points in Si being inliers is given by

P (ISi
= |Si|) = πhǫ

|Si|
0 (6)

Note that πz does not appear above, as B(|Si| , 0) = 0.
More generally, if a minimum sample set S = S1∪· · ·∪

Sk is drawn from configuration G = {Gi}i=1···L, i.e., Si ⊂
Gi, the probability of S containing only inliers is given by:

P (IS = m) =

|G|
Y

i=1

P (ISi
= |Si|) = π

|G|
h ǫm0 (7)

in which |G| = k is the number of the groups in configura-

tion G. Note that the difference between Eq. (7) and Eq. (2)

is the factor π
|G|
h and the use of the inlier probability ǫ0 for

high inlier groups rather than the global ǫ.

2.4. Fewer Groups are Better

Under the assumptions made above, it is obvious from

Eq. (7) that sampling data points from fewer groups yields

a higher probability of obtaining an all-inlier sample S, as

shown in the following corollary:

Corollary 2.1. Given two minimum sample sets S1 and S2

drawn from configurations G1 and G2 respectively, we have

|G1| ≥ |G2| ⇒ P (IS1
= m) ≤ P (IS2

= m). (8)

Proof. Based on Eq. (7), we may write the inlier probabili-
ties of S1 and S2 as

P (IS1
= m) = π

|G1|
h ǫm0 and P (IS2

= m) = π
|G2|
h ǫm0 . (9)

We conclude the proof by noting that 0 < πh ≤ 1.

3. GroupSAC

In this section we present GroupSAC, a variant of

RANSAC that gains additional efficiency by exploiting the

properties of a grouping of the data points. GroupSAC is

based on the same hypothesis-testing framework as that in

the standard RANSAC, except for a new sampling scheme

based on groupings.



3.1. GroupSAC Algorithm

To enable sampling from fewer groups, GroupSAC

draws samples from increasing numbers of groups but is

still able to achieve the same random sampling as in stan-

dard RANSAC, i.e., each minimum sample set has the same

chance of being sampled, when the computation budget is

exhausted. Inspired by PROSAC [2], we use a heuristic or-

dering of group configurations without estimating the actual

values of the mixture model parameters in Eq. (5).
More specifically, GroupSAC goes through all possible

configurations in the order of their cardinalities. Let K be
the total number of groups among all the data points, and
all the configurations can be divided into R = min(m,K)
subsets {Ck}k=1,...,R such that

Ck = {Gu| |Gu| = k} (10)

Accordingly, GroupSAC starts sampling from C1 until it

finally reaches CR. For each subset Ck, GroupSAC goes

through each configuration Gu by drawing minimum sam-

ple sets from it. By the end of the R-th stage, all the config-

urations will have had their opportunity to be selected. The

process can be summarized as below:

Algorithm 1 The GroupSAC Algorithm

Sort all the configurations according to Eq. (10) and (17).

Repeat the following

• Check the maximum rounds for the current configuration

Gu Eq. (11). If reached, move to Gu+1.

• Draw samples from all the groups in Gu such that each

group at least contributes one data point.

• Estimate the parameter of the underlying model.

• Find the inliers for the new model and check the termina-

tion criteria in Section 3.2.

Similar to PROSAC, it is crucial to make the correct
number of trials in each configuration Gu. Assume our
computation budget is T0 trials in total for all possible

M0 =
(

N
m

)

minimum sample sets, and let Tu be the number

of trials for configuration Gu = {Gi}F , in which F is the
set of its group indices. Tu is chosen such that the sampling
ratio of Gu is equal to that of the entire M0 sample sets:

Tu/
‚

‚

‚

T

i∈F

Gi

‚

‚

‚

= T0/M0 (11)

where

∥

∥

∥

⋂

i∈F

Gi

∥

∥

∥
refers to the binomial coefficient of picking

points from all the groups in Gu, i.e., each group contributes

at least one point.

In order to compute

∥

∥

∥

⋂

i∈F

Gi

∥

∥

∥
in Eq. (11), we invoke the

inclusion-exclusion principle in combinatorics [9]:
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‚
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‚
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(12)

where

∥

∥

∥

⋃

i∈F

Gi

∥

∥

∥
represents the binomial coefficient of pick-

ing points from any one or more groups in {Gi}F :
‚

‚

‚

S

i∈F

Gi

‚

‚

‚

=
`

P

i∈F

|Gi|

m

´

(13)

The proportion of the combinatorial numbers for {Ck} in a

wide-baseline matching example is shown in Figure 3.

