
Grover on SIMON

Ravi Anand1, Arpita Maitra2,3, Sourav Mukhopadhyay1

1 Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur-721302, West Bengal, India

2 TCG Centre for Research and Education in Science and Technology,
Kolkata-700091, West Bengal, India.

3CR Rao Advanced Institute of Mathematics, Statistics and Computer Science,
Hyderabad, India.

Abstract. For any symmetric key cryptosystem with n-bit secret key,
the key can be recovered in O(2n/2) exploiting Grover search algorithm,
resulting in the effective key length to be half. In this direction, subse-
quent work has been done on AES and some other block ciphers. On
the other hand, lightweight ciphers like SIMON was left unexplored. In
this backdrop, we present Grover’s search algorithm on all the variants
of SIMON and enumerate the quantum resources to implement such
attack in terms of NOT, CNOT and Toffoli gates. We also provide the
T-depth of the circuits and the number of qubits required for the attack.
We show that the number of qubits required for implementing Grover
on SIMON 2n/mn is O(2nr + mn), where r is the number of cho-
sen plaintext-cipher text pairs. We run a reduced version of SIMON in
IBMQ quantum simulator and the 14-qubits processor as well. We found
that where simulation supports theory, the actual implementation is far
from the reality due to the infidelity of the gates and short decoherence
time of the qubits. The complete codes for all version of SIMON have
also been presented.

Keywords: Lightweight Cryptography; Quantum Cryptanalysis; Quantum Cir-
cuits; Grover’s Algorithm; Feistel Ciphers

1 Introduction

The last two decades witnessed an enormous proliferation in the domain of quan-
tum computation and communication. Due to the two pioneering quantum algo-
rithms, Shor’s algorithm [25] and Grover’s search algorithm [9], the security of
currently deployed cryptosystems is under a threat. As a consequence, in recent
time, a lot of symmetric constructions are being evaluated in quantum settings.
For example, one can mention the key recovery attacks against Even-Mansour
constructions and distinguishers against 3-round Feistel constructions [19]. Not
only that, the key recovery attacks against multiple encryptions [15], forgery at-
tacks against CBC-like MACs [16] have also been studied. The list is expanding
considering Quantum meet-in-the-middle attack on Feistel constructions [12],

ar
X

iv
:2

00
4.

10
68

6v
2

 [
qu

an
t-

ph
]

 1
6

Se
p

20
20

key recovery attacks against FX constructions [21] etc. Researchers have also
tried to convert the existing classical attacks to quantum settings [17,13,16,23].

Very recently, Bonnetain et al. [6] proposed a novel methodology for quantum
cryptanalysis on symmetric ciphers. They exploited the algebraic structure of
certain classical cryptosystems to bypass the standard quantum superposition
queries.

In case of symmetric ciphers or hash function, Grover’s algorithm provides
a quadratic speed up in exhaustive key search. So a conservative rule of thumb
is to double the security parameter, i.e., atleast double the size of the key or
double the size of the output of hash function. However, this does not rule out
the need of analyzing the cost of Grover’s algorithm on symmetric ciphers. In
this direction, subsequent efforts have been made to derive cost estimation for
applying Grover’s search algorithm on all variants of AES [32,10,20,14]. The
cost of applying Grover’s search algorithm as a pre-image search attack on hash
functions has also been studied [2].

Fault tolerant commercialized quantum computers are still elusive. However,
several companies are providing simulation facilities through the web. Along
with the simulation, IBM provides facility to run the program in their small
scale actual quantum processors. Based on this state-of-the-art situation, this
is very important to explore actual implementation issues of all these quantum
cryptanalysis procedures.

SIMON is a family of lightweight block ciphers released by NSA in June
2013. It is a balanced Feistel structured block cipher. SIMON is optimized
for performance in hardware implementations. In October 2018, the SIMON
and Speck ciphers have been standardized by ISO as a part of the RFID Air
Interface Standard, International Standard ISO/29167-21 (for SIMON) and
International Standard ISO/29167-22 (for Speck), making them available for
use by commercial entities [35]

As these are comparatively new ciphers, quantum cryptanalysis on those ci-
phers remained unexplored. In this backdrop, in the current effort, we study the
cost of Grover search on all the variants of SIMON and try to implement that in
publicly available IBM quantum processors. Due to the limitation of the qubits,
we could not run the full scale cipher, instead we run the algorithm for a reduced
version. We found that whereas simulation meets theory, actual implementation
has been masked with error.

Our Contribution. One may argue that it is already well known that Grover
search provides quadratic speedup over classical exhaustive key search. In this
direction, we like to emphasize that for implementing Grover algorithm on a
symmetric cipher, one requires a reversible implementation of that cipher which
is a hard task. In this regard, we design the reversible version of all the vari-
ants of SIMON [4] so that one can successfully implement Grover oracle and
Grover diffusion for key search on all of those variants. We also provide the full
implementation code for the cipher in QISKIT [34]. We estimate the resources
in terms of NOT, CNOT, and Toffoli gates required to attack the cipher. We

provide the T-depth of the circuits and the number of qubits needed to imple-
ment the attack, too. We tested our circuits with existing classical test vectors
to make sure that the implementations are correct. The code for all the vari-
ants is given in [30]. This is because when the full scale quantum computers
arrive, one may implement the code immediately. For independent verification
of our results with the state-of-the-art IBM quantum simulator and processors,
we add all the QASM and QISKIT codes for a reduced SIMON . To the best
of our knowledge, this is the first full implementation and resource estimation
on SIMON in quantum settings.

