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ABSTRACT

Many data processing tasks such as semantic annotation of
images, translation of texts in foreign languages, and la-
beling of training data for machine learning models require
human input, and, on a large scale, can only be accurately
solved using crowd based online work. Recent work shows
that frameworks where crowd workers compete against each
other can drastically reduce crowdsourcing costs, and out-
perform conventional reward schemes where the payment
of online workers is proportional to the number of accom-
plished tasks (“pay-per-task”). In this paper, we investigate
how team mechanisms can be leveraged to further improve
the cost efficiency of crowdsourcing competitions. To this
end, we introduce strategies for team based crowdsourcing,
ranging from team formation processes where workers are
randomly assigned to competing teams, over strategies in-
volving self-organization where workers actively participate
in team building, to combinations of team and individual
competitions. Our large-scale experimental evaluation with
more than 1,100 participants and overall 5,400 hours of work
spent by crowd workers demonstrates that our team based
crowdsourcing mechanisms are well accepted by online work-
ers and lead to substantial performance boosts.
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H.5.m [Information Interfaces & Presentation (e.g.,
HCI)]: Miscellaneous; H.1.2 [Models and Principles]:
User / Machine Systems—Human information processing,
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1. INTRODUCTION

The rapid development of information technologies, al-
gorithms, and computer hardware has enabled the solution
of many real life problems through efficient processing of
large amounts of data and application of various methods
in the area of artificial intelligence such as machine learning
or decision theory. However, for many tasks such as se-
mantic image annotation, mood analysis, or relevance rank-
ing, humans still significantly outperform automatic meth-
ods. Projects such as Wikipedia or Open Street Maps which
leverage collaborative human power have demonstrated that
a large crowd of non-experts can, under certain conditions,
be as effective and precise as a small group of experts [19,
17]. Information providers make implicit use of collabora-
tive knowledge for improving their services: Search engines
exploit query logs for determining the popularity and im-
proving the automatic ranking of web pages or for suggest-
ing queries and advertisements to their customers. Online
shops like Amazon and auctions like eBay correlate informa-
tion from buyers to recommend new items.

Games with a Purpose can help intrinsically motivat-
ing users to produce input in large quantities: In the ESP
game [21, 22], for instance, online players compete in image
annotation tasks; in this way, the images indexed by Google
in 2004 could be annotated in just 31 days. On the other
hand, platforms like Amazon’s Mechanical Turk and Crowd-
Flower successfully make use of online workers and monetary
incentives for accomplishing tasks such as the annotation of
multimedia content, translation of texts, or generation of
training sets for machine learning and other contexts [23,
25]. Such crowdsourcing platforms are based on a reward
scheme where the payment of online workers is proportional
to the number of accomplished tasks (“pay-per-task”) which
can be slow and costly. In our recent work [18] we success-
fully employed competitive scenarios to motivate users and
reduce crowdsourcing costs, but can we obtain even more
value for money?

Humans often collaborate in order to achieve a competi-
tive advantage, and being a part of a team can additionally
boost the motivation. Well organized teamwork can shorten
the time required for completing a particular task by dis-
tributing the workload across team members; in addition,
some complex tasks require diverse skills and can only be
successfully solved by a group of people with expertise in
different fields. Inducement prizes awarded for instance by
companies like Microsoft, Google, or Yahoo for ideas or code,
attract huge numbers of participants and create an enor-
mous overall value. Participants often organize themselves



in teams in order to increase their chances. In the DARPA
Network Challenge [20] red weather balloons, spatially dis-
tributed in a large area in the US, had to be located. An
overall prize of 40,000 USD was awarded to the winner and
participants were allowed to form search teams. In this way
each participant could increase his probability of a successful
task completion, but on the other hand would have to share
the prize with other team members. The Netflix Prize is an-
other example for such an open competition, where 20,000
research teams were competing against each other, trying
to implement the most effective collaborative filtering algo-
rithm for a single prize of 1,000,000 USD; interestingly, some
of the participating groups merged into one team (“The En-
semble”), combined their algorithms, and achieved competi-
tive results. In our work [18] on crowdsourcing competitions
we also noticed a tendency of some workers to cooperate in
order to achieve a competitive advantage (manifesting in at-
tempts to share accounts), which we had to prevent at that
time due to our experimental design.