3.2. Termination Criteria

Since GroupSAC computes a model from a subset of the
data points in a fashion similar to PROSAC, we adapt the
termination scheme in the latter to our algorithm. First, non-
randomness is checked to prevent the case that an incorrect
model is selected as the final solution because of an acci-
dental support from outliers. To be more precise, we want
the probability that the model to be validated is supported
by j random points is smaller than a certain threshold ψ:
the minimal number of inliers n∗ required to maintain the
non-randomness can be computed as

min{n∗ :

n
X

i=n∗

βi−m(1 − β)n−i+m

 

n−m

i−m

!

< ψ}, (14)

where β is the probability of an incorrect model from a min-

imum sample set happening to be supported by a point that

is not from the sample set, and n is the number of points

in the current configuration. In our implementation, we use

ψ = 5% for all the experiments.
The second termination condition is that the confidence

that there does not exist another model which is consistent
with more data points is smaller than a given threshold η:

(1 − ǫmG )p ≤ η (15)

where ǫG is the inlier ratio of the current configuration G,

and p is the number of random sampling trials. Note that

Eq. (15) differs from the counterpart used in the standard

RANSAC algorithm in the sense that only the points in G
are considered. In this case, even if the entire data set has a

low inlier ratio, GroupSAC is still able to terminate before

reaching the maximum number of sampling trials.

4. Integrating Additional Orderings

Above we have shown that fewer groups should be pre-

ferred. Now we argue that in many cases groups with larger

sizes should also be preferred. More specifically, in many

applications there exists a correlation between the number

of points in a group and its probability being an inlier group.

For instance, in camera resectioning, the visited image that

has more tentative correspondences to the known 3D points

in the target image is more likely to be an image with true

correspondences. The same holds for wide-baseline match-

ing problems, in which one can expect more tentative cor-

respondences from the true overlapping regions.
With this heuristic information, it is reasonable to or-

der the groups in each class Ck according to the number of



Figure 4. RANSAC can be significantly sped up if modified to take advantage of additional grouping information between features,

e.g., as provided by image segmentation. Left and Right: two images for which we seek epipolar geometry. Middle: inliers (green) and

outliers (red) overlaid on the image segments: notice the clear correlation between segmentation and inlier/outlier classification.

points they contain and apply a PROSAC-like [2] algorithm
to select groups. However, we find in experiments that this
strategy does not always work well. The reason is that of-
ten outlier groups with many points are over-favored and
this may lead to poor performance. Instead, we propose a
different weighting scheme which works more reliably. Let
S1 and S2 be any two size-m minimum sample sets from
two configurations G1 and G2 respectively. We assume that
a configuration with more points in total has a higher inlier
probability than a configuration with fewer points:

X

Gi1
∈G1

|Gi1 | ≥
X

Gi2
∈G2

|Gi2 | ⇒ P (IS1
= m) ≥ P (IS2

= m).

(16)
The change from before is that we do not favor any indi-

vidual group but instead we favor a configuration which

consists a larger number of data points. This significantly

reduces the risks of over-sampling from a small set of bad

groups with more points.
The GroupSAC algorithm can be slighted modified to

integrate the additional ordering based on the group sizes.
Eq. (10) does not prefer any configurations inside Ck, but
with Eq. (16), we can order the configurations in Ck as
{Gu| |Gu| = k}, such that for any two arbitrary Gu1

and Gu2

with u1 < u2, we have:
X

Gi∈Gu1

|Gi| ≥
X

Gi∈Gu2

|Gi| . (17)

In addition to the ordering of different configurations,

another possible improvement is to order the points inside

a configuration according to their inlier probabilities if such

information is available. This basically amounts to apply-

ing PROSAC [2] in the inner loop. Since GroupSAC works

in the same way as the standard RANSAC for a given con-

figuration, it is straightforward to apply PROSAC, and the

details are omitted here.