2 Preliminaries

2.1 Brief Summary on SIMON

SIMON is a family of balanced Feistel structured lightweight block ciphers with
10 different block sizes and key sizes (Table 1). The round function used in the
Feistel structure of SIMON block ciphers consists of circular shift, bitwise AND
and bitwise XOR operations. The state update function is defined as,

F (x, y) = (y ⊕ S1(x)S8(x)⊕ S2(x)⊕ k, x) (1)

The structure of one round SIMON encryption is depicted in Figure 1, where
Sj represents a left circular shift by j bits, Li and Ri are n-bit words which
constitutes the state of SIMON at the i-th round and ki is the round key
which is generated by key scheduling algorithm described below.

Fig. 1: SIMON round function

The different variants of SIMON are denoted by SIMON 2n/mn, where
2n denotes the block size of the variant, and mn is the size of the secret key.

Block Size (2n) Key Size (k = mn) word size (n) keywords (m) Rounds (T)

32 64 16 4 32

48 72,96 24 3,4 36,36

64 96,128 32 3,4 42,44

96 96, 144 48 2,3 52,54

128 128,192,256 64 2,3,4 68,69,72

Table 1: SIMON parameters

Here n can take values from 16, 24, 32, 48 or 64, and m from 2, 3 or 4. For each
combination of (m,n), the corresponding round number T is adopted.

The key schedule of SIMON has three different procedures depending on
the key size. The first m round keys are initialized directly from the main key.
The remaining (T −m) round keys are generated by the following procedure:

ki+m =

ci ⊕ ki ⊕ S−3(ki+1)⊕ S−4(ki+1) m = 2,

ci ⊕ ki ⊕ S−3(ki+2)⊕ S−4(ki+2) m = 3,

ci ⊕ ki ⊕ S−1(ki+1)⊕ S−3(ki+3)⊕ S−4(ki+3) m = 4,

(2)

where ci are the round dependent constants and S−j(x) denotes right rotation
by j times on x.

Encryption: The input to the encryption oracle is a 2n-bit plaintext block P .
This block is divided into n−bit subblocks P = (L0, R0) which is the initial state
of the cipher. The encryption consists of T applications of the round function
with the respective round key produced by the key schedule. The ciphertext
obtained is a 2n−bit block C = (LT−1, RT−1)

Decryption: Decryption of the ciphertext C = (LT−1, RT−1) consists of first
swapping L and R part of the block cipher, i.e. the input to the decryption or-
acle is (RT−1, LT−1). Then T round functions with round keys in reverse order
(ie. round keys kT−1, · · · k0) is applied followed by a final swapping of the two
subblocks.

Existing cryptanalysis of SIMON: To the best of our knowledge, no suc-
cessful attack on full-round Simon of any variant is known. As is typical for
iterated ciphers, reduced-round variants have been successfully attacked. Some
of the results are summarized below Table 2. For a more detailed description of
SIMON , the readers are referred to [4].

Variant Rounds attacked Time complexity Data complexity Attack type

Simon32/64 21/32 263 231 Integral [27]

Simon48/72 20/36 259.7 248 Zero Correlation [27]

Simon48/96 21/36 272.63 248 Zero Correlation [27]

Simon64/96 26/42 263.9 263 Differential [1]

Simon64/128 26/44 294 263 Differential [1]

Simon96/96 35/52 293.3 293.2 Differential [1]

Simon96/144 35/54 2101 293.2 Differential [1]

Simon128/128 46/68 2125.7 2125.6 Differential [1]

Simon128/192 46/69 2142 2125.6 Differential [1]

Simon128/256 46/72 2206 2125.6 Differential [1]

Table 2: Summary of existing cryptanalysis results on SIMON

2.2 Grover’s Algorithm

Grover’s algorithm [9] searches through a space of N elements for a solution. We
can assume that N = 2n and each state be represented by the indices in {0, 1}n.
Let us assume that there exists a state y such that

f(x) =

{
1 if x=y ,

0 otherwise.

We also assume that f is easily and effectively computable. The oracle, f is pro-
vided as a black box. It finds the state y. Grover’s algorithm needs only O(2n/2)
oracle calls as compared to O(2n) oracle calls needed classically.