In this work we investigate how group mechanisms can
be leveraged to improve the cost efficiency of crowdsourcing
competitions. To this end, we first consider a strategy for
team formation where workers are randomly assigned to one
of a fixed set of teams, and teams compete against each
other for a number of monetary prizes. Secondly, we explore
an agglomerative strategy involving self-organization where
workers (initially starting as one-man teams) can decide by
themselves on which team they want to join, or whom to
include in their team. Finally, we introduce and evaluate
different combinations of team and individual competitions
in a large-scale study.

Outline. The remainder of this paper is organized as fol-
lows: In Section 2 we discuss related work on games with a
purpose and crowdsourcing designs. In Section 3 we formal-
ize our crowdsourcing setting and describe our strategies for
team competitions. The evaluation of our strategies is pre-
sented in Section 4 where we first describe the experimental
setup along with the core results, and then delve deeper into
details about team formation and worker dynamics. Finally,
in Section 5 we conclude and describe directions of our fu-
ture work.

2. RELATED WORK

Crowdsourcing has a wide range of applications, includ-
ing the annotation of data sets, conduction of user surveys,
and collaborative gathering of data collections. Since 2011,
TREC offers a special trek “TrecCrowd” [1] addressing var-
ious issues related to gathering document-relevance labels
for information retrieval systems [3, 4]. This includes hu-
man task design, user filtering, and the fusion of worker
judgments. In this paper, we investigate how collaborative,
game-based crowdsourcing designs, can increase the effec-
tiveness of annotations.

Typically, crowd workers can have different qualifications
and perform tasks of different types not equally well. In
their seminal work [13] Kazai et al. study how payment,
worker qualification, and required effort influence the out-
put of tasks in Amazon Mechanical Turk. In the context
of relevance labeling, the authors show that increasing the
rewards, reducing the required effort, and filtering workers
based on qualification requirements can increase the accu-

racy of the output. In [14] the same authors show the corre-
lation between behavior and personality of workers and the
accuracy of their work. In [16] the effect of the amount of
micro-payments on quantity and quality of annotations is
studied. In contrast, our work focuses on how competitive
reward mechanisms in collaborative scenarios influence an-
notation behavior and the cost efficiency of crowdsourcing.

Gamification techniques can provide additional motiva-
tion for the workers. The authors in [2] have focused on
principal aspects of game mechanics embedded in standard
IR tasks including information seeking, crowdsourcing, and
user engagement. He et al. [11] introduce a user inter-
face for studying search behavior within a gamified setting
where users receive points for finding relevant documents,
and where scores are announced in leaderboards. Dinesh
et al. [17] discuss additional incentive structures to encour-
age user activity within an online platform. A number of
earlier works tackle the same problems. Eickhoff et al. [10]
employ a game based approach for crowdsourcing of query
result relevance labels and image cluster labels. The au-
thors show that entertainment can be a powerful incentive
in crowdsourcing and can partially replace financial rewards.
In comparison, in this work we study non-linear reward dis-
tribution combined with team based strategies in order to
increase the effectiveness of crowdsourcing.

There is a body of work on crowdsourcing theory in
the area of business, economics, and e-commerce. For in-
stance, [5] provides an analysis of crowdsourcing contests
within the software development portal TopCoder'. In [9]
the authors study the influence of the reward amount; they
find that participation rates increase as a function of the
offered reward. Other work shows that, while workers are
generally attracted by high rewards, they also prefer tasks
with low rewards that better suit their abilities and tend
to maximize their outcome by balancing reward and work-
load [24]. In [12] this issue is further addressed by splitting
the crowd into groups of workers with different abilities in
a scenario where workers compete with each other in the
context of bug detection. Although related to our research
purposes, these works target crowd based software develop-
ment contexts where just a single solution is selected at the
end. In contrast, our work focuses on crowdsourcing of an-
notations in the context of information retrieval and data
mining, where the workload and rewards are divided across
multiple teams of workers.