5. Application I: Wide-Baseline Matching

We first evaluate GroupSAC on the wide-baseline match-

ing problem, in which there are two main challenges:

small overlapping regions between the interested images

and repetitive texture in the scene. Both challenges lead to

low inlier ratios in tentative correspondences, and we will

show how GroupSAC is able to alleviate this significantly.

First tentative correspondences are established by match-

ing the SIFT features [11] detected in both input images.

To apply our algorithm, we employ two strategies to group

those tentative correspondences: one based on optical flow

clustering and the other based on image segmentation. In

both strategies, one image is arbitrarily chosen to serve as

the reference image, and each tentative correspondence in

that image is associated with one of the groups. The outliers

in the tentative correspondences are then filtered by fitting a

fundamental matrix [10].

To avoid the degeneracy when estimating fundamental

matrix, we always start sampling from two groups and

make a sanity check as in QDEGSAC [8]. Note that as

GroupSAC only modifies the sampling stage of the stan-

dard RANSAC, it is rather easy to integrate tweaks on the

other stages, e.g., QDEGSAC.

5.1. Grouping using Optical Flow Based Clustering

The first grouping strategy we tried for wide-baseline

matching problems is to cluster the optical flow of the de-

tected SIFT features. In Figure 1, it is easy to see that the

inliers in a certain region tend to have consistent optical flow

vectors, while those from outliers are much more random.

Specifically, we model each tentative correspondence as

a 4-dimension vector (u, v, δu, δv), in which u and v are

the 2D feature position in the reference image, and δu and

δv are the offset between the corresponding features in both

images. We then define the distance between two tenta-

tive correspondences as the sum of squared distances, and

the four dimensions are weighted by (1, 1, 10, 10) respec-

tively. The reason to use higher weights for the offset is

that we favor making the optical flows consistent with each

other while still allowing features to spread out somewhat.

Based on the weighted distance, all the tentative correspon-

dences can be clustered using mean shift [5] in which the

bandwidth threshold is fixed to be proportional to the image

size. The resulted two largest groups are illustrated in the

2nd and 3rd images of Figure 1.

5.2. Grouping using Image Segmentation

The second grouping strategy is based on image segmen-

tation. The intuition behind this is that correspondences
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Figure 5. The number of points and inliers associated with dif-

ferent groups for the hotel images shown in Figure 4.

within one image segmentation are more likely to share the

same inlier ratio. In particular, we generate a thumbnail for

the reference image with the longer edge about 200 pixels,

which is then segmented using Berkeley Segmentation En-

gine (BSE) as in [12]. The segmentation is efficient due to

the small size of thumbnail image. The features in the refer-

ence image are then associated to the image segments with

respect to their 2D position, and so are the tentative corre-

spondences. One such example is shown in Figure 4. Note

that GroupSAC does not heavily depend on the quality of

the image segmentation, as it only yields a rough grouping

of the correspondences.

Since the overlapping part between two images is typi-

cally small in challenging problems, most of the image seg-

ments only contain outlier groups as shown in Figure 5, In

addition, the repetitive textures such as building facades in

Figure 4 yields a lot of random false correspondences. In

fact, the problems we are dealing with often have inlier ra-

tio as low as 20%. However, the image segments corre-

sponding to the overlapping view usually contain a consid-

erable proportion of inliers, which become exactly the inlier

groups that GroupSAC tries to locate during the sampling

process. Also note that the inlier groups usually contain

more tentative correspondences, which is consistent with

our group ordering assumption.

5.3. Efficiency Comparisons

We compare the performance of the standard RANSAC,

PROSAC [2] and the proposed GroupSAC on some real

image data, which includes some well-known images (Ta-

ble 5.3 A-D) as well as some (Table 5.3 E) that we collected

by ourselves. We set the maximum allowed trials to 5000,

T0 to 250, 000 and η to 0.99, and all the results are averaged

over 100 runs.

Due to low inlier ratios, the minimum number of tri-

als to satisfy the termination criteria in RANSAC is ex-

ponentially high. As a result, RANSAC always takes the

longest time and sometimes even exits without enough cer-

tainty when it reaches the maximal trial limit. PROSAC im-

proves on RANSAC in all the tests but is still much slower

than GroupSAC most of time. The main reason is that the

residual used by PROSAC, the residuals in feature descrip-

tor matching as proposed in [2], is indeed a point-wise ev-

idence, while the grouping structure used by GroupSAC

reveals the correlation between inlier points and is shown

to provide stronger evidence. For example, the point-wise

residual of outlier correspondences can be very small for

scenes with repetitive textures, but the global grouping re-

mains same in this case.