Grover’s algorithm can be summarised in the following steps:

1. Apply Hadamard gate on the initial state |00...0〉 bit by bit to obtain the
following superposition

|ψ〉 =
1

2n/2

2n−1∑
x=0

|x〉

2. The second step make bπ4 2n/2c calls to Grover’s iteration. Grover’s iteration
comprises of two subroutines.
The first subroutine makes use of the operator Uf which evaluates the
Boolean function f : {0, 1}n → {0, 1}, which marks the solutions of the
search problem, i.e. f(x) = 1 if and only if the element corresponding to
x is a solution. When we apply the Gorver oracle Uf to a state |x〉 |z〉,
where |x〉 is a n-qubit state and |z〉 is a single qubit then it acts as Uf :
|x〉 |z〉 → |x〉 |z ⊕ f(x)〉. If |z〉 is chosen to be 1√

2
(|0〉 − |1〉), then we have

Uf : |x〉 1√
2
(|0〉 − |1〉) → (−1)f(x) |x〉 1√

2
(|0〉 − |1〉) which means that the

oracle applies a phase shift only to the solution indices while leaving the re-
maining indices unaltered. Each call to Uf involves two calls to a reversible
implementation of f and one call to a comparision circuit that checks if x is

a solution or not.

The second subroutine implements the transformation 2 |0〉 〈0| − I, also
known as the diffusion operator. This routine flips the amplitude of the
states about it’s mean thus amplifying the amplitude of the solution. This
involves single qubit gates and one t-fold controlled NOT gate. So in the
second step, the following two steps are repeated O(2n/2) times:

(a) For any state |x〉 in the superposition |ψ〉, rotate the phase by π radians
if f(x) = 1 and leave the system unaltered otherwise.

(b) Apply the diffusion operator.

3. Measure the resulting superposition and obtain the solution with the prob-
abilities determined by the amplitudes of the states.

2.3 Block Cipher Key Search Using Grover

Let E be a block cipher with block size n and key size k. For any key K ∈ {0, 1}k,
let EK(M) be the encryption of plaintext M under the key K. For a given
plaintext-ciphertext pair (M,C) with C = EK(M), we can apply Grover’s algo-
rithm to determine the key K [29]. The steps involved are:

1. Define a Boolean function f for Grover’s oracle which takes the key K as
input,

f(K) =

{
1 if EK0(M) = C,

0 otherwise.

2. Initialize the system by making a superposition of all the possible keys with
same amplitude,

|K〉 =
1

2K/2

2K−1∑
j=0

|Kj〉 .

3. Iterate 2(a), (b) as described in Section 2.2 for O(2K/2) times.
4. Measure the system and observe the state K = K0 with probability atleast

(1
2).

As a matter of fact, there may be more than one key that satisfies C =
EK0(M). To ensure that the key obtained is unique we may require more than
one plaintext-ciphertext pairs under the same key. Let us consider that we have
r such pairs (Mi, Ci). In this case the Boolean function for Grover’s oracle would
be defined as,

f(K) =

{
1 if EK(Mi) = Ci, 0 ≤ i ≤ r,
0 otherwise.

2.4 Attack Model

We mount known plaintext attack using Grover’s algorithm [9] for all the vari-
ants of SIMON . We consider that the adversary has access to certain pairs
of plaintexts and corresponding ciphertexts. Then he finds the secret key using
Grover’s search using quantum resources. In this regard, we need to design a
quantum circuit for all the variants of SIMON . In the following section, we
describe the circuit.

3 Quantum Circuit for SIMON

In this section, we develop a reversible quantum circuit for SIMON . We analyze
our circuits based on the number of qubits, NOT gates, CNOT gates, and Toffoli
gates. Grover search will be executed on this circuit under the known plaintext
attack model, i.e. when pairs of plaintext and the corresponding ciphertext are
already known.

The circuits described in this section are implemented in QISKIT [34]. The
circuit is reversibly computable and needs no ancilla qubits. We also estimate
the T-depth of the circuit.

The internal state size of SIMON varies from 32 bits to 128 bits as described
in Table 1. SIMON consists of two subroutines, the round function, and the
key expansion. We describe both these routines first and then show how they
can be used simultaneously in the whole cipher construction.

3.1 Circuit for Round Update Function

The round function F is defined as,

F (x, y) = (y ⊕ S1(x)S8(x)⊕ S2(x)⊕ k, x),

where Si(x) denotes left rotation by i times on x.
Now, we assume that we have k-qubits reserved for the key, K and, n-qubits

each for L and R. Let (L0, R0) be the initial state and the state propagate as
(L0, R0), (L1, R1), (L2, R2), · · · , (Lj , Rj) in j rounds.
Now, due to the construction of SIMON , we can write

R2(i) = L1(i) = R0(i) ⊕ K0(i) ⊕ L0((i+ 1)mod(n/2)) & L0((i+ 8)mod(n/2))

⊕ L0((i+ 2)mod(n/2)), 0 ≤ i ≤ (n/2),

Note that here i denotes the position of the bit in L and R of a round. If we
consider two round SIMON , then each bit of R2 will be the XORing of each bit
of R0, F (L0) and K0, where F (x) = S1(x)S8(x)⊕ S2(x). Similarly, each bit of
L2 will be the XORing of each bit of L0, F (R2) and K1. So the qubits reserved
for R0 can be used to store the values for R2. Similarly the qubits reserved for
L0 can be used to store the value of L2; hence, no need for extra qubits.