A number of works have proposed theoretical stochastic
models in the context of crowdsourcing. In [8] the authors
introduce models for the effectiveness of winner-take-all sce-
narios, and consider aspects such as the optimal choice of
the prize money. In [7] the same authors concentrate on
scenarios where every non-zero effort of workers is rewarded
and, similar to the scenario studied in this paper, the final
output consists of the cumulative effort of all workers. Ar-
chak et al. [6] present a model for designing crowdsourcing
contests with optimized reward distributions to improve the
quality of the best submission. However, none of these works
provide an experimental evaluation of their concepts.

Finally, in our previous work [18] we introduced non-linear
payment strategies for individual crowdsourcing competi-
tions in combination with different information policies for
boosting the cost efficiency.

1http ://www.topcoder.com



To the best of our knowledge, we are the first to examine
team based crowdsourcing competitions, and to conduct sys-
tematic real-world studies on the effects of collaboration and
uneven reward distributions on both quantity and quality of
annotations.

3. DESIGN OF TEAM-BASED
CROWDSOURCING COMPETITIONS

In this section, we formalize our crowdsourcing scenario
and describe different strategies for distributing rewards
among workers in team competitions. Furthermore, we de-
scribe the information policies (relating to information re-
vealed about the own and other teams as well as fellow work-
ers) we employed in our framework.

3.1 Problem Setting

We consider a scenario with a crowd consisting of n work-
ers W = {w1,...,w,}, and with a fixed (monetary) budget
M for paying workers. This budget is distributed among the
workers depending on the values v(w;) produced by them.
These values v(w;) can, for instance, correspond to the num-
ber of correctly solved crowdsourcing tasks. A worker w;
receives a reward r(w;) with > 7 r(w;) = M. Our goal is
to maximize the overall value V' = 3" | v(w;) produced by
the workers in W.

3.2 Strategies for Reward Distribution

We start by describing two baseline approaches: The first
is just a formalization of the usual “pay-per-task” strategy
within our framework, the second is from our recent work
on individual crowdsourcing competitions. We then extend
the latter approach towards team competitions.

The Simple Baseline: Linear Reward Assignment. The
commonly used strategy in crowdsourcing is to distribute
rewards proportionally to the individual values produced
by workers, i.e. each worker w; receives a reward r(w;) =
(v(w;)/V) - M. In practice this is typically implemented
by fixing a reward rate ¢ (e.g. money per task solved) and
an overall value V. = M/c to be produced (e.g. number of
tasks to be solved), resulting in a reward r(w;) = v(w;)-c for
worker w;. This strategy corresponds to the usual payment
scheme as, for instance, employed for Amazon Mechanical
Turk HITs (“pay-per-task”).

The Enhanced Baseline: Individual Competitions. In
our own recent work [18] we explored various competitive
as well as randomized strategies where workers are ranked
according to their produced values, and the reward of a
worker will depend on his rank. In the following, we de-
scribe the best performing of these strategies. Formally, let
rank(w;) € {1,...,n} be the rank of worker w;, with a rank
of j corresponding to the jth highest value produced across
all workers. The reward r(w;) is computed as a monotoni-
cally decreasing function I'(rank(w;)) of the worker’s rank.
Similar to “real world” competitions lower ranks are dis-
counted, i.e. top performers receive more money per solved
tasks, and I' is a convex function. In practice, instead of
mathematical functions in closed form, one would rather
provide workers with an easy to understand payment scheme
containing “round” numbers for rewards and number of win-
ners (e.g. 50, 25, 15, 8, and 2 USD for the top-5).

Part of the leaderboard content is revealed to a worker;
this “medium” information policy turned out to be most
effective in our previous crowdsourcing competitions [18].
Specifically, workers are shown their scores and rank along
with a snapshot consisting of their k neighbors above and
below them in the leaderboard. The rationale is to trigger
competitive behavior within part of the leaderboard while
avoiding too much frustration for workers with lower scores.
In [18], we showed that this form of competition clearly
outperforms the conventional linear reward assignment de-
scribed in the previous paragraph; therefore, we will com-
pare our new methods in this paper to this enhanced base-
line.