On the other hand, GroupSAC gains efficiency by fully

exploiting the grouping between data points. For instance,

in the hotel data set shown in Figure 5, if GroupSAC starts

sampling from two groups, i.e., C2, the first configuration

in the sorted list is {G1, G2}, because it contains the most

points according to Eq. (17). Since {G1, G2} has a rela-

tively high inlier ratio about 50%, GroupSAC has a very

high chance to finish sampling earlier and hence is able to

avoid outlier groups and inlier groups with low inlier ratios.

In contrast, the standard RANSAC samples from all the data

points with a much lower inlier ratio.

Another important insight is that the inlier ratios of the

two largest groups in GroupSAC are much higher than

those of the entire data set. This again proves that the un-

derlying grouping structure can be recovered and used to

speed up RANSAC dramatically. The high local inlier ratio

also makes the proposed GroupSAC exit properly, because

Eq. (15) can be satisfied as long as a certain configuration

has a relatively high inlier ratio, while both RANSAC and

PROSAC fails to exit with enough certainty on image pair F.

6. Multiple Associations

So far we have introduced how to do group sampling on

data points in which each point has a single parent group,

but in some problems a point may be associated with mul-

tiple groups. For instance, in the camera resectioning, we

are given a set of points with 3D coordinates and their pro-

jections in the target image. These points can be naturally

grouped according to the visited images that they are visi-

ble in, and the points from an image that overlaps with the

target image have a higher chance to be inliers than those

from an image that does not overlap with the target image.
More generally, let S be a minimum sample set asso-

ciated with multiple configurations. Those configurations
may yield different values when evaluating Eq. (7), and
the one with the minimal cardinality gives the largest in-
lier probability. Since it is computationally intractable to
evaluate the exact inlier probabilities in this case, we de-
fine G∗(S) as the one with the minimal cardinality, called
the minimum spanning configuration, and assume the inlier
probability of S is dominated by G∗(S):

P (IS = m) = π
|G∗|
h ǫm0 . (18)

We then have a result similar to Corollary 2.1 that the prob-

abilities of sample sets can be compared using the size of the

corresponding minimum spanning configurations.

Corollary 6.1. Let the probability of a group being an inlier
group be πh and the inlier ratio be ǫ̂. For two sample sets



k kmin kmax vpm time(sec) speed-up

A: ǫ = 0.485, ǫ1 = 0.925, ǫ2 = 0.879 RANSAC 898.6 667 1269 838.0 137.0 1

PROSAC 250.1 136 512 127.8 12.9 10.6

GroupSACI 52.1 42 92 353.8 3.74 36.6

GroupSACF 10.25 7 17 451.0 1.13 121
B: ǫ = 0.641, ǫ1 = 0.981, ǫ2 = 0.934 RANSAC 103.9 83 174 1025.5 21.3 1

PROSAC 131.6 125 140 69.6 8.9 2.40

GroupSACI 31.3 22 83 382.1 2.54 8.39

GroupSACF 4.6 4 6 444.7 0.521 40.8
C: ǫ = 0.453, ǫ1 = 0.917, ǫ2 = 0.947 RANSAC 772.6 396 1169 225.3 35.3 1

PROSAC 15.9 8 39 15.9 0.174 202

GroupSACI 44.1 27 59 39.9 0.363 97.2

GroupSACF 6.2 4 11 78.8 0.132 267
D: ǫ = 0.425, ǫ1 = 0.899, ǫ2 = 0.973 RANSAC 1823.1 1661 2316 501.3 168.6 1

PROSAC 100.6 31 240 55.8 2.87 58.7

GroupSACI 106.8 84 142 85.8 2.12 79.5

GroupSACF 6.35 5 12 178.4 0.366 460.7
E: ǫ = 0.547, ǫ1 = 0.917, ǫ2 = 0.938 RANSAC 702.7 588 886 190.3 25.1 1