Each bit of R2, i.e., R2(i), is computed using the following three steps:

1. Toffoli(L0((i+ 1)mod(n/2)), L0((i+ 8)mod(n/2)), R0(i)),
2. CNOT (L0((i+ 2)mod(n/2)), R0(i)),
3. CNOT (K0(i), R0(i)).

L2 can be implemented in similar way. Proceeding sequentially, we can build a
circuit for as many rounds as required.

Now, it is easy to calculate that for 1 round we require n Toffoli gates and 2n
CNOT gates. So, for j rounds we need jn Toffoli gates and 2jn CNOT gates.

Let us now define three functions F ,G and H, shown below in Figure 2, for
easy understanding of the circuit construction.

|a〉 F
∣∣S1(b)S8(b)⊕ a

〉
|b〉 • |b〉

|a〉 G
∣∣S2(b)⊕ a

〉
|b〉 • |b〉

|a〉 H |b⊕ a〉

|b〉 • |b〉

Fig. 2: Subrotines comprising the round function F

Here |a〉 = |a1a2...an〉, |b〉 = |b1b2...bn〉 are n length quantum states and (+)
is addition modulo n, i.e. (i+ 8) = (i+ 8)mod(n).

The circuit for the two rounds is shown Figure 3, where Kj , Lj , Rj represent
quantum states of size n for a round j.

Round 1 Round 2

|K0〉 • |K1〉 • |K2〉

|R0〉 F G H |L1〉 • • |R2〉

|L0〉 • • |R1〉 F G H |L2〉

Fig. 3: Circuit for two rounds

Now, consider the circuit in Figure 4. This is the IBMQ [33] implementation
of the circuit for two rounds of a reduced version of SIMON . The assumed
state size is 16 and the key size is 16 and m = 2. The state is split into L,R each
of size 8 and the key is split into two round keys (k0, k1) also of size 8. The state
update function is assumed to be F (x, y) = (y⊕S1(x)S4(x)⊕S2(x)⊕k, x). The
circuit here describes the two rounds of the cipher, i.e. if we measure the L and
R states, we would get the values of the state after two rounds. We can extend
these circuits for more than two rounds described earlier.

One should note that this implementation works for all variants of SIMON
except SIMON 128/192. The problem arises for the SIMON 128/192 as the
number of rounds is 69. This can be solved by implementing the last round such

that the state R is modified according to the state update function and L state
is left as it is. Then we apply a swap function on the states L and R, which
increase the number of CNOT gates in the circuit by an amount of 64×3 = 192.

Fig. 4: Circuit for two rounds of reduced version of SIMON

3.2 Key Expansion

The key expansion routine is linear and invertible. It is defined in Eqn. 2. We
can implement an in-place construction of key expansion without the use of any
ancilla qubits. We here assume that the round constants are implemented in the
circuits using an adequate number of NOT gates. This number will depend on
the round constant values. Here we show the construction for all the three cases
m = 2, 3, 4.

Let us define a subroutine Rq on two states |a〉 = |a1a2...an〉 and |b〉 =
|b1b2...bn〉 such that

Rq(a, b) = (a⊕ S−i(b), b)

That is, the state |b〉 remains unchanged and each qubit in |a〉 gets modified as
|aj〉 = CNOT (b(j−i)mod(n), aj). So each application of Rq on |a〉 , |b〉 involves n
CNOT gates, where n is the size of |a〉 , |b〉.

For m = 2, we have two key words k0, k1 which are used for the first and
second round of encryption. k0, k1 are states of size n, so we need 2n qubits to
store this value.
The third round key k2 can be computed on the same qubits which will store k0.

|a〉 Rq
∣∣S−i(b)⊕ ai

〉
|b〉 • |b〉

Each bit k2(j) can be computed from (k0, k1) by applying the following three
steps:

1. CNOT(k1(j − 3)mod(n/2), k0(j)),
2. CNOT(k1(j − 4)mod(n/2), k0(j)),
3. NOT (k0(j)) only if the value of round constant rc(j) is 1.

where 0 ≤ j ≤ (n/2). The first and the second step is represented by R3 and R4

in Figure 5 respectively.
After k2 has been computed, we can compute each bits k3(j) applying the fol-
lowing steps:

1. CNOT(k2(j − 3)mod(n/2), k1(j)),
2. CNOT(k2(j − 4)mod(n/2), k1(j)),
3. NOT (k1(j)) only if the value of round constant rc(j) is 1.

where 0 ≤ j ≤ (n/2). Similarly, we can proceed to compute the further round
keys sequentially.

For m = 3 we have three key words k0, k1, k2 each of size n. The round keys
for further round can be computed as explained above for m = 2 and the details
are shown in Figure 6.

For m = 4 we have three key words k0, k1, k2, k3 each of size n. For the
extra round keys we will require an extra step. k4(j) is computed applying the
following steps:

1. CNOT(k1(j − 1)mod(n/2), k0(j)),
2. CNOT(k3(j − 3)mod(n/2), k0(j)),
3. CNOT(k3(j − 4)mod(n/2), k0(j)),
4. NOT (k0(j)) only if the value of round constant rc(j) is 1

where 0 ≤ j ≤ (n/2). The first step is the extra step required for m = 4. The
circuit is described in Figure 7.