Balanced Team Strategy. In competitions among individ-
ual workers, relatively low performing workers (e.g. in terms
of annotation speed) can quickly fall behind their competi-
tors and become demotivated, resulting in a diminished over-
all value V produced. In this paper we introduce team based
competitions as a means of motivating a larger number of
lower performers, rather than just incentivizing a relatively
small number of high-performing individuals.

We first consider a balanced strategy for team formation,
where we set up a fixed number 7 of teams (each with initial
team size 0) and assign each new worker (from the stream
of registering workers) uniformly at random to one of the
teams containing the lowest number of workers. This guar-
antees an even distribution of workers across the (disjoint)
teams in T = {t1,...,t-}. In order to avoid large numbers of
inactive team members we introduce a low initial threshold
for the value produced by worker w; before assigning him
to a team. Instead of ranking individual workers, we now
rank teams according to the sum of the values produced by
their members, with rank(¢;) defined analogous to the indi-
vidual ranks described in the previous paragraph. A team
reward (t;) is assigned to each team, using, as for individual
competitions, a monotonically decreasing, convex function.
A worker w; receives a reward r(w;) that is proportional
to the contribution to his team t(w;) - more specifically:
r(w;) = r(tw;)) - 0(05)] sty v(w), where v(w;) is
the value produced by w;.

We carry the previously described information policy for
individual competitions over to the team scenario, i.e. dur-
ing a competition members of a team see their positions
along with scores of the k neighbor teams above and be-
low them in the leaderboard. In addition, workers are kept
updated about their current shares of the team reward.

Self-Organizing Team Strategy. In order to avoid demoti-
vation through team assignments imposed by the system, we
also explore a strategy where workers can decide by them-
selves on which team they want to join, and whom to include
in their team (or, alternatively, to stay single workers). Ini-
tially, each worker forms a one-man team and becomes its
administrator. With the start of the competition begins the
team formation phase where teams are built up in an ag-
glomerative way as follows: The administrator of a team can
invite the administrator of a second team; if the invitation is
accepted both teams are merged and the inviting adminis-
trator becomes the (single) administrator of the whole team.
This procedure can be repeated to form larger teams. The
value produced by a team is equal to the sum of the values
produced by its members during the whole competition, i.e.



values of merged teams are added up. Similar as for the bal-
anced strategy, we require workers to produce a value above
some low initial threshold before becoming involved in team
formation activities. Note that workers (including adminis-
trators) are already actively involved in crowdsourcing tasks
in the team formation phase. In order to support decision
making, administrators gain access to statistics on the other
teams - specifically, their sizes and produced values.

After the team formation phase and until the end of the
competition no further merging of teams is possible, and ad-
ministrators become “normal” workers without a dedicated
view on team statistics. Except for administrators in the
team formation phase, the information policy is the same
as described for the balanced team strategy. We also rank
teams and distribute rewards across workers in the same way
as described in the previous paragraph.

Combining Teams and Individual Competitions. In or-
der to account for different worker preferences we can com-
bine team and individual strategies. To this end, the overall
price money M is split into a part for a team competition
and a separate part for an individual competition. Work-
ers conduct crowdsourcing tasks as before and obtain scores
corresponding to their values produced. From these scores
both the individual ranks as well as team ranks and shares
are computed. The overall reward of the worker is the sum
of his individual reward and his team share.

4. EXPERIMENTS

In this section we evaluate the team strategies described in
Section 3 using face recognition as crowdsourcing scenario.
The objective of our evaluation was to study the cost ef-
ficiency of strategies, competitive behavior of workers, and
team dynamics.

4.1 Setup

Crowdsourcing Task. We launched a face recognition task
where workers were asked to identify a person on a given
reference photo among a set of 10 test photos. The im-
ages were retrieved from the PubFig? database which was
created for face verification [15]. Out of originally 58,797 im-
ages with faces of 200 celebrities, 37,004 images were avail-
able on the Web. We reviewed the dataset manually and
removed 663 images showing placeholders as well as 135 im-
ages we deemed unsuitable because the correct person was
not shown on the image. As a quality check mechanism we
randomly introduced a “honeypot” task within each batch
of 100 tasks that was manually selected beforehand. After
workers finished a batch they were shown the honeypot and
their own input for it. If workers solved the honeypot cor-
rectly, 100 points were added to their score, otherwise 20
points were subtracted (with a cut-off threshold of 0 for the
score, i.e. we did not introduce negative scores).