PROSAC 32.3 6 59 23.6 0.321 78.2

GroupSACI 45.2 29 62 43.0 0.490 51.2

GroupSACF 7.4 5 14 77.7 0.137 183.2
F: ǫ = 0.216, ǫ1 = 0.602, ǫ2 = 0.414 RANSAC 5000 5000 5000 607.1 548.2 1

PROSAC 5000 5000 5000 305.9 300.7 1.82

GroupSACI 1383.6 942 2202 169.1 44.4 12.3

GroupSACF 271.15 194 370 176.7 9.71 31.0

G: ǫ = 0.227, ǫ1 = 0.727, ǫ2 = 0.368 RANSAC 5000 5000 5000 97.0 51.0 1

PROSAC 5000 5000 5000 92.6 50.1 1.02

GroupSAC 464.1 255 696 35.1 2.31 22.1

Table 1. Comparisons between the standard RANSAC, PROSAC [2] and the proposed GroupSAC on wide baseline matching prob-

lems (A-F) and camera resectioning problems (F). All the results are averaged over 100 runs. k is the number of models computed

during the run, and vpm is the number of verifications per model. On top of the thumbnails, three inlier ratios are listed: the global ǫ,
and the inlier ratio of the largest group ǫ1 and the second largest group ǫ2 after applying optical flow based clustering. A-F: GroupSACI

and GroupSACF correspond to two grouping strategies: image segmentation and optical flow based clustering. Only part of the corre-

spondences are drawn in the thumbnails for clear visualizations. G: The thumbnails are four representative images in a 23-frame house

sequence. The first one is of interest in the camera resectioning problem.

S1 and S2 whose minimum spanning configurations are G∗
1

and G∗
2 respectively, we have

|G∗
1 | ≥ |G∗

2 | ⇒ P (IS1
= m) ≤ P (IS2

= m). (19)

Proof. The proof is similar to that of Corollary 2.1 and

hence is omitted here.

As a result, G in Eq. (10) is replaced with G∗. The other

part of the GroupSAC algorithm remains the same.

7. Application II: Camera Resectioning

Below we detail the experimental setup for the camera

resectioning application and show that the assumptions un-

derlying this paper indeed hold there. First we generate

tentative correspondences by matching the SIFT descrip-

tors [11] in the target image and those in the visited images

that correspond to the known 3D points. All the tentative

correspondences are passed to RANSAC, and the best in-

liers found are used to compute the underlying projection

matrix using the 6-point DLT algorithm [10].

We demonstrate the performance of GroupSAC on an

exemplar 23-frame image sequence taken around a house,

whose correspondences and inliers along with their contain-

ing groups are plotted in Figure 6. The grouping in Figure 6

shows that only 11 out of 22 images contain the inliers,

i.e., half the groups are outlier groups. In fact, the correct

matchings only exist in the images that overlap with the im-

age of interest. On the other hand, a pure descriptor-based

matching scheme tends to generate many false matchings

because of the repetitive textures and the resulted ambigu-

ities between their corresponding SIFT features. If we or-

der the groups according to the number of their points as in

Figure 6, the first half of images contains 7 inlier groups,
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Figure 6. The number of points and inliers associated with dif-

ferent groups for the house sequence in the camera resection-

ing problem. The blue bars indicate the numbers of tentative cor-

respondences in each group/image, and the red bars indicate the

numbers of inliers.

while the second half only contains 4 inlier groups. This

validates the assumption we made in Eq. (16) that orders

different configurations. In terms of efficiency, GroupSAC

again overwhelms RANSAC and PROSAC by a factor 22
as shown in Table 5.3.

In practice, a common way to solve the resectioning

problem is to draw samples from the image with most of

tentative correspondences. In fact, this heuristic approach

is just the first step of the case that GroupSAC starts sam-

pling from subset C∞, and the largest group is exactly the

image with the most tentative correspondences. Moreover,

GroupSAC is inherently more robust since it handles other

combinations in a probabilistically sound way.

8. Conclusions

We present a novel RANSAC variant that exploits group

structures in data points to guide the sampling process. Our

algorithm is able to handle problems with low inlier ratios

and is shown to work magnitudes faster than the standard

RANSAC and PROSAC in two important geometric vision

problems: camera resectioning and wide-baseline match-

ing. Our future work includes exploring other possible

grouping strategies and trying to employ a more sophisti-

cated model rather than the binomial mixture model.
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