It can be easily calculated that for 1 round of key expansion we need mn
CNOT gates and n′ NOT gates (where 0 ≤ n′ ≤ n depending on the number of
1’s in the round constant). In the complete implementation of SIMON , (T−m)
round-keys are generated as the first m key words are used as first m round keys.
So, for (T −m) rounds of key expansion we need (T −m)(mn) CNOT gates and
(T −m)n′ NOT gates.

Consider the circuit in Figure 8. This circuit represents reduced version of
key expansion of SIMON with key words 2, as defined in Eqn. 2. The two
round constants are assumed to be c0 = 11111111 and c1 = 01001101, which are
implemented in the circuit by using NOT gates. Barrier separates k3 from k4.

|k0〉 R3 R4 rc0 |k2〉 • • · · · |kT−2〉

|k1〉 • • R3 R4 rc1 |k3〉 · · · |kT−1〉

Fig. 5: Circuit for key expansion with 2 keywords. rci represents the
round dependent constants

.

|k0〉 R3 R4 rc0 |k3〉 • • · · · |kT−3〉

|k1〉 R3 R4 rc1 |k4〉 • • · · · |kT−2〉

|k2〉 • • R3 R4 rc2 |k5〉· · · |kT−1〉

Fig. 6: Circuit for key expansion with 3 keywords. rci represents the
round dependent constants

3.3 Circuit for SIMON

We implement SIMON as a reversible circuit as reversibility is necessary for the
cipher to be useful as a subroutine in Grover search. Using the circuits developed
for round function and key expansion we can now construct the circuit for full
round SIMON .

The input to the circuit is the key K and the plaintext split into two halves
L0, R0. The output of the circuit is the ciphertext LT−1, RT−1, where T is the
number of rounds. The size of K,L,R are mn, n, n respectively, where m is
either 2 or 3 or 4. In Figure 9, we draw the circuit considering m = 2. Similar
construction can be made for variants with m = 3 and m = 4. U , is the round
update function which consists of the three subroutines F ,G,H and KE is the
key expansion routine described in 3.2.

Figure 10 gives an implementation of the reduced version of SIMON , with
two key words. First, we run the circuit in IBMQ Simulator [33]. We consider the
key size and state size to be 6 and the number of rounds to be 4. The state update
function is defined as ((Lj+1, Rj+1) = (Rj⊕(S1(Lj)&S

2(Lj))⊕S0(Lj)⊕kj), Lj)
and the key expansion is defined as kj+2 = cj⊕kj⊕S−1(kj+1)⊕S−2(kj+1) where
cj are round dependent constants [0, 0, 1] and [0, 0, 1] for the third and fourth
round respectively. Let the plaintext be L0 = [0, 1, 1], R0 = [1, 0, 1] and the key
words be k0 = [0, 0, 1], k1 = [1, 1, 0]. Then after four rounds the ciphertext will
be L4 = [0, 1, 1], R4 = [1, 1, 1]. In IBMQ circuit, one should read the cipher text
as L4 = [L4(0), L4(1), L4(2)] and R4 = [R4(0), R4(1), R4(2)]. In Figure 11 the
output is shown as [R4(2), R4(1), R4(0), L4(2), L4(1), L4(0)].

Then, we run the circuit (Figure 10) in ibmq melbourne, the 14 qubits actual
processor. In contrary to the simulation (Figure 11), we observed a huge error
in the result. Figure 12 shows the histogram we have obtained after running the
circuit in ibmq melbourne for 1024 shots. The reason behind this is the infidelity
of the gates used in the circuit and the decoherence time of the qubits used in
the actual processor, which has been pointed out in several works like [11,26]
and also in the IBMQ’s official site.

|k0〉 R1 R3 R4 rc0 |k4〉 • • • · · · |kT−4〉

|k1〉 • R1 R3 R4 rc1 |k5〉 • • · · · |kT−3〉

|k2〉 • R1 R3 R4 rc2 |k6〉 • • · · · |kT−2〉

|k3〉 • • • R1 R3 R4 rc3 |k7〉 · · · |kT−1〉

Fig. 7: Circuit for key expansion with 4 keywords. rci represents the
round dependent constants

Fig. 8: Key expansion for m = 2 and key size 16 split into two round
keys of size 8 each.

3.4 Grover’s oracle

In this subsection, we will discuss the implementation of Grover search on a
block cipher under known plain text attack. Let r pairs of plaintext and cipher-
text be sufficient to successfully extract the unique solution. In this regard, we
have to design an oracle that encrypts the given r plaintexts under the same key
and then computes a Boolean value which determines if all the resulting cipher-
texts are equal to the given classical ciphertexts. This can be done by running
the block cipher circuit r times in parallel. Then the resultant ciphertexts are
compared with the classical ciphertexts. The target qubit will be flipped if the
ciphertexts match. This is called Grover oracle. In Figure 13, the construction of
such an oracle is given for two instances of plaintext-ciphertext pairs considering
SIMON block cipher.