Implementation and Settings. We announced the crowd-
sourcing tasks on the CrowdFlower platform and a mail-
ing list consisting of participants from previous competi-
tions about one day before the competition started. The
workers were choosing the tasks autonomously, as common
for crowdsourcing platforms such as CrowdFlower. As the
tested reward strategies are not supported by Mechanical

2http ://www.cs.columbia.edu/CAVE/databases/pubfig/

Turk or CrowdFlower, we ran the actual competition us-
ing an external application on servers at our institute. Each
worker was assigned a user code upon registration which had
to be submitted to the CrowdFlower task in order for the
account to be activated, thus ensuring that each participant
could be paid.

We started with two preliminary experimental rounds con-
sisting of an individual competition and a group based com-
petition. We observed an initial strong interest by workers
for the novel type of scenario resulting in high participation
rate, which quickly decline in the second experiment. Fur-
thermore we received feedback from workers concerning the
overlong duration of the experiments (originally six days)
and missing communication features. To remedy these is-
sues we reduced the experiment running time to three days
and added automatic notifications for the chat. The final
experiments were performed sequentially with a duration of
three days per experiment (and one run per configuration)
and a break of at least one day in between two competitions
in order to avoid extensive user fatigue.

Tested Strategies. As a baseline, we chose the challeng-
ing “Individual Competition” strategy ind which has been
shown to substantially outperform simple “pay-per-task”
in [18]. We will provide evidence that reaching compara-
ble performance using conventional “pay-per-task” would be
unrealistic. We tested the team competition strategies “Bal-
anced Teams” (balanceTS) and “Self-Organizing Teams”
(selfT'S) described in Section 3.2. For each strategy the
prize money of M = 100 USD was divided into shares of 50,
25, 15, 8, and 2 USD for the top-5 performing teams or indi-
viduals. In addition, we conducted two experiments (coined
ind-balanceT$S and ind-selfT'S) where we extended the
team strategies with rewards for individual workers; to this
end, the 100 USD prize money was equally divided into an
individual and a team part with prizes of 25, 12, 7, 4, and 2
USD for the top-5 individuals/teams. Workers had to solve
at least one batch correctly in order to qualify for participa-
tion in a team (for balanceTS) or for team formation activ-
ities (for selfTS). For all strategies we employed a medium
information policy showing the scores of the three neighbor
teams above and below the workers’ teams in the leader-
board.

We chose a schedule with the most simple strategy at the
beginning and incrementally increased the complexity over
the course of the experimental series. More specifically, we
conducted the experiments in the order ind, balanceT'S, ind-
balanceTS, selfTS, and ind-self T'S. Although this sequence
of the experiments can have an influence on the outcomes,
in contrast to a random order, it allows users to incremen-
tally adapt to our scenarios and prevents a bias due to user
fatigue which might have been in favor of our new strategies
otherwise.

4.2 Results

In our experiments, overall 1.6 million images were
matched correctly by 1,164 participants from 91 different
countries (amounting to over 5,400 hours of work). The
workers were accessing our competitions from several parts
of the world, with a majority from Europe (38.0%) and Asia
(34.7%). The country represented most numerously was In-
dia (14.4%), followed by Venezuela (6%) and the United
States (4.2%).



Experiment  No. Images Cent / Hour Cent / 100 Images

Baseline
ind 298,332 9.895 3.352
Balanced Teams
balanceTS 327,073 8.967 3.057
ind-balanceTS 391,620 8.059 2.553

Self-Organized Teams

selfT'S 282,942 9.346 3.534
ind-selfT'S 295,158 9.929 3.388

Table 1: Aggregate outcomes of the experimental rounds.

Aggregate Results. Table 1 shows the number of correctly
matched images for each of the reward strategies, along with
the average amount of money spent per correctly annotated
image (both measuring the produced value), and hours of
work (measuring monetary recompense for the participants).
The main results are the following;:

e Using the enhanced baseline (ind), we obtained almost
300,000 correctly annotated images at an average cost
of 33.5 cent for 1,000 correctly annotated images. Note
that using the standard “pay-per-task” scheme, this
would result in a task that requires a contributor to
annotate over 30 images for a reward of only 0.01 USD.

e The winning strategy - balanced teams combined with
individual rewards (ind-balanceTS) - clearly outper-
forms the other strategies, and beats the ind baseline
by a margin of 30%. This reduces the amount paid for
100 correctly annotated images by almost 24%.

e The pure team strategy balanceTS still outperforms
the baseline ind by around 10%, in terms of value pro-
duced as well as time invested by participants.

e The remaining self-organizing team strategies were per-
forming similar to the baseline, without being able to
beat it.

Overall, the balanced team strategy with automatic group
formation consistently outperformed the self-organizing
team strategy. One reason for this might be the additional
overhead and complexity for workers due to activities such
as team building, communication, and coordination for the
selfT'S and selfT'S-ind strategies. For instance, our logs re-
vealed that participants in the selfT'S experiment spent more
than 10% more time per value produced in comparison to
the baseline. Another reason might be the formation of a
very small number of large and dominant teams which we
avoid in the balanced case. In section 4.3 we will analyze
issues of team dynamics in more detail.

Worker Contributions. Figure 1 depicts the contributions
of individual workers to the overall produced value (i.e. frac-
tion of correctly annotated images by the top-10 (1 < R <
10) and the remaining (R > 10) participants). The team
based strategies benefit from the “fat tail” of the contribu-
tion distribution, where lower ranked participants were mo-
tivated by the performance of their fellows and contributed
more value compared to individual strategies. For self-
organizing teams (selfT'S) we observe that lack of individual
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Figure 1: Individual worker contributions to the overall
value in different experiments.
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Figure 2: Cumulative number of correctly annotated images
per experiment over time.

rewards and very large teams in the experiment can demoti-
vate individual top performers. This effect can be remedied
by combining group and individual competitions as shown
for the ind-selfTS strategy.

Temporal Dynamics. Figure 2 illustrates the temporal evo-
lution of the cumulative counts of correctly solved images
aggregated over the whole set of workers. The numbers
grow mostly linearly over time with higher increments at
the beginning of the competitions and periodicities which are
probably due to day cycles, similar to our findings in [18].
However, due to the larger and more diverse user base of
CrowdFlower compared to Mechanical Turk in our previous
work, the periodicity is less pronounced (for further illus-
tration see the non-cumulative view for the individual com-
petition ind and balanced team competition balanceTS in
Figure 3). In addition, Figure 3b reveals fierce competitions
between workers for the balanceTS strategy (e.g. for team
ranks 1 and 3 towards the end of the contest), leading to a
boost in the amount of annotations.

We also studied the contribution of individual workers
over time. Figure 4 breaks the cumulative annotation counts
down for the top-10 individual workers. Compared to indi-
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Figure 4: Cumulative number of correctly annotated images for the top-10 participants over time.

vidual competitions we observe considerably higher scores
for the lower ranked participants in team-based competi-
tions. For our winning strategy (ind-balanceTS) in particu-
lar, the spread of the curves is much less pronounced, high-
lighting that in contrast to the individual competition ind,
lower performers remain motivated even when confronted
with stronger competitors. Except for the selfTS strategy,
the top performers annotated more than 20,000 images each,
indicating adequate motivation in the team scenarios.

Annotation Quality. In terms of correct annotations there
is no noticeable difference between the baseline and any of
our team-based strategies (see Table 2). For the large ma-
jority of batches with correctly solved honeypots the per-
centage of accurately recognized faces is over 95% for all of
the strategies. The quality slightly increased in the course
of our experimental runs, compensating to some degree the
handicap of worker fatigue. Similarly, the number of batches
with incorrectly solved honeypots declined over time as the



Correct Honeypots Incorrect Honeypots

Correctly Correctly

No. of matched No. of matched
Exp. batches faces batches faces
ind 2,996 95.8% 85 81.0%
balanceTS 3,293 96.3% 81 74.6%
ind-balanceTS 3,964 96.6% 66 85.2%
selfTS 2,845 96.7% 65 82.8%
ind-selfTS 2,966 97.1% 41 83.7%

Table 2: Quality results.

users became more proficient at the task, whilst the fraction
of correct annotations for these batches remained stable.?