We implement the above idea, i.e., Grover oracle for our reduced version
of SIMON (Figure 10) in the IBMQ simulator. We have not run the circuit
for Grover in ibmq melbourne, as the output of the reduced SIMON in this
processor has already been masked with a huge amount of error (Figure 12).

Now, in this case, the plaintext is M = [0, 1, 1, 1, 0, 1] and the key is K =
[0, 0, 1, 1, 1, 0]. Then after four rounds the ciphertext will be C = [0, 1, 1, 1, 1, 1].
In theory, this key K = [0, 0, 1, 1, 1, 0] will be obtained as the output of Grover
oracle. Figure 14a shows the outcome of Grover applied to this circuit. Note that
in the histogram two peaks appear; one for the exact key K and another for an
unknown key K ′ = [1, 1, 1, 0, 0, 0]. This is because, the unknown key K ′ also

|k0〉 • KE |k2〉 • · · · |kT−2〉

|k1〉 • KE |k3〉 · · · |kT−1〉

|L0〉
U

|L1〉
U

|L2〉
U

|L3〉 · · · |LT−1〉

|R0〉 |R1〉 |R2〉 |R3〉 · · · |RT−1〉

Fig. 9: The circuit for implementing SIMON with two key words. .

Fig. 10: Circuit for 4 rounds reduced SIMON with two key words

Fig. 11: Measurement of circuit in Figure 10 in IBMQ Simulator. As
expected the output after 4 rounds is [011111].

encrypts the plain text M onto the cipher text C. To find the unique key, we
use another plaintext-ciphertext pair, M1 = [0, 0, 1, 1, 0, 1], C1 = [1, 1, 0, 0, 1, 1]
under the same key. Figure 14b shows the outcome of Grovers applied to this
circuit. In this histogram also we got two peaks. Similar to 14a, one peak is
for the exact key K and another is for an unknown key K ′′ = [0, 0, 1, 0, 0, 1]
as K ′′ encrypts M1 to C1 too. Note that the key common to both the pairs is
K = [0, 0, 1, 1, 1, 0] which is the exact key. The full implementation is described
in [30]. The functions Grover oracle and Grover Diffusion used in our code is
taken from [18] by importing the file Our Qiskit Functions.

3.5 Resource Estimation

Cost of implementing SIMON We first estimate the cost of implementing
SIMON as a circuit including the key expansion as well as the round function.
As discussed above the round constants are implemented to the key expansion
function using an adequate number of NOT gates. We have not included the

Fig. 12: Measurement of circuit in Figure 10 in ibmq melbourne, the 14
qubits actual processor.

|K〉 •
SI SI†

• |K〉

|M1〉 • |M1〉
|C1〉

|0〉
SI SI†

|0〉

|M2〉 • |M2〉
|C2〉

|−〉 = |−〉

Fig. 13: Grover’s oracle for SIMON using two plaintext-ciphertext pairs.
Here, SI represents the SIMON encryption as described in 3.3. The (=)
operator compares the output of the SI with the given ciphertexts and
flips the target qubit if they are equal.

number of NOT required to initialize the plaintext in our estimates as it depends
on the given plaintext. Table 3 gives the cost estimates of implementing all
SIMON variants.

Cost of Grover oracle Following [14] we assume that r = dk/(2n)e known
plaintext-ciphertext pairs are sufficient to give us a unique solution, where 2n is
the block size and k = mn is the key size of the cipher. Here, one should mention
that if r = dk/(2n)e is an integer, then consider its next integer. Grover’s oracle
consists of comparing the 2n-bit outputs of the SIMON instances with the
given r ciphertexts. This can be done using a (2n · r)-controlled CNOT gates
(we neglect some NOT gates which depend on the given ciphertexts). Following
[28], we estimate the number of T gates required to implement a t-fold controlled
NOT gates as (32 · t− 84).

We use the decomposition of Toffoli gates to 7 T -gates plus 8 Clifford gates,
a T -depth of 4 and total depth of 8 as in [3]. To estimate the full depth and
the T -depth we only consider the depths of the SIMON instances ignoring the
multi controlled NOT gate used in comparing the ciphertexts. We also need
(2 · (r− 1) · k) CNOT gates to make the input key available to all the SIMON

(a) (b)

Fig. 14: Histogram obtained after running Grover’s on the reduced
SIMON described in Figure 10.

SIMON 2n/mn # NOT # CNOT # Toffoli # qubits depth

SIMON 32/64 448 2816 512 96 946

SIMON 48/72 792 3312 864 120 1062

SIMON 48/96 768 4800 864 144 1597

SIMON 64/96 1248 5184 1344 160 1674

SIMON 64/128 1216 7396 1408 192 2643

SIMON 96/96 2400 9792 2496 192 4785

SIMON 96/144 2448 10080 2592 240 3282

SIMON 128/128 4224 17152 4352 256 8427

SIMON 128/192 4224 17472 4416 320 5656

SIMON 128/256 4352 26624 4608 384 8848

Table 3: Cost of implementing SIMON variants

instances in the oracle. The total number of Clifford gates is the sum of the
Clifford gates used in the implementation of SIMON and the (2 · (r − 1) · k)
CNOT gates needed for input key. The cost estimates for all SIMON variants
are presented in Table 4

Cost of exhaustive key search Using the estimates in Table 4 of Grovers
oracle for the various variants, we provide the cost estimates for the full ex-
haustive key search on all variants in Table 5. We consider bπ4 2k/2c iterations
of Grovers operator. As in [20] we do not consider the depth of implementing
the two multi-controlled NOT gates while calculating the T -depth and overall
depth.