4.3 Team Formation and Dynamics

In the following we examine team structures and temporal
dynamics in order to shed further light on the performance
differences between team strategies.

Team Composition. Figure 5 shows the contributions of
workers to their team for the top-10 teams. We observe
a strong competition between the top teams towards the
end of the selfTS and balanceTS experiments, resulting in
very similar performance characteristics for the competitors.
For the combined strategy ind-balanceTS, especially par-
ticipants in lower ranked teams were additionally engaged
through individual rewards and contributed more value. Al-
though some of the top workers seemed to be demotivated
by the relatively weak performance of their teams, generally
more participants were highly motivated in the group based
strategies in comparison to the ind baseline.

For both of the self-organized team strategies the emerg-
ing team structure turned out to be suboptimal: the com-
petitions were dominated by few very large teams, offering
only small shares to strong performers. This issue was al-
leviated with the introduction of individual rewards in ind-
selfT'S, where the contributions of the top performers are
about twice as high as for selfT'S. Designing and testing
team formation conditions (such as stronger restrictions on
teams sizes) that lead to more competitive team scenarios is
a challenging task for future work.

Team Formation Processes. Figure 6 visualizes team for-
mation events (specifically the merging into larger teams)
along with the development of the overall value produced
by the top-5 teams for the group strategies selfT'S and bal-
anceTS. Over the course of the team formation phase, a large
number of participants decided to join one of the leading
teams - instead of collaborating with smaller teams in order
to compete for the lower prize ranks (“winning team joining”
pattern). However, we also observed occasional mergings
of smaller teams if a higher rank in the leaderboard could
be achieved in that way (“competitive merging” pattern).
Finally, for both strategies fierce competitions occurred to-
wards the end of the experiment (e.g. between rank 1 and
2 as well as rank 3 and 4). A dendrogram view of the team
formation for the top-5 teams in both self-organized teams

3The results for balanceTS are an exception: two of the workers
tried to game the system by annotating randomly.

(a) selfTS (b) ind-selfTS
Figure 7: Team merging structure of top-5 teams for self-
organizing team strategies (selfT'S and ind-selfTS)

experiments is shown in Figure 7, where merges evolve from
the outer to the inner part of the circles. The “winning team
joining” pattern appeared in over 80% of all mergings.

In total, 550 and 284 invitations were posted for selfT'S
and ind-selfTS, where 75.4% and 57.3% were accepted after
an average of 2.1 and 4.9 hours, respectively. These num-
bers exclude the invitations ignored or automatically can-
celed due to engagement in concurrent merging activities.
The decline in the number of invitations in conjunction with
the lower acceptance rate for subsequent experiments indi-
cate that workers often preferred smaller teams after having
participated in one of the very large teams before.

4.4 Worker Activity and Interaction

Worker Activity. Table 3 shows the number of participat-
ing contributors who solved at least one batch of 100 in-
stances. The discrepancy between registered users and users
who actually provided annotations is mostly due to partic-
ularities of CrowdFlower where each submission of a user
code (i.e. registration) had to be rewarded with 1 cent?.
Over the course of the experiments, we noticed user fatigue
manifesting in a continuous, slight decrease in the number of
participants, putting the baseline strategy at an advantage.

Figure 8 shows the number of workers with respect to
the number of experiments they participated in; workers are
further divided into the ones that won a monetary prize
in at least one of the experiment and the ones who didn’t.
Similar to our observations in [18], workers who had won
prizes in earlier rounds, were more motivated to participate
in further rounds, with 11.5% of all workers engaged in at
least 3 competitions.

User Feedback. During the experiments we continuously
received feedback from the participants. Besides admin-
istrative issues (such as missing or inappropriate images),
participants also suggested new features such as team chat
functionalities which we implemented right after the prelim-
inary rounds. User comments also provided us with valuable
insights into details of the competition design. In a prelim-
inary balanced team experiment, for instance, workers were
assigned to a team immediately upon login, which was often

4During the selfT'S and ind-selfT'S experiments, we additionally
observed periods without any registrations after the start of the
competition due to technical problems of the platform.
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Figure 5: Contributions to the top-10 teams for the team based strategies. We show the number of correct annotations and
the contribution of each individual team member (ordered by rank within the team). The size of each team is shown above
the respective column.
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Figure 6: Temporal development of correct annotations of the top-5 teams for selfT'S (left) and balanceTS (right). For selfTS
we also show merging events during the team formation phase (i.e. in the first 36 hours).