SIMON 2n/k r # Clifford gates # T gates T -depth full depth # qubits

SIMON 32/64 3 19840 24492 12288 27180 161

SIMON 48/72 2 16560 27180 13824 28440 169

SIMON 48/96 3 33792 40812 20736 45860 241

SIMON 64/96 2 25620 41644 21504 44988 224

SIMON 64/128 3 52184 65196 33792 74994 321

SIMON 96/96 2 48768 75948 39936 89028 289

SIMON 96/144 2 50400 78636 41472 86104 337

SIMON 128/128 2 85760 129964 69632 151564 385

SIMON 128/192 2 87168 131756 70656 146272 449

SIMON 128/256 3 186880 205740 110592 246624 641

Table 4: Cost of Grover oracle

SIMON 2n/k # Clifford gates # T gates T -depth Full depth # qubits

SIMON 32/64 1.35 · 245.5 1.27 · 246 1.18 · 245 1.05 · 246.3 161

SIMON 48/72 1.01 · 249.65 1.03 · 250.45 1.01 · 249.4 1.05 · 250.37 169

SIMON 48/96 1.02 · 262.66 1.02 · 263.05 1.01 · 261.97 1.02 · 263.11 241

SIMON 64/96 1.02 · 262.27 1.01 · 263.08 1.10 · 261.9 1.07 · 263 224

SIMON 64/128 1.03 · 279.27 1.02 · 279.7 1.06 · 278.6 1.03 · 279.8 321

SIMON 96/96 1.02 · 263.2 1.04 · 263.85 1.02 · 262.9 1.02 · 264 289

SIMON 96/144 1.05 · 287.2 1.06 · 287.9 1.22 · 286.7 1.03 · 288 337

SIMON 128/128 1.03 · 280 1.14 · 280.5 1.17 · 279.51 1.12 · 280.7 385

SIMON 128/192 1.04 · 2112 1.17 · 2112.5 1.19 · 2111.51 1.08 · 2112.7 449

SIMON 128/256 1.05 · 2145.1 1.11 · 2145.2 1.07 · 2144.3 1.12 · 2145.4 641

Table 5: Cost estimates of Grovers algorithm with bπ
4

2k/2c oracle itera-
tions with a success probability negligibly close to 1.

4 Conclusion

In this work we presented an implementation of Grovers search algorithm on
SIMON . We first provided a reversible circuit of all variants of SIMON .
Then these circuits were used to estimate the cost of attacking SIMON using
Grover’s algorithm. The plausible values the overall circuit depth suggested by
NIST [31] is between 240 and 296 and we assume that this depth is an upper
bound on the total depth of a quantum attack. The overall circuit depth of all
the implementations presented in this work except for SIMON 128/192 and
SIMON 128/256 lie in this range. This work is aimed at using the minimal
number of qubits, in future it would be interesting to re-estimate the cost by
reducing the depth of the implementations at the expense of some extra qubits
by using other choices of decomposition of Toffoli gates, e.g., as in [24] which
has a T -depth of 1 and an overall depth of 7 but uses 18 Clifford gates and 4
ancilla qubits.

References

1. Abed F., List E., Lucks S., Wenzel J. (2015) Differential Cryptanalysis of Round-
Reduced Simon and Speck. In: Cid C., Rechberger C. (eds) Fast Software Encryp-

tion. FSE 2014. Lecture Notes in Computer Science, vol 8540. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-662-46706-0 27

2. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A. and Schanck, J.,
2016, August. Estimating the cost of generic quantum pre-image attacks on SHA-2
and SHA-3. In International Conference on Selected Areas in Cryptography (pp.
317-337). Springer, Cham.

3. Amy, M., Maslov, D., Mosca, M. and Roetteler, M., 2013. A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 32(6), pp.818-830.

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B. and Wingers, L.,
2015, June. The SIMON and SPECK lightweight block ciphers. In Proceedings of
the 52nd Annual Design Automation Conference (pp. 1-6).

5. Biryukov, A., Leurent, G. and Perrin, L., 2015, August. Cryptanalysis of Feistel
networks with secret round functions. In International Conference on Selected Areas
in Cryptography (pp. 102-121). Springer, Cham.

6. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y. and Schrottenloher,
A., 2019, December. Quantum Attacks without Superposition Queries: the Offline
Simon’s Algorithm. In International Conference on the Theory and Application of
Cryptology and Information Security (pp. 552-583). Springer, Cham.

7. Boyer, M., Brassard, G., Hyer, P. and Tapp, A., 1998. Tight bounds on quantum
searching. Fortschritte der Physik: Progress of Physics, 46(4?5), pp.493-505.