Exp. registered annotated solved batch
ind 839 448 300
balanceTS 785 382 282
ind-balanceTS 732 342 273
selfT'S 586 219 181
ind-selfT'S 763 316 222

Table 3: Participation statistics

not considered fair (“we have a lot of members who has
0 points.(...) So we are at disadvantage!”). Conse-
quently, in our main series of experiments, users were only
assigned to a team after first solving one batch of tasks.
To ensure setup consistency throughout the experiments we
had to discard numerous requests, such as the suggestion to
adopt the interface for mobile devices.

Team Communication. Over the course of the exper-
iments, about 2,500 messages were posted by over 200
of the participants. Conflicts, such as discussions about
reward shares, were scant and most of the communication
remained positive and friendly “Thank you all for your
hard work. May we meet again in another competi-
tion either as a team or a competitor. Good luck
to you all.”. Lots of messages were very constructive,
including motivating statements like “Let’s go team !!!
we are 5, team A are 3. We can reach them !!!” and
“chat later, focus on work fast.”.

Team members supported each other with working advice
and clarification of the rules:

user 1: What if I answer wrong?
user 2: we will lose 20 points :) go easy
press F11 and than u will see better

as well as discussing their own strategy with others:

user 3: I’m trying to get to number 5 spot
because he/she stopped clicking.

user 2: Yeah but u need 2000 thousand more
buddy, and you know that he/she will
be careful now :/ she will check
again to see if you will attack and
then he/she will start doing more
[...]

user 3: good point

Furthermore, many of the participants collaborated
on team administration and coordination issues in a
rather democratic way.  For instance, team adminis-
trators sought out the opinions of their team members
regarding new invitations and teams sizes (“Ok. help
me with the decisions”, “Don’t invite anyone else
so we don’t have to split the reward with so many
people! [...]1”). Team leaders received input from
members about experiences made in previous competitions,
such as suggestions for inviting former co-workers (“<XXX>
has worked with me.i still can watch the old com-
petitions.he scored 8400 points,so you decide :)”).
Strategic decisions were discussed about catching up with
competitors, defending the current position, or pausing to
keep the share proportions stable.

900
Did not receive reward mm—
800 Received reward at least once mm—

700
600
500
400

No. of Users

300
200
100

No. Experiments

Figure 8: Worker participation.

Although some of the workers appreciated having con-
trol in the self-organizing team strategy (“[...] this
system.. 1it’s stable and perfect.. all in our
hands(public) but not of system automatically se-
lecting arranging them in teams..”), workers worried
about inactive team mates (“those people who haven’t
done much kinda piss me off”). In our future work, we
consider also offering a mechanism for democratically ruling
out members.

S.  CONCLUSIONS AND FUTURE WORK

We have studied various team competition strategies for
crowdsourcing, including balanced teams, self-organizing
teams, and combination of team and individual strategies.
Our evaluation shows substantial performance boosts for
team-based scenarios: Our best approach results in 30%
more annotations than the recent state-of-the-art baseline,
with no decrease in the quality of annotations. Our results
indicate that balancing team sizes plays a crucial role in fos-
tering engagement in competitions. In addition, the combi-
nation of team and individual competition helps to overcome
declines in performance through weak teams. Our analysis
of group formation processes, temporal dynamics in compe-
titions, and user interactions sheds further light on worker
motivation and behavior.

In our future work we aim to explore additional team
formation mechanisms, including democratic decision pro-
cesses, options for hiring and firing, and hierarchical worker
structures. Furthermore, we plan to conduct more in-depth
studies on the influence of parameters such as maximum
team size, reward distribution, and duration of competi-
tions. Finally, we want to study crowdsourcing scenarios
that require closer collaboration and stronger expertise in
different areas. To this end, we aim to introduce more so-
phisticated communication mechanisms that allow for effec-
tive coordination between team members and teams.
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