8. Brassard, G., Hoyer, P., Mosca, M. and Tapp, A., 2002. Quantum amplitude am-
plification and estimation. Contemporary Mathematics, 305, pp.53-74.

9. Grover, L.K., 1996, July. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of comput-
ing (pp. 212-219).

10. Grassl, M., Langenberg, B., Roetteler, M. and Steinwandt, R., 2016, February.
Applying Grover’s algorithm to AES: quantum resource estimates. In Post-Quantum
Cryptography (pp. 29-43). Springer, Cham.

11. Harper, R. and Flammia, S.T., 2019. Fault-tolerant logical gates in the ibm quan-
tum experience. Physical review letters, 122(8), p.080504.

12. Hosoyamada, A. and Sasaki, Y., 2018, September. Quantum Demiric-Selcuk meet-
in-the-middle attacks: applications to 6-round generic Feistel constructions. In In-
ternational Conference on Security and Cryptography for Networks (pp. 386-403).
Springer, Cham.

13. Hosoyamada, A. and Sasaki, Y., 2018, April. Cryptanalysis against symmetric-
key schemes with online classical queries and offline quantum computations. In
Cryptographer’sTrack at the RSA Conference (pp. 198-218). Springer, Cham.

14. Jaques, S., Naehrig, M., Roetteler, M. and Virdia, F., 2020, May. Implementing
Grover oracles for quantum key search on AES and LowMC. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques (pp. 280-
310). Springer, Cham.

15. Kaplan, M., 2014. Quantum attacks against iterated block ciphers. arXiv preprint
arXiv:1410.1434.

16. Kaplan, M., Leurent, G., Leverrier, A. and Naya-Plasencia, M., 2016, August.
Breaking symmetric cryptosystems using quantum period finding. In Annual Inter-
national Cryptology Conference (pp. 207-237). Springer, Berlin, Heidelberg.

17. Kaplan, M., Leurent, G., Leverrier, A. and Naya-Plasencia, M., 2015. Quantum
differential and linear cryptanalysis. IACR Transactions on Symmetric Cryptology
(2016): 71-94.

http://arxiv.org/abs/1410.1434

18. Koch, D., Wessing, L. and Alsing, P.M., 2019. Introduction to Coding Quantum
Algorithms: A Tutorial Series Using Qiskit. arXiv preprint arXiv:1903.04359.

19. Kuwakado, H. and Morii, M., 2012, October. Security on the quantum-type Even-
Mansour cipher. In 2012 International Symposium on Information Theory and its
Applications (pp. 312-316). IEEE.

20. Langenberg, B., Pham, H. and Steinwandt, R., 2019. Reducing the cost of imple-
menting AES as a quantum circuit. Cryptology ePrint Archive, Report 2019/854.

21. Leander, G. and May, A., 2017, December. Grover meets Simon–quantum attacking
the FX-construction. In International Conference on the Theory and Application of
Cryptology and Information Security (pp. 161-178). Springer, Cham.

22. Rivest, R.L., Shamir, A. and Adleman, L., 1978. A method for obtaining digi-
tal signatures and public-key cryptosystems. Communications of the ACM, 21(2),
pp.120-126.

23. Santoli, T. and Schaffner, C., 2016. Using Simon’s algorithm to attack symmetric-
key cryptographic primitives. arXiv preprint arXiv:1603.07856.

24. Selinger, P., 2013. Quantum circuits of T-depth one. Physical Review A, 87(4),
p.042302.

25. Shor, P.W., 1999. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2), pp.303-332.

26. Tannu, S.S. and Qureshi, M.K., 2019, April. Not all qubits are created equal: a case
for variability-aware policies for NISQ-era quantum computers. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (pp. 987-999).

27. Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V. and Todo, Y., 2014, De-
cember. Cryptanalysis of reduced-round SIMON32 and SIMON48. In International
Conference on Cryptology in India (pp. 143-160). Springer, Cham.

28. Wiebe, N. and Roetteler, M., 2014. Quantum arithmetic and numerical analysis
using Repeat-Until-Success circuits. arXiv preprint arXiv:1406.2040.

29. Yamamura, A. and Ishizuka, H., 2000. Quantum cryptanalysis of block ciphers.
Algebraic systems, formal languages and computations. RIMS Kokyuroku 1166 :
235-243.

30. https://github.com/raviro/quantsimon

31. https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/

documents/call-for-proposals-final-dec-2016.pdf

32. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

33. https://quantum-computing.ibm.com/

34. https://qiskit.org/

35. https://en.wikipedia.org/wiki/$SIMON$_(cipher)

http://arxiv.org/abs/1903.04359
http://arxiv.org/abs/1603.07856
http://arxiv.org/abs/1406.2040
https://github.com/raviro/quantsimon
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://quantum-computing.ibm.com/
https://qiskit.org/
https://en.wikipedia.org/wiki/$ SIMON $ _(cipher)

	Ravi Anand1, Arpita Maitra2,3, Sourav Mukhopadhyay1

